
Journal of Mathematical Imaging and Vision (2022) 64:261–283
https://doi.org/10.1007/s10851-021-01064-w

eGHWT: The Extended Generalized Haar–Walsh Transform

Naoki Saito1 · Yiqun Shao1

Received: 11 July 2021 / Accepted: 30 November 2021 / Published online: 5 January 2022
© The Author(s) 2022

Abstract
Extending computational harmonic analysis tools from the classical setting of regular lattices to the more general setting of
graphs and networks is very important, and much research has been done recently. The generalized Haar–Walsh transform
(GHWT) developed by Irion and Saito (2014) is a multiscale transform for signals on graphs, which is a generalization of
the classical Haar and Walsh–Hadamard transforms. We propose the extended generalized Haar–Walsh transform (eGHWT),
which is a generalization of the adapted time–frequency tilings of Thiele and Villemoes (1996). The eGHWT examines not
only the efficiency of graph-domain partitions but also that of “sequency-domain” partitions simultaneously. Consequently,
the eGHWT and its associated best-basis selection algorithm for graph signals significantly improve the performance of
the previous GHWT with the similar computational cost, O(N log N), where N is the number of nodes of an input graph.
While the GHWT best-basis algorithm seeks the most suitable orthonormal basis for a given task among more than (1.5)N

possible orthonormal bases in R
N , the eGHWT best-basis algorithm can find a better one by searching through more than

0.618 · (1.84)N possible orthonormal bases in RN . This article describes the details of the eGHWT best-basis algorithm and
demonstrates its superiority using several examples including genuine graph signals as well as conventional digital images
viewed as graph signals. Furthermore, we also show how the eGHWT can be extended to 2D signals and matrix-form data
by viewing them as a tensor product of graphs generated from their columns and rows and demonstrate its effectiveness on
applications such as image approximation.

Keywords Graph wavelets and wavelet packets · Haar–Walsh wavelet packet transform · Best basis selection · Graph signal
approximation · Image analysis

1 Introduction

In recent years, research on graphs and networks is experi-
encing rapid growth due to a confluence of several trends in
science and technology; the advent of new sensors, mea-
surement technologies, and social network infrastructure
have provided huge opportunities to visualize complicated
interconnected network structures, record data of interest at
various locations in such networks, analyze such data, and
make inferences and diagnostics.We can easily observe such
network-based problems in truly diverse fields: biology and

Y. S. is now at Meta Platforms, Inc.

B Naoki Saito
saito@math.ucdavis.edu

Yiqun Shao
yqshao@ucdavis.edu

1 Department of Mathematics, University of California, Davis,
CA 95616, USA

medicine (e.g., connectomes); computer science (e.g., social
networks); electrical engineering (e.g., sensor networks);
hydrology and geology (e.g., ramified river networks); and
civil engineering (e.g., road networks), to name just a few.
Consequently, there is an explosion of interest and demand
to analyze data sampled on such graphs and networks, which
are often called “network data analysis” or “graph signal
processing”; see e.g., recent books [3,8,25,30] and survey
articles [32,45], to see the evidence of this trend. This trend
has forced the signal processing and applied mathemat-
ics communities to extend classical techniques on regular
domains to the setting of graphs.Much efforts have been done
to develop wavelet transforms for signals on graphs (or the
so-called graph signals) [2,5,6,12,19,22,28,36,47,51]. Com-
prehensive reviews of transforms for signals on graphs have
also been written [32,45].

The generalized Haar–Walsh transform (GHWT) [14,15,
18], developed by Irion and Saito, has achieved superior
results over other transforms in terms of both approxima-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10851-021-01064-w&domain=pdf
http://orcid.org/0000-0001-5234-4719

262 Journal of Mathematical Imaging and Vision (2022) 64:261–283

tion and denoising of signals on graphs (or graph signals
for short). It is a generalization of the classical Haar and
Walsh–Hadamard Transforms. In this article, we propose
and develop the extended generalized Haar–Walsh transform
(eGHWT). The eGHWT and its associated best-basis selec-
tion algorithm for graph signals significantly improve the
performance of the previous GHWT with the similar com-
putational cost, O(N log N)where N is the number of nodes
of an input graph.While the previousGHWTbest-basis algo-
rithm seeks the most suitable orthonormal basis (ONB) for
a given task among more than (1.5)N possible orthonormal
bases in R

N , the eGHWT best-basis algorithm can find a
better one by searching through more than 0.618 · (1.84)N

possible orthonormal bases in R
N . It can be extended to 2D

signals and matrix-form data in a more subtle way than the
GHWT. In this article, we describe the details of the eGHWT
basis-basis algorithm and demonstrate its superiority. More-
over, we showcase the versatility of the eGHWT by applying
it to genuine graph signals and classical digital images.

The organization of this article is as follows. In Sect. 2,
we review background concepts, including graph signal pro-
cessing and recursive graph partitioning, which is a common
strategy used by researches to develop graph signal trans-
forms. In Sect. 3, the GHWT and its best-basis algorithm are
reviewed. In Sect. 4, we provide an overview of the eGHWT.
We start by reviewing the algorithm developed by [49]. Then,
we illustrate how that algorithm can be modified to construct
the eGHWT. A simple example illustrating the difference
between the GHWT and the eGHWT is given. We finish the
section by explaining how the eGHWT can be extended to
2D signals and matrix-form data. In Sect. 5, we demonstrate
the superiority of the eGHWTover theGHWT (including the
graph Haar and Walsh bases) using real datasets. Section 6
concludes this article and discusses potential future projects.

We note that the most of the figures in this article are
reproducible. The interested readers can find our scripts
to generate the figures (written in the Julia programming
language [1]) at our software website: https://github.com/
UCD4IDS/MultiscaleGraphSignalTransforms.jl; in particu-
lar, see its subfolder, https://github.com/UCD4IDS/Multi
scaleGraphSignalTransforms.jl/tree/master/test/paperscripts
/eGHWT2021.

2 Background

2.1 Basics of Spectral Graph Theory and Notation

In this section, we review some fundamentals of spectral
graph theory and introduce the notation that will be used
throughout this article.

A graph is a pair G = (V , E), where V = V (G) =
{v1, v2, . . . , vN } is the vertex (or node) set of G, and E =

E(G) = {e1, e2, . . . , eM } is the edge set, where each edge
connects two nodes vi , v j for some 1 ≤ i �= j ≤ N . We
only deal with finite N and M in this article. For simplicity,
we often write i instead of vi .

An edge connecting a node i and itself is called a loop.
If there exists more than one edge connecting some i, j ,
then they are called multiple edges. A graph having loops
or multiple edges is called a multiple graph (or multigraph);
a graph with neither of these is called a simple graph. A
directed graph is a graph in which edges have orientations,
while undirected graph is a graph in which edges do not have
orientations. If each edge e ∈ E has a weight (normally non-
negative), then G is called a weighted graph. A path from i
to j in a graph G is a subgraph of G consisting of a sequence
of distinct nodes starting with i and ending with j such that
consecutive nodes are adjacent. A path starting from i that
returns to i (but is not a loop) is called a cycle. For any two
distinct nodes in V , if there is a path connecting them, then
such a graph is said to be connected. In this article, wemainly
consider undirected weighted simple connected graphs. Our
method can be easily adapted to other undirected graphs, but
we do not consider directed graphs here.

Sometimes, each node is associated with spatial coordi-
nates inRd . For example, if we want to analyze a network of
sensors and build a graph whose nodes represent the sensors
under consideration, then these nodes have spatial coordi-
nates in R

2 or R3 indicating their current locations. In that
case,wewrite x[i] ∈ R

d for the locationof node i .Denote the
functions supported on graph as f = (f [1], . . . , f [N])T ∈
R

N . It is a data vector (often called a graph signal) where
f [i] ∈ R is the value measured at the node i of the graph.
We now discuss several matrices associated with undi-

rected simple graphs. The information in both V and E is
captured by the edge weight matrix W (G) ∈ R

N×N , where
Wi j ≥ 0 is the edge weight between nodes i and j . In an
unweightedgraph, this is restricted to be either 0 or 1, depend-
ing on whether nodes i and j are adjacent, and we may refer
to W (G) as an adjacency matrix. In a weighted graph, Wi j

indicates the affinity between i and j . In either case, since G
is undirected, W (G) is a symmetric matrix. We then define
the degree matrix

D(G) := diag(d1, . . . , dN), where di :=
∑

j

Wi j .

With this in place, we are now able to define the (unnormal-
ized) Laplacian matrix, random-walk normalized Laplacian
matrix, and symmetric normalized Laplacian matrix, respec-

123

https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/tree/master/test/paperscripts/eGHWT2021
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/tree/master/test/paperscripts/eGHWT2021
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl/tree/master/test/paperscripts/eGHWT2021

Journal of Mathematical Imaging and Vision (2022) 64:261–283 263

tively, as

L(G) := D(G) − W (G),

L rw(G) := D(G)−1L(G),

Lsym(G) := D(G)−1/2L(G)D(G)−1/2.

See [26] for the details of the relationship between these three
matrices and their spectral properties.Weuse 0 = λ0 < λ1 ≤
. . . ≤ λN−1 to denote the sorted Laplacian eigenvalues and
φ0,φ1, . . . ,φN−1 to denote the corresponding eigenvectors,
where the specific Laplacian matrix to which they refer will
be clear from either context or subscripts.

Laplacian eigenvectors can then be used for graph par-
titioning. Spectral clustering [26] performs k-means on the
first few eigenvector coordinates to partition the graph. This
approach is justified from the fact that it is an approximate
minimizer of the graph-cut criterion called Ratio Cut [11]
(or the Normalized Cut [44]) when L (or L rw, respectively)
is used. Suppose the nodes in V (G) is partitioned into two
disjoint sets A and Ac, then Ratio Cut and Normalized Cut
are defined by

Ratio Cut(A, Ac) := cut(A, Ac)

|A| + cut(A, Ac)

|Ac|
Normalized Cut(A, Ac) := cut(A, Ac)

vol(A)
+ cut(A, Ac)

vol(Ac)
,

where cut(A, Ac) := ∑
i∈A, j∈Ac Wi j indicates the quality

of the cut (the smaller this quantity, the better the cut in
general), vol(A) := ∑

i∈A di is the so-called volume of the
set A, and |A| is the cardinality of (i.e., the number of nodes
in) A.

To reduce the computational complexity (as we did for
the GHWT construction), we only use the Fiedler vector [9],
i.e., the eigenvectorφ1 corresponding to the smallest nonzero
eigenvalue λ1, to bipartition a given graph (or subgraph) in
this article. For a connected graph G, Fiedler showed that its
Fiedler vector partitions the vertices into two sets by letting

V1 = {i ∈ V | φ1[i] ≥ 0}, V2 = V \ V1,

such that the subgraphs induced on V1 and V2 by G are both
connected graphs [9]. In this article, we use the Fiedler vector
of L rw of a given graph and its subgraphs unless stated oth-
erwise. See e.g., [26], which suggests the use of the Fiedler
vector of L rw for spectral clustering over that of the other
Laplacian matrices.

2.2 Recursive Partitioning of Graphs

The foundation upon which the GHWT and the eGHWT
are constructed is a binary partition tree (also known as a

hierarchical bipartition tree) of an input graphG(V ,E): a set
of tree-structured subgraphs of G constructed by recursively
bipartitioning G. This bipartitioning operation ideally splits
each subgraph into two smaller subgraphs that are roughly
equal in size while keeping tightly connected nodes grouped
together.More specifically, letG j

k denote the kth subgraph on

level j of the binary partition tree of G and N j
k := |V (G j

k)|,
where j, k ∈ Z≥0. Note G0

0 = G, N 0
0 = N , i.e., level

j = 0 represents the root node of this tree. Then, the two
children of G j

k in the tree, G j+1
k′ and G j+1

k′+1, are obtained

through partitioning G j
k using the Fiedler vector of L rw(G j

k).
The graph partitioning is recursively performed until each
subgraph corresponding to the leaf contains only one node.
Note that k′ = 2k if the resulting binary partition tree is a
perfect binary tree.

