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Abstract
Up to an orientation-preserving symmetry, photographic images are produced by a central projection of a restricted area in
the space into the image plane. To obtain reliable information about physical objects and the environment through the process
of recording is the basic problem of photogrammetry. We present a reconstruction process based on distances from the center
of projection and incidence relations among the points to be projected. For any triplet of collinear points in the space, we
construct a surface of revolution containing the center of the projection. It is a generalized conic that can be represented as
an algebraic surface. The rotational symmetry allows us to restrict the investigations to the defining polynomial of the profile
curve in the image plane. An equivalent condition for the boundedness is given in terms of the input parameters, and it is
shown that the defining polynomial of the profile curve is irreducible.
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1 Introduction

In the paper, we give a method for the reconstruction of the
center of a projection. The process is based on distances and
incidence relations in the following sense. The distance part
means that we know the distance between the point to be
projected and the center of the projection. The incidence part
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means that we know (at least) three collinear points to be
projected. Combining this information, we can construct a
surface of revolution containing the center of the projection.
It is a generalized conic in the sense of [5,10,15,16], because
all of its points have a zero weighted distance sum from the
elements of the (collinear) triplet of the projected images.
Using iterative squares, such a generalized conic can also
be represented as an algebraic surface. The rotational sym-
metry allows us to restrict the investigations to the defining
polynomial of the profile curve in the image plane.

In this paper, a necessary and sufficient condition for the
boundedness is given in terms of the input parameters, and it
is shown that the defining polynomial of the profile curve
is always irreducible in C[x, y]. Much of the calculation
is computer-assisted, but rather surprisingly, after introduc-
ing a number of cases, the obstruction to reducibility always
presents itself in the form of a simple contradiction.We refine
the process by using more than three collinear points to sub-
stitute the generalized conics with spheres. Finally, the center
of the projection can be given as the intersection of three
spheres with non-collinear centers lying on the image plane.

Reconstructing the center of a projection is a fundamen-
tal concept in photogrammetry. Various methods of space
resection are studied intensively based on different assump-
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tions in the formulation of the problem [1,4,6–8]. The paper
[6] provides a thorough review, by dividing these methods
into three major categories: approximate solutions (includ-
ing direct linear transformation, the Church method, and 3D
conformal transformation), rigorous solutions based on fun-
damental conditions (such as using coplanarity conditions
to determine the relative position of more cameras), and
solutions based on projective geometry (for example using
vanishing points for camera orientation and calibration). Our
approach belongs to the second category, rigorous solutions
based on fundamental conditions, where certain incidence
relations are made use of to determine the parameters of one
ormore cameras. For instance, collinearitymethods are based
on the collinearity of the object, the center and the image of
the object. In contrast,wederive equations for the coordinates
of the center based on collinear objects in the space. There
is a similar difference between coplanarity-based techniques
in [6] and coplanarity conditions in Sect. 3.3.

We show that six collinear points in the space allow us to
construct a sphere (instead of the more complicated gener-
alized conics) containing the center of the projection. Such
a sphere is centered at the image plane and the process ends
by finding three spheres with non-collinear centers. Up to
the symmetry about the image plane, their intersection deter-
mines the center of the projection. As soon as the center
is found, we can reconstruct the coordinates of the original
points in the space from the image coordinates.

This information can also be used for the follow-up editing
of photographic images including, for example, the imitation
of effects in the spatial area (fog, smoke, smog, brightness).
Since the physical models use the coordinates of the original
positions, we need a process to reconstruct the points in the
space from the image coordinates. The results of the paper
are partially motivated by a project with the involvement of
both authors, where the goal is to simulate the effect of smog
on real-life photographs. The case of homogeneous smog is
well understood [9,12–14]. In some databases, the pictures
are equipped with a distance matrix, and that information
is enough to simulate homogeneous fog [9]. However, for
the inhomogeneous variant of the problem, these data are
insufficient: one needs the original coordinates of each point
projected on the photograph to create a realistic foggy image.

2 Reconstruction of the Center of a
Projection: A Distance-and-Incidence
Process

2.1 Notation and Terminology

Disregarding distortions and aberrations of optical sys-
tems [2,11,17], photographic images are produced by a
central projection

Fig. 1 In our model, photographs are produced by central projections

π : M ⊂ R
3 → F ⊂ R

2

of a restricted area in the space into the image plane R
2,

identified with the set {(x, y, z) ∈ R
3 | z = 0} if nec-

essary. In practice, we have that F := [0, a] × [0, b] is an
image rectangle constituted by a relatively dense grid of pix-
els. Throughout the paper, this simplified case of the central
projection without any aberrations of the optical systemswill
be used (a.k.a. the pinhole mode).

Let C(xC , yC , zC ) be the center of the projection, zC > 0
and suppose that M ⊂ π−1(F) ⊂ R

3 satisfying the follow-
ing properties:

– the center of the projection separates the point P and its
projected image for all P ∈ M (which we indicate by
π(P) − C − P), and

– the distance rCP = |C − P| is given for any P ∈ M .

In what follows, we use the coordinate system illustrated
by Fig. 1. Since the following computations are independent
of the vertical ordering, we omit the half-turn about the axis
t of the camera. Identifying the points in the space with the
position vectors with respect to the origin, the reconstruction
formula of a point P ∈ M is

P = C + rCP
C − Q

|C − Q| , (1)

where Q = π(P). Its analytic form is

P(x, y, z) = (xC , yC , zC )

+ rCP√
(xC − xQ)2 + (yC − yQ)2 + z2C

(xC − xQ, yC − yQ, zC ).

(2)

In order to apply formula (2), we obviously need the coor-
dinates of the center of the projection in terms of the (pixel)
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Fig. 2 The images of collinear points under a central projection

coordinates of the points inπ(M) ⊂ F and the distances rCP

(P ∈ M).
To solve the reconstruction problem, we use the incidence

relations among the points in the space. In practical applica-
tions, these relations can be detected by the help of images
of special objects (facade, roadway, curb-stone, lamp-post,
etc.).

