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Abstract
Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is used to study microvascular structure and tissue
perfusion. In DCE-MRI, a bolus of gadolinium-based contrast agent is injected into the blood stream and spatiotemporal
changes induced by the contrast agent flow are estimated from a time series of MRI data. Sufficient time resolution can
often only be obtained by using an imaging protocol which produces undersampled data for each image in the time series.
This has lead to the popularity of compressed sensing-based image reconstruction approaches, where all the images in the
time series are reconstructed simultaneously, and temporal coupling between the images is introduced into the problem by a
sparsity promoting regularization functional. We propose the use of Huber penalty for temporal regularization in DCE-MRI,
and compare it to total variation, total generalized variation and smoothness-based temporal regularization models. We also
study the effect of spatial regularization to the reconstruction and compare the reconstruction accuracy with different temporal
resolutions due to varying undersampling. The approaches are tested using simulated and experimental radial golden angle
DCE-MRI data from a rat brain specimen. The results indicate that Huber regularization produces similar reconstruction
accuracy with the total variation-based models, but the computation times are significantly faster.
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1 Introduction

DynamicContrast-EnhancedMRI (DCE-MRI) is an imaging
method which is used to study microvascular structure and
tissue perfusion. It is used widely, for example, in studies of
antivascular drugs [28,49], multiple sclerosis [10,16], blood-
brain-barrier assessment after acute ischemic stroke [27,42]
and treatmentmonitoring in breast cancer [26,30] and glioma
[31]. The operation principle in DCE-MRI is to inject a bolus
of gadolinium-based contrast agent into the blood stream and
acquire a time series ofMRIdatawith a suitableT1-weighting
to obtain a time series of 2D (or 3D) images which exhibit
contrast changes induced by concentration changes of the
contrast agent in the tissues.

High spatial and temporal resolution of the DCE image
series is required for accurate analysis of the contrast agent
dynamics. In many cases, sufficient time resolution can
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only be obtained by utilizing an imaging protocol which
produces undersampled data for each image in the time
series. However, this has the complication that reconstructing
undersampled datasets with conventional MR image recon-
structionmethods such as regridding [19] lead to noisy image
series with poor spatial resolution.

Recently, the compressed sensing (CS) framework has led
to significant advances in MRI with undersampled data. The
theory of CS states that a signal that is sparse in some basis,
which is also incoherent with the measurement basis, can be
perfectly reconstructed from undersampled data with a high
probability [8,11]. Compressed sensing-based approaches
have been developed for numerous applications of both static
and dynamic MRI, see for example the review [20].

Provided that the temporal resolution of the DCE image
series is high enough, one can expect high redundancy in the
image series in the sense that the image intensity changes
between successive image frames are small and occur only
in part of the image domain. In such cases, it can be highly
beneficial to sample the k-space in a complementary manner
between successive time steps, meaning that the undersam-
pling scheme should not be identical among neighbouring
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points in time but rather such that complementary informa-
tion is collected from successive time points.

One such complementary sampling scheme is the golden
angle (GA) approach where the measurements are done
in radial fashion and the angle between subsequent radial
spokes, which is 111.25◦, is based on the golden ratio [47].
TheGAmeasurements have the advantages that themeasure-
ments are inherently complementary (i.e. each new spoke has
a different path in the k-space compared to the previous ones)
and each measured spoke traverses through the central part
of the k-space which contains large information content on
the contrast changes in the images. In addition, the GA sam-
pling allows setting the segment length (i.e. the number of
measured spokes per image frame) and thus the temporal
resolution of the image series in the image reconstruction
stage after the measurements are done. CS has been success-
fully used in combination with the GA sampling approach in
several publications, including [13,14,22,39].

The basic structure in the CS approaches to DCE is to
reconstruct the whole time series of the images simultane-
ously using an appropriate joint reconstruction formulation
where a temporal regularization functional is employed for
coupling the data across the time series of images. The most
popular approach has been to use total variation (TV) regu-
larization to promote sparsity of the derivative of the pixel
(or voxel) values in the time direction. Temporal TV reg-
ularization has also been complemented with simultaneous
use of spatial TV regularization in [3], where both of the TV
regularizers were used in the smoothed (differentiable) form
[1]. The performance of different sparsity promoting tempo-
ral regularization schemes without any spatial regularization
has been compared in DCE-MRI of the breast with cartesian
k-space sampling in [45].