In general, other spectral clusteringmethodswith different
number of eigenvectors or different Laplacian matrices are
applicable as well. However, we impose the following five
conditions on the binary partition tree:

1. The root of the tree is the entire graph, i.e., G0
0 = G;

2. The leaves of the tree are single-node graphs, i.e.,
N jmax

k = 1, where jmax is the height of the tree;
3. All regions (i.e., nodes in the subgraphs) on the same

level are disjoint, i.e., V (G j
k) ∩ V (G j

k′) = ∅ if k �= k′;
4. Each subgraph with more than one node is partitioned

into exactly two subgraphs;
5. (Optional) In practice, the size of the two children, N j+1

k′
and N j+1

k′+1 should not be too far apart to reduce ineffi-
ciency.

Even other (non-spectral) graph cut methods can be used to
form the binary partition tree, as long as those conditions
are satisfied. The flexibility of a choice of graph partition-
ing methods in the GHWT/eGHWT construction is certainly
advantageous.

We demonstrate two examples illustrating the binary par-
tition tree here. The first one is a simple six-node path graph,
P6. It has five edges with equal weights connecting adja-
cent nodes. Figure 1 is the binary partition tree formed on
the graph. In the first iteration, it is bipartitioned into two
subgraphs with 3 nodes each. Then, each of those three-
node graphs is bipartitioned into a two-node graph and an
one-node graph. In the end, the subgraphs are all one-node
graph.

The second example is the street network of the City of
Toronto, whichwe obtained from its open data portal.1 Using
the street names and intersection coordinates included in the
dataset, we constructed the graph representing the street net-

1 URL: https://open.toronto.ca/dataset/traffic-signal-vehicle-and-
pedestrian-volumes.

123

https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes
https://open.toronto.ca/dataset/traffic-signal-vehicle-and-pedestrian-volumes

264 Journal of Mathematical Imaging and Vision (2022) 64:261–283

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

Fig. 1 An example of a hierarchical bipartition tree for a path graph
with N = 6 nodes, where the edge weights are equal. The root is the
whole graph

work there with N = 2275 nodes and M = 3381 edges.
Each edge weight was set as the reciprocal of the Euclidean
distance between the endpoints of that edge. Figure 2 gives us
a visualization of the first three levels of the binary partition
tree on this Toronto street network.

3 The Generalized Haar–Walsh Transform
(GHWT)

In this section, we will review the generalized Haar–Walsh
transform (GHWT) [14,15,18]. It is a multiscale transform
for graph signals and a true generalization of the classical
Haar and Walsh–Hadamard transforms: if an input graph is
a simple path graph whose number of nodes is dyadic, then
the GHWT reduces to the classical counterpart exactly.

3.1 Overcomplete Dictionaries of Bases

After the binary partition tree of the input graph G with depth
jmax is generated, an overcomplete dictionary of basis vectors
is composed. Each basis vector is denoted asψ

j
k,l , where j ∈

[0, jmax] denotes the level, k ∈ [0, K j) denotes the region,
and l denotes the tag. K j is the number of subgraphs of G
on level j . The tag l assumes a distinct integer value within
the range [0, 2 jmax− j). The tag l, when expressed in binary,
specifies the sequence of average and difference operations
by which ψ

j
k,l was generated. For example, l = 6 written in

binary is 110, which means that the basis vector/expansion
coefficientwas produced by two differencing operations (two
1s) followed by an averaging operation (one 0). Generally
speaking, a larger value of l indicates more oscillations in
ψ

j
k,l , with exceptions when imbalances occur in the recursive

partitioning. We refer to basis vectors with tag l = 0 as
scaling vectors, those with tag l = 1 as Haar vectors, and
those with tag l ≥ 2 as Walsh vectors.

The GHWT begins by defining an orthonormal basis on
level jmax and obtaining the corresponding expansion coef-
ficients. The standard basis of RN is used here since each

region at level jmax is a 1-node graph: ψ
jmax
k,0 := 1

V (G jmax
k)

∈
R

N , where k ∈ [0, N), N jmax
k = 1, and 1i is the indicator

vector of node i , i.e., 1i [m] = 0 if m �= i and 1i [i] = 1. The
expansion coefficients {d jmax

k,0 }k=0:N−1 are then simply the
reordered input signal f . From here, the algorithm proceeds
recursively, and the basis vectors and expansion coefficients
on level j−1 are computed from those on level j . TheGHWT
proceeds as in Algorithm 1.

Note that when analyzing the input signal f , we only need
to compute the expansion coefficients without generating the
basis vectors in Algorithm 1 in general.

For the dictionary of basis vectors, several remarks are in
order.

1. The basis vectors on each level are localized. In other
words,ψ j

k,l is supported onV (G j
k). IfV (G j

k)∩V (G j ′
k′) =

∅, then the basis vectors {ψ j
k,l}l and {ψ j ′

k′,l ′ }l ′ aremutually
orthogonal.

2. The basis vectors on V (G j
k) span the same subspace as

the union of those on V (G j+1
k′) and V (G j+1

k′+1), where

V (G j
k) = V (G j+1

k′) 	 V (G j+1
k′+1).

3. The depth of the dictionary is the same as the binary par-
tition tree, which is approximately O(log N) if the tree
is nearly balanced. There are N vectors on each level,
so the total number of basis vectors is approximately
O(N log N).

Note that Algorithm 1 groups the GHWT basis vectors by
region (i.e., the index k) and arranges them from the coarse
scale to the fine scale, which we call the coarse-to-fine (c2f)
dictionary. Alternatively, we can group them by tag (i.e., the
index l) and reverse the order of the levels (i.e., scales), which
we call the fine-to-coarse (f2c) dictionary [14,15,18]. The
c2f dictionary corresponds to a collection of basis vectors
by recursively partitioning the “time” domain information
of the input graph signal while the f2c dictionary corre-
sponds to those by recursively partitioning the “frequency”
(or “sequency”) domain information of the input graph sig-
nal. Each dictionary contains more than (1.5)N choosable
ONBs; see, e.g., Thiele and Villemoes [49] for the details
on how to compute or estimate this number. Note, however,
that exceptions can occur when the recursive partitioning
generates a highly imbalanced tree. Figure 3 shows these
dictionaries for P6. Figure 4 shows some basis vectors from
the GHWT dictionary computed on the Toronto street net-
work.

3.2 The Best-Basis Algorithm in the GHWT

To select an ONB from a dictionary of wavelet packets
that is “best” for approximation/compression, we typically

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 265

Fig. 2 A demonstration of hierarchical bipartition tree on the Toronto street network. On the same level, different colors correspond to different
regions. The situation at level j = 0 is not shown since there is no partition at j=0 (Color figure online)

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The GHWT c2f dictionary

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The GHWT f2c dictionary

Fig. 3 GHWT c2f and f2c dictionaries on P6. Stem plots with black, red, blue colors correspond to the scaling, Haar, andWalsh vectors, respectively
(Color figure online)

Fig. 4 Examples of basis vectors from the GHWT dictionary computed on Toronto street network. The color scheme called viridis [35] is used to
represent the amplitude of these vectors ranging from deep violet (negative) to dark green (zero) to yellow (positive) (Color figure online)

use the so-called best-basis algorithm. The one used for
the GHWT in [14,15,18] was a straightforward generaliza-
tion of the Coifman–Wickerhauser algorithm [7], which was
developed for non-graph signals of dyadic length. This algo-
rithm requires a real-valued cost function J measuring the
approximation/compression inefficiency of the subspaces in
the dictionary, and aims to find an ONB whose coefficients
minimize J , (i.e., the most efficient ONB for approximat-
ing/compressing an input signal), which we refer to as the
“best basis” chosen from the GHWT dictionary. The algo-
rithm initiates the best basis as the whole set of vectors at

the bottom level of the dictionary. Then, it proceeds upward,
comparing the cost of the expansion coefficients correspond-
ing to two children subgraphs to the cost of those of their
parent subgraph. The best basis is updated if the cost of the
parent subgraph is smaller than that of its children subgraphs.
The algorithm continues until it reaches the top (i.e., the root)
of the binary partition tree (i.e., the dictionary).

123

266 Journal of Mathematical Imaging and Vision (2022) 64:261–283

Algorithm 1:Generating expansion coefficients relative
to the basis vectors in the GHWT basis dictionary [14,
15,18]

Input: A binary partition tree {G j
k } of the graph G, 0 ≤ j ≤ jmax and

0 ≤ k < K j ; Input graph signal f supported on V (G); a flag bvecq
(default: false) to compute the GHWT basis vectors

Output: The set of expansion coefficients {d j
k,l } of signal f on the

overcomplete GHWT dictionary vectors {ψ j
k,l }, which are also

returned if bvecq is set to true

// The algorithm starts here.
for k = 0 : N − 1 do // Basis vectors on level jmax are the

standard unit vectors of R
N

d jmax
k,0 ←

〈
f , 1

V (G
jmax
k)

〉
// 〈·, ·〉 is the standard inner

product in R
N

if bvecq == true then ψ
jmax
k,0 ← 1

V (G
jmax
k)

∈ R
N

end
for j = jmax : −1 : 1 do // Compute coefficients/basis
vectors on level j − 1 from level j

for k = 0 : K j−1 − 1 do
// Compute the scaling coeff’s/vectors

d j−1
k,0 ←

〈
f , 1

V (G
j−1
k)

/

√
N j−1

k

〉

if bvecq == true then ψ
j−1
k,0 ← 1

V (G
j−1
k)

/

√
N j−1

k

// Below, we assume V (G j−1
k) = V (G j

k′) 	 V (G j
k′+1

)

if N j−1
k > 1 then // Compute the Haar

coeff’s/vectors

d j−1
k,1 ←

N
j

k′+1

√
N

j
k′ d

j
k′,0−N

j
k′

√
N

j
k′+1

d
j
k′+1,0√

N
j

k′ (N
j

k′+1
)2+N

j
k′+1

(N
j

k′)2
if bvecq == true then

ψ
j−1
k,1 ←

N
j

k′+1

√
N

j
k′ ψ j

k′,0−N
j

k′
√

N
j

k′+1
ψ

j
k′+1,0√

N
j

k′ (N
j

k′+1
)2+N

j
k′+1

(N
j

k′)2
end

if N j−1
k > 2 then // Compute the Walsh

coeff’s/vectors
for l = 1 : 2 jmax− j − 1 do

if both subregions k′ and k′ + 1 have a basis vector with tag l
then

d j−1
k,2l ← (d j

k′,l + d j
k′+1,l

)/
√
2

d j−1
k,2l+1 ← (d j

k′,l − d j
k′+1,l

)/
√
2

if bvecq == true then
ψ

j−1
k,2l ← (ψ

j
k′,l + ψ

j
k′+1,l

)/
√
2

ψ
j−1
k,2l+1 ← (ψ

j
k′,l − ψ

j
k′+1,l

)/
√
2

end
else if (without loss of generality) only subregion k′ has a
basis vector with tag l then

d j−1
k,2l ← d j

k′,l
if bvecq == true then ψ

j−1
k,2l ← ψ

j
k′,l

else
Do nothing // Neither of subregions has a
basis vector with tag l

end
end

end
end

end

The best-basis algorithm works as long as J is nonneg-
ative and additive2 of the form J (d) := ∑

i g(di) with
g : R → R≥0, where d is the expansion coefficients of an
input graph signal on a region. For example, if one wants to
promote sparsity in graph signal representation or approx-
imation, J (d) function can be chosen as: either the pth
power of �p-(quasi)norm

∑
i |di |p for 0 < p < 2 or the �0-

pseudonorm |{di | di �= 0}|. Note that the smaller the value
of p is, the more emphasis in sparsity is placed.

