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Abstract
Preserving contour topology during image segmentation is useful in many practical scenarios. By keeping the contours
isomorphic, it is possible to prevent over-segmentation and under-segmentation, as well as to adhere to given topologies. The
Self-repelling Snakes model (SR) is a variational model that preserves contour topology by combining a non-local repulsion
term with the geodesic active contour model. The SR is traditionally solved using the additive operator splitting (AOS)
scheme. In our paper, we propose an alternative solution to the SR using the Split Bregman method. Our algorithm breaks
the problem down into simpler sub-problems to use lower-order evolution equations and a simple projection scheme rather
than re-initialization. The sub-problems can be solved via fast Fourier transform or an approximate soft thresholding formula
which maintains stability, shortening the convergence time, and reduces the memory requirement. The Split Bregman and
AOS algorithms are compared theoretically and experimentally.

Keywords Self-repelling Snakes · Topology-preserving segmentation · Split Bregman algorithm · Alternating direction
optimization · Variational method

1 Introduction

Topology preservation in image segmentation is an external
constraint to discourage changes in the topology of the seg-
mentation contour. It is typically applied in problems where
the object topology is known a priori. One example is in
medical image analysis where the segmentation of the brain
cortical surfacemust produce results consistent with the real-
world brain cortical structure [1]. Another example is the
segmentation of objects with complicated interiors, noises,
or occlusions, where a topological constraint can be used to
prevent over-segmentation, i.e., the forming of “holes” due to
image complexity [2], or under-segmentation, i.e., when the
contours of separate objects merge. Much active research is
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undergone in the area, such as image segmentation and reg-
istration using the Beltrami representation of shapes [3] and
non-local shape descriptors [4,5], multi-label image segmen-
tation with preserved topology [6], and min-cut/max-flow
segmentation using topology priors [7].

Since the problem of topology preservation can be intu-
itively linked to the process of contour evolution,many active
contour models [8–10] have been proposed for it. In these
models, the contour is affected by various forces until it con-
verges to the final segmentation result. To preserve topology
during the contour evolution process, a constraint term is
usually added to the variational formulation which prevents
the contour from self-intersecting, i.e., merging or splitting.
For example, Han et al. [11] proposed a simple-point detec-
tion scheme in an implicit level set framework in 2003.
Meanwhile, Cecil et al. [12] monitored the changes in the
Jacobian of the level set. In 2005, Alexandrov et al. [13]
recast the topology preservation problem to a shape optimiza-
tion problem of the level sets, where narrow bands around
the segmentation contours are discouraged from overlap-
ping. Sundaramoorthi and Yezzi [14] proposed an approach
based on knot energyminimization to realize the same effect.
Rochery et al. [15] used a similar idea while introducing a
non-local regularization term,whichwas applied in the track-
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ing of long thin objects in remote sensing images. Building
on the previous ideas, the Self-repelling Snakes model (SR)
was proposed by Le Guyader et al. [16]. The SR uses an
implicit level set representation for the curve and adds a non-
local repulsion term to the classic geodesic active contour
model (GAC) [10]. In the follow-up work [17], the short time
existence/uniqueness and Lipschitz regularity property of the
SR model were studied. Later, [5] successfully extended the
SR model to non-local topology-preserving segmentation-
guided registration. Attempts have also been made [2] to
combine the SR with the region-based Chan–Vese model,
though a direct combination proved less successful than the
original SR.

The SRmodel has intuitive and straightforward geometric
interpretations, but its non-local term leads to complications
in the numerical implementation. Explicit iterative solutions
are unstable and require small time steps, leading to low com-
putational efficiency. To the best of our knowledge, the SR
model has always been solved through the additive operator
splitting (AOS) [18–20] strategy in a semi-implicit way. The
AOS strategy is able to solve multi-dimensional equations
as one-dimensional equations, which promotes paralleliza-
tion. In [19], arithmetic averaging was replaced by harmonic
averaging in the calculation of the discrete geodesic cur-
vature term. Overall, the AOS scheme is both reliable and
efficient as it uses stable semi-implicit iterations and the fast
Thomas algorithm to solve tridiagonal linear systems. How-
ever, thememory requirements of the coefficient matrices are
still considerable and the discretization of geodesic curvature
is strenuous to implement. In this paper, we propose an alter-
native solution using the Split Bregman method to formulate
a more concise algorithm which requires a lower memory
cost, costs less time per iteration, and converges faster.

