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Abstract
In this paper, we investigate shape inversion algorithms based on the computation of iterated topological derivatives for
the detection of multiple particles coated by a complex surface impedance in two- and three-dimensional acoustic media.
New closed-form formulae for the topological derivative of the misfit functional are derived when an approximate set of
unknown particles has already been recovered. Proofs rely on the computation of shape derivatives followed by the topological
asymptotic analysis of a boundary integral equation formulation of the forward and adjoint problems. The relevance of the
theoretical results is illustrated by various 2D and 3D experiments using monochromatic imaging algorithms either fully or
partially based on topological derivatives.

Keywords Inverse obstacle problem · Impedance boundary condition · Asymptotic topological analysis · Boundary integral
equation method · Topological derivative
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1 Introduction

In the continuation of our recent paper [35], we investi-
gate the performance of the topological derivative (TD) for
developing full shape inversion methods from noisy mea-
surements when an impedance condition is imposed on the
boundary of the multiple unknown particles. We already
derived in [35] the topological gradient formulae for the
2D and 3D time-harmonic Helmholtz equation in the free
space. In that work, we presented a large gallery of numerical
experiments illustrating the performance of the instantaneous
method when multi-frequency noisy data are available. In
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the single-frequency situation, we observed that first stage
approximations were not always satisfactory, in the sense
that any level set of the topological indicator function do
not provide in many cases the true number and location of
the defects or a reasonable shape identification. The aim of
this paper is to improve such approximation by iteratively
computing new TDs.

Full imaging algorithms of thin coated objects using very
reduced data are of high importance inmany fields of applied
physics such as nondestructive testing, biomedical and radar
imaging [8–10].

The inverse shape problem is commonly reformulated as
the minimization problem of the least-squares functional,
which accounts for the difference between the measured
and reconstructed data. The topological gradient of this mis-
fit functional measures the variations of such functional in
the presence of an infinitesimal scatterer at each point of
the region of interest. While a general abstract definition of
the first-order TD has been set for any small shape domain
[22,41,45], we restrict our study to small balls. Former
numerical comparison in the literature of the TD formu-
lae depending on various choices of shape perturbations
did not demonstrate significant differences (see [26]). The
topological gradient can also be reinterpreted as a limit of
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shape derivatives [40] for which an adjoint problem is usu-
ally introduced. In the absence of scatterers, the topological
asymptotic analysis can then be performed using 2D Fourier
and 3D Mie series expansions of the solution to the forward
and adjoint problems [33,35]. However, extending the results
in the presence of an already set of approximate shapes is not
immediate.Weadopt here a newstrategybasedon aboundary
integral equation formulation of multiple scattering prob-
lems, first proposed by the authors in the electromagnetic
case [34]. This approach is well suited to obstacle scatter-
ing frameworks. Indeed, using the 2D Fourier and 3D Mie
series expansions of the potential operators and their traces,
one can establish the asymptotic behaviors of the perturbed
solution to the forward and adjoint problems far from and
on the boundary of the infinitesimal particles. First-order TD
formulae of classical misfit functionals are deduced readily.

From a computational point of view, the indicator func-
tion formulae are relatively easy to implement with either
FEM or BEM solvers and a few parallel computations in the
three-dimensional case.As a consequence, various TD-based
iterative methods have been investigated in the literature.
Iterative methods completely based on the computation of
TDs were first introduced for optimal design of structures
[22,25], and then adapted for inverse scattering problems
for the Helmholtz equation in 2D in [13–16] and 3D in
[12,46]. TheTDcan also be used to generate initial guesses in
shape derivatives-basedmethods such as the level set method
[20,21]. A new trend consists in crossing TDs with paramet-
ric derivatives through converging Gauss–Newton iterations
[30]. The latter algorithm has been recently applied to the
challenging imaging problem of a few electromagnetic par-
ticles from two-dimensional holographicmeasurements [11].
New unknown particles are automatically recovered by TDs
when Gauss–Newton iterations stagnate. To our best knowl-
edge, the performance of iterated TD-based methods for the
impedance boundary condition case has not been analyzed
yet. The numerical results presented here are proper to the
Helmholtz equation case and by no means can be obtained
from the Maxwell equation case with an impedance bound-
ary condition [33].

The paper is organized as follows: In Sect. 2, we present an
equivalent boundary integral reformulation of the direct scat-
tering problems for multiple complex 2D and 3D impedance
obstacles. The associated inverse obstacle problem is also
briefly outlined. The topological derivative is introduced in
Sect. 3 and algorithms based on iterated TDs are described.
Using shape derivatives tools [28] and spectral expansions
of the boundary integral operators for ball-shaped domains,
we derive closed-form formulae of the TD of the least-
squares cost functional. We show numerically in Sect. 4
that iterating the single-frequency TD indicator provides a
reasonable reconstruction under high impedance contrast,
even when only partial aperture data is available. Moreover,

combined with parametric derivatives through converging
Gauss–Newtonmethods, it automatically and accurately dis-
tinguishes various particles with a lower complex impedance
contrast. Finally, we outline concluding remarks and discuss
possible research lines in Sect. 5. The paper ends with a short
appendix where we collect some relations and asymptotic
properties of Bessel functions.

Notation 1 For a bounded open domain � ⊂ R
d , d = 2

or 3, we denote by Hs(�), Hs
loc(R

d \ �) and Hs(∂�) the
standard (local in the case of the exterior domain) complex-
valued, Hilbert–Sobolev space of order s ∈ R defined on �,
R
d \� and ∂�, respectively (with the convention H0 = L2).

2 Forward and Inverse Problems

In this section,we introduce first the forward impedance scat-
tering problem and recall an equivalent boundary integral
formulation proposed in [36]. Next, the inverse impedance
scattering problem is presented.

2.1 Forward Problem

Let us consider a bounded domain � ⊂ R
d , for d = 2

or 3. We assume that � consists of N ≥ 1 disjoint com-
ponents with smooth simply connected boundaries, namely,
� = ∪N

�=1�� with �� ∩ � j = ∅ if � �= j . The scatter-
ing of time-harmonic (exp(−iωt) time dependence) acoustic
waves when each �� is an impedance object can be modeled
by the following forward problem for the total field u [19]:
for a given incident acoustic wave uinc solving the Helmholtz
equation in the absence of any object, find the total field u
satisfying

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�u + κ2u = 0, in Rd \ �,
∂u

∂n
+ iκλu = 0, on ∂�,

lim|x|→∞ |x| d−1
2
(
x̂ · ∇(u − uinc) − iκ(u − uinc)

) = 0,

(1)

where κ = ω/c is the wave number (ω > 0 is the frequency
and c > 0 is the wave speed), and λ ∈ C is the impedance
parameter, assumed to satisfy

Re λ ≥ 0. (2)

Here, n is the outward unit normal vector to ∂� (to each
disjoint component of�). The last condition in (1) is thewell-
known Sommerfeld radiation condition at infinity that has to
be satisfied uniformly for every unitary direction x̂ = x

|x| . It
is well known that under the assumption (2), problem (1) has
a unique solution (see [36]). From the Sommerfeld radiation
condition at infinity, we also have [19, Theorem 2.6.]:
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u(x)−uinc(x) = eiκ|x|

|x| d−1
2

{

u∞(̂x) + O

(
1

|x|
)}

, |x| → ∞,

(3)

uniformly for all unitary directions x̂. The function u∞,
which is defined on the unit sphere S

d−1 of Rd , is called
the far-field pattern.