Note that one can search the c2f and f2c dictionaries sep-
arately to obtain two sets of the best bases, among which the
one with smaller cost is chosen as the final best basis of the
GHWT dictionaries. We also note here that the graph Haar
basis is selectable only in the GHWT f2c dictionary while the
graph Walsh basis is selectable in either dictionary.

4 The Extended GHWT (eGHWT)

In this section, we describe the extended GHWT (eGHWT):
our new best-basis algorithm on the GHWT dictionaries,
which simultaneously considers the “time” domain split and
“frequency” (or “sequency”) domain split of an input graph
signal. This transform will allow us to deploy the modified
best-basis algorithm that can select the best ONB for one’s
task (e.g., efficient approximation, denoising, etc.) among a
much larger set (> 0.618·(1.84)N) of ONBs than theGHWT
c2f/f2c dictionaries could provide (> (1.5)N). The previous
best-basis algorithm only searches through the c2f dictionary
and f2c dictionary separately, but this newmethodmakes use
of those two dictionaries simultaneously. In fact, the perfor-
mance of the eGHWT, by its construction, is always superior
to that of the GHWT, which is clearly demonstrated in our
numerical experiments in Sect. 5.

Our eGHWT is the graph version of the Thiele–Villemoes
algorithm [49] that finds the best basis among the ONBs of
R

N consisting of discretized and rescaled Walsh functions
for an 1D non-graph signal (i.e., a signal discretized on a 1D
regular grid) of length N , where N must be a dyadic inte-
ger. Their algorithm operates in the time–frequency plane
and constructs its tiling with minimal cost among all possi-
ble tilings with dyadic rectangles of area one, which clearly
depends on the input signal. Here, we adapt their method to
our graph setting that does not require dyadic N . In addition,
the generalization of the Thiele–Villemoes algorithm for 2D
signals developed by Lindberg and Villemoes [23] can be
generalized to the 2D eGHWT, as we will discuss more in
Sects. 4.5 and 5.2.

2 The additivity property can be dropped in principle by following the
work of Saito and Coifman on the local regression basis [40].

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 267

4.1 Fast Adaptive Time–Frequency Tilings

In this subsection, we briefly review the Thiele–Villemoes
algorithm [49]. First of all, let us define the so-called Walsh
system, which forms an ONB for L2[0, 1). Let W0(t) = 1
for 0 ≤ t < 1 and zero elsewhere, and define W1, W2, . . .

recursively by

W2l(t) = Wl(2t) + (−1)l Wl(2t − 1),

W2l+1(t) = Wl(2t) − (−1)l Wl(2t − 1).
(1)

Then, {Wl}∞l=0 is anONB for L2[0, 1) and is referred to as the
Walsh system in sequency order. Each basis function, Wl(t),
is piecewise equal to either 1 or −1 on [0, 1). Note that the
scaling and Haar vectors at the global scale are included in
this Walsh system.

Viewing S := [0, 1)×[0,∞) as a time–frequency plane,
the tile corresponding to the rescaled and translated Walsh
function (whichwe also refer to as theHaar–Walsh function),

wp(t) := 2 j/2Wl(2
j t − k),

is defined as

p = p(j, k, l) := [2− j k, 2− j (k+1))×[2 j l, 2 j (l+1)). (2)

Note that the area of p is 1. Thiele and Villemoes showed
that the functionswp andwq are orthogonal if and only if the
tiles p and q are disjoint. Moreover, if a collection of tiles
form a disjoint covering of a given dyadic rectangle (i.e.,
a rectangle with dyadic sides) in the time–frequency plane,
then the Haar–Walsh functions of those tiles form an ONB
of the subspace corresponding to that dyadic rectangle.

Now, the 1D discrete signal space RN (N = 2n) can be
identified with the subset Sn := [0, 1) × [0, N) of S in the
time–frequency plane. Given the overcomplete dictionary of
Haar–Walsh functions on R

N , the best-basis algorithm now
is equivalent to finding a set of basis vectors for a given input
signal with minimal cost that also generates a disjoint tiling
of Sn . That tiling is called the minimizing tiling.

Lemma 1 (Thiele & Villemoes [49]) Let T ⊂ S be a rectan-
gle of area greater or equal to two, with left half L, right half
R, lower half D, and upper half U. Assume each tile p ⊂ T
has the cost c(p). Define

mT := min

⎧
⎨

⎩
∑

p∈B
c(p)

∣∣∣∣B is a disjoint covering of T

⎫
⎬

⎭ ,

and similarly mL,m R,m D,mU . Then

mT = min{mL + m R, m D + mU }.

This lemma tells us that the minimizing tiling of T can be
split either in the time-direction into two minimizing tilings
of L and R, or in the frequency-direction into those of D and
U . It enables a dynamic programming algorithm to find the
minimizing tiling of Sn ; see Algorithm 3.3 of [49].

4.2 Relabeling Region Indices

If the input graph is a simple path graph PN with dyadic
N and the partition tree is a balanced complete binary tree,
then the GHWT dictionary is the same as the classical Haar–
Walsh wavelet packet dictionary for 1D regular signals, on
which the Thiele–Villemoes algorithm[49] can be applied in
a straightforward manner. To adapt the algorithm to a graph
signal of an arbitrary length or an imperfect binary parti-
tion tree of an input graph, we need to modify the GHWT
dictionary first.

Specifically, the region index k of G j
k and ψ

j
k,l needs to

be relabeled. Previously, on level j , the region index k takes
all the integer values in [0, K j) where K j ≤ 2 j is the total
number of subgraphs (or regions) on level j . After relabeling,
k takes an integer value in [0, 2 j) according to its location
in the binary tree. Algorithm 2 precisely describes the whole
procedure.

Algorithm 2: Relabeling the GHWT Dictionary

Input: A binary partition tree denoted by {G j
k }, 0 ≤ j ≤ jmax,

0 ≤ k < K j

Output: A perfect binary partition tree {G̃ j
k } containing {G j

k } as
its subset

// The algorithm starts here.

G̃0
0 ← G0

0 // On level 0, there is only one

region G0
0, so no relabeling is required.

for j = 1 : jmax do
for k = 0 : K j−1 − 1 do

if G j−1
k is split into G j

k′ and G j
k′+1 then

G̃ j
2k ← G j

k′ ; G̃ j
2k+1 ← G j

k′+1

else // G j−1
k is kept as G j

k′
G̃ j

2k ← G j
k′ ; G̃ j

2k+1 ← ∅
end

end
end

A couple of remarks are in order. First, the region indices
of the basis vectors {ψ j

k,l}, 0 ≤ k < K j are also rela-

beled accordingly as {ψ̃ j
k′,l} supported on the subgraph G̃ j

k′ ,
where 0 ≤ k′ < 2 j . Note that some of the basis vectors in
{ψ̃ j

k′,l} that do not have the corresponding basis vectors in the
original GHWT dictionary {ψ j

k,l} are “fictitious” (or “non-
existent”) ones and can be set as the zero vectors. In practice,
however, we even do not need to store them as the zero vec-

123

268 Journal of Mathematical Imaging and Vision (2022) 64:261–283

tors; we simply do not compute the cost corresponds to such
fictitious basis vectors. Second, to simplify our notation, we
just assume the {ψ j

k,l} and {G j
k } are those already relabeled

by Algorithm 2 in the rest of our article.
Figure 5b shows the result of Algorithm 2 applied to the

GHWT c2f dictionary shown in Fig. 5a on P6. Before the
relabeling, the dictionary forms a complete but imperfect
binary tree. As one can see, after the relabeling, the initial
GHWT c2f dictionary is a subset of a perfect binary tree
shown in Fig. 5b.

4.3 The New Best-Basis (eGHWT) Algorithm

We can now apply Algorithm 3 to search for the best
basis in the relabeled GHWT dictionary that have a perfect
binary partition tree, similarly to the Thiele–Villemoes algo-
rithm. For simplicity, we refer to this whole procedure as
the eGHWT. In order to understand this algorithm, let us
first remark that we use the so-called associative array: an
abstract data type composed of a collection of (key, value)
pairs such that each possible key appears at most once in
the collection. The reason why we use the associative arrays
instead of the regular arrays is to save storage space while
keeping the algorithmflexible and efficientwithout losing the
convenience of manipulating arrays. This point is important
since many basis vectors ψ

j
k,l after relabeling via Algo-

rithm 2 may be fictitious, which we need to neither store
nor compute: using regular matrices to store them will be
wasteful. For example, Algorithm 3 has a statement like
A0[j, k, l] ← g(〈 f ,ψ j

k,l〉), where A0 is an associative array.

This actually means that ((j, k, l), g(〈 f ,ψ j
k,l〉)) is a pair

of (key, value) of the associative array A0. Here, we write
(j, k, l) ∈ A0 to denote that (j, k, l) is a valid key of A0.
Therefore, (j, k, l) ∈ A0 if and only if non-fictitious ψ

j
k,l

exists. Since we relabeled ψ
j
k,l , there are fictitious ψ

j
k,l ’s

(i.e., zero vectors) for some triple (j, k, l). In that case, we
write (j, k, l) /∈ A0.

Several remarks on this algorithm are in order:

– The associative array, Am , holds the minimum cost of
ONBs in a subspace. The value of Am[j, k, l] is set to the
smaller value between Am−1[j, k, 2l]+ Am−1[j, k, 2l +
1] and Am−1[j + 1, 2k, l]+ Am−1[j + 1, 2k + 1, l]. The
subspace corresponding to Am[j, k, l] is the direct sum
of the two subspaces corresponding to Am−1[j, k, 2l]
and Am−1[j, k, 2l + 1], which is the same as the direct
sum of those corresponding to Am−1[j + 1, 2k, l] and
Am−1[j + 1, 2k + 1, l]. In other words, when we com-
pute Am from Am−1, we concatenate the subspaces. This
process is similar to finding the best tilings for dyadic
rectangles from those with half size in Thiele–Villemoes
algorithm [49] as described in Sect. 4.1.

Algorithm3:TheNewBest-Basis (eGHWT)Algorithm

Input: The relabeled GHWT basis vectors {ψ j
k,l } generated by

Algorithm 2; a nonnegative function g : R → R≥0 to
evaluate the cost of each expansion coefficient; an input
graph signal f ∈ R

N .
Output: The eGHWT best basis B.