The Split Bregman algorithm was first proposed in com-
puter vision by Goldstein and Osher [21] for the total
variation model (TV) for image restoration. By introduc-
ing splitting variables and iterative parameters, it transforms
the original constrained minimization problems into simpler
sub-problems that can be solved alternatively. TheSplit Breg-
man algorithm is shown to be equivalent to the alternating
direction method of multipliers (ADMM) [22] and the aug-
mented Lagrangian method (ALM) [23] in a convex setting.
In this paper, we introduce an intermediate variable to split
the original problem into two sub-problems, which turns a
second-order optimization problem into two first-order ones.
The two sub-problems can be solved by the fast Fourier
transform (FFT) method and an approximate generalized
soft thresholding formula, respectively, ensuring efficiency
and reliability without complicated discretization schemes
and the hefty memory requirement. We also replaced the re-
initialization of the signed distance function with a simple
projection scheme. As a result, the optimization of the level
set function is even more simplified. In addition, to address

some problems arising from the Split Bregman solution, we
replaced the Heaviside representation of the level set in [16]
with one that performed better in our algorithm.

The paper is organized as follows. In Sect. 2, we review
and provide some intuition to the original SR model. In
Sect. 3, we design the Split Bregman algorithm for the SR
model and derive the Euler–Lagrange equations or gradi-
ent descent equations for the sub-problems. In Sect. 4, the
discretization schemes for the sub-problems are presented
for the alternating iterative optimization. In Sect. 5, we pro-
vide some numerical examples and comparisons of results.
Finally, we draw conclusions in Sect. 6.

2 The Original Self-Repelling Snakes Model
and the AOS

The original SR model as proposed in [16] is an edge-based
segmentation model based on the GAC [10]. It adopts the
variational level set formulation [24], where the segmenta-
tion contour is implicitly represented as the zero level line of
a signed distance function [25]. An energy functional is min-
imized until convergence is reached and the segmentation
contour is obtained. The energy functional comprises three
terms, two of which are taken from the GACmodel and con-
tribute to edge detection and the balloon force, respectively,
while the last term accounts for the repulsion between con-
tours as they come close to each other.

The definition of the SRmodel is as follows. Let f : � →
R be a scalar value image, x ∈ �, and � is the domain of
the image. The standard edge detector function g ∈ [ 0, 1] is
given by

g(x) = 1

1 + ρ|∇(Gσ ∗ f )|s , (1)

where s = 1 or 2, ρ is a scaling parameter, and Gσ denotes a
Gaussian convolution of the image with a standard deviation
of σ . The object boundary C is represented by the zero set
of a level set function φ,

C = {x ∈ �|φ(x) = 0}. (2)

The level set function φ is defined as a signed distance
function such that

φ(x) =

⎧
⎪⎨

⎪⎩

−d(x,C) x insideC

0 x ∈ C

d(x,C) x outsideC

, (3)

where d(x,C) is the Euclidean distance between point x
and contour C . As a signed distance function, φ satisfies the
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constraint condition below, i.e., the Eikonal equation,

|∇φ| = 1. (4)

To represent the image area and contour, we use the
Heaviside function H(φ) and Dirac function δ(φ). Since the
original Heaviside function is discontinuous and therefore
not differentiable,we adopt the regularization schemes below
[24],

Hε(φ) =

⎧
⎪⎨

⎪⎩

1
2

(
1 + φ

ε
+ 1

π
sin

(
πφ
ε

))
|φ| ≤ ε

1 φ > ε

0 φ < −ε

, (5)

δε(φ) =
{

1
2ε

(
1 + cos

(
πφ
ε

))
|φ| ≤ ε

0 |φ| > ε
. (6)

These regularization schemes are different from the ones
in the original model in [16]. Here, ε does not regularize the
entire image domain, which improves stability of edge-based
models. The effect is more apparent in our Split Bregman
algorithm, as we will discuss in Sect. 3.