Though widely used, TV regularization in the time direc-
tion may not be an optimal choice for DCE-MRI since the
tumour signals inDCE-MRI are smooth in the time direction.
One of the well-known properties of TV regularization is the
staircasing effect [33], i.e. piecewise flat reconstruction of
smooth signals, leading potentially to suboptimal accuracy
in the reconstruction and analysis of the signals.

The staircasing effect could be alleviated by using L2-
norm based temporal smoothness (TS) regularization [4] or
total generalized variation (TGV) regularization which pro-
motes piecewise linear solutions [7]. Both TS and TGV have
been used in CS DCE-MRI [4,44,45]. In [35], TS was used
in combination with a spatial regularization term which used
infimal convolution of two total variation Bregman distances
for incorporating structural a priori information from an
anatomical prior image into the reconstructionof the dynamic
image sequence.

Another possible method for alleviating the staircasing
effect would be to use the Huber penalty function [18] on
the temporal gradient to enforce temporal regularity. Huber-

penalty is a piecewise defined function which promotes
smooth changes for small signal variations, but also allows
large outliers similar to the total variation regularizer. Huber
penalty has been used in other imaging problems, see, e.g.
[17,46] for usage in optical flow and [29] for usage in super-
resolution reconstruction.

The estimation of the pharmacokinetic parameters of tis-
sues requires an accurate estimate of tracer concentration in
the artery [38]. Estimating the arterial input function (AIF)
via population averaging can produce adequate results in
some cases, however, using patient specific input function
produces more accurate estimates of kinetic parameters [34].
The AIF should preferably be extracted from a signal of a
nearby artery feeding the tissues of interest, but it has also
been estimated from a suitable venous sinus or vein in cases
when the feeding artery is not visible [24].Obtaining an accu-
rate patient specific AIF needs accurate reconstruction of the
vascular input signal. Therefore, the regularization methods
used in reconstructingDCE-MR image series should, in addi-
tion to obtaining good reconstruction quality of the smoothly
varying tumour tissue signal, also be able to reconstruct the
more rapidly varying vascular signal accurately.

In this study, we consider reconstruction of dynamic DCE
data using a joint reconstructionwhich is based onminimiza-
tion of a functional that combines least squares data misfit
of the dynamic data, spatial TV regularization for promoting
sparsity of the image gradients and a temporal regularization
term for promoting regularity in the time direction. Based
on the joint reconstruction formulation, we evaluate four dif-
ferent temporal regularization schemes for DCE using the
golden angle measurement scheme and study the effect of
segment length (i.e. the number of radial GA spokes used per
image) on signal accuracy in tumour and vascular regions as
well as the rest of the tissue. We propose a novel approach
using Huber-penalty [18] for temporal regularization and
compare it to the widely used temporal TV, as well as L2-
smoothness (TS) and TGV regularizers. TheHuber approach
is expected to provide on par reconstruction accuracy with
the state of the art TV methods with a reduced computation
time.

In addition, the significance of the spatial regularization is
evaluated by also studying the usage of temporal TV with no
spatial regularization. The evaluations are carried out using
both simulated and experimental golden angle DCE data
where both cases correspond to small animal imaging of a rat
brain, but the methods are also applicable to clinical imag-
ing. In the simulation study, the GA approach is combined
with a concentric squares samplingwhichuses varying length
radial spokes to cover also the corner areas of the k-space in
the sampling trajectory, to reduce the effects of peripheral
aliasing artefacts to the evaluation of the methods.
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2 Theory

2.1 ForwardModel

The measurement model in MRI is of the form

m = Fu + e, (1)

where m ∈ C
M is the complex valued measurement vector,

F is the discrete Fourier transform, u ∈ C
N is the com-

plex valued image vector (i.e. vectorized representation of
the MRI image), where N = n · n is the number of pixels in
the image, and e models the measurement noise. In the case
of a non-cartesian k-space sampling trajectory, the Fourier
transform is often approximated with the non-uniform fast
Fourier transform (NUFFT) operation [15].