Let us introduce now a boundary integral formulation of
the forward problem (1) on which the derivation of our forth-
coming TD formula will be based. To do that, we define for

any densitiesψ ∈ H− 1
2 (∂��), ϕ ∈ H

1
2 (∂��), and any point

x ∈ R
d \∂�� the standard single and double-layer operators,

S�
κ and D�

κ , respectively, as

(S�
κψ)(x) =

∫

∂��

G(κ, x − y)ψ(y) dσ(y),

(D�
κϕ)(x) =

∫

∂��

∂ G(κ, x − y)
∂n�(y)

ϕ(y) dσ(y),
(4)

where G is the fundamental solution to the Helmholtz equa-
tion [39, Section 2.1]

G(κ, z) =

⎧
⎪⎪⎨

⎪⎪⎩

i

4
H (1)
0 (κ|z|) , if d = 2,

eiκ|z|

4π |z| , if d = 3,
(5)

and n� is the outward unit normal vector to ∂��.
Then, by the Helmholtz integral representation formula in

R
d\� [18, Theorem 3.3], the solution u ∈ H1

loc(R
d \ �) to

the impedance problem (1) can be written as:

u = uinc +
N∑

�=1

[

D�
κu|∂��

− S�
κ

( ∂u

∂n�

)

|∂��

]

= uinc +
N∑

�=1

[
D�

κ + iκλS�
κ

]
u|∂��

. (6)

Taking in (6) the exterior Dirichlet and Neumann traces
of u on ∂�� for � = 1, . . . , N , by the jump relations of the
single and double-layer operators, one finds the identities

(u − uinc)∣∣∂��
=
(
1

2
I + D�

κ + iκλS�
κ

)

u|∂��

+
⎡

⎣
∑

j �=�

(D j
κ + iκλS j

κ )u|∂� j

⎤

⎦
∣
∣∂��

, (7)

( ∂u

∂n�

− ∂uinc

∂n�

)
∣
∣∂��

=
(

N �
κ + iκλ

(
− 1

2
I + D′�

κ

))

u|∂��

+
⎡

⎣
∑

j �=�

∂

∂n�

(D j
κ + iκλS j

κ )u|∂� j

⎤

⎦

|∂��

, (8)

where the boundary integral operators S�
κ , D

�
κ , D

′�
κ and N �

κ

are defined for any densitiesψ ∈ H− 1
2 (∂��), ϕ ∈ H

1
2 (∂��)

and any point x ∈ ∂�� by

(S�
κψ)(x) =

∫

∂��

G(κ, x − y)ψ(y) dσ(y),

(D�
κϕ)(x) =

∫

∂��

∂ G(κ, x − y)
∂n�(y)

ϕ(y) dσ(y),

(D′�
κ ψ)(x) =

∫

∂��

∂ G(κ, x − y)
∂n�(x)

ψ(y) dσ(y),

(N �
κϕ)(x) =

∫

∂��

∂2 G(κ, x − y)
∂n�(x)∂n�(y)

ϕ(y) dσ(y).

(9)

We remark here that we are using the standard notation in the
boundary integral community for the operator D′�

κ , where
the prime symbol is used to indicate that D�

κ and D′�
κ are

adjoint to each other with respect to the duality product in
H1/2(∂��) × H−1/2(∂��), i.e.,

<D�
κϕ, ψ >H1/2(∂��)×H−1/2(∂��)

=<ϕ, D′�
κ ψ >H1/2(∂��)×H−1/2(∂��)

.

Theorem 1 [36, Theorems 3.4 and 3.5] Under the hypoth-
esis (2), the solution u ∈ H1

loc(R
d \ �) of the impedance

scattering problem (1) can be expressed as

u = uinc +
N∑

�=1

[
D�

κ + iκλS�
κ

]
ϕ�,

where the Dirichlet traces ϕ� := u|∂��
, � = 1, . . . , N are the

solution to the following system of boundary integral equa-
tions:

−
(∂uinc

∂n�

+ iκλuinc
)
∣
∣∂��

=
(
N �

κ + iκλ
(
D′�

κ + D�
κ + iκλS�

κ

))
ϕ�

+
⎡

⎣
∑

j �=�

( ∂

∂n�

(D j
κ + iκλS j

κ ) + iκλ(D j
κ + iκλS j

κ )
)
ϕ j

⎤

⎦

|∂��

.

(10)

2.2 Inverse Problem

In this work, we aim at finding the number N , the location,
and the approximate shapes of a set of unknown impedance
obstacles � = ∪N

�=1�� from measurements of either the
near-field or far-field patterns resulting from the scattering
of a finite number Ninc of incident waves. For the numeri-
cal experiments, we will consider plane waves of the form
uincr (x) = eiκx·dr , r = 1, . . . , Ninc, where dr ∈ S

d−1.
If we denote by ur the total field solution to the forward

impedance problem (1) for a given incident wave uincr , then
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in case of near-field data, the inverse problem consists in
recovering the scatterers � that minimize the cost function

J (Rd\�) =
Ninc∑

r=1

1

2

∫

meas

∣
∣ur (yobs) − umeas,r (yobs)

∣
∣2 dμ(yobs), (11)

wheremeas is the set of observation points and umeas,r (yobs)
are themeasured data at the points yobs ∈ meas. Themeasure
μ represents the Lebesgue measure on a surface of Rd or,
in practical applications, it rather represents a finite sum of
Dirac measures. In the later case, the cost function reads

J (Rd\�) =
Ninc∑

r=1

1

2

Nobs∑

s=1

∣
∣ur (ysobs) − umeas,r (ysobs)

∣
∣2 ,

where ysobs, for s = 1, . . . , Nobs, are the observation points
in Rd . In case of far-field measurements, the cost function is

J (Rd\�) =
Ninc∑

r=1

1

2

Nobs∑

s=1

∣
∣u∞

r (̂ysobs) − u∞
meas,r (̂y

s
obs)
∣
∣2, (12)

where ŷsobs, for s = 1, . . . , Nobs, are a finite number of
observation points in Sd−1 and u∞

meas,r (̂y
s
obs) is the measured

far-field at those points.

3 Topological Derivative-BasedMethods

The minimization strategy will be based on the computation
of the topological derivative (also known as the topologi-
cal gradient or the topological sensitivity) of the functional
J defined in (11) or (12), for near-field or far-field obser-
vations, respectively. In this section, we first provide the
general definition of the topological derivative, to introduce
then our iterative minimization strategy (Sect. 3.1). Closed-
form formulae, needed for the practical implementation of
the algorithm, will be derived in Sect. 3.2.

3.1 Topological Derivative: Theory andMinimization
Algorithm

The topological derivative (TD) of a given cost function J
defined in a regionR ⊂ R

d measures the sensitivity of J to
ball-like perturbations of infinitesimal radius at each point of
R [41,45], namely, for each x ∈ R it provides an asymptotic
expansion of the form

J (R\Bε(x)) = J (R)+ f (ε)DT (x;R)+o( f (ε)), ε → 0,

(13)

where Bε(x) is an infinitesimal ball centered at x of radius
ε > 0, and f > 0 is a monotonically increasing function

such that f (ε) → 0 as ε → 0. In our previous paper [35]
we proved that for the impedance problem in R = R

d , the
function f must behave as εd−1. In the forthcoming section
we will prove that also for R = R

d \ �app, where �app is
a bounded domain (an approximated guess for �), f must
behave as εd−1.

A more general definition of the TD is also possible by
replacing the role of Bε(x) by a general infinitesimal domain
containing the point x, but in practice, closed-form formulae
become rather involved. For this reason, we will restrict our
definition to balls.

In view of the expansion (13), intuitively one can conclude
that placing infinitesimal objects at the points x ∈ R where
the topological derivative DT (x;R) attains the most pro-
nounced negative values, the cost functional should decrease.
Therefore, one can consider the following set�0 as an initial
guess for the unknown objects �:

�0 := {x ∈ R, DT (x;R) ≤ (1−C0)min
y∈R

DT (y;R)}, (14)

where 0 < C0 < 1 is a tunable constant. Some partial justi-
fications of this heuristic choice for some specific problems
in acoustics can be found in [5,27].

We propose to update the initial guess �0 by subsequent
TD computations: the region R \ �0 plays now the role of
R in the expansion (13) to find the TD indicator function
DT (x;R \ �0) for all x ∈ R \ �0. Then, �0 can be updated
by adding the set of points where the largest negative values
of this derivative are attained, namely, the new approximated
domain is defined as

�1 := �0 ∪ {x ∈ R \ �0,

DT (x;R \ �0) ≤ (1 − C1) min
y∈R\�0

DT (y;R \ �0)},

for some tunable constant 0 < C1 < 1. The method can
be straightforwardly iterated now. This method was firstly
proposed in [14] for the 2D-transmission problem for the
Helmholtz equation, and later used in [13] for the Dirichlet
problem. It has also been used in other contexts, like for
2D photothermal imaging [15], the 2D electrical impedance
problem [16] or for 3D electromagnetic scattering in [34].