Given the above, the energy functional E(φ) of the SR
model can be written as

E(φ) = γ Eg(φ) + αEa(φ) + βEr (φ), (7)

whereγ ,α,β are penalty parameters that balance three terms.

Eg(φ) =
∫

�

g(x)|∇Hε(φ(x))|dx

=
∫

�

g(x)|∇φ(x)|δε(φ(x))dx . (8)

Eg(φ) is the geodesic length of the contour. The total
variation of the Heaviside function, or the total length of the
contour, is weighted by the edge detector in (1).

Ea(φ) =
∫

�

g(x)(1 − Hε(φ(x)))dx . (9)

Ea(φ) is the closed area of the contour also weighted by
the edge detector. It acts as a balloon force that pushes the
segmentation contour over weak edges [9] .

Er (φ) = −
∫

�

∫

�

e
− |x−y|2

d2 (∇φ(x) ·
∇φ(y))hε(φ(x))hε(φ(y))dxdy. (10)

Er (φ) describes the self-repulsion of the contour [16].

e
− |x−y|2

d2 measures the nearness of the two points x and y,
e.g., the further away the points, the smaller the repulsion. In

(10), hε(φ(x)) and hε(φ(y)) denote the narrow bands around
the points x and y, where

hε(φ(x)) = Hε(φ(x) + l)(1 − Hε(φ(x) − l)), (11)

hε(φ(y)) = Hε(φ(y) + l)(1 − Hε(φ(y) − l)). (12)

When the points x and y are further thandistance l from the
contour, hε(φ(x))hε(φ(y)) → 0. This causes the points out-
side the narrow bands to be largely unaffected by repulsion.
For −∇φ(x) · ∇φ(y), if the outwards unit normal vectors to
the level lines passing through x and y have opposite direc-
tions, i.e., the contours passing through x and y are merging
or splitting, then the functional approaches the maximum
value. Thus, the minimization of Er (φ) prevents the self-
intersection of the contour.

Given the energy functional (7) and the constraint (4) , the
variational formulation for SR is
⎧
⎨

⎩

min
φ

E(φ) = γ Eg(φ) + αEa(φ) + βEr (φ)

s.t. |∇φ| = 1
, (13)

and the evolution equation of φ(x) derived from Eg(φ) and
Ea(φ) is

∂φ(x, t)

∂t
= δε(φ(x, t))(γ div(g(x)

∇φ(x, t)

|∇φ(x, t)| ) + αg(x)),

(14)

where

div(g(x)
∇φ(x, t)

|∇φ(x, t)| ) = ∇g(x) · ∇φ(x, t)

|∇φ(x, t)|
+g(x)div(

∇φ(x, t)

|∇φ(x, t)| ). (15)

(15) is the geodesic curvature that shifts the contour
toward the edges detected by g(x). In the image areas with
near-uniform intensity, ∇g(x) → 0, g(x) = 1. Since
div(g(x) ∇φ(x,t)

|∇φ(x,t)| ) → 0 in those areas, the geodesic curvature
term has little effect and the balloon force αg(x) dominates.

Lastly, the evolution equation that can be derived from the
repulsion term is

∂φ(x, t)

∂t
= 4β

d2
hε(φ(x, t))

∫

�

e
− |x−y|2

d2 ((x − y) · ∇φ(y, t))hε(φ(y, t))dy, (16)

To summarize, by applying variational methods to the
three energy terms and substituting δε(φ(x)) with |∇φ(x)|,
the following evolution equation can be derived

123



Journal of Mathematical Imaging and Vision (2022) 64:212–222 215

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂φ(x,t)
∂t = |∇φ|(γ div(g(x) ∇φ(x,t)

|∇φ(x,t)| ) + αg(x))

+ 4β
d2
hε(φ(x, t))

∫

�
e
− |x−y|2

d2 ((x − y) · ∇φ(y, t))hε(φ(y, t))dy x ∈ �

φ(x, 0) = φ0(x) t = 0
∂φ
∂ �n = 0 x ∈ ∂�

|∇φ| = 1

, (17)

where the Lagrange multiplier method is not used and
the constraint |∇φ| = 1 is enforced by the dynamic re-
initialization scheme below,

{
∂ψ(x,t)

∂t + sign(φ(x))(|∇ψ(x, t)| − 1) = 0

ψ(x, 0) = φ(x)
. (18)

