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Abstract
This paper presents a hybrid approach between scale-space theory and deep learning, where a deep learning architecture is
constructed by coupling parameterized scale-space operations in cascade. By sharing the learnt parameters between multiple
scale channels, and by using the transformation properties of the scale-space primitives under scaling transformations, the
resulting network becomes provably scale covariant. By in addition performing max pooling over the multiple scale channels,
or other permutation-invariant pooling over scales, a resulting network architecture for image classification also becomes
provably scale invariant. We investigate the performance of such networks on the MNIST Large Scale dataset, which contains
rescaled images from the original MNIST dataset over a factor of 4 concerning training data and over a factor of 16 concerning
testing data. It is demonstrated that the resulting approach allows for scale generalization, enabling good performance for
classifying patterns at scales not spanned by the training data.

Keywords Scale covariance · Scale invariance · Scale generalisation · Scale selection · Gaussian derivative · Scale space ·
Deep learning

1 Introduction

Variations in scale constitute a substantial source of variabil-
ity in real-world images, because of objects having different
size in the world and being at different distances to the cam-
era.

A problemwith traditional deep networks, however, is that
they are not covariant with respect to scaling transformations
in the image domain. In deep networks, nonlinearities are
performed relative to the current grid spacing, which implies
that the deep network does not commute with scaling trans-
formations. Because of this lack of ability to handle scaling
variations in the image domain, the performance of deep net-
works may be very poor when subject to testing data at scales
that are not spanned by the training data.

One way of achieving scale covariance in a brute force
manner is by applying the same deep net to multiple rescaled
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copies of the input image. Such an approach is developed
and investigated in [1]. When working with such a scale-
channel network it may, however, be harder to combine
information between the different scale channels, unless the
multi-resolution representations at different levels of resolu-
tion are also resampled to a common reference frame when
information from different scale levels is to be combined.

Another approach to achieve scale covariance is by apply-
ing multiple rescaled nonlinear filters to the same image. For
such an architecture, it will specifically be easier to combine
information from multiple scale levels, since the image data
at all scales have the same resolution.

For the primitive discrete filters in a regular deep network,
it is, however, not obvious how to rescale the primitive com-
ponents, in terms of e.g., local 3 × 3 or 5 × 5 filters or max
pooling over 2× 2 neighbourhoods in a sufficiently accurate
manner over continuous variations of spatial scaling factors.
For this reason, it would be preferable to have a continuous
model of the image filters, which are then combined together
into suitable deep architectures, since the support regions of
the continuous filters could then be rescaled in a continuous
manner. Specifically, if we choose these filters as scale-space
filters, which are designed to handle scaling transformations
in the image domain, we have the potential of constructing
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a rich family of hierarchical networks based on scale-space
operations that are provably scale covariant [2].

The subject of this article is to develop and experimentally
investigate one such hybrid approach between scale-space
theory and deep learning. The idea that we shall follow is
to define the layers in a deep architecture from scale-space
operations, and then use the closed-form transformation
properties of the scale-space primitives under scaling trans-
formations to achieve provable scale covariance and scale
invariance of the resulting continuous deep network. Specifi-
cally, wewill demonstrate that thiswill give the deep network
the ability to generalize to previously unseen scales that are
not spanned by the training data. This generalization ability
implies that training can be performed at some scale(s) and
testing at other scales, within some predefined scale range,
with maintained high performance over substantial scaling
variations.

Technically, we will experimentally explore this idea for
one specific type of architecture, where the layers are param-
eterized linear combinations of Gaussian derivatives up to
order two. With such a parameterization of the filters in the
deep network, we also obtain a compact parameterization of
thedegrees of freedom in thenetwork,with of theorder of 16k
or 38k parameters for the networks used in the experiments
in this paper, which may be advantageous in situations when
only smaller sets of training data are available. The overall
principle for obtaining scale covariance and scale invariance
is, however, much more general and applies to much wider
classes of possible ways of defining layers from scale-space
operations.

1.1 Structure of this Article

This paper is structured as follows: Section 2 begins with an
overview of related work, with emphasis on approaches for
handling scale variations in classical computer vision and
deep networks. Section 3 introduces the technical material
with a conceptual overview description of how the notions of
scale covariance and scale invariance enable scale generaliza-
tion, i.e., the ability to perform testing at scales not spanned
by the training data. Section 4 defines the notion of Gaussian
derivative networks, gives their conceptual motivation and
proves their scale covariance and scale invariance properties.
Section 5 describes the result of applying a single-scale-
channel Gaussian derivative network to the regular MNIST
dataset. Section 6 describes the result of applying multi-
scale-channel Gaussian derivative networks to the MNIST
Large Scale dataset, with emphasis on scale generalization
properties and scale selection properties. Finally, Sect. 7 con-
cludes with a summary and discussion.

1.2 Relations to Previous Contribution

This paper is an extended version of a paper presented at the
SSVM 2021 conference [3] and with substantial additions
concerning:

– a wider overview of related work (Sect. 2),
– a conceptual explanation about the potential advantages
of scale covariance and scale invariance for deep net-
works, specifically with regard to how these notions
enable scale generalization (Sect. 3),

– more detailed mathematical definitions regarding the
foundations of Gaussian derivative networks (Sect. 4.2)
as well as more detailed proofs regarding their scale
covariance (Sect. 4.3) and scale invariance (Sect. 4.4)
properties,

– amore detailed treatment of the scale selection properties
of the resulting scale channel networks (Sect. 6.1) as well
as a discussion about issues to consider when training
multi-scale-channel networks (Sect. 6.2).

In relation to the SSVM 2021 paper, this paper therefore
(1) gives a more general treatment about the importance
of scale generalization, (2) gives a more detailed treatment
about the theory of the presented Gaussian derivative net-
works that could not be included in the conference paper
because of the space limitations, (3) describes scale selec-
tion properties of the resulting scale channel networks and
(4) gives overall better descriptions of the subjects treated in
the paper, including (5) more extensive references to related
literature.

2 Relations to PreviousWork

In classical computer vision, it has been demonstrated that
scale-space theory constitutes a powerful paradigm for con-
structing scale-covariant and scale-invariant feature detectors
and making visual operations robust to scaling transforma-
tions [4–13]. In the area of deep learning, a corresponding
framework for handling general scaling transformations has
so far not been as well established.

Concerning the relationship between deep networks and
scale, several researchers have observed robustness prob-
lems of deep networks under scaling variations [14,15].
There have been some approaches developed to aim at scale-
invariant convolutional neural networks (CNNs) [16–19].
These approaches have, however, not been experimentally
evaluated on the task of generalizing to scales not present in
the training data [17,18], or only over a very narrow scale
range [16,19].
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For studying scale invariance in a more general setting,
we argue that it is essential to experimentally verify the
scale-invariant properties over sufficiently wide scale ranges.
For scaling factors moderately near one, a network could in
principle learn to handle scaling transformations by mere
training, e.g., by data augmentation of the training data. For
wider ranges of scaling factors, that will, however, either not
be possible or at least very inefficient, if the same network,
with a uniform internal architecture, is to represent both a
large number of very fine-scale and a large number of very
coarse-scale image structures. Currently, however, there is a
lack of datasets that both cover sufficiently wide scale ranges
and contain sufficient amounts of data for training deep net-
works. For this reason, we have in a companion work created
the MNIST Large Scale dataset [20,21], which covers scal-
ing factors over a range of 8, and over which we will evaluate
the proposed methodology, compared to previously reported
experimental work that cover a scale range of the order of a
factor of 3 [16,19,22].