Notice that the iterative algorithm generates a nested
sequence of approximated domains, namely � j ⊂ � j+1.
Therefore, if at some step a spurious region is added, it
cannot be removed in the subsequent iterations. For the
transmission problem, the TD can be also computed inside
the current approximations, being able to both include and
remove regions from one iteration to the next one [14].

In the next section we give closed-form formulae of the
TD for the near-field and far-field least-squares cost functions
both forR = R

d and forR = R
d \ �app, with �app being a

given approximation of the true domain �.
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3.2 Closed-FormTopological Derivative Formulae

In absence of any initial guess for �, we set R = R
d in

the definition (13). The following results, corresponding to
near-field and far-field data, were proved in [35]:

Theorem 2 [35, Theorem3.4]For the cost function J defined
in (11), we have the expansion, for x ∈ R

d ,

J (Rd \ Bε(x)) = J (Rd) + f (ε)DT (x;Rd) + o(εd−1),

where

f (ε) =
{
2πε, if d = 2,
4πε2, if d = 3,

(15)

and the topological derivative is given by

DT (x;Rd) = Re

[ Ninc∑

r=1

iκλ uincr (x)winc
r (x)

]

(16)

with

winc
r (z) =

∫

meas

G(κ, z − yobs)(uincr (yobs) − umeas,r (yobs))dμ(yobs).

(17)

Theorem 3 [35, Theorem 3.5] For the far-field cost function
J defined in (12) we have the expansion, for x ∈ R

d ,

J (Rd \ Bε(x)) = J (Rd) + f (ε)D∞
T (x;Rd) + o(εd−1),

where f is given by (15) and the topological derivative is

D∞
T (x;Rd) = Re

[ Ninc∑

r=1

iκλ uincr (x)winc
r (x)

]

, (18)

where

winc
r (z) =

Nobs∑

s=1

δ(d)e−iκz·̂ysobsu∞
meas,r (̂y

s
obs)

with δ(d) =
{−eiπ/4/

√
8πk, if d = 2,

−1/(4π), if d = 3.
(19)

The remaining of the section is devoted to the derivation
of closed-form formulae when R = R

d \ �app. To do that,
we follow the strategy proposed in [40] (and used in our
previous paper [35]), to obtain the TD as a limit of shape
derivatives. We will start with the near-field case. For nota-
tional simplicity, we assume that Ninc = 1 in the definition
of the functional (11) and omit the subindex r . The extension
to Ninc > 1 is straightforward by linearity.

Theorem 4 Let �app be a given approximation of the true
domain�. Letx ∈ R

d\�app.Then, the topological derivative
at x of the cost function (11) (for Ninc = 1) can be obtained
as

DT (x;Rd \ �app) = lim
ε→0

gε(x)
f ′(ε)

,

f ′(ε) being the derivative with respect to ε of the function
f (ε) in (13), and

gε(x) = Re

(∫

∂Bε(x)
(κ2(λ2 − 1) + (d − 1)iκλε−1)uεwε

+
∫

∂Bε(x)
∇∂Bεuε · ∇∂Bεwε

)

, (20)

where uε solves the forward problem (1) with � = �app ∪
Bε(x) and wε is the complex-conjugate of the solution wε to
the associated adjoint problem, namely, it solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�wε + κ2wε = (umeas − uε)δmeas , in Rd\(�app ∪ Bε(x)),
∂wε

∂n
+iκλwε = 0, on ∂�app ∪ ∂Bε(x),

lim|z|→∞ |z| d−1
2 (̂z · ∇wε − iκwε) = 0.

(21)

Proof As stated in [40], the TD of a given functional J
defined in a region R ⊂ R

d can be computed at any x ∈ R
as follows: take ε > 0 small enough satisfying Bε(x) ⊂ R,
and define a vector field V such that

V(z) = nε(z), ∀z ∈ ∂Bε(x),

nε being the outward normal vector on ∂Bε(x), and such
that it vanishes outside a narrow neighborhood of ∂Bε(x).
Consider then the deformations ϕτ for τ > 0 defined as

ϕτ (z) := z + τV(z), z ∈ R
d .

Then, the TD of J at x ∈ R is given by

DT (x;R) = lim
ε→0

1

f ′(ε)
d

dτ
J (ϕτ (R \ Bε(x)))

∣
∣
∣
∣
τ=0

,

where f ′ is the derivative of the function f appearing in the
definition of the topological derivative (13).

Following now the same steps as in the beginning of Sect.
3.2 in [35], we obtain that

DT (x;Rd \ �app) = lim
ε→0

1

f ′(ε)
Re

(∫

meas

(uε − umeas) · u̇ε

)

,
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where uε is the solution to (1) with � = �app ∪ Bε(x) and
u̇ε solves the following problem [28, Theorem 2.3]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�u̇ε + κ2u̇ε = 0, in R
d\(�app ∪ Bε(x)),

∂ u̇ε

∂n
+iκλu̇ε = 0, on ∂�app,

∂ u̇ε

∂nε
+iκλu̇ε =

(
κ2(1−λ2)−(d−1)iκλHε

)
uε+�∂Bεuε, on ∂Bε(x),

lim|z|→∞ |z| d−1
2 (̂z · ∇u̇ε − iκ u̇ε(z)) = 0,

where Hε = ε−1 is the mean curvature of ∂Bε(x) and �∂Bε

is the Laplace–Beltrami operator on ∂Bε(x). The proof now
is a simple adaptation to the proof of Theorem 3.1 in [35],
with �app ∪ Bε(x) playing the role of Bε(x). ��

In order to derive a closed-form formula for the TD, we
should study now the asymptotic behavior of the functions
uε and wε to derive the asymptotic behavior of gε, which
in turn, determines how f ′ must behave (we will see that it
must be f ′(ε) = O(εd−2)), and therefore how f (ε) must
behave. This will be carried out by using Fourier and Mie
series expansions (for the two- and three-dimensional cases,
respectively), combined with the boundary integral formula-
tion of problem (1) presented in Theorem 1.

Let us briefly recall that for any x ∈ R
d , a general incident

field uinc satisfying �uinc + κ2uinc = 0 in Rd can be written
for any z ∈ R

d as follows [17, Eqs. (1) and (2)]:

– For d = 3:

uinc(z) =
∞∑

n=0

n∑

j=−n

α
(1)
n, j (x)u

(1)
n, j (κ, z − x) , (22)

where the complex-valued sequence (α
(1)
n, j ) only depends

on x, and

u(1)
n, j (κ, εξ) = jn(κε)Yn, j (ξ)

for ε > 0 and ξ ∈ S
2. The functions jn and Yn, j are

the spherical Bessel functions of the first kind [1, Section
10.1] and the spherical harmonic functions [32,Appendix
B], respectively.

– For d = 2:

uinc(z) =
∞∑

n=−∞
α(1)
n (x)u(1)

n (κ, z − x) , (23)

where the complex-valued sequence (α
(1)
n ) only depends

on x, and

u(1)
n (κ, ε(cos θ, sin θ)) = J|n|(κε)einθ .

Here, Jn is the Bessel function of the first kind and order
n ( [1, Section 9.1]).

Proposition 1 Let yobs ∈ meas, x ∈ R
d \ �app, and ξ ∈

S
d−1. We denote by uε and u0 the solutions to the forward

problem (1) with � = �app ∪ Bε(x) and � = �app, respec-
tively. Then,

lim
ε→0

uε(yobs) = u0(yobs) , (24)

lim
ε→0

uε(x + εξ) = u0(x) , (25)

lim
ε→0

∇∂Bεuε(x + εξ) =
⎧
⎨

⎩

2(∇u0(x) · ξ⊥) ξ⊥, if d = 2,
3

2
ξ × ∇u0(x) × ξ , if d = 3,

(26)

where for d = 2 the orthogonal vector to ξ = (cos θ, sin θ) ∈
S
1 is defined as ξ⊥ = (− sin θ, cos θ).
Moreover, the solution wε to problem (21) satisfies (25)

and (26) with uε and u0 replaced, respectively, by wε and
w0, where w0 solves

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�w0 + κ2w0 = (umeas − u0)δmeas, in Rd\�app,
∂w0

∂n
+iκλw0 = 0, on ∂�app,

lim|z|→∞ |z| d−1
2 (̂z · ∇w0 − iκw0) = 0.