The same re-initialization scheme is adopted in the origi-
nal SRmodel [16]. (18) is a typicalHamilton–Jacobi equation
that can be discretized and solved through an upwind dif-
ference scheme [25]. To solve (17), the original solution
adopts theAOS strategy [18,19]. The first term on the r.h.s. of
(17) is discretized with the half-point difference scheme and
the harmonic averaging approximation. The next two terms
adopt the upwind scheme. Two semi-implicit schemes are
constructed by concatenating the rows and columns of the
image, respectively [16],

(
1 − 2τ Al1

(
φk

))
vk+1 = φk + τ

(
T 2

(
φk

)
+ T 3

(
φk

))
,

(
1 − 2τ Al2

(
φk

))
wk+1 = φk + τ

(
T 2

(
φk

)
+ T 3

(
φk

))
,

(19)

where Al1 , Al2 are the two concatenation matrices, v and w

are intermediate variables, and T 2, T 3 are the upwind dis-
cretizations of the second and third term of the r.h.s. of (17),
the formulations of which are omitted here for simplicity. For
each Al (l ∈ (l1, l2)),

Ali j

(
φk

)
=

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

2γ
∣
∣∇oφk

i

∣
∣

( ∣
∣
∣∇oφki

∣
∣
∣

gi
+

∣
∣
∣∇oφkj

∣
∣
∣

g j

) j ∈ Nl(i)

− ∑

m∈Nl (i)

2γ
∣
∣∇oφk

i

∣
∣

( ∣
∣
∣∇oφki

∣
∣
∣

gi
+

∣
∣
∣∇oφkm

∣
∣
∣

gm

) j = i

0 else

, (20)

where i, j are two points in the image, Nl(i) is the set
of nearest neighbors of i in the matrix Al ,

∣
∣∇oφk

i

∣
∣ =

√
(

φi+1, j−φi−1, j
2

)2 +
(

φi, j+1−φi, j−1
2

)2
, and Al is a diagonally

dominant tridiagonal matrix. Finally, φk+1 can be calculated
as

φk+1 = 1

2

(
vk+1 + wk+1

)
. (21)

In the last step, (19) is solved via theThomas algorithmwhich
involves LR decomposition, forward substitution, and back-
ward substitution, with the convergence rate of O(N ).

The AOS scheme has several advantages. The semi-
implicit formulation is stable and allows for bigger time
steps. Furthermore, the algorithm can be executed in par-
allel along the l directions, which makes it suitable for high
dimensional problems. However, the memory requirements
of the coefficient matrices are non-negligible. Since i and j
span the entire image, if � ∈ RM×N , then the coefficient
matrix Al ∈ R(M×N )×(M×N ) which is quadratic in size.
While the coefficient matrices are space and banded, spe-
cial data storage schemes and solution algorithms may get
complicated in practice. Ultimately, a large set of equations
must be solved where all pixels are concatenated to build
a large-scale system. Additionally, the discretization of the
geodesic curvature term is strenuous to implement.

In the following section, we will propose an alterna-
tive solution to the SR with the Split Bregman method that
uses more compact intermediate variables, replaces the re-
initialization step, and adopts a stable semi-implicit FFT
scheme. The aim is to reduce computation time, conserve
memory, and maintain stability. Parallelization options will
also be discussed in Sect. 4.

3 The Split Bregman Algorithm for the
Self-repelling Snakes Model

The Split Bregman method is a fast alternating directional
method often used in solving L1-regularized constrained
optimization problems [21]. To design the Split Bregman
algorithm for (7), we first introduce a splitting variable
�w = ∇φ and the Bregman iterator �b. We can re-formulate
the energy minimization problem as
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(φk+1, �wk+1) = argmin
φ, �w

E(φ, �w)

=

⎧
⎪⎪⎨

⎪⎪⎩

γ
∫

�
g(x)| �w(x)|δε(φ(x))dx + α

∫

�
g(x)(1 − Hε(φ(x)))dx

−β
∫

�

∫

�
e
− |x−y|2

d2 ( �w(x) · �w(y))hε(φ(x))hε(φ(y))dxdy

+μ
2

∫

�
| �w(x) − ∇φ(x) − �bk(x)|2dx

⎫
⎪⎪⎬

⎪⎪⎭

,

s.t .| �w(x)| = 1

(22)