// Initialize two associative arrays A0 and
I0 that store costs and indices for the
best basis search, respectively

A0[j, k, l] ← g(〈 f ,ψ j
k,l 〉) if ψ

j
k,l is not fictitious;

I0[j, k, l] ← 1 if (j, k, l) ∈ A0;
for m = 0 : jmax − 1 do // Compute (Am+1, Im+1) from
(Am , Im)

Initialize Am+1 and Im+1 as empty associative arrays;
for each (j, k, l) ∈ Am with j < jmax − m and l ≡ 0
(mod 2) do

if (Am [j, k, l] + Am [j, k, l + 1]) ≤
(Am [j + 1, 2k, l/2] + Am [j + 1, 2k + 1, l/2]) then

Im+1[j, k, l/2] ← 0;
Am+1[j, k, l/2] ← (Am [j, k, l] + Am [j, k, l + 1]);

else
Im+1[j, k, l/2] ← 1;
Am+1[j, k, l/2] ←
(Am [j + 1, 2k, l/2] + Am [j + 1, 2k + 1, l/2]);

end
// Note that any of Am [j, k, l + 1],

Am [j + 1, 2k, l/2], Am [j + 1, 2k + 1, l/2] will
be replaced by 0 in the above steps
if it corresponds to the fictitious
basis vector.

end
end
I ← I jmax ;
for m = jmax − 1 : −1 : 0 do // Recover the best
basis from {Im}

Initialize Itemp as an empty associative array;
for each (j, k, l) ∈ I do

if I [j, k, l]==0 then
Itemp[j, k, 2l] ← Im [j, k, 2l] if (j, k, 2l) ∈ Im ;
Itemp[j, k, 2l + 1] ← Im [j, k, 2l + 1] if
(j, k, 2l + 1) ∈ Im ;

else // i.e., I [j, k, l]==1
Itemp[j + 1, 2k, l] ← Im [j + 1, 2k, l] if
(j + 1, 2k, l) ∈ Im ;
Itemp[j + 1, 2k + 1, l] ← Im [j + 1, 2k + 1, l] if
(j + 1, 2k + 1, l) ∈ Im ;

end
end
I ← Itemp;

end
B ← ∅; // Initialize B as an empty set
for each (j, k, l) ∈ I do

B ← B ∪ {ψ j
k,l }

end
// B is the best basis!

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 269

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The GHWT c2f dictionary

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5 ψ0
0,6 ψ0

0,7

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

0,3 ψ1
1,0 ψ1

1,1 ψ1
1,2 ψ1

1,3

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

1,1 ψ2
2,0 ψ2

2,1 ψ2
3,0 ψ2

3,1

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0 ψ3
6,0 ψ3

7,0

(b) The relabeled GHWT c2f dictionary

Fig. 5 a The GHWT c2f dictionary on P6. Stem plots with black, red,
and blue colors correspond to the scaling, Haar, and Walsh vectors,
respectively. b The relabeled GHWT c2f dictionary by Algorithm 2

applied to the GHWT c2f dictionary shown in a. The gray stem plots
indicate the “fictitious” (or “non-existent”) basis vectors newly gener-
ated by Algorithm 2 (Color figure online)

– If the input graph G is a simple 1D path PN with dyadic
N , and if we view an input graph signal f as a discrete-
time signal, then (Am−1[j, k, 2l], Am−1[j, k, 2l + 1])
corresponds to splitting the subspace of Am[j, k, l] in
the frequency domain in the time–frequency plane while
(Am−1[j + 1, 2k, l], Am−1[j + 1, 2k + 1, l]) does the
split in the time domain.

– The subspace of each entry in A0 is one dimensional
since it is spanned by a single basis vector. In other
words, A0[j, k, l] corresponds to span{ψ j

k,l}: the one-

dimensional subspace spanned by ψ
j
k,l .

– A jmax has only one entry A jmax [0, 0, 0], which corre-
sponds to the whole RN . Its value is the minimum cost
among all the choosable ONBs, i.e., the cost of the best
basis.

– If an input graph signal is of dyadic length, Algorithm 3
selects the best basis among a much larger set (> 0.618 ·
(1.84)N) of ONBs than what each of the GHWT c2f
and f2c dictionaries would provide (> (1.5)N) [49]. The
numbers are similar even for non-dyadic cases as long as
the partition trees are essentially balanced. The essence
of this algorithm is that at each step of the recursive evalu-
ation of the costs of subspaces, it compares the cost of the
parent subspace with not only its two children subspaces
partitioned in the “frequency” domain (as the GHWT f2c
does), but also its two children subspaces partitioned in
the “time” domain (as the GHWT c2f does).

– If the underlying graph of an input graph signal is a simple
unweighted path graph of dyadic length, i.e., P2n , n ∈ N,
then Algorithm 3 reduces to the Thiele–Villemoes algo-
rithm exactly. Note that in such a case, neither computing
the Fiedler vectors of subgraphs nor relabeling the sub-
graphs via Algorithm 2 is necessary; it is more efficient

to force the midpoint partition at each level explicitly in
that case.

4.4 The eGHWT Illustrated by a Simple Graph Signal
on P6

The easiest way to appreciate and understand the eGHWT
algorithm is to use a simple example. Let f = [2,−2, 1, 3,
−1,−2]T ∈ R

6 be an example graph signal on G = P6. The
�1-norm is chosen as the cost function.

Figure 6a shows the coefficients of that signal on the
GHWT c2f dictionary, and Fig. 6b corresponds to the rela-
beled GHWT c2f dictionary by Algorithm 2.

After the GHWT c2f for P6 is relabeled via Algorithm 2,
the dictionary tree has the same structure as that of P8.
Figure 7 illustrates the progression of Algorithm 3 on this
simple graph signal. The time–frequency plane in this case
is S3 = [0, 1)×[0, 8), and the frequency axis is scaled in this
figure so that S3 is a square for visualization purpose. The
collection of all 32 tiles and the corresponding expansion
coefficients are placed on the four copies of S3 in the top row
of Fig. 7, which are ordered from the finest time/coarsest fre-
quency partition (j = 3) to the coarsest time/finest frequency
partition (j = 0). Note that each tile has the unit area.

In the first iteration (m = 1) in Fig. 7, the minimizing
tilings for all the dyadic rectangles of area 2 are computed
from those with unit area. For example, the left most dyadic
rectangle (showing its cost 2

√
2) at m = 1, can be composed

by either a pair of tiles (ψ3
0,0,ψ

3
1,0) or (ψ

2
0,0,ψ

2
0,1). The cor-

responding costs are |2| + | − 2| = 4 or |2√2| + |0| = 2
√
2,

and the minimum of which is 2
√
2. The minimizing tiling

for that dyadic rectangle is hence ψ2
0,0 and ψ2

0,1 with its cost

2
√
2. In the second iteration (m = 2), the algorithm finds the

123

270 Journal of Mathematical Imaging and Vision (2022) 64:261–283

√
6
6

√
6
6

2
√
3

3
4
√
3

3 4 0

√
3
3 −

√
6
3 2

√
2 0

√
6 2

√
2

0 2
√
2 1

√
2 2

√
2 −2

2 −2 1 3 −1 −2

(a) The GHWT c2f dictionary

√
6
6

√
6
6

2
√
3

3 0 4
√
3

3 4 0 0

√
3
3

−√
6

3 2
√
2 0 0

√
6 2

√
2 0

0 2
√
2 1 0

√
2 2

√
2 −2 0

2 −2 1 0 3 −1 −2 0

(b) The GHWT c2f dictionary after relabeling

Fig. 6 a The expansion coefficients and the basis vectors of the simple graph signal f = [2,−2, 1, 3,−1,−2]T on P6 relative to the GHWT c2f
dictionary; b those correspond to the GHWT c2f dictionary after relabeling (Color figure online)

minimizing tilings for all dyadic rectangles with area 4. In
the third iteration (m = 3), the algorithm finds the minimiz-
ing tiling for the whole S3. After the best basis is found in
the relabeled GHWT c2f dictionary, we remove those “fic-
titious” zero basis vectors and undo the relabeling done by
Algorithm 2 to get back to the original (j, k, l) indices.

Figure 8 shows that the GHWT c2f best basis for this
simple graph signal is actually the Walsh basis, and its rep-

resentation is
√
6
6 ψ0

0,0 +
√
6
6 ψ0

0,1 + 2
√
3

3 ψ0
0,2 + 4

√
3

3 ψ0
0,3 +

4ψ0
0,4 + 0ψ0

0,5 with its cost ≈ 8.28 and the f2c-GHWT best

basis representation is
√
3
3 ψ1

0,0+0ψ1
1,0+

√
6
3 ψ1

0,1+
√
6ψ1

1,1+
4ψ0

0,4+0ψ0
0,5 with its cost≈ 7.84,while Fig. 9 demonstrates

that the best basis representation chosen by the eGHWTalgo-
rithm is 0ψ2

0,0 + 1ψ2
1,0 + 0ψ1

1,0 + √
6ψ1

1,1 + 4ψ0
0,4 + 0ψ0

0,5
with its cost ≈ 7.45, which is the smallest among these three
best basis representations. The indices used here are those of
the original ones.

Figure 9 clearly demonstrates that the eGHWT best basis
cannot be obtained by simply applying the previous GHWT
best basis algorithm on the c2f and f2c dictionaries. More
specifically, let us consider the vectors ψ1

1,0 and ψ0
0,4 in

the eGHWT best basis. From Fig. 9a, we can see that ψ1
1,0

is supported on the child graph G1
1 that was generated by

bipartitioning the input graph G0
0 where ψ0

0,4 is supported.
Therefore, they cannot be selected in the GHWT c2f best
basis simultaneously. A similar argument applies toψ2

1,0 and

ψ1
1,0 in the eGHWT best basis as shown in Fig. 9b: they

cannot be selected in the GHWT f2c best basis simultane-
ously.

4.5 Generalization to 2D Signals/Matrix Data

The Thiele–Villemoes algorithm [49] has been extended to
2D signals by Lindberg and Villemoes [23]. Similarly to

the former, the Lindberg–Villemoes algorithm works for
only 2D signals of dyadic sides. We want to generalize the
Lindberg–Villemoes algorithm for a more general 2D sig-
nal or matrix data whose sides are not necessarily dyadic, as
we did for the previous GHWT dictionaries in [17]. Before
describing our 2D generalization of the eGHWT algorithm,
let us briefly review the Lindberg–Villemoes algorithm. As
we described in Sect. 4.1, the best tiling in each step in
the Thiele–Villemoes algorithm chooses a bipartition with
a smaller cost between that of the time domain and that of
the frequency domain. For 2D signals, the time–frequency
domain has four axes instead of two. It has time and fre-
quency axes on each of the (x, y) components (i.e., columns
and rows of an input image). The best tiling comes from the
split in the time or frequency directions in either the x or y
component. This forces them to choose the best tiling/split
among four options instead of two for each split. Similarly
to the 1D signal case, dynamic programming is used to find
the minimizing tiling for a given 2D signal. We note that
our 2D generalized version of the eGHWT algorithm exactly
reduces to the Lindberg–Villemoes algorithm if the input
graph is a 2D regular lattice of dyadic sizes and the midpoint
(or midline to be more precise) partition is used through-
out.

For a more general 2D signal or matrix data, we can com-
pose the affinity matrices on the row and column directions
separately (see, e.g., [17]), thus define graphs on which the
rows and columns are supported. In this way, the input 2D
signal can be viewed as a tensor product of two graphs. Then,
the eGHWT can be extended to 2D signal from 1D in a sim-
ilar way as how Lindberg and Villemoes [23] extended the
Thiele–Villemoes algorithm [49]. Examples will be given in
Sect. 5.2.