(27)

Proof First, we consider the case d = 3. We assume �app =
∪N

�=1��, and then, byTheorem1 the field uε can be expressed
in terms of its Dirichlet traces on the boundaries ∂�app and
∂Bε(x).

Let us introduce the function τε : ∂Bε(x) → S
2 defined by

τε(y) = (y−x)/ε and consider the family of shifted spherical
harmonics Y ε

n, j = Yn, j ◦ τε for n ≥ 0 and | j | ≤ n, that are
eigenfunctions of the acoustic boundary integral operators.
To study the asymptotic behavior of uε when ε → 0, we
expand its Dirichlet trace on ∂Bε(x) in terms of Y ε

n, j : for any
z = x + εζ ∈ ∂Bε(x) we have

uε(z) =
∞∑

n=0

n∑

j=−n

A(3)
n, j (x, ε)Y

ε
n, j (z)

=
∞∑

n=0

n∑

j=−n

A(3)
n, j (x, ε)Yn, j (ζ ) .

Let us define now the singleSε
κ and doubleDε

κ layer operators
related to the boundary ∂Bε(x) (defined as in (4)). We want
to study first the asymptotic behavior of (Sε

κY
ε
n, j )(y) and

(Dε
κY

ε
n, j )(y) for y ∈ ∂�app. To do that, we remark that for

any y, z ∈ R
3 such that |y − x| > |z − x|, we have [19,

Theorem 2.11]

G(κ, y − z) = G(κ, (y − x) − (z − x))

= iκ
∞∑

n=0

n∑

m=−n

u(3)
n, j (κ, y − x)u(1)

n, j (κ, z − x).
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In the special case z ∈ ∂Bε(x) and y ∈ ∂�app ⊂ R
3\Bε(x),

then

G(κ, y − z) = iκ
∞∑

n=0

n∑

m=−n

jn(κε)u(3)
n, j (κ, y − x)Y ε

n, j (z).

Using now that

∫

∂Bε(x)
Y ε
m,k(z)Y

ε
n, j (z) =

{
ε2 if n = m and j = k ,

0 otherwise,

and the expansions (47) collected in the appendix, we obtain
the following formulae for y ∈ ∂�app:

(Sε
κY

ε
n, j )(y) = iκε2 jn(κε)u(3)

n, j (κ, y − x) →
ε→0

0 ,

(Dε
κY

ε
n, j )(y) = i(κε)2 j ′n(κε)u(3)

n, j (κ, y − x) →
ε→0

0,
(28)

where j ′n is the derivative of the spherical Bessel function jn .
Let us denote now by Sε

κ , D
ε
κ , D

′ε
κ and N ε

κ the boundary
integral operators related to the boundary ∂Bε(x), namely, the
counterpart operators to those defined in (9). They are mean
values of the interior and exterior Dirichlet and Neumann
traces on ∂Bε(x) of the layer potentials Sε

κ and Dε
κ . Since

the shifted spherical harmonics are eigenfunctions of these
operators, we get by (47) and (48) the following formulae:

Sε
κY

ε
n, j = iκε2 jn(κε)h(1)

n (κε)Y ε
n, j

≈
ε→0

ε

2n + 1
Y ε
n, j ,

Dε
κY

ε
n, j = D′ε

κ Y
ε
n, j = i(κε)2

2

(
h(1)
n

′
(κε) jn(κε)

+ h(1)
n (κε) j ′n(κε)

)
Y ε
n, j

≈
ε→0

− 1

2(2n + 1)
Y ε
n, j ,

N ε
κY

ε
n, j = iκ3ε2h(1)

n
′
(κε) j ′n(κε)Y ε

n, j

≈
ε→0

{ 1
3κ

2ε Y ε
0,0 , if n = 0,

− n(n+1)
(2n+1) ε

−1Y ε
n, j , if n ≥ 1,

h(1)
n

′
being the derivative of the spherical Bessel function

h(1)
n .
When ε → 0, we get that:

(i) From (28), we deduce that equation (10) set on ∂��, for
� = 1, . . . , N , when � = �app ∪ Bε(x) tends to the
equation set on ∂�� when � = �app as ε → 0. By
uniqueness of solution, we find that

lim
ε→0

uε |∂��
= u0|∂��

,

and then, assertion (24) follows from the representation
formula (6).

(ii) We denote by Iop, Iop|∂Bε(x) and Iop|∂�app the invertible
boundary integral operators associatedwith equation (10)
for � = �app ∪ Bε(x), � = Bε(x) and � = �app,
respectively. Then, in view of (28), we have

Iop =
(
Iop|∂Bε(x) ∗

0 Iop|∂�app

)

+ O(ε) and

I−1
op =

(
I−1
op|∂Bε(x)

∗
0 I−1

op|∂�app

)

+ O(ε),

where the asterisk ∗ in the first equality refers to the
series of Dirichlet and Neumann traces of the potential
operators defined by integrals over �app and evaluated
on ∂Bε(x) that are located in the system (10) between
brackets. We only emphasize that the matrix operators
are upper triangular, since the unspecified operators are
irrelevant for us and the structure of the inverse operators
is known to be identical. The integral operator Iop|∂Bε(x)

is reduced to an invertible diagonal operatorwhose eigen-
values are up to O(1) for n = 0 and up to O(ε−1) for
n �= 0 when ε → 0. From (22) and (47), we can write
for any z = x + εζ ∈ ∂Bε(x)

∂uinc

∂nε

(z)+ iκλuinc(z) =
1∑

n=0

n∑

j=−n

A(1)
n, j (x)Yn, j (ζ )+O(ε),

(29)

where A(1)
n, j (x) can be expressed in terms of α

(1)
n, j (x) and

do not depend on ε. It follows, by inverting the system,
that the Dirichlet trace of uε on ∂Bε(x) admits the same
asymptotic behavior as the incident field. It means that
the leading term is only given by n = 0 and we have for
any z = x + εζ ∈ ∂Bε(x) when ε → 0

uε(z) = A(3)
0,0(x)Y0,0(ζ ) + O(ε),

where A(3)
0,0(x) = O(1).

Now, equation (7) on the boundary ∂Bε(x) can be written as

uinc(z) =
((1

2
I − Dε

κ − iκλSε
κ

)
uε
∣
∣∂Bε(x)

)

(z)

− (u0 − uinc)(z) + O(ε) . (30)

We have Sε
κY

ε
0,0 = O(ε) and

Dε
κY

ε
0,0 = −1

2
Y ε
0,0 + O(ε). (31)
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We derive then that

uinc(x) = uε
∣
∣∂Bε(x)

(x+ εξ) − (u0 − uinc)(x) + O(ε) . (32)

Taking the limit ε → 0 in the above equation we obtain the
assertion (25). To obtain (26), we apply now the tangential
gradient operator to the boundary integral equation (7). The
first term (for n = 0) vanishes, then the leading terms are
given by n = 1. Using Sε

κY
ε
1, j = O(ε) and

Dε
κY

ε
1, j = −1

6
Y ε
1, j + O(ε), (33)

we get

ξ × ∇uinc(x) × ξ = 2

3
∇∂Bεuε

∣
∣∂Bε(x)

(x + εξ)

−ξ × ∇(u0 − uinc)(x) × ξ + O(ε) .

Taking the limit ε → 0 in the above equation we obtain the
assertion (26).

Let us consider now the case d = 2. To show (24)–(26) we
just need to adapt the previous arguments. First of all, for any
z ∈ R

2 wedefine the angle θ(z) such that z = x+|z−x|eiθ(z).
Then, for y = x + ε(cos θ(y), sin θ(y)) ∈ ∂Bε(x) we define
the shifted cylindrical function Eε

n(y) = einθ(y). On the other
hand, for any y, z ∈ R

2 such that |y − x| > |z − x| we have
[19, Formula (3.88)]:

H (1)
0 (κ|y − z|)

=
∞∑

m=−∞
H (1)

|m|(κ|y − x|)J|m|(κ|z − x|)eim(θ(y)−θ(z)).