�bk+1(x) = �bk(x) + ∇φk+1(x) − �wk+1(x), (23)

where �b0 = �0, �w0 = ∇φ0, and μ is a penalty parameter. The
original problem can then be solved as two sub-problems
in alternating fashion for loops k = 1, 2, . . . , K . The sub-
problems are,

φk+1 = argmin
φ

E1(φ) = E(φ, �wk), (24)

⎧
⎨

⎩

�wk+1 = argmin
�w

E2( �w) = E(φk+1, �w)

s.t .| �w| = 1
. (25)

To solve the sub-problem (24), we can derive the follow-
ing evolution equation of φ via standard variational methods
[26],

∂φ(x, t)

∂t
=

⎧
⎪⎪⎨

⎪⎪⎩

−γ g(x)| �wk(x)|δ′
ε(φ(x, t)) + αg(x)δε(φ(x, t)) + μ�φ(x, t)

+2βh′
ε(φ(x, t)) �wk(x) · ∫

�
e
− |x−y|2

d2 �wk(y)hε(φ(y, t))dy

+μ(div(�bk(x)) − div( �wk(x)))

⎫
⎪⎪⎬

⎪⎪⎭

, (26)

The initial condition and boundary condition are as below,

{
φk+1(x, 0) = φk(x) x ∈ � ∪ ∂�

∇φ(x, t) · �n = ( �wk(x) − �bk(x)) · �n x ∈ ∂�, t ∈ [0, T ] ,

(27)

where

h′
ε(φ(x)) = δε(φ(x) + l)(1 − Hε(φ(x) − l))

−Hε(φ(x) + l)δε(φ(x) − l). (28)

δ′
ε(φ) =

{
− π

2ε2
sin

(
πφ
ε

)
|φ| ≤ ε

0 |φ| > ε
, (29)

With the Heaviside function originally adopted in [16],
the newly introduced component δ′

ε(φ) in the Split Bregman
algorithmmay be excessively smoothed. Furthermore, as the
SR is an edge-based model and the repelling force is local,
smoothing H(φ) over the entire image causes the repelling

force to propagate across the image, resulting in unneces-
sary instability. With the new choice of Heaviside function,
the smoothing effect is restricted only to a narrow band of
width 2ε surrounding the contour which in practice stabilizes
contour evolution.

Next, we approximate the time derivative of φ(x, t) as
∂φ(x,t)

∂t = φk+1(x)−φk (x)
τ

where τ is the time step. Rearranging
(26), we get the following equation,

(1 − τμ�)φk+1(x) = φk(x)

+τ

⎧
⎪⎪⎨

⎪⎪⎩

−γ g(x)| �wk(x)|δ′
ε(φ

k(x)) + αg(x)δε(φ
k(x))

+2βh′
ε(φ

k(x)) �wk(x) · ∫

�
e
− |x−y|2

d2 �wk(y)hε(φ
k(y))dy

+μdiv(�bk(x) − �wk(x))

⎫
⎪⎪⎬

⎪⎪⎭

.

(30)

Using Fk(x) to represent the r.h.s. of (30), we can derive
the following by introducing FFT,

F(1 − τμ�) 
 F(φk+1) = F(Fk), (31)

where 
 denotes pointwise multiplication. The components
of F(1 − τμ�) are

F(1 − τμ�)l1l2 = 1 − τμ(2 cos z1l1 + 2 cos z2l2 − 4), (32)

for z1l1 = 2(l1−1)π
M , z2l2 = 2(l2−1)π

N , l1 = 1, 2, . . . , M , l2 =
1, 2, . . . , N ; M and N are the row and column numbers of
the image. The iterative formula of φ(x) can thus be derived
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as follows,

φk+1(x) = R

(

F
−1

(
F(Fk(x))

F(1 − τμ�)

))

, (33)

where F is the Fourier transform, F−1 is the inverse Fourier
transform, and R refers to the real part of the inverse Fourier
transform. The division in (33) is pointwise.