2.2 Collinear Triples

Out of many possible incidence relations, we mainly focus
on collinearity. Throughout this section, we adhere to the
following convention.

Convention 1 Let P1, P2 and P3 be three points projected
to a photograph through center C with pairwise different,
collinear images Q1, Q2 and Q3, respectively. Assume that
the order of this collinear triple is Q1 − Q3 − Q2, and that
Q3 = (1 − λ)Q1 + λQ2 with some 0 < λ < 1. We put
ri = rCPi for i = 1, 2, 3. Furthermore, let

u = λ

1 − λ
, and a = 1 − λ

r1
, b = λ

r2
, c = 1

r3
.

Note that these ri are positive, and r1 = r2 = r3 is not
possible, as three collinear points cannot lie on a sphere. Also
note that u, a, b, c > 0.

Collinearity is preserved by central projections: thus, if
P1, P2 and P3 are collinear as in Fig. 2, then so are Q1, Q2

and Q3, cf. Convention 1. The following result gives a nec-
essary and sufficient condition for the reverse implication.

Proposition 1 Under Convention 1, the points P1, P2 and P3
are collinear if and only if

a|C − Q1| + b|C − Q2| − c|C − Q3| = 0. (3)

Proof Using formula (1),

(P2 − P1) × (P3 − P1)

= r2r3
(C − Q2) × (C − Q3)

|C − Q2| · |C − Q3|
−r1r2

(C − Q2) × (C − Q1)

|C − Q2| · |C − Q1|
−r1r3

(C − Q1) × (C − Q3)

|C − Q1| · |C − Q3| .

Since Q1, Q2 and Q3 are collinear, the vector products are
parallel vectors. Its analytic expression is based on the affine
combination C − Q3 = (1 − λ)(C − Q1) + λ(C − Q2).
Hence, (P2 − P1) × (P3 − P1) is a scalar multiple of (C −
Q2) × (C − Q1), where the scalar is

(1 − λ)r2r3
|C − Q2| · |C − Q3| − r1r2

|C − Q2| · |C − Q1|
+ λr1r3

|C − Q1| · |C − Q3|
= (a|C − Q1| + b|C − Q2| − c|C − Q3|) r1r2r3

|C − Q1| · |C − Q2| · |C − Q3| .

��

Equation (3) provides a condition for the unknown center
C in termsof thefixedquantitiesa, b, c and the coordinates of
Q1, Q2 and Q3. It means the vanishing of a certain weighted
distance sum of the point C from Q1, Q2 and Q3, respec-
tively. It is a generalized conic [5]; see also [10,15,16]. Since
the focal points are collinear, Eq. (3) is invariant under the
rotation about the common line of Q1, Q2 and Q3. There-
fore, it is a surface of revolution. This equation is of central
importance for the rest of the paper.

2.3 A Sufficient and Necessary Condition for the
Boundedness

We provide a simple equivalent condition for the bound-
edness of the generalized conic surface (3) in terms of the
parameters in Convention 1.

Proposition 2 Under Convention 1, the generalized conic
surface (3) is unbounded if and only if c = a + b.

Proof Suppose that there is an unbounded sequence Cn of
points on the surface (3). Since Cn �= Q3 for all but finitely
many indices, we can write Eq. (3) into the form

c = a
|Cn − Q1|
|Cn − Q3| + b

|Cn − Q2|
|Cn − Q3| (4)
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By using the triangle inequality, we obtain the upper esti-
mates

|Cn − Q1|
|Cn − Q3| ≤ |Cn − Q3| + |Q3 − Q1|

|Cn − Q3| = 1 + |Q3 − Q1|
|Cn − Q3| ,

|Cn − Q1|
|Cn − Q3| ≥ |Cn − Q1|

|Cn − Q1| + |Q1 − Q3| = 1

1 + |Q1−Q3||Cn−Q1|
.

Therefore, we have limn→∞ |Cn−Q1||Cn−Q3| = 1, and similarly

limn→∞ |Cn−Q2||Cn−Q3| = 1. Hence, the condition c = a + b is
necessary.

For the reverse implication, let us restrict the investigations
to the plane of the profile curve. If c = a + b, then Eq. (3)
can be written into the form

a

(
|C − Q1|− |C − Q3|

)
= b

(
|C − Q3|− |C − Q2|

)
. (5)

In other words, there is a K ∈ R such that

|C − Q1| − |C − Q3| = K

a
, and (6)

|C − Q3| − |C − Q2| = K

b
. (7)

The solutions of this system of equations are therefore the
intersection points of one branch from each of two hyper-
bolae parameterized by K . If K → 0, then the branches
tend to the perpendicular bisectors of the segments Q1Q3

and Q3Q2, respectively. These bisectors are distinct parallel
lines since Q3 lies between Q1 and Q2. Hence, it is enough to
show that somebranches of these hyperbolae intersect for any
K �= 0, as the set of common points of the branches cannot
be contained in any bounded region of the plane. Therefore,
the generalized conic cannot be bounded as was to be proved.
Assuming that K > 0,

– the real axes of the branches (6) and (7) coincide (the
common line of the collinear points Q1, Q2 and Q3);
recall that the ordering is Q1 − Q3 − Q2.

– The points of the branch (6) are closer to Q3 than to Q1.
– The points of the branch (7) are closer to Q2 than to Q3.

In classical notation, the parameters of the hyperbolae
depending on K are

a1 = K

2a
, c1 = |Q1 − Q3|

2
, b1 =

√
c21 − a21

and

a2 = K

2b
, c2 = |Q2 − Q3|

2
, b2 =

√
c22 − a22 .