Provably scale-covariant or scale-equivariant1 networks
that incorporate the transformation properties of the network
under scaling transformations, or approximations thereof,
have been recently developed in [1–3,22–25]. In principle,
there are two types of approaches to achieve scale covari-
ance by expanding the image data over the scale dimension:
(1) either by applying multiple rescaled filters to each input
image or (2) by rescaling each underlying image over multi-
ple scaling factors and applying the same deep network to all
these rescaled images. In the continuous case, these two dual
approaches are computationally equivalent, whereas they
may differ in practice depending upon how the discretization
is done and depending upon how the computational compo-
nents are integrated into a composed network architecture.

Still, all the components of a scale-covariant or scale-
invariant network, also the training stage and the handling of
boundary effects in the scale direction, need to support true
scale invariance or a sufficiently good approximation thereof,
and need to be experimentally verified on scale generaliza-
tion tasks, in order to support true scale generalization.2

Amain purpose of this article is to demonstrate how prov-
ably scale-covariant and scale-invariant deep networks can
be constructed using straightforward extensions of estab-

1 In the deep learning literature, the terminology “scale equivariance”
has become common for what is called “scale covariance” in scale-
space theory. In this paper, we use the terminology “scale covariance”
to keep consistency with the earlier scale-space literature [12].
2 For example, in a companion work [1], we noticed that for an
alternative slidingwindow approach studied in that work, full scale gen-
eralization is not achieved, because the support regions of the receptive
fields in the training stage do not handle all the sizes of the input in a
uniform manner, thereby negatively affecting the scale generalization
properties, although the overall network architecture would otherwise
support true scale invariance.

lished concepts in classical scale-space theory, and how the
resulting networks enable very good scale generalization.
Extensions of ideas and computational mechanisms in clas-
sical scale-space theory to handling scaling variations in
deep networks for object recognition have also been recently
explored in [26]. Using a set of parallel scale channels, with
shared weights between the scale channels, as used in other
scale-covariant networks as well as in this work, has also
been recently explored for object recognition in [27].

In contrast to some other work, such as [23], the scale-
covariant and scale-invariant properties of our networks are
not restricted to scaling transformations that correspond to
integer scaling factors. Instead, true scale covariance and
scale invariance hold for the scaling factors that correspond
to ratios of the scale values of the associated scale channels
in the network. For values in between, the results will instead
be approximations, whose accuracy will also be determined
by the network architecture and the training method.

In the implementation underlying this work, we sample
the space of scale channels by multiples of

√
2, which has

also been previously demonstrated to be a good choice for
many classical scale-space algorithms, as a trade-off between
computational accuracy, as improvedbydecreasing this ratio,
and computational efficiency, as improved by increasing
this ratio. In complementary companion work for the dual
approach of constructing scale-covariant deep networks by
expansion over rescaled input images for multiple scaling
factors [1], this choice of sampling density has also been
shown to be a good trade-off in the sense that the accuracy
of the network is improved substantially by decreasing the
scale sampling factor from a factor of 2 to

√
2, however, very

marginally by decreasing the scale sampling factor further
again to 4

√
2.

A conceptual simplification that we shall make, for sim-
plicity of implementation and experimentation only, is that
all the filters between the layers in the network operate only
on information within the same scale channel. A natural gen-
eralization to consider would be to also allow the filters to
also access information from neighbouring scale channels,3

as used in several classical scale-space methods [28–32] and
also used within the notion of group convolution in the deep
learning literature [33], whichwould then enable interactions
between image information at different scales. A possible
problem with allowing the filters to extend to neighbouring
scale channels, however, is that the boundary effects in the
scale direction, caused by a limited number of scale chan-
nels, may then become more problematic, which may affect

3 With regard to the Gaussian derivative networks described in this arti-
cle, the transformation between adjacent layers in Equation (7), should
then be expanded with a sum of corresponding contributions from a
set of neighbouring scale channels, in order to allow for interactions
between image information at different scales.
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the scale generalizationproperties. For this reason,we restrict
ourselves towithin-scale-channel processing only, in our first
implementation, although the conceptual formulation would
with straightforward extensions also apply to scale interac-
tions and group convolutions.

Spatial transformer networks have been proposed as a gen-
eral approach for handling image transformations in CNNs
[34,35]. Plain transformation of the feature maps in a CNN
by a spatial transformer will, however, in general, not deliver
a correct transformation and will therefore not support truly
invariant recognition, although spatial transformer networks
that instead operate by transforming the input will allow
for true transformation-invariant properties, at the cost of
more elaborate network architectures with associated possi-
ble training problems [36,37].

Concerning other deep learning approaches that somehow
handle or are related to the notion of scale, deep networks
have been applied to the multiple layers in an image pyra-
mid [38–43], or using other multi-channel approaches where
the input image is rescaled to different resolutions, possibly
combined with interactions or pooling between the layers
[44–46]. Variations or extensions of this approach include
scale-dependent pooling [47], using sets of subnetworks in a
multi-scale fashion [48], dilated convolutions [49–51], scale-
adaptive convolutions [52] or adding additional branches of
down-samplings and/or up-samplings in each layer of the
network [53,54]. The aims of these types of networks have,
however, not been to achieve scale invariance in a strict math-
ematical sense, and they could rather be coarsely seen as
different types of approaches to enable multi-scale process-
ing of the image data in deep networks.

In classical computer vision, receptive field models in
terms of Gaussian derivatives have been demonstrated to
constitute a powerful approach to handle image structures
at multiple scales, where the choice of Gaussian derivatives
as primitives in the first layer of visual processing can be
motivated by mathematical necessity results [55–66].

In deep networks, mathematically defined models of
receptive fields have been used in different ways. Scatter-
ing networks have been proposed based on Morlet wavelets
[67–69]. Gaussian derivative kernels have been used as struc-
tured receptive fields in CNNs [70]. Gabor functions have
been proposed as primitives for modulating learned filters
[71]. Affine Gaussian kernels have been used to compose
free-form filters to adapt the receptive field size and shape to
the image data [72].

As an alternative approach to handle scaling transforma-
tions in deep networks, the image data has been spatially
warped by a log-polar transformation prior to the imagefilter-
ing steps [73,74], implying that the scaling transformation is
mapped to a mere translation in the log-polar domain. Such a
log-polar transformation does, however, violate translational

covariance over the original spatial domain, as otherwise
obeyed by a regular CNN applied to the original input image.

Approaches to handling image transformations in deep
networks have also been developed based on formalism from
group theory [33,75–77]. A general framework for handling
basic types of natural image transformations in terms of spa-
tial scaling transformations, spatial affine transformations,
Galilean transformations and temporal scaling transforma-
tions in the first layer of visual processing based on linear
receptive fields and with relations to biological vision has
been presented in [78], based on generalized axiomatic scale-
space theory [12].

The idea of modelling layers in neural networks as con-
tinuous functions instead of discrete filters has also been
advocated in [79–82]. The idea of reducing the number of
parameters of deep networks by a compact parameterization
of continuous filter shapes has also been recently explored in
[83], where PDE layers are defined as parameterized combi-
nations of diffusion, morphological and transport processes
and are demonstrated to lead to a very compact parameteriza-
tion. Conceptually, there are structural similarities between
such PDE-based networks and the Gaussian derivative net-
works that we study in this work in the sense that: (1) the
Gaussian smoothing underlying theGaussian derivatives cor-
respond to a diffusion process and (2) the ReLU operations
between adjacent layers correspond to a special case of the
morphological operations, whereas the approaches differ in
the sense that (3) the Gaussian derivative networks do not
contain an explicit transport mechanism, while the primitive
kernels in the Gaussian derivative layers instead comprise
explicit spatial oscillations or local ripples. Other types of
continuous models for deep networks in terms of PDE layers
have been studied in [84,85].