Then, if z ∈ ∂Bε(x) and y ∈ ∂�app ⊂ R
2 \ Bε(x) (then

|y − x| > |z − x|), it follows that

(Sε
κ E

ε
n)(y) = i

4

∞∑

m=−∞
H (1)

|m|(κ|y − x|)J|m|(κε)

×
∫

∂Bε(x)
einθ(z)eim(θ(y)−θ(z))dσ(z)

= π iε

2
H (1)

|n| (κ|y − x|)J|n|(κε)einθ(y).

We likewise obtain the expression for the double-layer poten-
tial for y ∈ ∂�app:

(Dε
κE

ε
n)(y) = π iκε

2
H (1)

|n| (κ|y − x|)J ′|n|(κε)einθ(y),

where J ′|n| is the derivative of the Bessel function J|n|. Using
now (44) and (46), we find the asymptotic expansions for

J|n|(kε) and J ′|n|(kε), from where we deduce for y ∈ ∂�app:

(Sε
κ E

ε
n)(y) →

ε→0
0, (Dε

κE
ε
n)(y) →

ε→0
0.

Using now that the boundary integral operators are mean
values of the interior and exterior Dirichlet and Neumann
traces on ∂Bε(x), we deduce that Eε

n are eigenfunctions of
these operators and furthermore, they behave as follows:

Sε
κE

ε
n = π iε

2
H (1)

|n| (κε)J|n|(κε)Eε
n

≈
ε→0

{−ε ln(kε)Eε
0, if n = 0,

ε
2|n| E

ε
n, if n �= 0,

Dε
κE

ε
n = D′ε

κ Eε
n = π iκε

4

(
H (1)

|n|
′
(κε)J|n|(κε)

+H (1)
|n| (κε)J ′|n|(κε)

)
Eε
n

≈
ε→0

⎧
⎪⎨

⎪⎩

− 1
2 Eε

0, if n = 0,

− (κε)2 ln(κε)
8 Eε

n, if |n| = 1,
(κε)2

8|n|(n2−1)
Eε
n, if |n| > 1,

N ε
κ E

ε
n = π iκ2ε

2
H (1)

|n|
′
(κε)J ′|n|(κε)Eε

n

≈
ε→0

{
κ2ε
2 Eε

0 , if n = 0,

−|n|
2ε E

ε
n , if n �= 0,

H (1)
|n|

′
being the derivative of the Hankel function H (1)

|n| . The
remaining of the proof for deriving (24)–(26) is a straight-
forward adaptation of its counterpart in 3D: (24) is proved as
in (i). For (25) and (26), we reason as in (ii), noticing that for
any z ∈ ∂Bε(x)we can write the two-dimensional version of
(29):

∂uinc

∂nε

(z) + iκλuinc(z) =
1∑

n=−1

A(1)
n (x)Eε

n(z) + O(ε),

and deduce that uε behaves as uε(z) = A(3)
0 (x)Eε

0(z) where

A(3)
0 (x) = O(1). We obtain then that (30) is also valid in

2D, and since Sε
κE

ε
0 = O(ε) and Dε

κE
ε
0 = − 1

2 E
ε
0 + O(ε),

we conclude (32), and therefore (25) holds. To show (26),
we apply the tangential gradient operator to the boundary
integral equation (7) and use that Sε

κE
ε
n = O(ε) and Dε

κE
ε
n =

O(ε) for |n| = 1. From here, we get

(∇uinc(x) · ξ⊥)ξ⊥

= 1

2
∇∂Bεuε

∣
∣∂Bε(x)

(x + εξ)

−
(
∇(u0 − uinc)(x) · ξ⊥) ξ⊥ + O(ε),

and taking the limit ε → 0 we find (26).
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Finally, to derive the results forwε (for d = 2 and d = 3),
we introduce the solution winc

ε to the adjoint problem

⎧
⎨

⎩

�winc
ε + κ2winc

ε = (umeas − uε)δmeas , in Rd ,

lim|z|→∞ |z| d−1
2
(
ẑ · ∇winc

ε − iκwinc
ε

) = 0,
(34)

which is explicitly given by

winc
ε (z)=

∫

meas

G(κ, z−yobs)(uε(yobs) − umeas(yobs))dμ(yobs).

(35)

It suffices now to decompose wε = wscat
ε + winc

ε , and notice
that wscat

ε solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�wscat
ε + κ2wscat

ε = 0, in R
d\(�app ∪ Bε(x)),

∂

∂n
(wscat

ε +winc
ε )+iκλ(wscat

ε +winc
ε )=0,on ∂�app ∪ ∂Bε(x),

lim|z|→∞ |z| d−1
2
(
ẑ · ∇wscat

ε − iκwscat
ε

) = 0.

(36)

Using the corresponding Mie (if d = 3) or Fourier (if
d = 2) series expansion of the fundamental solution (5) we
can write, when |z− x| < |yobs − x| (and in particular when
z ∈ ∂Bε(x))

winc
ε (z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∞∑

n=−∞
a(1)
n (x, ε)u(1)

n (κ, z − x), if d = 2,

∞∑

n=0

n∑

j=−n

a(1)
n, j (x, ε)u

(1)
n, j (κ, z − x), if d = 3,

where a(1)
n (x, ε) and a(1)

n, j (x, ε) do not depend on z. We also

decompose w0 = wscat
0 + winc

0 , with uε replaced by u0 to
define winc

0 as in (35). Then, from (24) we find that

lim
ε→0

winc
ε (yobs) = winc

0 (yobs).

The counterpart results to (25) and (26) follow now by con-
sidering the boundary integral formulation of problem (36)
and repeating the arguments above replacing the role of uε

by wε. ��
Finally, we can derive the formula for the TD when an

approximation �app has been already set:

Theorem 5 For the cost function J defined in (11), we have
the expansion

J (Rd \ �app ∪ Bε(x))

= J (Rd \ �app) + f (ε)DT (x;Rd \ �app) + o(εd−1),

for x ∈ R
d \ �app, where f is the function defined in (15),

and the topological derivative is given by

DT (x;Rd \ �app) = Re

[ Ninc∑

r=1

iκλur ,0(x)wr ,0(x)
]

, (37)

where ur ,0 is the solution to (1) with � = �app for the inci-
dent field uincr , and wr ,0 solves (27) with u0 = ur ,0 and
umeas = umeas,r .

Proof Let ur ,ε be the solution to (1) with � = �app ∪ Bε(x)
for the incident wave uincr , and wr ,ε the solution to (21) for
uε = ur ,ε and umeas = umeas,r . Then, by Proposition 1 we
have

∫

∂Bε(x)
(κ2(λ2 − 1) + (d − 1)iκλε−1)ur ,εwr ,ε

+
∫

∂Bε(x)
∇∂Bεur ,ε · ∇∂Bεwr ,ε

≈
ε→0

(d − 1)iκλε−1|∂Bε(x)|ur ,0(x) wr ,0(x)

= (d − 1)2d−1πεd−2iκλ ur ,0(x) wr ,0(x).

Then, by Theorem 4 we deduce now that f ′(ε) must behave
as εd−2, and by choosing f ′(ε) = (d − 1)2d−1πεd−2,
namely, defining f as in (15), we find formula (37). ��

Finally, for the far-field data case we have the following
result.

Theorem 6 For the far-field cost function J defined in (12)
we have the expansion

J (Rd \ �app ∪ Bε(x))

= J (Rd \ �app) + f (ε)D∞
T (x;Rd \ �app) + o(εd−1),

for x ∈ R
d \ �app, where f is given by (15) and the topo-

logical derivative is

D∞
T (x;Rd \ �app) = Re

[ Ninc∑

r=1

iκλ ur ,0(x)wr ,0(x)
]

, (38)

where ur ,0 is the solution to (1) for� = �app for the incident
field uincr , and wr ,0 can be computed as wr ,0 = wscat

r ,0 + winc
r ,0

with

winc
r ,0(z) =

Nobs∑

s=1

δ(d) e−iκz·̂ysobs(u∞
r ,0(̂y

s
obs) − u∞

meas,r (̂y
s
obs)),
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with δ(d) as in (19), and wscat
r ,0 solving

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�wscat
r ,0 + κ2wscat

r ,0 = 0, in Rd\�app,

∂

∂n
(wscat

r ,0 + winc
r ,0) + iκλ(wscat

r ,0 + winc
r ,0) = 0, on ∂�app,

lim|z|→∞ |z| d−1
2

(
ẑ · ∇wscat

r ,0 − iκwscat
r ,0

)
= 0.