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 271

2 −2 1 0 3 −1 −2 0

0 1
√
2 −2

2
√
2 0 2

√
2 0

√
3
3

−
√
6
3

2
√
2

0

0

√
6

2
√
2

0

√
6
6

√
6
6

2
√
3

3

4
√
3

3

4

0

0

0

2
√
2 1 4 2

1
√
6

2
√
2 2

√
2

√
3
3

4
√
6

3

4

0

2
√
2 + 1 2

√
2 +

√
6

1 +
√
6

4

10

√
6

0

4

0

0 0

m = 1

m = 2

m = 3

j = 3 j = 2 j = 1 j = 0

Fig. 7 Graphical illustration of Algorithm 3 for the simple signal f = [2,−2, 1, 3,−1,−2]T ∈ R
6. The cost function is the �1-norm of the

expansion coefficients. The top row contains all possible tiles and coefficients. The bottom row represents the eGHWT best basis

123

272 Journal of Mathematical Imaging and Vision (2022) 64:261–283

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The GHWT c2f best basis

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The GHWT f2c best basis

Fig. 8 a The GHWT c2f best basis vectors for the input graph signal f = [2,−2, 1, 3,−1,−2]T (indicated by red); b the GHWT f2c best-basis
vectors for the same signal (Color figure online)

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

ψ1
0,0 ψ1

0,1 ψ1
0,2 ψ1

1,0 ψ1
1,1 ψ1

1,2

ψ2
0,0 ψ2

0,1 ψ2
1,0 ψ2

2,0 ψ2
2,1 ψ2

3,0

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

(a) The eGHWT best basis shown in the GHWT
c2f dictionary

ψ3
0,0 ψ3

1,0 ψ3
2,0 ψ3

3,0 ψ3
4,0 ψ3

5,0

ψ2
0,0 ψ2

1,0 ψ2
2,0 ψ2

3,0 ψ2
0,1 ψ2

2,1

ψ1
0,0 ψ1

1,0 ψ1
0,1 ψ1

1,1 ψ1
0,2 ψ1

1,2

ψ0
0,0 ψ0

0,1 ψ0
0,2 ψ0

0,3 ψ0
0,4 ψ0

0,5

(b) The eGHWT best basis shown in the GHWT
f2c dictionary

Fig. 9 eGHWT best-basis vectors for the signal f =
[2,−2, 1, 3,−1,−2]T selected by Algorithm 3 (indicated by red)
that are displayed within the GHWT c2f dictionary (a) and the GHWT

f2c dictionary (b). Note the orthogonality of these vectors, and compare
them with those shown in Fig. 8 (Color figure online)

5 Applications

In this section, we will demonstrate the usefulness and
efficiency of the eGHWT using several real datasets, and
compare its performancewith that of the classical Haar trans-
form, graph Haar basis, graph Walsh basis, and the GHWT
c2f/f2c best bases.We note that our performance comparison
is to emphasize the difference between the eGHWT and its
close relatives. Hence, we will not compare the performance
of the eGHWTwith those graphwavelets andwavelet packets
of different nature; see, e.g., [4,18] for further information.

5.1 Efficient Approximation of a Graph Signal

Here, we analyze the eight peak-hour vehicle volume counts
on the Toronto street network, which is shown in Fig. 10. We

have already described this street network in Sect. 2 and in
Fig. 2. The data were typically collected at the street intersec-
tions equipped with traffic lights between the hours of 7:30
am and 6:00 pm, over the period of 03/22/2004–02/28/2018.
As one can see, the vehicular volume are spread in various
parts of this street networkwith the concentrated northeastern
region.

In addition to the eGHWT best basis, the graph Haar
basis, the graph Walsh basis, the GHWT c2f/f2c best bases
are used to compare the performance. Figure 10b shows
the performance comparison. The y-axis denotes the rela-
tive approximation error ‖ f − Pn f ‖2/‖ f ‖2, where Pn f
denotes the approximation of f with the basis vectors having
the n largest coefficients in magnitude. The x-axis denotes
n/N , i.e., the fraction of coefficients retained. We can see
that the error of the eGHWT decays fastest, followed by the

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 273

Fig. 10 a Vehicular volume data in the city of Toronto (the node diameter is proportional to its volume counts for visualization purpose); b Relative
�2 approximation errors by various graph bases (Color figure online)

GHWT f2c best basis, the graph Haar basis, and the GHWT
c2f best basis that chose the graph Walsh basis, in that order.
In Fig. 11, we display the nine most significant basis vectors
(except for the DC vector) for the graph Haar, the GHWT c2f
best basis (which selected the graphWalsh basis), theGHWT
f2c best basis, and the eGHWT best basis to approximate this
traffic volume data.

These figures clearly demonstrate the superiority of the
eGHWTbest basis over the graphHaar basis, the graphWalsh
basis, and the regular GHWT best bases. The top nine basis
vectors for these bases displayed in Fig. 11 show the charac-
teristics of each basis under consideration. The graph Haar
basis vectors are non-oscillatory blocky vectors with positive
and negative components at various locations and scales. The
graph Walsh basis vectors (= the GHWT c2f best-basis vec-
tors) are all global oscillatory piecewise-constant vectors.
The GHWT f2c best-basis vectors and the eGHWT best-
basis vectors are similar and can capture the multiscale and
multi-frequency features of the input graph signal. Yet, the
performance of the eGHWT best basis exceeds that of the
GHWT f2c best basis simply because the former can search
the best basis among a much larger collection of ONBs than
the latter can.

5.2 Viewing a General Matrix Signal as a Tensor
Product of Graphs

To analyze and process a single graph signal, we can use the
eGHWT to produce a suitable ONB. Then, for a collection of
signals in a matrix form (including regular digital images),
we can also compose the affinitymatrix of the rows and that of
the columns separately, thus define graphs on which the rows
and columns are supported as was done previously [5,17].
Those affinity matrices can be either computed from the sim-

ilarity of rows or columns directly or can be composed from
information outside the original matrix signal. For example,
Kalofolias et al. [21] used row and column graphs to analyze
recommender systems.

After the affinity graphs on rows and columns are
obtained, we can use the eGHWT to produce ONBs on
rows and columns separately. Then, the matrix signal can
be analyzed or compressed by the tensor product of those
two ONBs. In addition, as mentioned in Sect. 4.5, we have
also extended the eGHWT to the tensor product of row and
column affinity graphs and search for best 2D ONB on the
matrix signal directly. Note that we can also specify or com-
pute the binary partition trees in a non-adaptive manner (e.g.,
recursively splitting at the middle of each region), typically
for signals supported on a regular lattice.

5.2.1 Approximation of the Barbara Image

In this section, we compare the performance of various
bases in approximating the famous Barbara image shown
in Fig. 12a, and demonstrate our eGHWT can be applied to a
conventional digital image in a straightforward manner, and
outperforms the regular GHWT best bases. This image con-
sists of 512 × 512 pixels, and has been normalized to have
its pixel values in (0, 1). The partition trees on the rows and
columns are specified explicitly: every bipartition is forced
at the middle of each region. Therefore, those two trees are
perfect binary trees with depth equal to log2(512) + 1 = 10.

Figure 12b displays the relative �2 errors of the approxi-
mations by the graph Haar basis, the graph Walsh basis, the
GHWT cf2/f2c best bases, and the eGHWT best basis as a
function of the fraction of the coefficients retained.

In order to examine the quality of approximations visually,
Fig. 13 displays those approximations using only 1/32 =

123

274 Journal of Mathematical Imaging and Vision (2022) 64:261–283

Fig. 11 Nine most significant basis vectors of the graph Haar, the
GHWT c2f best basis (= the graph Walsh in this case), the GHWT
f2c best basis, and the eGHWT best basis. The diameters of the nodes
are proportional to the log of the absolute values of the basis vector

amplitudes. The basis vector amplitudes within (−0.001, 0.001) are
mapped to the viridis colormap to emphasize the difference between
positive (yellow) and negative (deep violet) components (Color figure
online)

3.125% of the most significant expansion coefficients for
each basis. The eGHWT best basis outperforms all the others
with least blocky artifacts. To examine the visual quality of
these approximations further, Fig. 14 shows the zoomed-up
face and left leg of those approximations. Especially for the
leg region that has some specific texture, i.e., stripe patterns,
the eGHWT outperformed the rest of the methods. The per-
formance is measured by PSNR (peak signal-to-noise ratio).

We note that both this approximation experiment on the
Barbara image and that on the vehicular volume count data on
the Toronto street network discussed in Sect. 5.1, the order
of the performance was the same: eGHWT > GHWT f2c
> graph Haar > GHWT c2f ≥ graph Walsh. This order in
fact makes sense for those input datasets. The eGHWT could
simply searchmuch larger ONBs than the GHWTbest bases;
the graph Haar basis is a part of the GHWT f2c dictionary;

and the graph Walsh basis is a part of both the GHWT c2f
and f2c dictionaries. The graph Walsh basis for these graph
signals was too global while the GHWT c2f best basis tended
to select nonlocal features compared to the eGHWT, GHWT
f2c, and the graph Haar.

5.2.2 The Haar Transform for Images with Non-Dyadic Size

For images of non-dyadic size, there is no straightforward
way to obtain the partition trees in a non-adaptive manner
unlike the dyadic Barbara image of 512×512 in the previous
subsection. This is a common problem faced by the classical
Haar and wavelet transforms as well: they were designed to
work for images of dyadic size. Non-dyadic images are often
modified by zero padding, even extension at the boundary
pixels, or othermethods before theHaar transform is applied.

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 275

Fig. 12 a The original Barbara image of size 512 × 512 pixels; b Relative �2 approximation errors by various graph bases (Color figure online)

Fig. 13 Approximations of the
Barbara image using various
bases using only 3.125% of
coefficients (online viewing is
recommended for the details)

123

276 Journal of Mathematical Imaging and Vision (2022) 64:261–283

Fig. 14 Zoomed up versions of
Fig. 13. Methods used from top
left to bottom right are: Haar;
GHWT c2f; GHWT f2c; and
eGHWT, respectively. Online
viewing is recommended for the
details

We propose to apply the Haar transform on a non-dyadic
image without modifying the input image using the eGHWT
dictionary.

To obtain the binary partition trees, we need to cut an input
image I ∈ R

M×N horizontally or vertically into two parts
recursively. Apart from using the affinity matrices as we did
for the vehicular volume count data on the Toronto street
network in Sect. 5.1 and for the term-document matrix anal-
ysis in [17], we propose to use the penalized total variation
(PTV) cost to partition a non-dyadic input image. Denote the
two sub-parts of I as I1 and I2. We search for the optimal
cut such that

Penalized Total Variation Cost

:= ‖I1‖TV
|I1|p

+ ‖I2‖TV
|I2|p

(p > 0)

is minimized, where ‖Ik‖TV := ∑
i, j (|Ik[i + 1, j] −

Ik[i, j]| + |Ik[i, j + 1] − Ik[i, j]|), and |Ik | indicates the
number of pixels in Ik , k = 1, 2. The denominator is used
to make sure that the size of I1 and that of I2 are close so
that the tree becomes nearly balanced. Recursively applying
the horizontal cut on the rows of I and the vertical cut on the
columns of I will give us two binary partition trees. We can
then select the 2D Haar basis from the eGHWT dictionary
or search for the best basis with minimal cost (note that this
cost function for the best-basis search is the �1-norm of the
expansion coefficients, and is different from the PTV cost
above).

To demonstrate this strategy, we chose an image patch
of size 100 × 100 around the face part from the original
512 × 512 Barbara image so that it is non-dyadic. To deter-
mine the value of p, we need to balance between the total
variation and structure of the partition tree. Larger p means
less total variation value after split but a more balanced par-
tition tree may be obtained. The value of p can be fine-tuned
based on the evaluation of the final task, for example, the

area under the curve of the relative approximation error in the
compression task [18]. In the numerical experiments below,
after conducting preliminary partitioning experiments using
the PTV cost, we decided to choose p = 3.

For comparison, we also used the dwt function supplied
by the Wavelets.jl package [48] for the classical Haar
transform. We examined three different scenarios here: 1)
directly input the Barbara face image of size 100 × 100; 2)
zero padding to four sides of the original image to make it
128 × 128; and 3) even reflection at the borders to make it
128 x 128.