Concerning the notion of scale covariance and its relation
to scale generalization, a general sufficiency result was pre-
sented in [2] that guarantees provable scale covariance for
hierarchical networks that are constructed from continuous
layers defined from partial derivatives or differential invari-
ants expressed in terms of scale-normalized derivatives. This
idea was developed in more detail for a hand-crafted quasi-
quadrature network, with the layers representing idealized
models of complex cells, and experimentally applied to the
task of texture classification. It was demonstrated that the
resulting approach allowed for scale generalization on the
KTH-TIPS2 dataset, enabling classification of texture sam-
ples at scales not present in the training data.

Concerning scale generalization for CNNs, [20] presented
a multi-scale-channel approach, where the same discrete
CNN was applied to multiple rescaled copies of each input
image. It was demonstrated that the resulting scale-channel
architectures had much better ability to handle scaling trans-
formations in the input data compared to a regular vanilla
CNN, and also that the resulting approach lead to good scale
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Fig. 1 Illustration of the
importance of having matching
support regions of receptive
fields when handling scaling
transformations in the image
domain. For this figure, we have
simulated the effect of varying
the distance between the object
and the camera by varying the
amount of zoom for a zoom
lens. The left column illustrates
the effect of having a fixed
receptive field size in the image
domain, and how that fixed
receptive field size affects the
backprojected receptive fields in
the world, if there are significant
scale variations. In the right
column, the receptive field sizes
are matched under the scaling
transformation, as enabled by
scale covariant receptive field
families and scale channel
networks, which makes it
possible to define deep networks
that are invariant to scaling
transformations, which in turn
enables scale generalization

Fixed receptive field size Matching receptive field sizes

generalization, for classifying image patterns at scales not
spanned by the training data.

The subject of this article is to complement the latter
works, and specifically combine a specific instance of the
general class of scale-covariant networks in [2] with deep
learning and scale-channel networks [20], where we will
choose the continuous layers as linear combinations of Gaus-
sian derivatives and demonstrate how such an architecture
allows for scale generalization.

3 Scale Generalization Based on Scale
Covariant and Scale Invariant Receptive
Fields

A conceptual problem that we are interested in addressing is
to be able to perform scale generalization, i.e., being able to
train a deep network for image structures at some scale(s),
and then being able to test the network at other scales, with
maintained high recognition accuracy, and without comple-
mentary use of data augmentation.

The motivation for addressing this problem is that scale
variations are very common in real-world image data,

because of objects being of different sizes in the world, and
because of variations in the viewing distance to the camera.
Regular CNNs are, however, known to perform very poorly
when exposed to testing data at scales that are not spanned
by the training data.

Thus, a main goal of this work is to equip deep networks
with prior knowledge to handle scaling transformations in
image data, and specifically the ability to generalize to new
scales that are not spanned by the training data.

Themethodology that wewill follow to achieve such scale
generalization is to require that the image descriptors or the
receptive fields in the deep network are to be truly scale
covariant and scale invariant. The underlying idea is that the
output from the image processing operations in the deep net-
work should thus remain sufficiently similar under scaling
transformations, as will be later formalized into the commu-
tative diagram in Fig. 2. Operationalized, we will require that
the receptive field responses can be matched under scaling
transformations. Specifically,wemay require that the support
regions of the receptive fields can be matched under scaling
transformations.

Figure 1 illustrates these effects for scaling transforma-
tions in an indoor scene, caused by varying the amount of
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zoom for a zoom lens, which leads to similar scaling trans-
formations as when varying the distance between the object
and the camera. In the left column, we havemarked receptive
fields of constant size. Then, because of the scaling transfor-
mations, the backprojections of these receptive fields will be
different in the world because of the scaling transformation,
whichmay cause problems for a deep network, depending on
how it is constructed. In the right column, the support regions
follow the scaling transformations in a matched and scale-
covariant way, making it much easier for a deep network
to recognize the object of interest under scaling transforma-
tions.

3.1 Scale Covariance and Scale Invariance

With the scaling operator4 Ss defined by

(Ss f )(x) = f (S−1
s x) = f ( xs ). (1)

and with Γ denoting a family of feature map operators,
the notion of scale covariance means that the feature maps
should commute with scaling transformations and transform
according to

Γ ′(Ss f ) = Ss(Γ ( f )), (2)

where Γ ′ represents some possibly transformed feature map
operator within the same family Γ , and adapted to the
rescaled image domain. If we parameterize the feature map
operator Γ by a scale parameter s, we can make a commu-
tative diagram as shown in Fig. 2.

Implicit in Fig. 2 is the notion that the deep network
performs processing at multiple scales. The motivation for
such a multi-scale approach is that for a vision system that
observes an a priori unknown scene, there is no way to know
in advance what scale is appropriate for processing the image
data. In the absence of further information about what scales
are appropriate, the only reasonable approach is to consider
image representations at multiple scales. This motivation is
similar to a correspondingmotivation underlying scale-space
theory [12,55–65,86], which has developed a systematic
approach for handling scaling transformations and image
structures at multiple scales for hand-crafted image opera-
tions. Regarding deep networks that are to learn their image

4 From the view-point of group-equivariant CNNs [33] as applied to
constructing scale-covariant or scale-equivariant CNNs based on for-
malism from group theory [22,23,25], this scaling operator can be seen
as corresponding to a representation of the scaling group. In the more
technical presentation that follows later in Sect. 4, the influence of this
scaling group will be in terms of an analysis of the transformation prop-
erties under scaling transformations of the receptive field responses in
the studied class of deep networks.

(Γsf)(x)
s′=Ss, Γs(f)(x)=Γs′ (f ′)(x′)−−−−−−−−−−−−−−−−−−−−→ (Γs′f ′)(x′)

�
⏐
⏐Γs

�
⏐
⏐Γs′

f(x)
x′=Sx, f ′(x′)=f(x)−−−−−−−−−−−−−−→ f ′(x′)

Fig. 2 Commutative diagram for a scale-parameterized feature map
operator Γs that is applied to image data under scaling transformations.
The commutative diagram, which should be read from the lower left
corner to the upper right corner, means that irrespective of whether the
input image is first subject to a scaling transformation and then the
computation of a feature map, or whether the feature map is computed
first and then transformed by a scaling transformation, we should get
the same result. Note, however, that this definition of scale covariance
assumes a multi-scale representation of the image data, and that direct
availability to the image representations at the matching scale levels
s′ = Ss is necessary to complete the commutative diagram

representations from image data, we proceed in a concep-
tually similar manner, by considering deep networks with
multiple scale channels, that perform similar types of pro-
cessing operations in all the scale channels, although over
multiple scales.

Scale invariance does in turn mean that the final output
from the deep network Λ, for example the result of max
pooling or average pooling over the multiple scale channels,
should not in any way be affected by scaling transformations
in the input

Λ(Ss f ) = Λ( f ), (3)

at least over some predefined range of scale that defines the
capacity of the system, where scale covariance of the recep-
tive fields in the lower layers in the network makes scale
invariance possible in the final layer(s).

3.2 Approach to Scale Generalization

By basing the deep network on image operations that are
provably scale covariant and scale invariant, we can train on
some scale(s) and test at other scale(s).

The scale covariant and scale invariant properties of the
image operations will then allow for transfer between image
information at different scales.

In the following, we will develop this approach for
one specific class of deep networks. Conceptually similar
approaches to scale generalization of deep networks are
applied in [2, Figures 15–16] and [20]. Conceptually sim-
ilar approaches to scale invariance and scale generalization
for hand-crafted computer vision operations are applied in
[4–11,13,87].
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3.3 Influence of the Inner and the Outer Scales of
the Image

Before starting with the technical treatment, let us, how-
ever, remark that when designing scale-covariant and scale-
invariant image processing operations, for a given discrete
image there will be only a finite range of scales over which
sufficiently good approximations to continuous scale covari-
ance and scale invariant properties can be expected hold.