WhenNUFFT is employed as the forwardmodel, themea-
surement model can be written as

m = PF Su + e, (2)

where P is an interpolation and sampling matrix from the
full cartesian k-space to the non-cartesian k-space trajectory
and S is a scaling matrix. Hereafter, we denote A := PF S.

In addition, when considering dynamic MRI with a
complementary k-space sampling, where different (under-
sampled) trajectories of the k-space are measured at different
time points, the forward model changes depending on the
time point. The forward model can then be written as

mt = PtF Stut + et = Atut + et , (3)

where the superscript t denotes the time index of themeasure-
ment and image series, andmt is the vector of k-space data for
a single image in the time series. Remark that in the dynamic
MRI experiments we consider, the datamt is severely under-
sampled with the size of mt significantly smaller than the
number of unknown pixels.

2.2 Joint Reconstruction Formulation of the
Dynamic Inverse Problem

In this study, we consider a joint reconstruction formulation
of the DCE-MRI problem and compare the performance of
four different temporal regularization functionals for pro-
moting temporal regularity of the image series. The joint
reconstruction formulation is based on an L2-data misfit
functional for the measurement model, and a spatial total
variation regularization functional for promoting sparsity of
the gradient of each image [36]. Only the temporal regu-
larization method changes between the TV, TS, Huber and
TGV models. The joint reconstruction formulation used in
all reconstructions is thus of the form

u∗ = argmin
u=u1,u2,...,uT

T∑

t=1

[
‖Atut − mt‖22

+α‖∇Su
t‖1

]
+ βT (u), (4)

where T is the number of image frames in the problem, ∇S

is the discrete spatial gradient operator, α and β are regular-
ization parameters for the spatial and temporal regularization
terms, respectively, and T is one of the temporal regulariza-
tion functionals.

Remark, that in Bayesian statistical inverse problems
framework, the estimate in Eq. (4) corresponds to a max-
imum a posteriori estimate with an additive measurement
error model where the errors are Gaussian and independent
of the unknown images [21]. This is a feasible choice for
MRI since observation noise in MRI is commonly modelled
as uncorrelated complex Gaussian additive noise, see, e.g.
[25], [43]. In a case where the measurement noise is cor-
related and information about the correlations is available
or could be measured, the correlations can be modelled by
weighting the data misfit term in (4) with the noise precision
matrix.

Here, the isotropic formof the 2D spatial TV is usedwhere
the total variation functional for a complex valued image
vector ut ∈ C

N , where the image columns are stacked into
a single column vector, is defined as

‖∇Su
t‖1 =

N∑

k=1

(
(Re(Dk

xu
t ))2 + (Re(Dk

yu
t ))2

+(Im(Dk
xu

t ))2 + (Im(Dk
yu

t ))2
)1/2

, (5)

where Re and Im denote taking the real and the imaginary
part of the complex valued image vector, k denotes the spatial
index in the 2D images, and Dk

x and Dk
y are discrete forward

differences in the horizontal and vertical image directions of
the k’th pixel defined as

Dk
xu

t =
{−utk + utk+n, i f k ≤ N − n
0, otherwise

(6)

Dk
yu

t =
{−utk + utk+1, i f k (mod n) �= 0
0, otherwise,

(7)

where n is the number of rows and columns in the image.
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2.3 Temporal Regularization Functionals

2.3.1 Total Variation Model

In the total variation model [36], the temporal regularization
part of the functional is

T (u) = ‖∇Tu‖1

=
T∑

t=1

N∑

k=1

√
(Re(Dt

Tuk))
2 + (Im(Dt

Tuk))
2, (8)

where uk = u1k, . . . , u
T
k and Dt

T is the discrete forward dif-
ference in the temporal direction of the t’th image defined as

Dt
Tuk =

{−utk + ut+1
k , i f t �= T

0, otherwise.
(9)

The temporal total variation model promotes sparsity of
the time derivative of the pixel signals, being highly feasible
for reconstruction of piecewise regular signals which may
exhibit large jumps. A similar regularization functional, but
in the smoothed, differentiable form, was used in [3] for mul-
tislice myocardial perfusion imaging.

A well-known feature of the TV model is the so-called
staircasing effect, where smooth signals are reconstructed as
piecewise constant [33]. This may potentially lead to subop-
timal results in applications with smooth pixel signals.