Fig. 3 Illustration to the proof of Proposition 2

Here, a1 and a2 are the semimajor axes, c1 and c2 are the
linear eccentricities, and b1 and b2 are the semiminor axes
of the hyperbolae. The slopes of the asymptotic lines are
m1 = ± b1

a1
and m2 = ± b2

a2
, respectively. We show that

these two slopes cannot be equal. According to the symmetry
about the (common) real axis, it is enough to concentrate on
the case of positive slopes. If m1 = m2, then

b1
a1

= b2
a2

yields

a2 |Q1−Q3|2
K 2 = b2 |Q2−Q3|2

K 2 . By using the notation introduced

in Convention 1, we have |Q1 − Q3|2 = λ2|Q2 − Q1|2 and
|Q2 − Q3|2 = (1 − λ)2|Q2 − Q1|2; thus, we obtain

(1 − λ)2

r21

λ2|Q2 − Q1|2
K 2 = λ2

r22

(1 − λ)2|Q2 − Q1|2
K 2 ,

and consequently, r1 = r2. Then by c = a + b we obtain the
contradiction r1 = r2 = r3, cf. Convention 1.

Hence, the slopes of the asymptotic linesmust be different.
Ifm1 < m2, then we have the intersection of the branches

(6) and (7); see the branch with default linestyle in Fig. 3.
If m2 < m1, then we are looking for the intersection of the
branches corresponding to K < 0; see the branch with dash
linestyle in Fig. 3. ��

Example 1 In Fig. 4, an unbounded solution set of Eq. (3)
with z = 0 is illustrated. The input data are

Q1 = (1, 2, 0), r1 = 14, Q2 = (1, 3, 0), r2 = 21, λ = 3

10
,

Q3 = (1 − λ)Q1 + λQ2 = (1,
3

10
, 0), r3 = 1

1−λ
r1

+ λ
r2

= 140

9
.

2.4 Irreducibility of the Defining Polynomial in the
Image Plane

Squaring iteratively, we can extend (3) to an algebraic surface
consisting of the zeros of a polynomial of degree four:
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Fig. 4 An unbounded profile curve in Example 1

a|C − Q1| + b|C − Q2| − c|C − Q3| = 0

a|C − Q1| + b|C − Q2| = c|C − Q3|
c2|C − Q3|2 − a2|C − Q1|2 − b2|C − Q2|2

= 2ab|C − Q1| · |C − Q2|

leading to the algebraic condition

(
c2|C − Q3|2 − a2|C − Q1|2 − b2|C − Q2|2

)2

− 4a2b2|C − Q1|2 · |C − Q2|2 = 0.
(8)

Example 2 In case of the input data

Q1(1, 2, 0), Q2(3, 5, 0), Q3 = (1 − λ3)Q1 + λ3Q2,

λ3 = 989

√
2

60
√
23 + 989

√
2
, r1 = 100,

r2 = 215, r3 = 10

207

√
9279189 + 543950

√
23

√
2

and

Q1(1, 2, 0), Q2(3, 5, 0), Q4 = (1 − λ4)Q1 + λ4Q2,

λ4 = 989

√
2

240
√
23 + 989

√
2
, r1 = 100,

r2 = 215, r4 = 5

207

√
16420689 + 2175800

√
23

√
2,

the profile curves of the revolution surfaces are illustrated in
Fig. 5.

Fig. 5 Bounded profile curves

The input data in Example 2 have been obtained by
maple-assisted computations (see Online Resource 1): set-
ting the center of the projection to C(5, 4, 7), we

– compute P1 and P2,
– taking

P3 = 1

3
P1 + 2

3
P2

compute its projected pair Q3,
– compute λ3 and r3,
– define the surface (3) for the plot command.

We investigate the profile curve of the surface given by
(8) in the image plane, i.e., z = 0. The main result in this
subsection is motivated by Bézout’s classical theorem [3]:
by showing that the defining polynomial of the profile curve
is always irreducible, we obtain that two such curves can
intersect in at most 16 points.

Theorem 1 Under Convention 1, the polynomial obtained
from the left-hand side of Eq. (8) by the substitution z = 0 is
irreducible over C.

By applying an invertible affine transformation, if neces-
sary, we may assume that the coordinates of the given points
are Q1(−u, 0), Q2(1, 0), Q3(0, 0); cf. Convention 1. Indeed,
such a transformation preserves the irreducibility of polyno-
mials.
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The profile curve of the algebraic surface (8) is then
defined by f (x, y) = 0, where f (x, y) is the quartic poly-
nomial

d4(x
2 + y2)2 + d3x(x

2 + y2) + d2,x x
2

+d2,y y
2 + d1x + d0

such that the coefficients are

[(x2 + y2)2] : d4
= a4 − 2a2b2 + b4 − 2a2c2 − 2b2c2 + c4,

[x(x2 + y2)] : d3
= 4(ua4 + (1 − u)a2b2 − ua2c2 − b4 + b2c2),

[x2] : d2,x
= 2(3u2a4 + (−u2 + 4u − 1)a2b2

− u2a2c2 + 3b4 − b2c2),

[y2] : d2,y
= 2(u2a4 − (u2 + 1)a2b2 − u2a2c2 + b4 − b2c2),

[x] : d1 = 4(u3a4 + (u2 − u)a2b2 − b4),

[1] : d0 = u4a4 − 2u2a2b2 + b4.

Aswe shall see, it is more convenient to switch the expres-
sion d2,x in the above list to

d2,x − d2,y = 4(u2a4 + 2ua2b2 + b4) = 4(ua2 + b2)2

in some cases. This leads to the observation

d2,x − d2,y �= 0,

which is frequently used in the following arguments. Under
the comparison process, the system of equations generated
by the original list of the coefficients is equivalent to the
system of equations generated by themodified list containing
d2,x − d2,y instead of d2,x . Finally, we note that

d1 = 4(u2a2 − b2)(ua2 + b2), d0 = (u2a2 − b2)2

and

4d21 − 16(d2,x − d2,y)d0 = 0.