For a discrete image of finite resolution, there may at finer
scales be interference with the inner scale of the image, given
by the resolution of the sampling grid. For example, for the
set of gradually zoomed images in Fig. 1, the surface texture
is clearly visible to the observer in themost zoomed-in image,
whereas the same surface structure is far less visible to the
observer in the most zoomed-out image. Correspondingly, if
we would zoom in further to the telephone in the center of
the image, peripheral parts of it may fall outside the image
domain, corresponding to interference with the outer scale of
the image, given by the image size. Sufficiently good numer-
ical approximations to scale covariance and scale invariance
can therefore only be expected to hold over a subrange of the
scale interval for which the relevant scales of the interesting
image structures are sufficiently within the range of scales
defined by the inner and the outer scales of the image.

In the experiments to be presented in this work, we will
handle these issues by a manual choice of the scale range
for scale-space analysis as determined by properties of the
dataset. When designing a computer vision system to ana-
lyze complex scenes with a priori unknown scales in the
image data, there may, however, in addition be useful to add
complementary mechanisms to handle the fact that an object
seen from a far distancemay contain far less fine-scale image
structures than the same object seen from a nearby distance
by the same camera. This implies that the recognition mech-
anisms in the system may need the ability to handle both the
presence and the absence of image information over differ-
ent subranges of scale, which goes beyond the continuous
notions of scale covariance and scale invariance studied in
this work. In a similar way, some mechanism may be needed
to handle problems caused by the full object not being visible
within the image domain or with a sufficient margin around
its boundaries to reduce boundary effects of the spatially
extended scale-space filters. For the purpose of the presenta-
tion in this paper,wewill, however, leave automated handling
of these issues for future work.

4 Gaussian Derivative Networks

In a traditional deep network, the filter weights are usually
free variables with few additional constraints. In scale-
space theory, on the other hand, theoretical results have

been presented showing that Gaussian kernels and their
corresponding Gaussian derivatives constitute a canonical
class of image operations5 [55–65]. In classical computer
vision based on hand-crafted image features, it has been
demonstrated that a large number of visual tasks can be suc-
cessfully addressed by computing image features and image
descriptors based onGaussian derivatives, or approximations
thereof, as the first layer of image features [4,5,8–10,13,28].
One could therefore raise the question if such Gaussian
derivatives could also be used as computational primitives
for constructing deep networks.

4.1 Gaussian Derivative Layers

Motivated by the fact that a large number of visual tasks have
been successfully addressed by first- and second-order Gaus-
sian derivatives,which are the primitivefilters in theGaussian
2-jet6, let us explore the consequences of using linear com-
binations of first- and second-order Gaussian derivatives as
the class of possible filter weight primitives in a deep net-
work.7 Thus, given an image f , which could either be the
input image to the deep net, or some higher layer Fk in the
deep network, we first compute its scale-space representation
by smoothing with the Gaussian kernel

L(x, y; σ) = (g(·, ·; σ) ∗ f (·, ·))(x, y), (4)

where

g(x, y; σ) = 1

2πσ 2 e
−(x2+y2)/2σ 2

. (5)

Then, for simplicity with the notation for the spatial coordi-
nates (x, y) and the scale parameter σ ∈ R+ suppressed, we
consider arbitrary linear combinations of first- and second-
order Gaussian derivatives as the class of possible linear

5 In this paper, we follow the school of scale-space axiomatics based on
causality [57] or non-enhancement of local extrema [65,88], by which
smoothing with the Gaussian kernel is the unique operation for scale-
space smoothing, andGaussian derivatives constitute a unique family of
derived receptive fields [59,60]. For the alternative school of scale-space
axiomatics based on scale invariance [55], a wider class of primitive
smoothing operations is permitted [86,89,90], corresponding to the α

scale spaces.
6 The N -jet of a signal f is the set of partial derivatives of f up to order
N . The Gaussian N -jet of a signal f , is the set of Gaussian derivatives
up to order N , computed by preceding the differentiation operator by
Gaussian smoothing at some scale (or scales).
7 A complementary motivation for using first- and second-order Gaus-
sian derivative operators as the basis for linear receptive fields, is
that this is the lowest order of combining odd and even Gaussian
derivative filters. First- and second-order derivatives naturally belong
together, and serve as providing mutual complementary informa-
tion, that approximate quadrature filter pairs [4,91,92]. In biological
vision, approximations of first- and second-order derivatives also occur
together in the primary visual cortex [93].
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Fig. 3 The 2-D Gaussian kernel with its Cartesian partial derivatives
up to order two for σ = 4
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Fig. 4 First- and second-order directional derivatives of the 2-D Gaus-
sian kernel computed from linear combinations of Cartesian partial
derivatives according to equations (7) and (8) for σ = 4 and ϕ = π/6

filtering operations on f (or correspondingly for Fk):

J2,σ ( f ) = C0 + Cx Lξ + Cy Lη

+1

2
(Cxx Lξξ + 2Cxy Lξη + Cyy Lηη), (6)

where Lξ , Lη, Lξξ , Lξη and Lηη are first- and second-order
scale-normalized derivatives [4] according to Lξ = σ Lx ,
Lη = σ Ly , Lξξ = σ 2 Lxx , Lξη = σ 2 Lxy and Lηη =
σ 2 Lyy (see Fig. 3 for an illustration of Gaussian derivative
kernels) andwehave also added an offset termC0 for later use
in connection with non-linearities between adjacent layers.

Based on the notion that the set of Gaussian derivatives
up to order N is referred to as the Gaussian N -jet, we will
refer to the expression (6), which is to be used as com-
putational primitives for Gaussian derivative layers, as the
linearily combined Gaussian 2-jet.

Since directional derivatives can be computed as linear
combinations of partial derivatives, for first- and second-
order derivatives we have (see Fig. 4 for an illustration)

Lϕ = cosϕ Lx + sin ϕ Ly, (7)

Lϕϕ = cos2 ϕ Lxx + 2 cosϕ sin ϕ Lxy + sin2 ϕ Lyy, (8)

it follows that the parameterized second-order kernels of the
form (6) span all possible linear combinations of first- and
second-order directional derivatives.

The corresponding affine extension of such receptive
fields, by replacing the rotationally symmetric Gaussian ker-
nel (5) for scale-space smoothing by a corresponding affine
Gaussian kernel, does also constitute a good idealized model
for the receptive fields of simple cells in the primary visual
cortex [66,78]. In this treatment, we will, however, for sim-
plicity restrict ourselves to regular Gaussian derivatives,
based on partial derivatives and directional derivatives of
rotationally symmetric Gaussian kernels.

In contrast to previous work in computer vision or func-
tional modelling of biological visual receptive fields, where
Gaussian derivatives are used as a first layer of linear
receptive fields, we will, however, here investigate the conse-
quences of coupling such receptive fields in cascade to form
deep hierarchical image representations.