For the sub-problem (25), if | �w(x)| �= 0, we can obtain
the corresponding Euler–Lagrange equation of �w(x) as,

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

γ g(x)δε(φ
k+1(x)) �w(x)

| �w(x)| − 2βhε(φ
k+1(x))

∫

�
e
− |x−y|2

d2 �w(y)hε(φ
k+1(y, t))dy

+μ( �w(x) − ∇φk+1(x) − �bk(x)) = 0

s.t .| �w(x)| = 1

. (34)

However, since the second term in (34) contains the inte-
gral of �w(y), it is not straightforward to construct the iterative
scheme for �wk . An approximation formula with projection
is designed in the next section to address this issue.

4 Discretization and Iterative Scheme

For the next step in solving (34), we devise the discretization
of the continuous derivatives. Let the spatial step be 1 and
time step be τ , and the discrete coordinates for the pixel
(i, j) be xi, j = (x1i , x2 j ) where i = 0, 1, 2, . . . , M + 1,
j = 0, 1, 2, . . . , N + 1 , we get φi, j = φ(x1i , x2 j ). Let
the other variables take similar forms. With the first-order
finite difference approximation, we can obtain the discrete
gradient, Laplacian, and divergences, respectively, as,

∇φi, j =
[
φi+1, j − φi, j

φi, j+1 − φi, j

]

,

�φi, j = φi−1, j + φi, j−1 + φi+1, j + φi, j+1 − 4φi, j .

(35)

div( �wi, j ) = ( �w1i, j − �w1i−1, j ) + ( �w2i, j − �w2i, j−1),

div(�bi, j ) = (�b1i, j − �b1i−1, j ) + (�b2i, j − �b2i, j−1),
(36)

The first-order time derivative ofφi, j can be approximated

as
∂φi, j
∂t = φk+1

i, j −φk
i, j

τ
. Therefore, from (33), a semi-implicit

iterative scheme can be designed for φ
k+1,s+1
i, j where s =

0, 1, 2, . . . , S such that

φ
k+1,0
i, j = φk

i, j ,

φ
k+1,s+1
i, j (x) = R

(
F

−1
(
F(Fk,s (x))
F(1−τμ�)

))

i, j
,

Fk,s
i, j (x) = φ

k,s
i, j (x)

+τ

⎧
⎪⎨

⎪⎩

−γ gi, j (x)| �wk
i, j (x)|δ′

ε(φ
k,s
i, j (x)) + αgi, j (x)δε(φ

k,s
i, j (x))

+2βh′
ε(φ

k,s
i, j (x)) �wk

i, j (x) · �vk,si, j

+μdiv(�bki, j (x) − �wk
i, j (x))

⎫
⎪⎬

⎪⎭
.

(37)

until
∥
∥φk+1,s+1−φk+1,s

∥
∥

‖φk+1,s‖+10−6 ≤ Tol.

�vk,si, j =
(

d∑

p=−d

d∑

q=−d
e
− (p2+q2)

d2 �wk
i+p, j+qhε

(
φ
k+1,s
i+p, j+q

)
)

which is the discrete approximation of �vk(x) =
∫

�
e
− |x−y|2

d2 �wk(y)hε(φ(y, t))dy. y denotes a point taken
from a small window of size 2d × 2d around point x . The
repulsion from points further away is negligible; therefore,
we only check within a small window. Note that the initial
and boundary conditions in (27) still hold.

Next, we will solve (34) iteratively. By temporarily fixing
�wk+1,r (y), we can design a concise approximate generalized
soft thresholding formula. For abbreviation, let

�vk+1,r (x) =
∫

�

e
− |x−y]2

d2 �wk+1,r (y)hε

(
φk+1(y)

)
dy, (38)

and �wk+1,0(y) = �wk(y). For r = 0, 1, 2, . . . , R, since
| �wk+1,r

i, j | = 1, the iterative formula for �wk+1 from (25) can
be written as,

�̃wk+1,r+1
i, j ≈

μ∇φk+1
i, j + μ�bki, j + 2βhε

(
φk+1
i, j

)
�vk+1,r
i, j

γ gi, jδε(φ
k+1
i, j ) + μ

,

(39)

�wk+1,r+1
i, j =

�̃wk+1,r+1
i, j

∣
∣
∣ �̃wk+1,r+1

i, j

∣
∣
∣

. (40)

In practice, a single iteration is often enough for com-
puting (39). Alternatively, we can directly use the soft
thresholding formula to derive �wk+1. For abbreviation, let

�Bk+1 = ∇φk+1(x) + �bk

+2β

μ
hε

(
φk+1(x)

) ∫

�

e
− |x−y]2

d2 �wk(y)hε

(
φk+1(y)

)
dy.