In particular, d1 = 0 if and only if d0 = 0, i.e., b = ua.

Lemma 1 The polynomial

f (x, y)

= d4(x
2 + y2)2 + d3x(x

2 + y2)

+ d2,x x
2 + d2,y y

2 + d1x + d0

has degree four or three in the variables x and y.

Proof The leading coefficient d4 can be factorized:

a4 + b4 + c4 − 2a2b2 − 2b2c2 − 2c2a2

= −(a + b + c)(a + b − c)(a − b + c)(−a + b + c).

As a, b and c are positive, c = −a− b is impossible. Hence,
the degree of the polynomial f (x, y) is less than four if and
only if c = a+b, c = a−b or c = b−a. Since every power
of c is even in the coefficients of f (x, y), we obtain the same
expressions by substituting c = a − b and c = b− a. In this
case, the cubic coefficient d3 simplifies to 8ab(a−b)(ua+b),
which cannot be zero as c �= 0. On the other hand, if f (x, y)
is not quartic and c = a + b, then the coefficients of f (x, y)
can be written as

[x(x2 + y2)] : d3 = 8ab(−ua + b)(a + b),

[x2] : d2,x
= 4(ua − b)(ua3 + (1 − u)a2b + (1 − u)ab2 − b3),

[y2] : d2,y
= −4ab(u2a + b)(a + b),

[x] : d1
= 4(u2a2 − b2)(ua2 + b2),

[1] : d0
= (u2a2 − b2)2.

Hence, the cubic coefficient d3 vanishes if and only if b = ua.
However, by the definition of u this yields r1 = r2, and then
by c = a + b we obtain r1 = r2 = r3, a contradiction (cf.
Convention 1). ��

We break the analysis down to six cases based on the next
two lemmas.

Lemma 2 Assume that d4 �= 0 and f (x, y) is reducible in
C[x, y]. By applying the invertible linear substitution x �→
x, y �→ −y if necessary, the polynomial f can be written as
a product of not necessarily irreducible complex polynomials
in at least one of the following four ways:

1. f (x, y) = d4(x2 + 2i xy − y2 + Ax + i Ay + C)·
(x2 − 2i xy − y2 + Ax − i Ay + C), or

2. f (x, y) = d4(x2 + y2 + Ax + C)(x2 + y2 + Dx + F),
or

3. f (x, y) = d4(x2 + y2 + Ax + By + C)·
(x2 + y2 + Ax − By + C), or

4. f (x, y) = d4(x3 − i x2y + xy2 − iy3 + Ax2+
i(C − A)xy + Cy2 + Dx + i(AC − C2 − D)y+
C(C2 − AC + D))(x + iy + C),

where A, B, C, D, F ∈ C.
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Proof By our assumption, the polynomial

1

d4
f (x, y)

= (x2 + y2)2 + d3
d4

x(x2 + y2) + d2,x
d4

x2

+d2,y
d4

y2 + d1
d4

x + d0
d4

is reducible. The sum of all degree four terms in the variables
x and y is (x2 + y2)2, which is obtained as the product of
the highest degree monomials in the factors. In the first case
suppose that both factors are quadratic. Up to multiplication
by nonzero constants, there are two ways to write (x2 + y2)2

as a product of quadratic polynomials, namely (x + iy)2 ·
(x − iy)2 and (x2 + y2) · (x2 + y2). If the degree two parts
of the factors are (x + iy)2 and (x − iy)2, then

1

d4
f (x, y) = (x2 + 2i xy − y2 + Ax + By + C)(x2

−2i xy − y2 + Dx + Ey + F).

By [y3] = 0, we have E = −B, and [x2y] = 0 (together
with E = −B) yields D = A. Comparing the coefficients
of x3 and xy2, it follows that B = i A. Finally, as [xy] =
2i(F − C) = 0 we have C = F and item (1). If the degree
two parts of the factors are both (x2 + y2), then

1

d4
f (x, y) = (x2 + y2 + Ax + By + C)(x2

+y2 + Dx + Ey + F).

Since [x2y] = 0, we have E = −B. Therefore, [xy] = 0
and [y] = 0 yield B(D − A) = 0 and B(F − C) = 0.
Finally, item (2) and item (3) follow immediately depending
on B = 0 or B �= 0.

In the second case suppose that there is a cubic and a linear
factor. Since we are allowed to apply the linear substitution
x �→ x , y �→ −y, there are no essentially different ways to
write the degree four part as a product of a cubic and a linear
expressions, except (x2+y2)2 = ((x−iy)2(x+iy))·(x+iy).
Therefore,

1

d4
f (x, y) = (x3 − i x2y + xy2 − iy3

+Ax2 + Bxy + Cy2 + Dx + Ey + F) ·
(x + iy + G).

Since [y3] = 0, we have C = G. Hence, [x2y] = 0 yields
B = i(C − A). The equation [xy] = 0 implies that E =
i(AC − C2 − D) and, by [y] = 0, we have F = i EC =
C(C2 − AC + D) as was to be proved in item (4). ��

Lemma 3 Assume that d4 = 0, d3 �= 0, and f (x, y) is
reducible inC[x, y]. By applying the invertible linear substi-
tution x �→ x, y �→ −y if necessary, the polynomial f can be
written as a product of not necessarily irreducible complex
polynomials in at least one of the following two ways:

(5) f (x, y) = d3(x2 + y2 + Ax + C)(x + D), or
(6) f (x, y) = d3(x2 + i xy + Ax + By + B(B − i A))

(x − iy + (A + i B)),

where A, B, C, D ∈ C.