4.2 Definition of a Gaussian Derivative Network

Tomodel Gaussian derivative networks withmultiple feature
channels in each layer, let us assume that the input image f
consists of N0 image channels, for example with N0 = 1 for
a grey-level image or N0 = 3 for a colour image. Assuming
that each layer in the network k ∈ [1, K ] should consist of
Nk ∈ Z+ parallel feature channels, the feature channel Fcout

1
with feature channel index cout ∈ [1, N1] in the first layer is
given by8

Fcout
1 (x, y; σ1) =

∑

cin∈[1,N0]
J 1,cout,cin2,σ1

( f cin(·, ·))(x, y; σ1),

(9)

where J 1,cout,cin2,σ1
is the linearily combined Gaussian 2-jet

according to (6) at scale9 σ1 that represents the contribution

8 Concerning the notation in this expression, please note that the
notation for the linearily combined Gaussian 2-jet seen in isolation
J 1,cout ,cin2,σ1

( f cin ) should be understood as referring the linearily com-
bined Gaussian 2-jet at a single scale. When we in addition lift the
scale parameter as a parameter argument of the function to the form
J 1,cout ,cin2,σ1

( f cin (·, ·))(x, y; σ1), the resulting expression should instead
then be understood as σ1 being allowed to vary, as a parameter argument
of a function.
9 For the initial theoretical treatment, we can first consider this rep-
resentation as being defined for all scales σ1 ∈ R+. For a practical
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from the image channel with index cin in the input image f
to the feature channel with feature channel index cout in the
first layer and σ1 is the scale parameter in the first layer. The
transformation between adjacent layers k and k + 1 is then
for k ≥ 1 given by

Fcout
k+1(x, y; σk+1)

=
∑

cin∈[1,Nk ]
J k+1,cout,cin
2,σk+1

(θ
cin
k (Fcin

k (·, ·; σk)))(x, y; σk+1),

(10)

where J k+1,cout,cin
2,σk+1

is the linearily combined Gaussian 2-
jet according to (6) that represents the contribution to the
output feature channel Fcout

k+1 with feature channel index
cout ∈ [1, Nk+1] in layer k + 1 from the input feature chan-
nel Fcin

k with feature channel index cin ∈ [1, Nk] in layer k
and θ

cin
k represents some nonlinearity, such as a ReLU stage.

The parameter σk+1 is the scale parameter for computing
layer k + 1 and the parameter σk is the scale parameter for
computing layer k.

Of course, the parametersC0,Cx ,Cy ,Cxx ,Cxy andCyy in
the linearily combinedGaussian 2-jet according to (6) should
be allowed to be learnt differently for each layer k ∈ [1, K ]
and for each combination of input channel cin and output
channel cout. Written out with explicit index notation for the
layers and the input and output feature channels for these
parameters, the explicit expression for J k,cout,cin2,σk

in (9) and
(10) is given by

J k,cout,cin2,σk
(hcin)

= Ck,cout,cin
0 + Ck,cout,cin

x σk Lx + Ck,cout,cin
y σk L y

+ 1

2
(Ck,cout,cin

xx σ 2
k Lxx + 2Ck,cout,cin

xy σ 2
k Lxy

+ Ck,cout,cin
yy σ 2

k L yy), (11)

with Lx , Ly , Lxx , Lxy and Lyy here denoting the partial
derivatives of the scale-space representation obtained by con-
volving the argument hcin with a Gaussian kernel (5) with
standard deviation σk according to (4)

Lxα yβ = ∂xα yβ

(
g(·, ·; σk) ∗ hcin(·, ·)) , (12)

and with hcin representing the image or feature channel with
index cin in either the input image f or some higher feature
layer Fk−1.

When coupling several combined smoothing and dif-
ferentiation stages in cascade in this way, with pointwise

implementation, however, the values of σ1 as well as for the higher
scale levels σk will be restricted to a discrete grid, as defined from
Equations (13) and (14).

nonlinearities in between, it is natural to let the scale param-
eter for layer k be proportional to an initial scale level σ0,
such that the scale parameter σk in layer k is σk = βk σ0 for
some set of βk ≥ βk−1 ≥ 1 and some minimum scale level
σ0 > 0. Specifically, it is natural to choose the relative factors
for the scale parameters according to a geometric distribution

σk = rk−1 σ0 (13)

for some r ≥ 1. By gradually increasing the size of the recep-
tive fields in this way, the transition from lower to higher
layers in the hierarchy will correspond to gradual transitions
from local to regional information. For continuous network
models, this mechanism thus provides a way to gradually
increase the receptive field size in deeper layers without
explicit need for a discrete subsampling operation that would
imply larger steps in the receptive fields size of deeper layers.

By additionally varying the parameter σ0 in the above
relationship, either continuously with σ0 ∈ R or according
to some self-similar distribution

σ0 = γ i (14)

for some set of integers i ∈ Z and some γ > 1, the Gaussian
derivative network defined from (9) and (10) will consti-
tute a multi-scale representation that will also be provably
scale covariant, as will be formally shown below in Sect. 4.3.
Specifically, the network obtained for each value of σ0, with
the derived values of σ1 in (9) as well as of σk and σk+1 in
(10), will be referred to as a scale channel. Letting the initial
scale levels be given by a self-similar distribution in this way
reflects the desire that in the absence of further information
the deep network should be agnostic with regard to preferred
scales in the input.

A similar idea of using Gaussian derivatives as struc-
tured receptive fields in convolutional networks has also been
explored in [70], although not in the relation to scale covari-
ance,multiple scale channels or using a self-similar sampling
of the scale levels at consecutive depths.

4.3 Provable Scale Covariance

To prove that a deep network constructed by coupling linear
filtering operations of the form (6) with pointwise nonlin-
earities in between is scale covariant, let us consider two
images f and f ′ that are related by a scaling transformation
f ′(x ′, y′) = f (x, y) for x ′ = S x , y′ = S y and some spatial
scaling factor S > 0.

A basic scale covariance property of the Gaussian scale-
space representation is that if the scale parameters σ and σ ′
in the two image domains are related according to σ ′ = S σ ,
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then the Gaussian scale-space representations are equal at
matching image points and scales [4, Eq. (16)]

L ′(x ′, y′; σ ′) = L(x, y; σ). (15)

Additionally regarding spatial derivatives, it follows from
a general result in [4, Eq. (20)] that the scale-normalized
spatial derivatives will also be equal (when using scale nor-
malization power γ = 1 in the scale-normalized derivative
concept):

L ′
ξαηβ (x ′, y′; σ ′) = Lξαηβ (x, y; σ). (16)

Applied to the linearily combined Gaussian 2-jet in (6), it
follows that also the linearily combinedGaussian 2-jets com-
puted from twomutually rescaled scalar image patterns f and
f ′ will be related by a similar scaling transformation

J2,σ ′( f ′(·, ·))(x ′, y′; σ ′) = J2,σ ( f (·, ·))(x, y; σ) (17)

provided that the image positions (x, y) and (x ′, y′) and the
scale parameters σ and σ ′ are appropriately matched, and
that the parameters C0, Cx , Cy , Cxx , Cxy and Cyy in (6) are
shared between the two 2-jets at the different scales.

Thus, provided that the image positions and the scale
levels are appropriately matched according to x ′ = S x ,
y′ = S y and σ ′ = S σ , it holds that the corresponding
feature channels Fcout

1 and F ′cout
1 in the first layer according

to (9) are equal up to a scaling transformation:

F ′cout
1 (x ′, y′; σ ′

1)

=
∑

cin∈[1,N0]
J 1,cout,cin2,σ ′

1
( f ′cin(·, ·))(x ′, y′; σ ′

1)

=
∑

cin∈[1,N0]
J 1,cout,cin2,σ1

( f cin(·, ·))(x, y; σ1)

= Fcout
1 (x, y; σ1), (18)

provided that the parameters C1,cout,cin
0 , C1,cout,cin

x , C1,cout,cin
y ,

C1,cout,cin
xx , C1,cout,cin

xy and C1,cout,cin
yy in the 2-jets according to

(11) for k = 1 are shared between the scale channels for
corresponding combinations of feature channels, as indexed
by cin and cout.