Proof In [33] we proved that the TD for far-field data can be
obtained as the limitwhen R → ∞ of the near-field topologi-
cal derivative associatedwith themeasurement curve/surface
∂BR(0), where BR(0) is the ball centered at the origin 0 and
radius R. Using the asymptotic behavior (3) of the scattered
fields, and formula (45) for the two-dimensional case, the
result follows readily (see also [35, Theorem 3.5] for the
counterpart result for �app = ∅). ��

4 Numerical Experiments

In this section, we provide some numerical examples to illus-
trate the performance of the proposed iterative method. For
the sake of brevity, we just concentrate in a few examples to
visualize specific features of the method, without providing
a wide variety of simulations varying all the involved param-
eters in the scattering problem (namely, value of the wave
number, of the impedance parameter, number of defects, their
location and shape, number of incident waves and aperture
angles, number of observation points and their location, near-
field or far-field data, et cetera). For a very ample gallery of
experiments dealing with these parameters for the one-step
method, we refer to our previous paper [35].

The remaining of the section is as follows. First we
comment about the generation of synthetic data and the
implementation of the TD formulae. Then, numerical exper-
iments for the two- and three-dimensional situations will be
shown.

4.1 Synthetic Data

Synthetic data both in 2D and 3D were generated by solving
the forward problems for the true defects.

True objects will be described by smooth parameteriza-
tions. Being more precise: (i) In the two-dimensional case,
each connected component�� will be described by a smooth
regular 1-periodic function x� : R → ∂��, satisfying
|x′

�(t)| �= 0 for all t ∈ R and x�(t) �= x�(s) for s− t /∈ Z. (ii)
In the three-dimensional case, each connected component
�� will be described by a smooth spherical parameteriza-
tion x� : S

2 → ∂��, such that every object is described
by its center c� and a spherical parameterization q�, namely
x�( · ) = c� + q�( · ).

The forward problem is then solved by considering the
equivalent system of boundary integral equations given in
Theorem 1 fully discretized by Galerkin approaches: (i) In
the two-dimensional case, we use the fully discrete version of
the spectral method described in [19, Section 3.5] (see [38]
for further details), which has superalgebraic convergence
order, as tested in [43,44] for a related transmission problem
where the same single- and double-layer boundary integral
operators are involved. (ii) In the three-dimensional case,
we implemented the spectral algorithm proposed in [24,31],
which enjoys also superalgebraic convergence order.

To both avoid inverse crimes and to test robustness with
respect to noise, in all the experiments we add a relative
random noise to the numerically generated data described
above. Specifically, once we obtain numerically the scat-

tered wave uscat ≈
N∑

�=1

[D�
κ + iκλS�

κ

]
ϕ�, (see Theorem 1),

a random noise of size δ is added to generate the syn-
thetic measured data defined as uδ

meas = uinc + uδ
scat, where

‖uδ
scat − uscat‖2/‖uscat‖2 ≤ δ. Unless otherwise stated, we

set δ = 0.05.
To further avoid inverse crimes, most of the true defects

will not be star-shaped ones, meaning that they will not
belong to the class of objects where they will be approxi-
mated, as explained in the forthcoming subsection.

4.2 Implementation of the Algorithm

As stated in (14), the initial guess for� is computed by select-
ing the points where the topological derivative DT ( · ,Rd)

(in case of near-field data) orD∞
T ( · ,Rd) (in case of far-field

data) attains its largest negative values. For simplicity, we
only consider here the near-field case, but the results for far-
field data are analogous. In practice, rather than in the whole
space R

d , we evaluate it in a big enough bounded region
Rd

obs ⊂ R
d where the scatterers are assumed to be located.

In our experiments, we set Rd
obs = [−3, 3]d . We discretize

this region in a structured grid with (M +1)d points, consid-
ering the discrete region

Rd
M = {(x1m1

, . . . , xdmd
);

ximi
= −3 + 6

mi

M
, i = 1, . . . , d, mi = 0, . . . , M}.

Then, the initial guess is defined as

�0 := {x ∈ Rd
M ; DT (x,Rd) < (1−C0) min

y∈Rd
M

DT (y;Rd)},
(39)

where 0 < C0 < 1 is a tunable parameter: the higher C0 the
more points contains �0.
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The evaluation of DT (x,Rd) for x ∈ Rd
M is very simple.

By Theorem 2, the formula is (16), and we just need to eval-
uate the incident wave uincr (x) = eikx·dr , and the adjoint field
winc
r (x) at the points x ∈ Rd

M using formula (17). The com-
putational cost is therefore almost negligible since we do not
have to solve any forward or adjoint problem numerically,
we just need to evaluate functions that are known in closed
form.

As explained in [33], the condition

DT (x,Rd) < (1 − C0) min
y∈Rd

M

DT (y;Rd) for x ∈ Rd
M

canbe collected in a binarymatrix of size (M+1)d ,which can
be processed in matlab with the command bwconncomp
to obtain the number of connected components of�0 as well
as the points belonging to each component. Then, each con-
nected component is approximated by a star-shaped object,
namely, we look for a radial parametrization of the boundary
of each genus-zero component. Details about the imple-
mentation of the star-shaped approximation can be found in
[14] for the two-dimensional case, and in [33] for the three-
dimensional one. A wide gallery of numerical examples for
the one-step method, namely, when only �0 is computed
following the procedure above, can be found in [35].

Now, �0 is iteratively updated by considering, for j =
1, 2, . . . , the approximations

� j := � j−1∪ {x ∈ Rd
M \ � j−1; DT (x,Rd \ � j−1) < (1 − C j )

× min
y∈Rd

M\� j−1
DT (y;Rd \ � j−1)}. (40)

As stated in Theorem 5, the evaluation of
DT (x,Rd \ � j−1) for x ∈ Rd

M requires now to solve a
couple of problems for each incident wave uincr : we need to
solve numerically problems (1) and (27) with � = � j−1. A
star-shaped parameterization of each connected component
of � j−1 is obtained as explained above, and these param-
eterizations are used to solve the corresponding system of
boundary integral equations in Theorem 1 to find the solution
u j−1
r of the forward problem, as already described in subsec-

tion 4.1. For the adjoint problem, to deal with the nonzero
right hand side at theHelmholtz equation, we can decompose
the solution to (27) as the sum w

j−1
r = w

j−1
scat,r + w

j−1
inc,r (as

done in the proof of Proposition 1, see (36)), where

w
j−1
inc,r (z)=

∫

meas

G(κ, z − yobs)(u
j−1
r (yobs) − uδ

meas,r (yobs))dμ(yobs),

uδ
meas,r (y

s
obs) being the total measured wave at the observa-

tion point ysobs, and w
j−1
scat,r solves

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

�w
j−1
scat,r + κ2w

j−1
scat,r = 0, in Rd\� j−1,

∂

∂n
(w

j−1
scat,r + w

j−1
inc,r ) + iκλ(w

j−1
scat,r + w

j−1
inc,r ) = 0, on ∂� j−1,

lim|z|→∞ |z| d−1
2

(
ẑ · ∇w

j−1
scat,r − iκw

j−1
scat,r

)
= 0.

(41)

Then, the same boundary integral equation method as for
the forward problem can be applied. Indeed, both systems
share the same matrix which has only to be computed once.
Furthermore, this matrix is independent of the considered
incident wave. Therefore, we only have to solve 2Ninc linear
systems of equations, all of them sharing the same matrix.

In principle, the constantC j in (40) is equal toC j−1. How-
ever, at each iteration we check if the cost function decreases.
If J (Rd \ � j ) < J (Rd \ � j−1), then � j is accepted as new
approximated domain. Otherwise, we replace the value ofC j

by C j/
√
2 and compute again � j by (40).

We stop the iterations if either:

(i) A maximum number of iterations is reached.
(ii) The method stagnates, namely, if the difference between

consecutive objects produces almost no effect in the cost
function, i.e., if

J (Rd \ � j−1) − J (Rd \ � j ) < 0.01 J (Rd \ � j−1).