Proof By our assumption, the polynomial

1

d3
f (x, y)

= x(x2 + y2) + d2,x
d3

x2 + d2,y
d3

y2 + d1
d3

x + d0
d3

is reducible. The sum of all degree three terms in x and y is
x(x2 + y2), which is obtained as the product of the highest
degree monomials in the factors. Since one of the factors is
quadratic, the other is linear, and we are allowed to apply the
linear substitution x �→ x , y �→ −y, there are essentially
two ways to write the degree three part as such a product,
namely (x2 + y2) · x and (x(x + iy)) · (x − iy). In the first
case

1

d3
f (x, y) = (x2 + y2 + Ax + By + C)(x + D)

and equation [xy] = 0 yields B = 0. In the second case

1

d3
f (x, y) = (x2 + i xy + Ax + By + C)(x − iy + D)

and equation [xy] = 0 yields D = A+i B. Finally, we obtain
that C = B(B − i A) because of [y] = 0. ��

We are ready to prove that the defining polynomial
is always irreducible. The complete calculation run by
sagemath is provided in Online Resource 2.

Proof of Theorem 1. According toLemma1,we need to show
that if the degree of f (x, y) is four or three, then f (x, y) is
irreducible in C[x, y]. The proof follows the cases (1)–(6)
based on Lemmas 2 and 3.

(1) By comparison of coefficients,

d3/d4 = 2A, d2,x/d4 = A2 + 2C, d2,y/d4 = A2 − 2C,

d1/d4 = 2AC, d0/d4 = C2.
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Therefore, 2(d2,x+d2,y)d0−d21 = 0.Asagemath-assisted
computation shows that

2(d2,x + d2,y)d0 − d21
= −8(u2a2 − b2)2((u2a2 + b2)c2 + (u + 1)2a2b2).

Its vanishing is equivalent to b = ua, i.e., d0 = 0, C = 0
and d2,x = d2,y . This is a contradiction because of

d2,x − d2,y = 4(u2a4 + 2ua2b2 + b4) = 4(ua2 + b2)2 > 0.

(2) By comparison of coefficients,

d3/d4 = A + D, d2,x/d4 = AD + C + F,

d2,y/d4 = C + F, d1/d4 = CD + AF,

d0/d4 = CF .

In particular,

A + D = d3/d4 and AD = d2,x − d2,y
d4

.

Therefore, A and D are the solutions of the quadratic equation

z2 − d3
d4

z + d2,x − d2,y
d4

= 0,

i.e.,

A, D =
d3 ±

√
d23 − 4(d2,x − d2,y)d4

2d4
.

Similarly,C and F are the solutions of the quadratic equation

z2 − d2,y
d4

z + d0
d4

= 0,

i.e.,

C, F =
d2,y ±

√
d22,y − 4d0d4

2d4
.

We obtain that

2d24 (CD + AF) − d3d2,y

= ±
√
d23 − 4(d2,x − d2,y)d4

√
d22,y − 4d0d4.

Putting CD + AF = d1/d4 and taking the square of both
sides, we have that the expression

d21d4 − d1d3d2,y + (d2,x − d2,y)d
2
2,y

+d0d
2
3 − 4d0(d2,x − d2,y)d4

vanishes. Using a sagemath-assisted computation, we get
that this expression is

64(u4 + 2u3 + u2)a4b4c4 > 0,

which is a contradiction.

(3) By comparison of coefficients,

d3/d4 = 2A, d2,x/d4 = A2 + 2C

d2,y/d4 = −B2 + 2C, d1/d4 = 2AC, d0/d4 = C2.

Clearly, d21d4−d23d0 = 0.Using asagemath-assisted com-
putation,

d21d4 − d23d0 = 64a2b2c2(u2a2 − b2)2(uc2

−((u2 + u)a2 + (u + 1)b2)).

Therefore, b = ua, or c2 = (u + 1)
(
a2 + 1

u b
2
)
. We show

that the condition c2 = (u + 1)
(
a2 + 1

u b
2
)
also implies the

equation b = ua. First of all observe that

(4d2,xd4 − d23 )
2 − 64d0d

3
4 = 0.

The left-hand side is a polynomial expression containing
the even powers of c. By applying the above condition
c2 = (u + 1)

(
a2 + 1

u b
2
)
, a sagemath-assisted compu-

tation shows that

(4d2,xd4 − d23 )
2 − 64d0d

3
4

= 256a2b2(u + 1)

(
a2 + 1

u
b2

)
(u2a2 − b2)4 ·

((
1 + 1

u

)
a2 +

(
1

u3
+ 1

u4

)
b2

)

and its vanishing implies that b = ua. To complete the argu-
ment, observe that d0 = (u2a2 − b2)2 = 0, i.e., C = 0 and
d23 − 4d2,xd4 = 0. If b = ua, then

d23 − 4d2,xd4 = 16u2a2c2(c2 − (u + 1)2a2)2

and, consequently, c = (u + 1)a = a + b. In particular,
d4 = 0, which is a contradiction.

(4) By comparison of coefficients,

d3/d4 = A + C, d2,x/d4 = AC + D,

d2,y/d4 = −AC + 2C2 + D, d1/d4

= −AC2 + C3 + 2CD,

d0/d4 = −AC3 + C4 + C2D.
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Using the identity (2AC−2C2)C2+2(AC2−C3−2CD)C+
4(−AC3 + C4 + C2D) = 0, we have that C is a root of the
quadratic polynomial (d2,x − d2,y)z2 − 2d1z + 4d0; recall
that d2,x − d2,y �= 0.

According to the vanishing discriminant 4d21 − 16(d2,x −
d2,y)d0 = 0,

C = d1
d2,x − d2,y

.

Using that A = d3
d4

−C and 2C(A−C) = d2,x−d2,y
d4

, we have

4C2 − 2d3
d4

C + d2,x − d2,y
d4

= 0,

that is, 4d4C2 − 2d3C + (d2,x − d2,y) = 0. Putting C =
d1

d2,x−d2,y
yields

4d4d
2
1 − 2d3d1(d2,x − d2,y) + (d2,x − d2,y)

3 = 0.