By continuing a corresponding construction of higher lay-
ers, by applying similar operations in cascade,with pointwise
non-linearities such as ReLU stages in between, according
to (10) with the initial scale levels σ0 and σ ′

0 in (13) related
according to σ ′

0 = S σ0, it follows that also the corresponding
feature channels F ′cout

k+1 and Fcout
k+1 in the higher layers in the

hierarchy will be equal up to a scaling transformation, since
the input data from the adjacent finer layers F ′cin

k and Fcin
k are

Fk

F ′
k
(x′,y′; σ′)=Fk(x,y; σ)−−−−−−−−−−−−−−−−−−→ F ′

k

J2,σk

�
⏐
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�
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Fig. 5 Commutative diagram for a scale-covariant Gaussian deriva-
tive network constructed by coupling linear combinations of scale-
normalized Gaussian derivatives in cascade, with nonlinear ReLU
stages in between. Because of the transformation properties of the
individual layers under scaling transformations, it will be possible to
perfectly match the corresponding layers Fk and F ′

k under a scaling
transformation of the underlying image domain f ′(x ′) = f (x) for
x ′ = Sx and y′ = Sy, provided that the scale parameter σk in layer k is
proportional to the scale parameter σ1 in the first layer, σk = r2k σ1, for
some scalar constant rk > 1. For such a network, the scale parameters
in the two domains should be related according to σ ′

k = Sσk . Note,
however, that for a scale-discretized implementation, this commutative
property holds exactly over a continuous image domain only if the scale
levels σ and σ ′ are part of the scale grid, thus specifically only for dis-
crete scaling factors S that can be exactly represented on the discrete
scale grid. For other scaling factors, the results will instead be numeri-
cal approximations, with the accuracy of the approximation determined
by the combination of the network architecture with the learning algo-
rithm. (In this schematic illustration, we have for simplicity suppressed
the notation for multiple feature channels in the different layers, and
also suppressed the notation for the pointwise non-linearities between
adjacent layers)

already known to be related by plain scaling transformation
(see Fig. 5 for an illustration):

F ′cout
k+1(x

′, y′; σ ′
k+1)

=
∑

cin∈[1,Nk ]
J k+1,cout,cin
2,σ ′

k+1
(θ

cin
k (F ′cin

k (·, ·; σ ′
k)))(x

′, y′; σ ′
k+1)

=
∑

cin∈[1,Nk ]
J k+1,cout,cin
2,σk+1

(θ
cin
k (Fcin

k (·, ·; σk)))(x, y; σk+1)

= Fcout
k+1(x, y; σk+1), (19)

again assuming that the parameters Ck,cout,cin
0 , Ck,cout,cin

x ,

Ck,cout,cin
y , Ck,cout,cin

xx , Ck,cout,cin
xy and Ck,cout,cin

yy in the 2-jets
according to (11) are shared between the scale channels for
corresponding layers and combinations of feature channels,
as indexed by cin and cout.
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A pointwise nonlinearity, such as a ReLU stage, trivially
commutes with scaling transformations and does therefore
not affect the scale covariance properties.

In a recursive manner, we thereby prove that scale covari-
ance in the lower layers imply scale covariance in any higher
layer.

4.4 Provable Scale Invariance

To prove scale invariance after max pooling over the scale
channels, let us assume that we have an infinite set of scale
channels S, with the initial scale values σ0 in (14) either
continuously distributed with

S = {σ ∈ R+} (20)

or discrete in the set

S = {σi = γ i ,∀i ∈ Z}. (21)

for some γ > 1.
The max pooling operation over the scale channels for

feature channel c in layer k will then at every image position
(x, y) and with the scale parameter in this layer σk and the
relative scale factor r according to (13) return the value

Fc
k,sup(x, y) = sup

σk

Fc
k (x, y; σk) = sup

σ0∈S
Fc
k (x, y; rk−1σ0).

(22)

Let us without essential loss of generality assume that the
scaling transformation is performed around the image point
(x, y), implying that we can without essential loss of gener-
ality assume that the origin is located at this point. The set of
feature values before the scaling transformation is then given
by

M = {Fc
k (0, 0; rk−1σ0)∀σ0} (23)

and the set of feature values after the scaling transformation

M ′ = {F ′c
k(0, 0; rk−1σ ′

0)∀σ ′
0}. (24)

With the relationship σ ′
0 = S σ0, these sets are clearly equal

provided that S > 0 in the continuous case or S = γ j for
some j ∈ Z in the discrete case, implying that the supremum
of the set is preserved (or the result of any other permutation
invariant pooling operation, such as the average). Because of
the closedness property under scaling transformations, the
scaling transformation just shifts the set of feature values
over scales along the scale axis.

In this way, the result after max pooling over the scale
channels is essentially scale invariant, in the sense that the

result of themaxpooling operation at any imagepoint follows
thegeometric transformationof the imagepoint under scaling
transformations.

When using a finite number of scale channels, the result of
max pooling over the scale channels is, however, not guaran-
teed to be truly scale invariant, since there could be boundary
effects, implying that the maximum over scales moves in to
or out from afinite scale interval, because of the scaling trans-
formation that shifts the position of the scale maxima on the
scale axis.

To reduce the likelihood of such effects occurring, we
propose as design criterion to ensure that there should be
a sufficient number of additional scale channels below and
above the effective training scales10 in the training data. The
intention behind this is that the learning algorithm could then
learn that the image structures that occur below and above
the effective training scales are less relevant, and thereby
associate lower values of the feature maps to such image
structures. In this way, the risk should be reduced that erro-
neous types of image structures are being picked up by the
max pooling operation over the multiple scale channels, by
the scale channels near the scale boundaries thereby having
lower magnitude values in their feature maps than the central
ones.

A similar scale boundary handling strategy is used in the
scale channel networks based on applying a fixed CNN to a
set of rescalings of the original image in [20], as opposed to
the approach here based on applying a set of rescaled CNNs
to a fixed size input image.

5 Experiments with a Single-Scale-Channel
Network

To investigate the ability of these types of deep hierarchi-
cal Gaussian derivative networks to capture image structures
with different image shapes, we first did initial experiments
with the regular MNIST dataset [94]. We constructed a 6-
layer network in PyTorch [95] with 12-14-16-20-64 channels
in the intermediate layers and 10 output channels, intended
to learn each type of digit, see Fig. 6 for an illustration.

10 To formally define the notion of “effective training scale”, we can
consider the set of scale values of the scale channels that lead to the
maximum value over scales for a max pooling network (or the range of
scales that contain the dominant mass over scales for an average pooling
network), formed as the union of all the samples in the training data
of a specific size, and with some additional cutoff function to select
the majority of the responses, specifically with some suppression of
spurious outliers. Since these resulting scale levels could be expected
to vary between different training samples of roughly the same size,
the notion of “effective training scales” should be a scale interval rather
than a single scale, and may vary depending upon the properties of the
training data.
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image

max

Fig. 6 (left) Schematic illustration of the architecture of the single-
scale-channel network, with 6 layers of receptive fields at successively
coarser levels of scale. (right) Schematic illustration of the architecture
of a multi-scale-channel network, with multiple parallel scale channels
over a self-similar distribution of the initial scale levelσ0 in the hierarchy
of Gaussian derivative layers coupled in cascade

We chose the initial scale level σ0 = 0.9 pixels and the
relative scale ratio r = 1.25 in (13), implying that the max-
imum value of σ is 0.9 × 1.255 ≈ 2.7 pixels relative to
the image size of 28 × 28 pixels. The individual receptive
fields do then have larger spatial extent because of the spatial
extent of the Gaussian kernels used for image smoothing and
the larger positive and negative side lobes of the first- and
second-order derivatives.

We used regular ReLU stages between the filtering steps,
but no spatial max pooling or spatial stride, and no fully con-
nected layer, since such operations would destroy the scale
covariance. Instead, the receptive fields are solely determined
from linear combinations of Gaussian derivatives, with suc-
cessively larger receptive fields of size σ0 rk−1, which enable
a gradual integration from local to regional image struc-
tures. In the final layer, only the value at the central pixel
is extracted, or here for an even image size, the average over
the central 2 × 2 neighbourhood, which, however, destroys
full scale covariance. To ensure full scale covariance, the
input images should instead have odd image size.