(41)

The formula for �wk+1
i, j is

�wk+1
i, j ≈ max(| �Bk+1

i, j |

−γ

μ
gi, jδε(φ

k+1
i, j ), 0)

�Bk+1
i, j

| �Bk+1
i, j | , 0

�0
|�0| = �0. (42)

The same projection scheme as (40) is used afterward.
After φk+1

i, j , �wk+1
i, j have been obtained, we can derive �bk+1

i, j
directly from (23).

While (39) and (42) have similar effects on improving the
efficiency of the numeric algorithm, we have chosen to use
(42) in our experiments due to the well-established theoret-
ical foundation and generalizability of the generalized soft
thresholding formula.
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In summary, the Split Bregman algorithm proposed in this
section has four advantages. First, the simplified algorithm
and the use of a projection scheme in place of the initial-
ization step improve efficiency. Both the per-iteration time
and the convergence time have been reduced as shown in
the experiments section. Second, the memory requirement
is reduced. For an image of size M × N , the matrix A in
the AOS solution is of size 2 × (M × N ) × (M × N ). In
the Split Bregman algorithm, the sizes of both �w and �b are
2 × (M × N ) only. Third, the evolution of the contour is
stabilized by a semi-implicit FFT scheme and smoothing the
Heaviside function only within the narrow bands around the
contours. These changes allow for bigger time steps andmore
lenient parameter tuning. Finally, the numerical solution is
simplified. In (17), the convolution term containing ∇φ is
hyperbolic, which requires the upwind difference scheme.
By substituting ∇φ with the auxiliary variable �w, we can
remove the need for complex discretization schemes.

The proposed algorithm is summarized in Algorithm 1.

Algorithm 1: The Split Bregman algorithm for the Self-
repelling Snakes Model
(1) Initialize

Calculate g(x) using (1)
Initialize φ0(x) as a signed distance function and set

�w0 = ∇φ0, �b0 = −→
0

Set penalty parameters
Set tolerance errors, time step and iterative steps

(2) Iterations
For k=0,1,2,…,K

For s=0,1,2,…,S
Calculate φk+1,s+1 from (37)

End for s when (24) converges
Calculate �wk+1 from (42)
Calculate �bk+1 from (23)

End for k when (13) converges

With regard to parallelization, we can consider the φ and
w sub-problems separately. w can be solved directly with
an approximate soft thresholding formula and requires no
iterations. φ, on the other hand, is now solved with discrete
FFT which has an abundance of pre-existing fast parallel
implementations.

Finally, it is worth mentioning that the φ sub-problem can
be solved with an AOS scheme as well. In this case, the
coefficient Al will be constant and LR decomposition will
only need to happen once compared to once every iteration
in the original AOS solution. Nonetheless, both the FFT and
AOS schemes are strongly semi-implicit compared toGauss–
Seidel iterations, leading to the stability of the algorithm.

Fig. 1 Segmentation of two circles with the Split Bregman algorithm,
with image taken from [16]. a–f are the segmentation steps via the Split
Bregman algorithm, f is the result of theAOS algorithm for comparison.
α = −4, γ = 4, β = 0.2, μ = 8, l = 1, d = 5, window = 5 × 5,
S = 3, ε = 1, τ = .1, Tol = 10−5

5 Numerical Experiments

5.1 Experimental Results

The experiments below demonstrate that the Split Bregman
solution of the SR model can successfully prevent contour
splitting and merging. The qualitative performance is com-
parable to the original algorithm, while the time to reach
convergence is shortened and the memory usage is reduced.
Two practical applications are showcased as well as the
adaptation to 3D. All experiments are performed on the PC
(Intel(R) Core (TM) i7-7700 CPU @ 3.60GHz 3.60 GHz;
16.0 GB memory). The segmentation program is written in
MATLAB and runs in MATLAB environment R2021a.