Computing the left-hand side expression with sagemath,
we obtain a quadratic polynomial in c2 such that the coeffi-
cients are real polynomials in u, a, b. Since c2 ∈ R is a real
root, the discriminant must be a non-negative real number.
In a more detailed form, the discriminant is

−65536(u3 + 2u2 + u)a4b4(b2 − u2a2)2(ua2 + b2)4

as asagemath-assisted computation shows.Therefore,b =
ua, d0 = d1 = 0 and C2(−AC + C2 + D) = C(−AC +
C2 + 2D) = 0. If C �= 0 then −AC + C2 + D = −AC +
C2+2D = 0, i.e., D = 0 and A = C . Another consequence
is that

d2,x
d4

= d2,y
d4

= A2,

and d2,x − d2,y = 0, which is a contradiction. The same
argument is working in case of C = 0.

(5) By comparison of coefficients,

d2,x/d3 = A + D, d2,y/d3 = D,

d1/d3 = AD + C, d0/d3 = CD.

The identityCD = ((AD+C)−D((A+D)−D))D yields

d0
d3

=
(
d1
d3

− d2,y
d3

d2,x − d2,y
d3

)
d2,y
d3

.

Hence, (d1d3−d2,y(d2,x −d2,y))d2,y −d0d23 = 0. However,

(d1d3 − d2,y(d2,x − d2,y))d2,y − d0d
2
3

= −64(u4 + 2u3 + u2)a4b4c4 < 0

as a sagemath-assisted computation shows.

(6) By comparison of coefficients,

d2,x/d3 = 2A + i B, d2,y/d3 = −i B, d1/d3 = A2 + B2

d0/d3 = −i A2B + 2AB2 + i B3

We can express the variables A and B from the first and the
second equations:

A = d2,x + d2,x
2d3

, B = id2,y
d3

.

By substituting them into the third and the fourth equations,
we obtain that

g := d22,x + 2d2,xd2,y − 3d22,y − 4d1d3 = 0,

h := 4d0d
2
3 − (d2,x + d2,y)

2d2,y + 4(d2,x

+d2,y)d
2
2,y − 4d32,y = 0.

Using sagemath,

h − 4ab(u2a2 + (u2 + 1)ab + b2)g

= 256u2(u + 1)2a4b4(a + b)4 if c = a + b, and

h + 4ab(u2a2 − (u2 + 1)ab + b2)g =
256u2(u + 1)2a4b4(a − b)4 if c = a − b or c = b − a

The contradiction is obvious in the case that c = a + b.
Finally, if c = a − b or c = b − a, then a − b = 0 and,
consequently, c = 0, which is a contradiction. ��

The case c = a − b is illustrated by the following input
data:

Q1(−1/9, 0, 0), Q2(1, 0, 0), Q3(0, 0, 0),

r1 = 1/60, r2 = 1/40, r3 = 1/50,

i.e., λ = 1/10 and a = 54, b = 4, c = 50, u = 1/9. Figure 6
shows both the zeros of the polynomial f (x, y) (left) and
the profile curve of the generalized conic in the image plane
(right).

3 Reconstruction of the Center fromMore
than Three Collinear Points

3.1 Collinear Quadruples

Consider a collinear quadruple of the points P1, P2, P3 and
P4 in the space together with the collinear quadruple of the
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Fig. 6 The case c = a − b

points Q1, Q2, Q3 and Q4 on the image plane. Introducing
the notation

ri := rCPi (i = 1, 2, 3, 4)

for the distance parameters, let us investigate the system of
equations

1 − λ3

r1
|C − Q1| + λ3

r2
|C − Q2| − 1

r3
|C − Q3| = 0,

1 − λ4

r1
|C − Q1| + λ4

r2
|C − Q2| − 1

r4
|C − Q4| = 0,

(9)

where

Q3 = (1 − λ3)Q1 + λ3Q2, Q4 = (1 − λ4)Q1 + λ4Q2.

By increasing the number of the input data points, we are
going to substitute the generalized conics with simpler rev-
olution surfaces containing the center of the projection. We
have

1 − λ3

r1
|C − Q1| + λ3

r2
|C − Q2| = 1

r3
|C − Q3|,

1 − λ4

r1
|C − Q1| + λ4

r2
|C − Q2| = 1

r4
|C − Q4|.

(10)

Taking the square of both sides, we find

2|C − Q1| · |C − Q2| = r1r2
λ3(1 − λ3)

·
(

1

r23
|C − Q3|2 − (1 − λ3)

2

r21
|C − Q1|2 − λ23

r22
|C − Q2|2

)
,

2|C − Q1| · |C − Q2| = r1r2
λ4(1 − λ4)

·
(

1

r24
|C − Q4|2 − (1 − λ4)

2

r21
|C − Q1|2 − λ24

r22
|C − Q2|2

)

and, consequently,

r1r2
λ3(1 − λ3)

·
(

1

r23
|C − Q3|2 − (1 − λ3)

2

r21
|C − Q1|2 − λ23

r22
|C − Q2|2

)

= r1r2
λ4(1 − λ4)

·
(

1

r24
|C − Q4|2 − (1 − λ4)

2

r21
|C − Q1|2 − λ24

r22
|C − Q2|2

)
.

(11)

Equation (11) defines an algebraic revolution surface in the
space containing the center of the projection and it is of
degree at most two.