The network was trained on 50 000 of the training images
in the dataset, with the offset termCk,cout,cin

0 that serves as the

bias for the nonlinearity and theweightsCk,cout,cin
x ,Ck,cout,cin

y ,

Ck,cout,cin
xx ,Ck,cout,cin

xy andCk,cout,cin
yy of theGaussian derivatives

in (11) initiated to random values and trained individually
for each layer and feature channel by stochastic gradient
descent over 40 epochs using the Adam optimizer [96] set
to minimize the binary cross-entropy loss. We used a cosine
learning curve with maximum learning rate of 0.01 and min-
imum learning rate 0.00005 and using batch normalization
over batches with 50 images. The experiment lead to 99.93%
training accuracy and 99.43% test accuracy on the test dataset
containing 10 000 images.

Notably, the training accuracy does not reach 100.00%,
probably because of the restricted shapes of the filterweights,

as determined by the a priori shapes of the receptive fields in
terms of linear combinations of first- and second-order Gaus-
sian derivatives. Nevertheless, the test accuracy is quite good
given the moderate number of parameters in the network
(6×(12+12×14+14×16+16×20+20×64+64×10) =
15 864).

5.1 Discrete Implementation

In the numerical implementation of scale-space smoothing,
we used separable smoothing with the discrete analogue of
the Gaussian kernel T (n; s) = e−s In(s) for s = σ 2 in
terms of modified Bessel functions In of integer order [97].11

The discrete derivative approximations were computed by
central differences, δx = (−1/2, 0, 1/2), δxx = (1,−2, 1),
δxy = δxδy , etc., implying that the spatial smoothing opera-
tion can be shared between derivatives of different order, and
implying that scale-space properties are preserved in the dis-
crete implementation of the Gaussian derivatives [98]. This
is a generalmethodology for computingGaussian derivatives
for a large number of visual tasks.

By computing the Gaussian derivative responses in this
way, the scale-space smoothing is only performed once for
each scale level, and there is no need for repeating the scale-
space smoothing for each order of the Gaussian derivatives.

6 Experiments with aMulti-scale-Channel
Network

To investigate the ability of a multi-scale-channel network to
handle spatial scaling transformations, wemade experiments
on the MNIST Large Scale dataset [20,21]. This dataset con-
tains rescaled digits from the original MNIST dataset [94]
embedded in images of size 112 × 112, see Fig. 7 for an
illustration.

For training, we used either of the datasets containing
50 000 rescaled digits with relative scale factors 1, 2 or 4,
respectively, henceforth referred to as training sizes 1, 2 and
4. For testing, the dataset contains 10 000 rescaled digits with
relative scale factors between 1/2 and 8, respectively, with a
relative scale ratio of 4

√
2 between adjacent testing sizes.

To investigate the properties of a multi-scale-channel
architecture experimentally,we created amulti-scale-channel
network with 8 scale channels with their initial scale values
σ0 between 1/

√
2 and 8 and a scale ratio of

√
2 between

11 This way of implementing Gaussian convolution on discrete spatial
domain corresponds to the solution of a purely spatial discretization
of the diffusion equation ∂s L = 1

2∇2L that describes the effect of
Gaussian convolution (4), with the continuous Laplacian operator ∇2

replaced by the five-point operator∇2
5 defined by (∇2

5 L)(x, y) = L(x+
1, y) + L(x − 1, y) + L(x, y + 1) + L(x, y − 1) − 4L(x, y) [97].
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Fig. 7 Sample images from the
MNIST Large Scale dataset
[20,21]. This figure shows digits
for sizes in the range [1, 4], for
which there are training data. In
addition, the MNIST Large
Scale dataset contains testing
data over the wider size range
[1/2, 8]

adjacent scale channels. For each scale channel, we used
a Gaussian derivative network of similar architecture as the
single-scale-channel network,with 12-14-16-20-64 channels
in the intermediate layers and 10 output channels, and with
a relative scale ratio r = 1.25 (13) between adjacent layers,
implying that the maximum value of σ in each channel is
σ0 × 1.255 ≈ 3.1 σ0 pixels.

Importantly, the parameters Ck,cout,cin
0 , Ck,cout,cin

x ,

Ck,cout,cin
y , Ck,cout,cin

xx , Ck,cout,cin
xy and Ck,cout,cin

yy in (11) are
shared between the scale channels, implying that the scale
channels together are truly scale covariant, because of the
parameterization of the receptive fields in terms of scale-
normalized Gaussian derivatives. The batch normalization
stage is also shared between the scale channels. The out-
put from max pooling over the scale channels is furthermore
truly scale invariant, if we assume an infinite number of scale
channels, so that scale boundary effects can be disregarded.

Figure 8 shows the result of an experiment to investigate
the ability of such a multi-scale-channel network to general-
ize to testing at scales not present in the training data.

For the experiment shown in the top figure, we have used
50 000 training images for training size 1, and 10 000 testing
images for each one of the 19 testing sizes between 1/2 and
8 with a relative size ratio of 4

√
2 between adjacent testing

sizes. The red curve shows the generalization performance
for a single-scale-channel network with σ0 = 1, whereas
the blue curve shows the generalization performance for the
multi-scale-channel network with 8 scale channels between
1/

√
2 and 8.

As can be seen from the graphs, the generalization per-
formance is very good for the multi-scale-channel network,
for sizes in roughly in the range 1/

√
2 and 4

√
2. For smaller

testing sizes near 1/2, there are discretization problems due
to sampling artefacts and too fine scale levels relative to the
grid spacing in the image, implying that the transformation
properties under scaling transformations of the underlying
Gaussian derivatives are not well approximated in the dis-

crete implementation. For larger testing sizes near 8, there are
problems due to boundary effects and that the entire digit is
not visible in the testing stage, implying a mismatch between
the training data and the testing data. Otherwise, the general-
ization performance is very good over the size range between
1 and 4.

For the single-scale-channel network, the generalization
performance to scales far from the scales in the training data
is on the other hand very poor.

In the middle figure, we show the result of a similar exper-
iment for training images of size 2 and with the initial scale
level σ0 = 2 for the single-scale-channel network. The bot-
tomfigure shows the result of a similar experiment performed
with training images of size 4 and with the initial scale level
σ0 = 4 for the single-scale-channel network.

Figure 9 shows a joint visualization of the generalization
performance for all these experiments, where we have also
zoomed in on the top performance values in the range 98–
99%. In addition to the results from the default network with
12-16-24-32-64-10 feature channels, we do also show results
obtained from a larger network with 16-24-32-48-64-10 fea-
ture channels, which has more degrees of freedom in the
training stage (a total number of 6 × (16 + 16 × 24 + 24 ×
32 + 32 × 48 + 48 × 64 + 64 × 10) = 38 496 parame-
ters) and leads to higher top performance and also somewhat
better generalization performance. As can be seen from the
graphs, the performance values for training sizes 1, 2 and 4,
respectively, are quite similar for testing data with sizes in the
range between 1 and 4, a size range for which the discretiza-
tion errors in the discrete implementation can be expected
to be low (a problem at too fine scales) and the influence
of boundary effects causing a mismatch between what parts
of the digits are visible in the testing data compared to the
training data (a problem at too coarse scales).