Figure 15 shows that the relative �2-error curves of these
five methods. Note that we plotted these curves as a function
of the number of coefficients retained instead of the frac-
tion of coefficients retained that were used in Figs. 10b and
12b. This is because the zero-padded version and the even-
reflection version have 128 pixels although the degree of
freedom is the same 100 × 100 throughout the experiments.

Clearly, the graph-based methods, i.e., the graph Haar
basis and the eGHWT best basis outperformed the clas-
sical Haar transform applied to the three prepared input
images. The classical Haar transform applied to the orig-
inal face image of size 100 × 100 did perform poorly in
the beginning because the dwt function stops the decom-
position when the sample (or pixel) size becomes an odd
integer. In this case, after two levels of decomposition, it
stopped (100 → 50 → 25). Hence, it did not fully enjoy
the usual advantage of deeper decomposition. The classical
Haar transform applied to the even-reflected image was the
worst performer among these five because the even-reflected
image of 128 × 128 is not periodic. The implementation
of the dwt assumes the periodic boundary condition by
default, and if it does not generate continuous periodic image,
it would generate artificially large expansion coefficients
due to the discontinuous periodic boundary condition; see
[38,42,53] for further information. We can summarize that

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 277

Fig. 15 Comparison of approximation performance on the face part (of
size 100×100 pixels) of theBarbara image: the classicalHaar transform
with various setups, the graph Haar basis, and the eGHWT best basis
(Color figure online)

our graph-based transforms can handle images of non-dyadic
size without any artificial preparations (zero padding and
even reflection) with some additional computational expense
(theminimization of the PTV cost for recursive partitioning).

5.3 AnotherWay to Construct a Graph from an
Image for Efficient Approximation

We can view a digital image of size M × N as a signal
on a graph consisting of M N nodes by viewing each pixel
as a node. Note that the underlying graph is not a regular
2D lattice of size M × N . Rather it is a graph reflecting
the relationship or affinity between pixels. In other words,
wi j , the weight of the edge between i th and j th pixels in
that graph should reflect the affinity between local region
around these two pixels, and this weight may not be 0 even
if i th and j th pixels are remotely located. In the classical
setting, this idea has been used in image denoising (the so-
called bilateral filtering) [50] and image segmentation [44].
On the other hand, Szlam et al. have proposed a more general
approach for associating graphs and diffusion processes to
datasets and functions on such datasets, which includes the
bilateral filtering of [50] as a special case, and have applied
to image denosing and transductive learning. See the review
article ofMilanfar [27] for further connections between these
classical and modern techniques and much more.

Here, we define the edge weight wi j as Szlam et al. [46]
did:

wi j = exp

(
−‖F[i] − F[j]‖22

σF

)

·
⎧
⎨

⎩
exp

(
−‖x[i]−x[j]‖22

σx

)
if ‖x[i] − x[j]‖2 < r

0 otherwise
(3)

where x[i] ∈ R
2 is the spatial location (i.e., coordinate) of

node (pixel) i , and F[i] is a feature vector based on intensity,
color, or texture information of the local region centered at
that node. As one can see in Eq. (3), the pixels located within
a disk with center x[i] and radius r are considered to be the
neighbors of the i th pixel. The scale parameters, σF and σx ,
must be chosen appropriately. Once we construct this graph,
we can apply the eGHWT in a straightforward manner.

We examine two images here. Thefirst one (Fig. 16a) is the
subsampled version of the standard ‘cameraman’ image; we
subsampled the original cameraman image of size 512×512
to 128 × 128 in order to reduce computational cost. For the
location parameters, we used r = 5 and σx = ∞. Note that
σx = ∞ means that wi · becomes an indicator/characteristic
function of a disk of radius r with center i . This setup cer-
tainly simplifies our experiments, and could sparsify the
weight matrix if r is not too large. On the other hand, the
feature vector F[i] of the i th pixel location, we found that
simply choosing raw pixel value as F[i] can get good enough
results for relatively simple images (e.g., piecewise smooth
without too much high frequency textures) like the camera-
man image. However, the “Gaussian bandwidth” parameter
for the features, σF , needs to be tuned more carefully. A pos-
sible tuning trick is to start from the median of all possible
values of the numerator in the exponential term inEq. (3), i.e.,
−‖F[i]− F[j]‖22 [46], examine several other values around
that median, and then choose the value yielding the best
result. For more sophisticated approach to tune the Gaussian
bandwidth, see [24]. In this example, we used σF = 0.007
and σF = 0.07 after several trials starting from the simple
median approach in order to demonstrate the effect of this
parameter for the eGHWT best basis.

0ure 16b shows our results on the subsampled cameraman
image. Figure 16b demonstrates that the decay rate of the
expansion coefficients w.r.t. the eGHWT best basis is much
faster than that of the classical Haar transform.Moreover, the
eGHWT best-basis vectors extract somemeaningful features
of the image. Figure 17 shows the eGHWTbest-basis vectors
corresponding to the largest nine expansion coefficients in
magnitude. We can see that the human part and the camera
part are captured by individual basis vectors. Furthermore,
in terms of capturing the objects and generating meaningful
segmentation, we observe that the results with σF = 0.007
shown in Fig. 17a are better than thosewithσF = 0.07 shown
in Fig. 17b. This observation coincides with the better decay
rate of the former than that of latter in Fig. 16b. Therefore,
we can conclude that good segmentation (or equivalently, a
good affinitymatrix setup) is quite important for constructing
a basis of good quality and consequently for approximating
an input image efficiently.

Our second example is a composite texture image shown
in Fig. 18a, which was generated and analyzed by Ojala et
al. [31]. Our method, i.e., applying the eGHWT on an image

123

278 Journal of Mathematical Imaging and Vision (2022) 64:261–283

Fig. 16 a The subsampled cameraman image of size 128 × 128; b Relative �2 approximation error of a using five methods (Color figure online)

Fig. 17 Top nine eGHWT best-basis vectors: a σF = 0.007; b σF = 0.07

viewed as a graph, allows us to generate basis vectors with
irregular support that is adapted to the structure of the input
image as shown in the cameraman example above. This strat-
egy also works well on this composite texture image if we
choose the appropriate features in Eq. (3) to generate a good
weight matrix. The raw pixel values as the features, which
we used for the cameraman example, do not work in this
composite texture image, which consists of highly oscilla-
tory anisotropic features. Ideally, we want to use a piecewise
constant image delineating each of the five textured regions
for the weight matrix computation. To generate such a piece-
wise constant image (or rather its close approximation), we
did the following:

1. Apply a group of (say, k) 2D Gabor filters of various
frequencies and orientations on the original image of size
M × N ;

2. Compute the absolute values of eachGabor filtered image
to construct a nonnegative vector of length k at each pixel
location;

3. Standardize each of these k components so that each com-
ponent has mean 0 and variance 1;

4. Apply principal component analysis (PCA) [20] on these
standardized M N vectors in Rk ;

5. Extract the first principal component (organized as a sin-
gle image of the same size as the input image), normalize
it to be in the range of [0, 1], and use it as features in
Eq. (3).

123

Journal of Mathematical Imaging and Vision (2022) 64:261–283 279

Fig. 18 a A composite texture
image of size 128 × 128 after
subsampling the original image
of size 512× 512; bMask image
computed from PCA of 8 Gabor
filtered images followed by
subsampling to 128× 128 pixels

Fig. 19 a Relative �2 approximation error of Fig. 18a using five methods; b Top 9 eGHWT best-basis vectors (Color figure online)

In Step 1, the Gabor filters are used because they are quite
efficient to capture high frequency anisotropic features [10].
In this particular image, we used four spatial frequencies:
0.2, 0.3, 0.4, and 0.5 (unit: 1/pixel), and two different orien-
tations: π/3 and 5π/6, for the Gabor filters. This generated
a set of k = 8 nonnegative matrices in Step 2. We also note
that the Gaussian bandwidth or the standard deviation of the
Gaussian envelop used in the Gabor filters needs to be tuned
appropriately. In our experiments, we used the wavelength-
dependent bandwidth, i.e., σ = 3/π · √

ln 2/2 · λ, where
λ ∈ {0.2, 0.3, 0.4, 0.5}, as [33] suggests. The normalized
first principal component in Step 5 as an image is shown in
Fig. 18b. The pixel values of this ‘mask’ image are used as
(scalar) features F[i] in Eq. (3). Note that this mask compu-
tation was done on the original 512× 512 image, which was
subsequently subsampled to have128pixels tomatch the sub-
sampled original image. As for the Gaussian bandwidth, σF ,
in Eq. (3), we set σF = 0.0005 after several trials. The other
parameters, (r , σx), were set as (3,∞). Figure 19a compares

the performance of five different methods in approximating
the composite texture image shown in Fig. 18a. The order
of approximation performance is the same as the previous
examples, i.e., the vehicular volume counts on the Toronto
street network in Fig. 10b and the Barbara image using the
predefined dyadic partitions in Fig. 12b: eGHWT > GHWT
f2c > graph Haar > GHWT c2f = graph Walsh. Figure 19b
displays the top nine eGHWT best-basis vectors. We can see
that the support of these basis vectors approximately coin-
cide with the five sections of the composite texture image,
and some of the basis vectors, particularly the fourth and
eighth ones, exhibit the oscillatory anisotropic features.

6 Discussion

In this article, we have introduced the extended Generalized
Haar–Walsh Transform (eGHWT). After briefly reviewing
the previous Generalized Haar–Walsh Transform (GHWT),

123

280 Journal of Mathematical Imaging and Vision (2022) 64:261–283

we have described how the GHWT can be improved with
the new best-basis algorithm, which is the generalization of
the Thiele–Villemoes algorithm [49] for the graph setting.
We refer to this whole procedure of developing the extended
Haar–Walsh wavelet packet dictionary on a graph and select-
ing the best basis from it as the eGHWT. Moreover, we have
developed the 2D eGHWT for matrix signals by viewing
them as tensor products of two graphs, which is a gener-
alization of the Lindberg–Villemoes algorithm [23] for the
graph setting.

We then showcased some applications of the eGHWT.
Whenanalyzinggraph signals,wedemonstrated the improve-
ment over the GHWT on synthetic and real data. For the
simple synthetic six-node signal, we showed that the best
basis from the eGHWT can be selected by neither the GHWT
c2f dictionary nor the GHWT f2c dictionary and it had the
smaller cost than theGHWTc2f/f2c best bases could provide.
On the vehicular volume data on the Toronto street net-
work, the eGHWT had the best approximation performance
among the methods we considered. Then we proceeded to
the applications to image approximation. After demonstrated
the superiority of the eGHWT combined with the predeter-
mined recursive partitioning on the original Barbara image
of dyadic size, we proposed the use of the data adaptive
recursive partitioning using the penalized total variation for
images of non-dyadic size, and again showed the superiority
of the eGHWT and the graph Haar transform over the clas-
sical Haar transform applied to the preprocessed versions of
a non-dyadic input image. Finally, we demonstrated that the
eGHWT could be applied to a graph generated from an input
image by carefully choosing the edgeweights that encode the
similarity between pixels and their local neighbors, to get not
only superior approximation performance but also meaning-
ful and interpretable basis vectors that have non-rectangular
supports and can extract certain features and attributes of an
input image.

The eGHWT basis dictionary is constructed upon the
binary partition tree (or a tensor product of binary partition
trees in the case of 2D signals). Currently, we use the Fiedler
vectors of random-walk-normalized Laplacian matrices to
form the binary partition tree. However, as we have men-
tioned earlier, our method is so flexible that any graph cut
method or general clustering method can be used, as long as
the binary partition tree is formed.