Theorem 2 The profile curve of the revolution surface given
by equation

1

λ3(1 − λ3)
·

(
1

r23
|C − Q3|2 − (1 − λ3)

2

r21
|C − Q1|2 − λ23

r22
|C − Q2|2

)

= 1

λ4(1 − λ4)
·

(
1

r24
|C − Q4|2 − (1 − λ4)

2

r21
|C − Q1|2 − λ24

r22
|C − Q2|2

)

(12)

for Q3 �= Q4 is either a circle such that the center lies on
the common line of Q1, Q2, Q3 and Q4 or the profile curve
reduces to a line perpendicular to the common line of the
points Q1, Q2, Q3 and Q4.
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Proof First of all, we show that the profile curve is non-
trivial. Using a similarity transformation if necessary, we can
suppose that Q1(0, 0), Q2(1, 0), Q3(λ3, 0) and Q(λ4, 0).
Taking C(x, y), Eq. (12) yields

1

λ3(1 − λ3)

(
1

r23
((x − λ3)

2 + y2)−

(1 − λ3)
2

r21
(x2 + y2) − λ23

r22
((x − 1)2 + y2)

)

= 1

λ4(1 − λ4)

(
1

r24
((x − λ4)

2 + y2)−

(1 − λ4)
2

r21
(x2 + y2) − λ24

r22
((x − 1)2 + y2)

)
.

We collect the coefficients of (x2 + y2), x and the con-
stant term on both sides of the equation. These coefficients
coincide if and only if

1

λ3(1 − λ3)

1

r23
− 1 − λ3

λ3

1

r21
− λ3

1 − λ3

1

r22

= 1

λ4(1 − λ4)

1

r24
− 1 − λ4

λ4

1

r21
− λ4

1 − λ4

1

r22
, (13)

1

1 − λ3

1

r23
− λ3

1 − λ3

1

r22

= 1

1 − λ4

1

r24
− λ4

1 − λ4

1

r22
, and (14)

λ3

1 − λ3

1

r23
− λ3

1 − λ3

1

r22

= λ4

1 − λ4

1

r24
− λ4

1 − λ4

1

r22
. (15)

Subtracting Eqs. (14) and (15) yields

1 − λ3

1 − λ3

1

r23
= 1 − λ4

1 − λ4

1

r24
,

and it follows that r3 = r4. Therefore, Eq. (14) implies that
r2 = r3 = r4 or λ3 = λ4, i.e., Q3 = Q4. Since both cases
are impossible due to the collinearity of P2, P3 and P4, we
have that the profile curve is an algebraic curve of degree one
or two. More precisely, if Eq. (13) holds then it is a line of
the form

Bx + D = 0.

Otherwise, it is a circle of the form

A(x2 + y2) + Bx + D = 0

as was to be proved. ��

Remark 1 n the sense of Theorem2, the set of commonpoints
of the profile curves of the conics

1 − λ3

r1
|C − Q1| + λ3

r2
|C − Q2| − 1

r3
|C − Q3| = 0

and

1 − λ4

r1
|C − Q1| + λ4

r2
|C − Q2| − 1

r4
|C − Q4| = 0

must be on the same line or a circle. Substituting the rational
parameterization x(t), y(t) and z(t) = 0 of the intersection
points into the algebraic expression (8) of one of the conics,
we have only finitelymany solutions according toTheorem1.

3.2 Finding Generic Collinear Quadruples

In what follows, we prove a theorem to provide the circle as
the locus of the solutions of system (9) in the image plane.
This means that the center of the projection is on a sphere
centered at the common line of the points Q1, Q2, Q3 and
Q4.

Theorem 3 If the points P1, P2, P3, P4, P5, P6 are collinear
then we can find a quadruple (Q1, Q2, Qi , Q j ) among the
image points such that the profile curve of the revolution
surface

1

λi (1 − λi )
·

(
1

r2i
|C − Qi |2 − (1 − λi )

2

r21
|C − Q1|2 − λ2i

r22
|C − Q2|2

)

= 1

λ j (1 − λ j )
·

(
1

r2j
|C − Q j |2 − (1 − λ j )

2

r21
|C − Q1|2 − λ2j

r22
|C − Q2|2

)

(16)

is a circle, where i, j = 3, 4, 5, 6 and i �= j .

Proof To prove the theorem, consider the left-hand side of
(13) as a function ofλ3 in the first step. Since r3 also depends
on λ3, we have to clarify the correspondence r3(λ3) before
investigating the extended expression. Without loss of gen-
erality, suppose that

Q1 − Q3 − Q2, Q1(0, 0), Q2(1, 0) and Q3(λ3, 0).

Under the notation

α = � Q1Q3C, ci = |C − Qi | (i = 1, 2, 3),
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let us apply the cosine rule to the triangles Q1Q3C and
Q2Q3C , respectively. It follows that

c23 + λ23 − 2λ3c3 cosα = c21

and

c23 + (1 − λ3)
2 + 2(1 − λ3)c3 cosα = c22.

Therefore,

(1 − λ3)
(
c23 + λ23 − 2λ3c3 cosα

)
= (1 − λ3)c

2
1

and

λ3

(
c23 + (1 − λ3)

2 + 2(1 − λ3)c3 cosα
)

= λ3c
2
2.

Taking the sum of the equations, one finds

c23 = (1 − λ3)c
2
1 + λ3c

2
2 − λ3(1 − λ3)

and, by Eq. (3),

1

r23
= 1

(1 − λ3)c21 + λ3c22 − λ3(1 − λ3)
·

(
(1 − λ3)

2 c
2
1

r21
+ λ23

c22
r22

+ 2(1 − λ3)λ3
c1c2
r1r2

)
.

Introducing the function

V (t) := 1

(1 − t)c21 + tc22 − t(1 − t)
·

(
1 − t

t

c21
r21

+ t

1 − t

c22
r22

+ 2
c1c2
r1r2

)
− 1 − t

t

1

r21
− t

1 − t

1

r22
,

(17)

the profile curve is not a circle if and only if Eq. (13) holds,
i.e.,

V (λ3) = V (λ4).

Using Rolle’s theorem, there must be a stationary point satis-
fying V ′(t) = 0 between the parameters. In the second step,
we are going to prove that there are at most two stationary
points of the function (17). Themaple-assisted computation

solve(diff(V(t),t)=0,t)

gives the roots

c12r1 + c1c2r1 − c1c2r2 − c22r2 + r2
r1 + r2

,

c12r1 − c1c2r1 − c1c2r2 + c22r2 − r2
r1 − r2

.