To conclude, the experiment demonstrates that it is pos-
sible to use the combination of (1) scale-space features as
computational primitives for a deep learning method with
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Fig. 8 Experiments showing the
ability of a multi-scale-channel
network to generalize to new
scale levels not present in the
training data. In the top row, all
training data are for size 1,
whereas we evaluate on multiple
testing sets for each one of the
sizes between 1/2 and 8. The red
curve shows the generalization
performance for a
single-scale-channel network
for σ0 = 1, whereas the blue
curve shows the result for a
multi-scale-channel network
covering the range of σ0-values
between 1/

√
2 and 8. As can be

seen from the result, the
generalization ability is much
better for the
multi-scale-channel network
compared to the
single-scale-channel network. In
the middle row, a similar type of
experiment is repeated for
training size 2 and with σ0 = 2
for the single-scale-channel
network. In the bottom row, a
similar experiment is performed
for training size 4 and with
σ0 = 4 for the
single-scale-channel network.
(Horizontal axis: Scale of
testing data)

Scale generalization performance when training on size 1

Scale generalization performance when training on size 2

Scale generalization performance when training on size 4
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Fig. 9 Joint visualization of the
generalization performance
when training a
multi-scale-channel Gaussian
derivative network on training
data with sizes 1, 2 and 4,
respectively. As can be seen
from the graphs, the
performance is rather similar for
all these networks over the size
range between 1 and 4, a range
for which the discretization
errors in the discrete
implementation can be expected
to be low (a problem at too fine
scales) and the influence of
boundary effects causing a
mismatch between what parts of
the digits are visible in the
testing data compared to a
training data (a problem at too
coarse scales). The top figure
shows the results for the default
network with
12-16-24-32-64-10 feature
channels. The bottom figure
shows the results for a larger
network with
16-24-32-48-64-10 feature
channels. (Horizontal axis:
Scale of testing data)

Scale generalization performance when training on different sizes: Default network

Scale generalization performance when training on different sizes: Larger network

(2) the closed-form transformation properties of the scale-
space primitives under scaling transformations to (3) make a
deep network generalize to new scale levels not spanned by
the training data.

6.1 Scale Selection Properties

Since the Gaussian derivative network is expressed in terms
of scale-normalized derivatives over multiple scales, and
the max-pooling operation over the scale channels implies
detecting maxima over scale, the resulting approach shares
similarities to classical methods for scale selection based
on local extrema over scales of scale-normalized derivatives
[4,5,99]. The approach is also closely related to the scale
selection approach in [100,101] based on choosing the scales
at which a supervised classifier delivers class labels with the
highest posterior.

A limitation of choosing only a single maximum over
scales compared to processing multiple local extrema over
scales as in [4,5,99], however, is that the approach may be
sensitive to boundary effects at the scale boundaries, imply-
ing that the scale generalization properties may be affected
depending on how many coarser-scale and/or finer-scale
channels are being processed relative to the scale of the image
data.

In Fig. 10, we have visualized the scale selection prop-
erties when applying these multi-scale-channel Gaussian
derivative networks to the MNIST Large Scale dataset. For
each one of the training sizes 1, 2 and 4, we showwhat scales
are selected as function of the testing size. Specifically, for
each testing size, shown on the horizontal axis, we display a
histogram of the scale channels at which the maximum over
scales is assumed over all the samples in the testing set, with
the finest scale at the bottom and the coarsest scale at the top.
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Fig. 10 Visualization of the
scale channels that are selected
in the max pooling stage, when
training the larger network for
each one of the sizes 1, 2 and 4.
For each testing size, shown on
the horizontal axis, the vertical
axis displays a histogram of the
scale levels at which the
maximum over the scale
channels is assumed for the
different samples in the testing
set, with the lowest scale at the
bottom and the highest scale at
the top. As can be seen from the
figure, there is a general
tendency of the composed
classification scheme to select
coarser scale levels with
increasing size of the image
structures, in agreement with the
conceptual similarity to classical
methods for scale selection
based on detecting local extrema
over scales of scale-normalized
derivatives, the difference being
that here only the global
maximum over scale is used, as
opposed to the detection of
multiple local extrema over
scale in classical scale selection
methods

Selected scale levels: Larger network trained at size 1

Selected scale levels: Larger network trained at size 2

Selected scale levels: Larger network trained at size 4

As can be seen from the figure, the network has an overall
tendency of selecting coarser scale levels with increasing
size of the image structures it is applied to. Specifically, the
overall tendency is that the selected scale is proportional to
the size of the testing data, in agreement with the theory for
scale selection based on local extrema over scales of scale-
normalized derivatives.

Except for minor quantization variations due to the dis-
crete bins, these scale selection histograms are very similar
for the different training sizes 1, 2 and 4. In combination
with the previously presented experiments, the results in this
paper thus demonstrate that it is possible to use scale-space
operations as computational primitives in deep networks, and
to use the transformation properties of such computational
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primitives under scaling transformations to perform scale
generalization.

6.2 Properties of Multi-scale-Channel Network
Training

While the scale generalization graphs in Fig. 9 and the scale
selection histograms in Fig. 10 are very similar for the dif-
ferent training scales 1, 2 or 4, we can note that the results
are, however, not fully identical.

This can partly be explained from the fact that the train-
ing error does not approach zero (the training accuracy for
the larger multi-scale channel networks trained at a single
scale reaches the order of 99.6–99.7%), implying that the net
effects of the training error on the properties of the network
may be somewhat different when training the network on
different datasets, here for different training sizes.

Additionally, even if the training error would have
approached zero, different types of scale boundary effects
and image boundary effects could occur for the different
networks, depending on what single size training data the
multi-scale channel network is trained on, implying that the
learning algorithm could lead to sets of filter weights in the
networks with somewhat different properties, because of a
lack of full scale covariance in the training stage, although
the architecture of the network is otherwise fully scale covari-
ant in the continuous case.

The training process is initiated randomly, and during the
gradient descent optimization, the network has to learn to
associate large values of the feature map for the appropriate
class for each training sample in some scale channel, while
also having to learn to not associate large values for erro-
neous classes for any other training samples in any other
scale channel.

Training of a multi-scale-channel network could therefore
be considered as a harder training problem than the training
of a single-scale-channel network. Experimentally, we have
also observed that the training error is significantly larger
for a multi-scale-channel network than for a single-scale-
channel network, and that the training procedure had not
converged fully after the 20 epochs that we used for training
the multi-scale-channel networks.

A possible extension of this work, is therefore to perform
a deeper study regarding the task of training multi-scale-
channel networks, and investigate if this training task calls
for other training strategies than used here, specifically con-
sidering that the computational primitives in the layers of
the Gaussian derivative networks are also different from the
computational primitives in regular CNNs, while we have
here used a training strategy suitable for regular CNNs.

Notwithstanding these possibilities for improvements in
the training scheme, the experiments in the paper demon-
strate that it is possible to use scale-space operations as

computational primitives in deep networks, and to use the
transformation properties of such computational primitives
under scaling transformations to perform scale generaliza-
tion, which is the main objective of this study.

7 Summary and Discussion

We have presented a hybrid approach between scale-space
theory and deep learning, where the layers in a hierarchical
network architecture are modelled as continuous functions
instead of discrete filters, and are specifically chosen as scale-
space operations, here in terms of linear combinations of
scale-normalized Gaussian derivatives. Experimentally, we
have demonstrated that the resulting approach allows for
scale generalization and enables good performance for clas-
sifying image patterns at scales not spanned by the training
data.

The work is intended as a proof-of-concept of the idea
of using scale-space features as computational primitives
in a deep learning method, and of using their closed-form
transformation properties under scaling transformations to
perform extrapolation or generalization to new scales not
present in the training data.

Concerning the choice of Gaussian derivatives as com-
putational primitives in the method, it should, however, be
emphasized that the necessity results that specify the unique-
ness of these kernels only state that the first layer of receptive
fields should be constructed in terms of Gaussian deriva-
tives. Concerning higher layers, further studies should be
performed concerning the possibilities of using other scale-
space features in the higher layers, that may represent the
variability of natural image structuresmore efficiently,within
the generality of the sufficiency result for scale-covariant
continuous hierarchical networks in [2].
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