(iii) The discrepancy principle is satisfied, namely, if

√
√
√
√

Ninc∑

r=1

Nobs∑

s=1

∣
∣
∣u

j
r (ysobs) − uδ

meas,r (y
s
obs)

∣
∣
∣
2

< 1.2δ

√
√
√
√

Ninc∑

r=1

Nobs∑

s=1

∣
∣uδ

scat,r (y
s
obs)
∣
∣2,

where u j
r is the solution to the forward problem (1) for

the incident wave urinc and for the scatterers � j , while
uδ
meas,r (y

s
obs) and uδ

scat,r (y
s
obs) are the total and scattered

noisy data measured at the observation point ysobs.

4.3 SomeTest Cases

We consider first a two-dimensional example with two
impedance obstacles: a ball and a rounded triangle, with
impedance parameter λ = 10 + i (see Fig. 1a). Synthetic
measured data is generated as explained in Sect. 4.1 at 64
observation points uniformly distributed on the circle of
radius 10 (marked by blue crosses in Fig. 1a) for 35 plane
incident waves uincr (x) = eiκx·dr with κ = 1 and direc-
tions dr = (cos(2π r/35), sin(2π r/35)), for r = 1, . . . , 35
(marked in Fig. 1a by black arrows). A relative random noise
of size δ = 0.05 is added.
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Fig. 1 Results for κ = 1, λ = 10 + i and C0 = 0.05. a True
objects (red), observation points (blue crosses), incident directions
(black arrows) and observation region Robs (gray square). b–g Color

maps of the TD atRobs during the iterations. The approximated domain
at each iteration is the white object. h Values of the cost functional ver-
sus the number of iterations

The values of the TD at a uniform grid of 150 × 150
points in the observation region Robs = [−3, 3]2 are repre-
sented in Fig. 1b, where we observe that the largest negative
values of the TD (dark-red colors in the plot) are attained
in two disjoint regions, inside the true defects. The bound-
aries of the true defects are represented by a black line for
an easier visualization. By selecting the value C0 = 0.05 to
define the initial guess �0 by formula (39), we obtain the
two objects represented in white in Fig. 1c. Both resemble
ellipsoid-like defects, being the one corresponding to the true
ball the biggest in size. The values of the TD computed for
these objects are also represented in the same plot. We real-
ize now that the other object, corresponding to the rounded
triangle should be increased in size, since the largest negative
values of the TD are mainly concentrated inside that object.
During the next iterations, the size of this object increases
while the other one remains almost unchanged, as can be
seen in Fig. 1d, corresponding to the 7-th iteration. At the
iteration 14, both objects seem to be comparable in size (see
Fig. 1e). The algorithm stopped at the 27-th iteration, provid-
ing the reconstruction shown in Fig. 1g. The values of the cost
functional versus the number of iterations are represented in
Fig. 1h.

When considering very small values of the constant C0 in
(39), the initial guess is expected to underestimate the size
of the scatterers, and even to disregard the presence of some
objects. The number of iterations in this case is expected
to increase. However, on the other hand, since the size of

the objects is expected to increase less from one iteration to
the next one, the method may be in this case less prone to
include spurious regions. To illustrate this, we select in the
previous example C0 = 0.01. Then, as shown in Fig. 2c, the
initial guess in this case has only one defect with a very small
area. However, after a few iterations, the second object is
detected, as can be seen in Fig. 2d, e. The final reconstruction,
shown in Fig. 2g is qualitatively equal to the one obtained for
C0 = 0.05. Comparing the decay of the cost function in both
situations (compare Figs. 1h and 2h), we see that now the
decay is less steep during the first iterations, while at the 9-th
iteration a sudden decrease occurs due to the identification
of the second scatterer. This example shows, therefore, that
although a priori our method seems to highly depend on the
selected constant and to need a careful calibration, in practice,
it is very robust in terms of it and the final reconstruction is
almost insensitive to this parameter (at least for a wide range
of C0). Unless otherwise stated, we will keep C0 = 0.01 to
be more conservative.

We illustrate in Fig. 3 the performance of themethodwhen
considering objects of different sizes. By reducing the size of
the ball, as expected, the largest negative values of the TD are
attained inside the object bigger in size, and the initial guess
has only one defect when considering the value C0 = 0.01.
However, after a few iterations, the method is able to capture
the presence of the second object and the final approximation
at the iteration 25 is satisfactory for both objects.
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Fig. 2 Counterpart of Fig. 1 for C0 = 0.01

Fig. 3 Counterpart of Fig. 2 when reducing the size of the ball-shaped scatterer

A more demanding situation is to reduce the numbers
of observation points and incident directions, and specially
when doing it by considering limited aperture configurations.
We illustrate in the next examples how the method performs
in these situations. First of all, we halved both the number of
incident directions and of observation points. In addition, we
locate all the observation points in a half-circle (see Figs. 5a
and 6a). Our results in Figs. 5 and 6 evidence that during the
first iterations only the objects located closer to the observa-

tions points are identified, but during the iterative procedure
it is possible to capture and satisfactorily approximate the
objects far from them. The reconstructions are slightly worse
than in the full-aperture case, specially for the object located
further from the observation points and for the parts of both
objects in the opposite part to them. We have checked that
the same happens when considering the counterpart exam-
ples with incident directions corresponding to a half-circle
and full-aperture observation points.
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Fig. 4 Counterpart of Fig. 2 for limited aperture observation points, located at the blue crosses in a

Fig. 5 Counterpart of Fig. 2 for limited aperture observation points, located at the blue crosses in a

If we consider limited aperture for both incident directions
and observation points while reducing also their numbers (in
Fig. 6, we have Ninc = 18, Nobs = 32, while in the original
Fig. 2, these numbers are Ninc = 35, Nobs = 64), the qual-
ity of the reconstructions worsens, as can be seen in Fig. 6.
As expected, the reconstruction for the object closer to the
observation points is sharper than for the other one, which
underestimates its size. The obtained results are in accor-
dance to limited aperture experiments obtained for other

model problems by either using topological derivative-based
methods (see [2,14,15,34,42]) or by other techniques like
the (generalized) linear sampling, factorization, or MUSIC
algorithms (see [3,4,6,37])

In all the previous examples with full-aperture configura-
tions, the correct number of defects, as well as their shape
are accurately reconstructed. However, we have observed
that depending on the wave number and/or the impedance
parameter values, reconstructions could be not precise due
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Fig. 6 Counterpart of Fig. 2 for limited aperture observation and limited aperture incident angles

Fig. 7 Counterpart of Fig. 2 for the impedance parameter value λ = 1 + i
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to the stagnation of the method before reaching the discrep-
ancy principle stopping criteria. This is illustrated in the next
example, where the geometry is the same as in Figs. 1 and 2,
but the impedance parameter is now λ = 1 + i instead of
λ = 10+ i . The algorithm stopped at the 9th iteration, since
it was not able to further increase the size of the current
objects (compare Fig. 7d and e). It is clear also, by observing
the values of the cost functional in Fig. 7f that the value of
the cost function is still rather large in comparison with the
values reached in the previous examples, in which the algo-
rithm stopped due to the discrepancy principle. Therefore,
we conclude that our method not always provides accurate
reconstructions. In cases where the method stagnates, we
propose to use our approximation for some other iterative
method to further minimize the cost functional. For instance,
it could be used in combination with parametric deriva-
tives through iteratively regularized Gauss–Newton methods
(IRGNM) [11,30,32]. Roughly speaking, the method con-
sists in computing first the TD to have an initial guess for
the IRGNM. Standard IRGNM computes updates now of the
parameterization of the shapes of the objects. One of themain
drawbacks of standard IRGNM is that the number of defects
has to be known, since the initial guess must have the cor-
rect number of defects. However, TDs can be combined with
IRGNM in amore sophisticated way, by improving the shape
of the initial guesses as in standard IRGNM, but when stag-
nation of the cost functional occurs, then the Gauss–Newton
iterations automatically stop and a new TD computation is
performed for the current approximate domains (using there-
fore formula (37)) to identify new possible objects that were
left out at the first TD iteration. In case new objects appear,
then the Gauss–Newton iterations are restarted. For more
details about the combined method, we refer to our recent
paper [11].