If one is interested in compressing a given graph sig-
nal instead of simply approximating it, where the encoding
bitrate becomes an important issue, the eGHWT should be
still useful and efficient. There is no need to transmit the
eGHWTbest-basis vectors. If both the sender and the receiver
have the eGHWT algorithm, then the only information the
sender needs to transmit is: 1) the input graph structure via its
adjacency matrix (which is often quite sparse and efficiently
compressible); 2) the graph partitioning information to repro-

duce the hierarchical bipartition tree of the input graph; 3)
the indices of the eGHWT best basis within this tree; and 4)
the retained coefficients (after appropriate quantization) and
their indices within the eGHWT best basis.

Another major contribution of our work is the software
package we have developed. Based on the MTSG toolbox
written in MATLAB® by Jeff Irion [16], we have devel-
oped theMultiscaleGraphSignalTransforms.jl
package [13] written entirely in the Julia programming lan-
guage [1], which includes the new eGHWT implementation
for 1D and 2D signals as well as the natural graph wavelet
packet dictionaries that our group has recently developed [4].
We hope that interested readers will download the soft-
ware themselves, and conduct their own experiments with it:
https://github.com/UCD4IDS/MultiscaleGraphSignalTrans
forms.jl.

The readers might feel that the graphs we have used in
this article are rather restrictive: we have only used 2D irreg-
ular grids (i.e., the Toronto street map) and 2D lattices (i.e.,
the standard digital images). However, we want to note that
applying the eGHWT to more general graphs (e.g., social
network graphs, etc.) is quite straightforward, and no algo-
rithmic modification is necessary as long as an input graph
is simple, connected, and undirected. As we have discussed
earlier, the performance of the eGHWT for even such gen-
eral graphs is always superior to that of the GHWT, the graph
Haar basis, and the graphWalsh basis.We strongly encourage
interested readers to try out our software package described
above for such general graph signals.

There remains a lot of related projects to be done. Themost
urgent one is to implement the version of the eGHWT that
can handle multiple graph signals (on a given fixed graph).
In the classical setting, Wickerhauser proposed the so-called
Joint Best Basis (JBB) algorithm [52, Sect. 11.2], while Saito
proposed the so-called Least Statistically-Dependent Basis
(LSDB) algorithm [37], which correspond to the fast and
approximate version of the PCA and the ICA, respectively.
Moreover, our group has also developed the local discrim-
inant basis (LDB) algorithm that can extract distinguishing
local features for signal classification problems [39,41]. We
have already implemented the HGLET and the GHWT that
can handle multiple graph signals and that can compute the
JBB, the LSDB, and the LDB. Hence, making that version
of the eGHWT is relatively straightforward, and we plan to
do so very soon.

Another important project, which we are currently pur-
suing, is to use an appropriate subset of the scaling vectors
in the eGHWT dictionary for estimating good initialization
to start the Nonnegative Matrix Factorization (NMF) algo-
rithms that are of iterative nature; see, e.g., [29].

Finally, as a long-term research project, we plan to extend
the GHWT and eGHWT beyond matrix-form data, i.e., to

123

https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl

Journal of Mathematical Imaging and Vision (2022) 64:261–283 281

tensorial data (see, e.g., [34]), which seems quite promising
and worth trying.

We plan to report our investigation and results on these
projects at a later date.

Acknowledgements This research was partially supported by the US
National Science Foundation grants DMS-1418779, DMS-1912747,
CCF-1934568; the US Office of Naval Research grant N00014-20-1-
2381. In addition, Y. S. was supported by 2017–18 Summer Graduate
Student Researcher Award by the UCDavis Office of Graduate Studies.
The authors thank Haotian Li of UCDavis for constructing the graph of
the Toronto street network. A preliminary version of this article was pre-
sented at the SPIE Conference onWavelets and Sparsity XVIII, August
2019, San Diego, CA [43].

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Bezanson, J., Edelman, A., Karpinski, S., Shah, V.B.: Julia: a fresh
approach to numerical computing. SIAMRev. 59(1), 65–98 (2017).
https://doi.org/10.1137/141000671

2. Bremer, J.C., Coifman, R.R., Maggioni, M., Szlam, A.: Diffu-
sion wavelet packets. Appl. Comput. Harmon. Anal. 21(1), 95–112
(2006). https://doi.org/10.1016/j.acha.2006.04.005

3. Chung, F., Lu, L.: Complex Graphs and Networks. No. 107. In:
CBMS Regional Conference Series in Mathematics. Amer. Math.
Soc., Providence, RI (2006). https://doi.org/10.1090/cbms/107

4. Cloninger, A., Li, H., Saito, N.: Natural graph wavelet packet dic-
tionaries. J. Fourier Anal. Appl. A part of “Topical Collection:
Harmonic Analysis on Combinatorial Graphs”. 27, Article #41
(2021). https://doi.org/10.1007/s00041-021-09832-3

5. Coifman,R.R.,Gavish,M.:Harmonic analysis of digital data bases.
In: J. Cohen, A.I. Zayed (eds.) Wavelets and Multiscale Analysis:
Theory and Applications, Applied and Numerical Harmonic Anal-
ysis, pp. 161–197. Birkhäuser, Boston, MA (2011). : https://doi.
org/10.1007/978-0-8176-8095-4_9

6. Coifman, R.R., Maggioni, M.: Diffusion wavelets. Appl. Com-
put. Harmon. Anal. 21(1), 53–94 (2006). https://doi.org/10.1016/
j.acha.2006.04.004

7. Coifman, R.R., Wickerhauser, M.V.: Entropy-based algorithms for
best basis selection. IEEE Trans. Inform. Theory 38(2), 713–718
(1992). https://doi.org/10.1109/18.119732

8. Easley, D., Kleinberg, J.: Networks, Crowds, andMarkets: Reason-
ing and a Highly Connected World. Cambridge Univ. Press, New
York (2010)

9. Fiedler, M.: A property of eigenvectors of nonnegative symmetric
matrices and its application to graph theory. Czechoslovak Math.
J. 25, 619–633 (1975). http://eudml.org/doc/12900

10. Grigorescu, S.E., Petkov, N., Kruizinga, P.: Comparison of texture
features based onGabor filters. IEEETrans. Image Process. 11(10),
1160–1167 (2002). https://doi.org/10.1109/TIP.2002.804262

11. Hagen, L., Kahng, A..B.: New spectral methods for ratio cut par-
titioning and clustering. IEEE Trans. Comput.-Aided Des. 11(9),
1074–1085 (1992). https://doi.org/10.1109/43.159993

12. Hammond, D.K., Vandergheynst, P., Gribonval, R.: Wavelets
on graphs via spectral graph theory. Appl. Comput. Harmon.
Anal. 30(2), 129–150 (2011). https://doi.org/10.1016/j.acha.2010.
04.005

13. Irion, J., Li, H., Saito, N., Shao, Y.: Multiscalegraphsignal
transforms.jl. https://github.com/UCD4IDS/MultiscaleGraphSignal
Transforms.jl (2021)

14. Irion, J., Saito, N.: The generalized Haar-Walsh transform. In: Pro-
ceedings of 2014 IEEEWorkshop on Statistical Signal Processing,
pp. 472–475 (2014). https://doi.org/10.1109/SSP.2014.6884678

15. Irion, J., Saito, N.: Applied and computational harmonic analysis
on graphs and networks. In: M. Papadakis, V.K. Goyal, D. Van De
Ville (eds.) Wavelets and Sparsity XVI, Proc. SPIE 9597 (2015).
https://doi.org/10.1117/12.2186921. Paper # 95971F

16. Irion, J., Saito, N.: MTSG_Toolbox. https://github.com/
JeffLIrion//MTSG_Toolbox (2015)

17. Irion, J., Saito, N.: Learning sparsity and structure of matrices with
multiscale graph basis dictionaries. In: A. Uncini, K. Diamantaras,
F.A.N. Palmieri, J. Larsen (eds.) Proceedings of 2016 IEEE 26th
International Workshop on Machine Learning for Signal Process-
ing (MLSP) (2016). https://doi.org/10.1109/MLSP.2016.7738892

18. Irion, J., Saito, N.: Efficient approximation and denoising of graph
signals using the multiscale basis dictionaries. IEEE Trans. Signal
Inform. Process. Netw. 3(3), 607–616 (2017). https://doi.org/10.
1109/TSIPN.2016.2632039

19. Jansen, M., Nason, G..P., Silverman, B..W.: Multiscale methods
for data on graphs and irregular multidimensional situations. J. R.
Stat. Soc. Ser. B, Stat. Methodol 71(1), 97–125 (2008). https://doi.
org/10.1111/j.1467-9868.2008.00672.x

20. Jolliffe, I.T.: Principal Component Analysis and Factor Analysis,
2nd edn., chap. 7. Springer New York, New York, NY (2002).
https://doi.org/10.1007/b98835

21. Kalofolias, V., Bresson, X., Bronstein, M., Vandergheynst, P.:
Matrix completion on graphs. In: Neural Information Processing
Systems workshop “Out of the Box: Robustness in High Dimen-
sion” (2014). https://arxiv.org/abs/1408.1717

22. Lee, A., Nadler, B., Wasserman, L.: Treelets–an adaptive multi-
scale basis for sparse unordered data. Ann. Appl. Stat. 2, 435–471
(2008). https://doi.org/10.1214/07-AOAS137

23. Lindberg, M., Villemoes, L.F.: Image compression with adap-
tive Haar-Walsh tilings. In: A. Aldroubi, A.F. Laine, M.A. Unser
(eds.) Wavelet Applications in Signal and Image Processing VIII,
Proc. SPIE 4119, pp. 911–921 (2000). https://doi.org/10.1117/12.
408575

24. Lindenbaum, O., Salhov, M., Yeredor, A., Averbuch, A.: Gaus-
sian bandwidth selection for manifold learning and classification.
Data Min. Knowl. Discov. 34, 1676–1712 (2020). https://doi.org/
10.1007/s10618-020-00692-x

25. Lovász, L.: Large Networks and Graph Limits, Colloquium Publi-
cations, vol. 60. Amer. Math. Soc, Providence, RI (2012)

26. von Luxburg, U.: A tutorial on spectral clustering. Stat. Com-
put. 17(4), 395–416 (2007). https://doi.org/10.1007/s11222-007-
9033-z

27. Milanfar, P.: A tour of modern image filtering: new insights
and methods, both practical and theoretical. IEEE Signal Pro-
cess.Magaz. 30(1), 106–128 (2013). https://doi.org/10.1109/MSP.
2011.2179329

28. Murtagh, F.: The Haar wavelet transform of a dendrogram. J. Clas-
sif. 24(1), 3–32 (2007). https://doi.org/10.1007/s00357-007-0007-
9