Therefore, one of the equations

V (λ3) = V (λ4), V (λ4) = V (λ5), V (λ5) = V (λ6)

cannot be true. ��

3.2.1 The Steps of the Reconstructing Process

Input data: The image points Q1, . . . , Q6 of the collinear
points P1, . . . , P6 ∈ M , and ri = rCPi for i = 1 . . . , 6.
Suppose that the indices follow the ordering Q1 − Q3 −
Q4 − Q5 − Q6 − Q2.

Step 1 Consider the quadruples (Q1, Q2, Qi , Q j ) (i �= j
and i, j = 3, 4, 5, 6) in all possible ways to find at
least one such that the profile curve of the revolution
surface (given by (16)) is a circle (see Theorem 3).
Without loss of generality, we may assume that the
quadruple (Q1, Q2, Q3, Q4) is one of them. The out-
put is the center O of the profile circle.

Up to a similarity transformation, we can suppose that
Q1(0, 0), Q2(1, 0), Q3(λ3, 0) and Q(λ4, 0) and the equation
of the circle is of type

A(x2 + y2) + Bx + D = 0,

where

A = 1

λ3(1 − λ3)

1

r23
− 1 − λ3

λ3

1

r21
− λ3

1 − λ3

1

r22
−

−
(

1

λ4(1 − λ4)

1

r24
− 1 − λ4

λ4

1

r21
− λ4

1 − λ4

1

r22

)
,

−1

2
B = 1

1 − λ3

1

r23
− λ3

1 − λ3

1

r22
−

(
1

1 − λ4

1

r24
− λ4

1 − λ4

1

r22

)
, and

D = λ3

1 − λ3

1

r23
− λ3

1 − λ3

1

r22
−

(
1

1 − λ4

1

r24
− λ4

1 − λ4

1

r22

)
,

because of (13), (14) and (15). The coordinates of the center
of the circle in the image plane are O

(− B
2A , 0

)
.

Step 2 Iterate Step 1 to two other 6-tuples to obtain twomore
spheres with centers O ′ and O ′′.

Step 3 Finally, compute the intersection of these three
spheres with coplanar centers.

If the points O , O ′ and O ′′ are not collinear then, up to a
reflection about the image plane, the center of the projection
is uniquely determined. In practice, the points O , O ′ and O ′′
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are almost never collinear. If the input data provide us with
collinear centers then the set of possible solutions is a circle.

3.3 A Note About Coplanar Quadruples in the Space

The coplanarity of the points P1, P2, P3 and P4 can be
detected by the help of images of special objects (facade,
roadway, traffic signs etc.). The sufficient and necessary con-
dition can be given as the vanishing of the triple product as
follows:

0 = 〈(P2 − P1) × (P3 − P1), P4 − P1〉. (18)

Using formula (1),

(P2 − P1) × (P3 − P1)

= r2r3
(C − Q2) × (C − Q3)

|C − Q2| · |C − Q3|
−r1r2

(C − Q2) × (C − Q1)

|C − Q2| · |C − Q1| −

r1r3
(C − Q1) × (C − Q3)

|C − Q1| · |C − Q3| ,

P4 − P1 = r4
C − Q4

|C − Q4| − r1
C − Q1

|C − Q1| ,

where Qi = π(Pi ) and ri = rCPi , for i = 1, . . . , 4. There-
fore, we can formulate Eq. (18) in terms of the projected
points:

0 = r2r3r4
〈(C − Q2) × (C − Q3),C − Q4〉
|C − Q2| · |C − Q3| · |C − Q4| −

r1r2r4
〈(C − Q2) × (C − Q1),C − Q4〉
|C − Q2| · |C − Q1| · |C − Q4| −

r1r3r4
〈(C − Q1) × (C − Q3),C − Q4〉
|C − Q1| · |C − Q3| · |C − Q4| −

r1r2r3
〈(C − Q2) × (C − Q3),C − Q1〉
|C − Q2| · |C − Q3| · |C − Q1| .

We also have that

〈(C − Q2) × (C − Q3),C − Q4〉 :
the distance of C from the image plane = −μ234

3
,

where

μ234 =
⎧
⎨
⎩

> 0 if the triangleQ2Q3Q4is positively
oriented with respect toC

< 0 otherwise

is the signed area of the triangle Q2Q3Q4. Therefore,
Eq. (18) is equivalent to

0 = −μ234
r2r3r4

|C − Q2| · |C − Q3| · |C − Q4| +

μ214
r1r2r4

|C − Q2| · |C − Q1| · |C − Q4| +

μ134
r1r3r4

|C − Q1| · |C − Q3| · |C − Q4| +

μ231
r1r2r3

|C − Q2| · |C − Q3| · |C − Q1|
and, consequently, the center of the projection must be on
the generalized conic surface given by

0 = W234|C − Q1| + W134|C − Q2|+
W124|C − Q3| + W123|C − Q4|, (19)

where the weights are given by

W234 = −μ234r2r3r4, W134 = μ134r1r3r4,

W124 = −μ124r1r2r4, W123 = μ123r1r2r3.

4 Conclusions

Our explicit methods presented in Sect. 3 can complement
existing computational techniques; see the introduction and
[6] for a survey. The distances from the center and the
collinearity of the points in the space turned out to be very
effective input data for the reconstruction of the center of
a projection. It is demonstrated that a small number of
collinear triplets determine the center via relatively simple
equations. We applied classical geometrical and algebraic
techniques, such as (generalized) conics and Bézout’s theo-
rem, together with computer-assisted calculations in maple
and sagemath. The theoretical results guarantee rigorous
solutions based on fundamental conditions. Some perspec-
tives are presented in Sect. 3.3 for future research to establish
new combined techniques.
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