In Fig. 1, we can see that contour splitting is prevented and
the topology is successfully preserved. Figure 1e, f shows that
comparable results were obtained from the Split Bregman
algorithm and the AOS algorithm. Convergence was reached
by step 1189 in the Split Bregman case and by approximately
500 in the AOS case. However, the Split Bregman algorithm
(written in MATLAB) took 6.10s while the original AOS
algorithm (written in C) took 36.18s. This shows that the
per-iteration time has been significantly reduced for the Split
Bregman algorithm, resulting in shorter convergence times.

Adjustments can be made on the various parameters to
improve segmentation quality. Parameter α controls the out-
wards or inwards driving force, γ dictates the geodesic
length, β weights the repelling force, and μ weights the con-
straint. When the φ function on the inside of the contour is
initialized to be positive, a positive α causes the contour to
expand and a negative α causes the contour to contract. An
excessively large β causes the contour to become unstable, as
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Fig. 2 Convergence graph for the Split Bregman algorithm in the seg-
mentation of two circles experiment. Convergence was reached at step
1189

the repulsive force is a non-local term. However, increasing
β and decreasing the window size narrow the gap between
the contours. Typically, the window size is 5× 5 or 7× 7 as
according to [16]. A smaller time step τ increases stability.
Increasing ε improves the smoothness of the contour but low-
ers the effectiveness of topology preservation, as it smooths
out the repulsive force. In practice,we can start from the same
set of parameters and only make minor changes as appropri-
ate.

In Figure 3, contour merging is prevented as the fingers of
the hand remain separate. In the basic GACmodel, the prox-
imity of the contourswould cause them tomerge despite there
being a detected edge, because it reduces the total geodesic
length. Note that contours was initialized with basic binary
thresholding to increase efficiency.

Two notable examples of practical applications of the
algorithm are adhesive cell segmentation and grain segmen-
tation. As shown in Figs. 4 and 5, the repulsive term prevents
the contours of cells and grains frommerging. The centers of
the cells and grains can be detected via k-means clustering
or detector filters such as the circle Hough transform or the
Laplacian ofGaussian [28]. Since the topology ismaintained,
the number of entities will remain the same.

The algorithm can also be extended to 3D, as shown in
Fig. 6. The segmentation contour is generated from 105 CT
scan images. The property of topology preservation prevents
the splitting and merging of 3D components.

6 Conclusions

By introducing an intermediate variable and the Bregman
iterative parameter, the Self-repelling Snakes model can be
solved through the Split Bregman method. The problem is
divided into two sub-problems that are solved with FFT
and an approximate soft thresholding formula. A projection
scheme is implemented instead of resorting to frequent re-
initialization of the signed distance function. As a result, the
new algorithm is able to maintain stability while simplify-

Fig. 3 Segmentation of
synthetic hand with the Split
Bregman algorithm, image
taken from [16]. α = 4.5,
γ = 5, β = 0.3, μ = 8, l = 1,
d = 4, window = 5× 5, S = 3,
ε = 1, τ = .05, Tol = 10−6

Fig. 4 Segmentation of cells
(image taken from [27]).
α = 4.5, γ = 5, β = 0.25,
μ = 9, l = 1, d = 4,
window = 5 × 5, S = 3 ε = 1,
τ = .02, Tol = 10−6
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Fig. 5 Segmentation of wheat
grains. α = 5, γ = 5, β = 0.25,
μ = 8, l = 1, d = 4,
window = 5 × 5, S = 3 ε = 1,
τ = .02, Tol = 10−6

Fig. 6 Segmentation of a
human mandible from 105 CT
scan images. a is one of the CT
images, b, c are different views
of the segmentation contour.
α = 4, γ = 5, β = 0.2, μ = 3,
l = 1, d = 4, window = 5 × 5,
S = 5 ε = 1, τ = .05,
Tol = 10−6

ing computations, leading to shorter convergence time and
reduced memory requirement. The algorithm is applicable
to image segmentation problems where topology is a prior,
e.g., adhesive cell segmentation, grain segmentation, 3D seg-
mentation of medical imagery, etc. In future works, we will
explore more 3D applications of the algorithm.
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