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1137/141000671
https://doi.org/10.1016/j.acha.2006.04.005
https://doi.org/10.1090/cbms/107
https://doi.org/10.1007/s00041-021-09832-3
https://doi.org/10.1007/978-0-8176-8095-4_9
https://doi.org/10.1007/978-0-8176-8095-4_9
https://doi.org/10.1016/j.acha.2006.04.004
https://doi.org/10.1016/j.acha.2006.04.004
https://doi.org/10.1109/18.119732
http://eudml.org/doc/12900
https://doi.org/10.1109/TIP.2002.804262
https://doi.org/10.1109/43.159993
https://doi.org/10.1016/j.acha.2010.04.005
https://doi.org/10.1016/j.acha.2010.04.005
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl
https://github.com/UCD4IDS/MultiscaleGraphSignalTransforms.jl
https://doi.org/10.1109/SSP.2014.6884678
https://doi.org/10.1117/12.2186921
https://github.com/JeffLIrion//MTSG_Toolbox
https://github.com/JeffLIrion//MTSG_Toolbox
https://doi.org/10.1109/MLSP.2016.7738892
https://doi.org/10.1109/TSIPN.2016.2632039
https://doi.org/10.1109/TSIPN.2016.2632039
https://doi.org/10.1111/j.1467-9868.2008.00672.x
https://doi.org/10.1111/j.1467-9868.2008.00672.x
https://doi.org/10.1007/b98835
https://arxiv.org/abs/1408.1717
https://doi.org/10.1214/07-AOAS137
https://doi.org/10.1117/12.408575
https://doi.org/10.1117/12.408575
https://doi.org/10.1007/s10618-020-00692-x
https://doi.org/10.1007/s10618-020-00692-x
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1007/s11222-007-9033-z
https://doi.org/10.1109/MSP.2011.2179329
https://doi.org/10.1109/MSP.2011.2179329
https://doi.org/10.1007/s00357-007-0007-9
https://doi.org/10.1007/s00357-007-0007-9

282 Journal of Mathematical Imaging and Vision (2022) 64:261–283

29. Naik, G.R. (ed.): Non-negative Matrix Factorization Techniques:
Advances in Theory andApplications. Springer (2016). https://doi.
org/10.1007/978-3-662-48331-2

30. Newman, M.: Networks, 2nd edn. Oxford Univ, Press (2018)
31. Ojala, T., Maenpää, T., Pietikäinen, M., Viertola, J., Kylönen, J.,

Huovinen, S.: Outex - new framework for empirical evaluation of
texture analysis algorithms. In: Proceedings of 16th International
Conference on Pattern Recognition, vol. 1, pp. 701–706 (2002).
https://doi.org/10.1109/ICPR.2002.1044854

32. Ortega, A., Frossard, P., Kovačević, J., Moura, J..M..F., Van-
dergheynst, P.: Graph signal processing: overview, challenges, and
applications. Proc. IEEE 106(5), 808–828 (2018). https://doi.org/
10.1109/JPROC.2018.2820126

33. Petkov, N., Kruizinga, P.: Computational models of visual neurons
specialised in the detection of periodic and aperiodic oriented visual
stimuli: bar and grating cells. Biol. Cybern. (1997). https://doi.org/
10.1007/s004220050323

34. Qi, L., Luo, Z.: Tensor Analysis: Spectral Theory and Special Ten-
sors. SIAM, Philadelphia, PA (2019). https://doi.org/10.1137/1.
9781611974751

35. Rudis, B., Ross, N., Garnier, S.: The viridis color palettes.
https://cran.r-project.org/web/packages/viridis/vignettes/intro-
to-viridis.html (2018)

36. Rustamov, R.M.: Average interpolating wavelets on point clouds
and graphs. arXiv:1110.2227 [math.FA] (2011)

37. Saito, N.: Image approximation and modeling via least statistically
dependent bases. Pattern Recogn. 34, 1765–1784 (2001)

38. Saito, N.: Laplacian eigenfunctions and their application to
image data analysis. J. Plasma Fusion Res. 92(12), 904–
911 (2016). http://www.jspf.or.jp/Journal/PDF_JSPF/jspf2016_
12/jspf2016_12-904.pdf. In Japanese

39. Saito, N., Coifman, R.R.: Local discriminant bases and their appli-
cations. J. Math. Imaging Vis. 5(4), 337–358 (1995). Invited paper

40. Saito, N., Coifman, R.R.: Extraction of geological informa-
tion from acoustic well-logging waveforms using time-frequency
wavelets. Geophysics 62(6), 1921–1930 (1997). https://doi.org/10.
1190/1.1444292

41. Saito, N., Coifman, R.R., Geshwind, F.B.,Warner, F.: Discriminant
feature extraction using empirical probability density estimation
and a local basis library. PatternRecogn. 35(12), 2841–2852 (2002)

42. Saito, N., Remy, J.F.: The polyharmonic local sine transform: a new
tool for local image analysis and synthesis without edge effect.
Appl. Comput. Harmon. Anal. 20(1), 41–73 (2006). https://doi.
org/10.1016/j.acha.2005.01.005

43. Shao, Y., Saito, N.: The extended generalized Haar-Walsh trans-
form and applications. In: D. Van De Ville, M. Papadakis, Y.M.
Lu (eds.) Wavelets and Sparsity XVIII, Proc. SPIE 11138 (2019).
https://doi.org/10.1117/12.2528923. Paper #111380C

44. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE
Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000). https://
doi.org/10.1109/34.868688

45. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Van-
dergheynst, P.: The emerging field of signal processing on graphs.
IEEE Signal Process. Magaz. 30(3), 83–98 (2013). https://doi.org/
10.1109/MSP.2012.2235192

46. Szlam, A.D., Maggioni, M., Coifman, R.R.: Regularization
on graphs with function-adapted diffusion processes. J. Mach.
Learn. Res. 9(55), 1711–1739 (2008). http://jmlr.org/papers/v9/
szlam08a.html

47. Szlam, A.D., Maggioni, M., Coifman, R.R., Bremer Jr., J.C.:
Diffusion-driven multiscale analysis on manifolds and graphs: top-
down and bottom-up constructions. In: M. Papadakis, A.F. Laine,
M.A. Unser (eds.) Wavelets XI, Proc. SPIE 5914 (2005). https://
doi.org/10.1117/12.616931. Paper # 59141D

48. The Julia DSP Team: Wavelets.jl. https://github.com/JuliaDSP/
Wavelets.jl (2021)

49. Thiele, C.M., Villemoes, L.F.: A fast algorithm for adapted time-
frequency tilings. Appl. Comput. Harmon. Anal. 3(2), 91–99
(1996). https://doi.org/10.1006/acha.1996.0009

50. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color
images. In: Sixth International Conference on Computer Vision
(IEEE Cat. No.98CH36271), pp. 839–846 (1998). https://doi.org/
10.1109/ICCV.1998.710815

51. Tremblay, N., Borgnat, P.: Subgraph-based filterbanks for graph
signals. IEEE Trans. Signal Process. 64(15), 3827–3840 (2016).
https://doi.org/10.1109/TSP.2016.2544747

52. Wickerhauser, M.V.: Adapted Wavelet Analysis from Theory to
Software. A K Peters Ltd, Wellesley, MA (1994)

53. Yamatani, K., Saito, N.: Improvement of DCT-based compression
algorithms using Poisson’s equation. IEEE Trans. Image Pro-
cess. 15(12), 3672–3689 (2006). https://doi.org/10.1109/TIP.2006.
882005

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Naoki Saito is an applied and com-
putational harmonic analyst who
is interested in feature extraction,
graph signal processing, Lapla-
cian eigenfunctions, and human
and machine perception. He
received the B.Eng. and the
M.Eng. degrees in mathematical
engineering from the University
of Tokyo, Japan, in 1982 and 1984,
respectively. Then, he received his
PhD degree in applied mathemat-
ics from Yale in 1994 while work-
ing at the Schlumberger Doll
Research. In 1997, he joined the

Department of Mathematics at the University of California, Davis,
where he is currently a professor and a director of the UC Davis
TETRAPODS Institute of Data Science (UCD4IDS), one of the NSF’s
Transdisciplinary Research In Principles Of Data Science (TRIPODS)
Institutes that bring together the theoretical computer science, electri-
cal engineering, mathematics, and statistics communities to develop
the theoretical foundations of data science. Dr. Saito received the Best
Paper Awards from SPIE (1994), and JSIAM (2016) as well as the
Henri Doll Award from Schlumberger (1997), the ONR Young Inves-
tigator Award (2000), and the Presidential Early Career Award for
Scientists and Engineers (PECASE) (2000). He is a senior member
of IEEE as well as a member of IMS, SIAM, and JSIAM. He also
served as Chair of the SIAM Activity Group on Imaging Science from
2013 to 2015, and is a member of the editorial board of the three
international journals: Applied and Computational Harmonic Analy-
sis; Inverse Problems and Imaging; Journal of Mathematical Imaging
and Vision.

123

https://doi.org/10.1007/978-3-662-48331-2
https://doi.org/10.1007/978-3-662-48331-2
https://doi.org/10.1109/ICPR.2002.1044854
https://doi.org/10.1109/JPROC.2018.2820126
https://doi.org/10.1109/JPROC.2018.2820126
https://doi.org/10.1007/s004220050323
https://doi.org/10.1007/s004220050323
https://doi.org/10.1137/1.9781611974751
https://doi.org/10.1137/1.9781611974751
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
https://cran.r-project.org/web/packages/viridis/vignettes/intro-to-viridis.html
http://arxiv.org/abs/1110.2227
http://www.jspf.or.jp/Journal/PDF_JSPF/jspf2016_12/jspf2016_12-904.pdf
http://www.jspf.or.jp/Journal/PDF_JSPF/jspf2016_12/jspf2016_12-904.pdf
https://doi.org/10.1190/1.1444292
https://doi.org/10.1190/1.1444292
https://doi.org/10.1016/j.acha.2005.01.005
https://doi.org/10.1016/j.acha.2005.01.005
https://doi.org/10.1117/12.2528923
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/34.868688
https://doi.org/10.1109/MSP.2012.2235192
https://doi.org/10.1109/MSP.2012.2235192
http://jmlr.org/papers/v9/szlam08a.html
http://jmlr.org/papers/v9/szlam08a.html
https://doi.org/10.1117/12.616931
https://doi.org/10.1117/12.616931
https://github.com/JuliaDSP/Wavelets.jl
https://github.com/JuliaDSP/Wavelets.jl
https://doi.org/10.1006/acha.1996.0009
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/ICCV.1998.710815
https://doi.org/10.1109/TSP.2016.2544747
https://doi.org/10.1109/TIP.2006.882005
https://doi.org/10.1109/TIP.2006.882005

Journal of Mathematical Imaging and Vision (2022) 64:261–283 283

Yiqun Shao received a B.S. in
Mathematics from the Chinese
University of Hong Kong in 2013,
and an M.S. in Mathematics from
New York University in 2015. He
completed his PhD in Applied
Mathematics at the University of
California, Davis in 2020. His
PhD research focused on wavelet
analysis and graph signal process-
ing. Dr. Shao is currently a
Research Scientist at Meta Plat-

forms Inc., where he works on building and improving ads recommen-
dation systems.

123

	eGHWT: The Extended Generalized Haar–Walsh Transform
	Abstract
	1 Introduction
	2 Background
	2.1 Basics of Spectral Graph Theory and Notation
	2.2 Recursive Partitioning of Graphs

	3 The Generalized Haar–Walsh Transform (GHWT)
	3.1 Overcomplete Dictionaries of Bases
	3.2 The Best-Basis Algorithm in the GHWT

	4 The Extended GHWT (eGHWT)
	4.1 Fast Adaptive Time–Frequency Tilings
	4.2 Relabeling Region Indices
	4.3 The New Best-Basis (eGHWT) Algorithm
	4.4 The eGHWT Illustrated by a Simple Graph Signal on P6
	4.5 Generalization to 2D Signals/Matrix Data

	5 Applications
	5.1 Efficient Approximation of a Graph Signal
	5.2 Viewing a General Matrix Signal as a Tensor Product of Graphs
	5.2.1 Approximation of the Barbara Image
	5.2.2 The Haar Transform for Images with Non-Dyadic Size

	5.3 Another Way to Construct a Graph from an Image for Efficient Approximation

	6 Discussion
	Acknowledgements
	References