In the next two examples, we illustrate the performance
of the TD/IRGNM combination. Once the indicator function
provides the location c∗

δ and the boundary parametrization q∗
δ

of the boundary ∗ of a new particle, the latter is optimized
by inverting the operator formulation

uδ
scat,r=Fr (q)+errr , r = 1, . . . , Ninc,

Ninc∑

r=1

‖errr‖2 ≤ δ2,

(42)

where Fr denotes the boundary to near-field operator that
maps a parametrization of the boundary  onto the scat-
tered field uscatr of the solution to the problem (1)–(3) for
the incident wave uincr . We solve (42) in a set of admissible
parameterizations V which forms an open subset of a Hilbert
space X = Hs(), for some s > 1.

Then, the iterations of the IRGNmethod can be computed
by solving the nonlinear least-squares problem [30]

qk+1
δ := argmin

q∈X

[
Ninc∑

r=1

‖Fr (qkδ ) + F ′
r [qkδ ](q − qkδ )

−uδ
meas,r‖2L2

t (S
2)

+ αk‖q − q∗
δ‖2
]

.

(43)

Here, the operator F is Fréchet differentiable and its first-
order Fréchet derivative is given by the solution of a new
impedance exterior problem [28, Theorem 2.5] that can be
solved with indirect boundary integral equation methods too,
namely the adjoint form of (10).

We consider a 3D configuration with two obstacles of
comparable sizes: a sphere and a rounded tetrahedron (see
Fig. 8a) with impedance parameter λ = 1+ i , namely, again
with a low impedance contrast. Mimicking the previous two-
dimensional examples, we consider 35 incident directions
for the wave number κ = 2 and 64 observation points on the
sphere of radius 10. A noise level of a 5% is added to the
synthetic data. By computing the TD in the observation cube
[−3, 3]3 we obtain the color maps in Fig. 8b, c, d, which
represent the values of the TD at some parallel planes to the
Cartesian planes x = 0, y = 0 and z = 0, respectively. It is
clear that the largest negative values concentrate inside both
defects. If we select the constant C0 = 0.1 to define our ini-
tial guess, we get the sphere-like defects shown in Fig. 8e,
which roughly have the same size and shape. The iterative
TD-based algorithm only improves the size approximation,
but it does not provide satisfactory results (omitted for the
sake of brevity) and stagnates before being able to distin-
guish the shapes. However, using the initial guess in Fig. 8e
for the IRGNM we obtain an accurate approximation after
only 15 IRGNM iterations. Some intermediate and the final
reconstructions are shown in Fig. 8f, g, h, i. We observe that
in the first iterations, the method captures the approximate
volumes, while in the subsequent iterations, shapes are better
identified. The values of the cost function versus the number
of iterations are presented in Fig. 8j.

Finally, in our last example, we reduce the size of the
sphere (see Fig. 9a) while keeping the remaining parameters
unchanged, and repeat the experiment. The values of the TD
at some parallel planes to the Cartesian planes x = 0, y = 0
and z = 0 are represented in Fig. 9b, c, d. Due to the small
size of the ball in comparison with the size of the tetrahe-
dron, the largest negative values of the TD concentrate now
inside the tetrahedron. For a wide range of constants C0, the
initial guess only consists in one object. Keeping the same
value as in the previous experiment, C0 = 0.1, we find the
initial guess shown in Fig. 9e. In this case, again, the iterative
TD-based algorithm does not converge to a satisfactory set
of objects (figure omitted for brevity). The application of the
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Fig. 8 Results for the hybrid TD/IRGNMmethod for two objects with
comparable sizes. The physical parameters are λ = 1 + i and κ = 2.
a True configuration. b–d Values of the TD at some planes of the form

x = x0, y = y0 and z = z0. e Initial guess obtained from the TD values.
f, g, h Intermediate IRGNM iterations. i Final reconstruction. j Values
of the cost functional versus the number of iterations

IRGNM by using this initial guess somehow improves the
reconstruction of the tetrahedron, but the method stagnates
without reaching the discrepancy principle stopping criteria
(see the intermediate reconstructions in Fig. 9f, g, h and the
values of the cost function in the first iterations, collected
in Fig. 9p). Then, the combined TD/IRGNM automatically
performs a new TD computation where as can be observed in
Fig. 9i, j, k the second object is clearly detected. In this fig-
ure, the largest negative values concentrate inside the small
spherical object, while no new regions close to the current
approximate domain (in cyan color) appear. The IRGNMiter-
ations restart now with an approximation that has the correct
number of defects which are reasonably well approximated
in size. After a few iterations, we observe an improvement
in the shape identification (panel (n)), and at the 16th itera-
tion, both defects are accurately recovered, as can be seen in
panel 9(o).

5 Conclusions

We have derived a closed-form formula for the topological
derivative (TD) of the least-squares misfit functional in pres-
ence of a given set of coated impedance scatterers, which
mimics the one associated with the absence of such defects
(already found by us in our previous paper [35]), but whose
derivation is different and requires the use of more involved
mathematical tools.

This ready-to-implement formula is then used to propose
an iterative method to improve the initial guesses obtained
by a TD computation in the free space. Our numerical
experiments evidence that in case of medium/high com-
plex impedance contrast, our iterative method fully based
on sequential TD computations can highly improve one-
step approximations, not only in finding the correct number
of objects, but also in improving their shape identification
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Fig. 9 Counterpart of Fig. 8 when reducing the size of the ball-shaped
scatterer. a True configuration. b, c, d Values of the TD at some planes
of the form x = x0, y = y0 and z = z0. e Initial guess obtained from
the TD values. f, g, h Intermediate IRGNM iterations. i, j, k Values of

the TD at some planes for the current approximation (cyan object). l
New set of approximate domains obtained from the TD values. m, n
Intermediate IRGNM iterations. o Final approximation. pValues of the
cost functional versus the number of iterations

(even in some demanding cases dealing with limited aper-
ture data). However, when the complex impedance contrast
is low, our method could stagnate without finding a satis-
factory reconstruction. The formula derived in the present
paper can be used then in hybrid algorithms not only based
on TD computations. We have illustrated this fact by con-
sidering a combined TD–Gauss–Newton method proposed
in [11], finding accurate approximations in demanding cases
with low impedance contrast and objects of different sizes.
Some other hybrid methods could be used in combination

with our formula, as for example TD-level set approaches
[7,23,29].

Conceptually, we can extend the underlying idea of this
paper to more complicated elliptic systems with high-order
generalized impedance boundary conditions and to steady
(visco)-elasticity equations. This will be the subject of forth-
coming works.
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A Appendix: Some properties of Bessel
functions

This appendix collects some asymptotic and differentiation
properties of Bessel and Hankel functions, extracted from [1,
Sections 9 and 10].

A.1 Bessel and Hankel functions

Asymptotic behavior when z → 0:

J0(z) ≈
z→0

1, H (1)
0 (z) ≈

z→0

−2 ln(z)
π i ,

Jn(z) ≈
z→0

zn 1
n!2n , H (1)

n (z) ≈
z→0

(n−1)!2n
π i zn , n > 0

(44)

Asymptotic behavior when |z| → ∞

H (1)
0 (z) ≈|z|→∞

√
2

π z
ei(z−π/4). (45)

Differentiation formulae:

F ′
n(z) = −Fn+1(z) + n

z Fn(z), n ≥ 0, for Fn = Jn, H (1)
n ,

F ′
n(z) = 1

2 (Fn−1 − Fn+1), n ∈ Z, for Fn = Jn, H (1)
n .

(46)

A.2 Spherical Bessel functions

Asymptotic behavior when z → 0:

jn(z) ≈
z→0

zn n! 2n
(2n+1)! , n ≥ 0,

h(1)
0 (z) ≈

z→0
−i z−1

h(1)
n (z) ≈

z→0
−i z−(n+1) (2n−1)!

(n−1)! 2n−1 , n > 0.

(47)

Differentiation formulae:

f ′
n(z) = − fn+1(z)+ n

z
fn(z), n ≥ 0 for fn = jn, h

(1)
n .

(48)
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