To study the significance of spatial regularization in the
joint reconstruction model (4), we also consider the tempo-
ral TV model without spatial regularization, i.e. α in (4) is
set to 0. We denote the temporal TV model without spatial
regularization by TV-T.

2.3.2 Smoothness Model

The temporal smoothness model promotes smooth, slowly
changing signals by using the squared L2-norm of the time
derivative for the temporal regularization, that is

T (u) = ‖∇Tu‖22 =
T∑

t=1

N∑

k=1

[(
Re

(
Dt
Tuk

))2

+(
Im

(
Dt
Tuk

))2]
. (10)

We refer to this as the temporal smoothness (TS) model.
The TSmodel generally reconstructs smooth signals well,

but fast transient signal changes often get diminished. TS
model has been used in [4] for radial DCEmyocardial perfu-
sion imaging, and temporal smoothness regularization was
comparedwith temporal TV regularization in the same appli-
cation in [2].

2.3.3 Huber Model

In the Huber model, the Huber penalty function [18]

Hγ (v) =
{ ‖v‖2

2γ , ‖v‖ ≤ γ

‖v‖ − γ
2 , ‖v‖ > γ

(11)

is used for the regularizationof the timederivative. TheHuber
penalty function has quadratic growth near origin and lin-
ear growth further from origin. The transition point from
quadratic to linear is controlled by the Huber parameter γ .
When the parameter γ is small, Huber regularization is close
to TV regularization and when the parameter is large, Huber
regularization is related to smoothness regularization.

The discrete temporal Huber regularization functional is
of the form

T (u) =
T∑

t=1

N∑

k=1

Hγ (∇ t
Tuk)

=
∑

(k,t)∈G1

(
(Re(Dt

Tuk))
2 + (Im(Dt

Tuk))
2

2γ

)

+
∑

(k,t)∈G2

(√
(Re(Dt

Tuk))
2 + (Im(Dt

Tuk))
2 − γ

2

)
,

(12)

where G1 = {k ∈ 1, .., N , t ∈ 1, .., T | ‖∇ t
Tuk‖ ≤ γ } and

G2 = {k ∈ 1, .., N , t ∈ 1, .., T | ‖∇ t
Tuk‖ > γ }.

The Huber model is expected to produce smooth sig-
nals for small variations in the signal while also allowing
a few jumps (discontinuities) in the signal. The Huber model
parameter γ also has a physical interpretation; it defines the
threshold for a signal change that is assumed to be a discon-
tinuous jump.

2.3.4 Total Generalized Variation Model

The total generalized variation model [7] is a total variation
model,which is generalized to higher order differences.Here,
we use the second-order total generalized variation, which in
the discrete 1-dimensional form is of the form

T (u) = TGV2
γ (u) = min

v
‖∇Tu − v‖1 + γ ‖∇Tv‖1. (13)

This functional balances between minimizing the first-order
and second-order differences of the signal. The difference
with TV-regularization is the most clear in smooth regions
where piecewise linear solutions are favoured over the piece-
wise constant solutions of TV.
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TGVwas first used in MRI as a spatial prior in [23]. TGV
has also been used in MRI as a temporal prior in [44], where
different temporal priors were compared in cartesian DCE-
MRI of the breast.

3 Methods

The joint reconstructions with different regularization
schemes are evaluated using simulated golden angle DCE-
MRI data from a rat brain phantom and with experimental
golden angle DCE-MRI data from a rat glioma model.

3.1 Simulation

A simulated test case modelling DCE-MRI of a tumour in rat
brain was created. The rat brain phantom is based on the rat
brain atlas in [40], and scaled to a size of 128x128. The rat
brain image was divided into three subdomains of different
signal behaviour identified in the in vivomeasurements: sim-
ulated tumour (region highlighted with red and labelled ‘1’
in Fig. 1), vascular region (highlighted with blue and labelled
‘2’ in Fig. 1) and the rest of the brain. The vascular signal
region corresponds to the location of the superior sagittal
sinus which can be used for estimating the AIF in DCE-MRI
of the brain [24].

A time series of 2800 ground truth images was simulated
by multiplying the signal of each pixel with the template of
the corresponding region and adding that to the baseline value
of the pixels. The tumour signal templates were based on an
experimental DCE-MRI measurement, which is described
in Sect. 3.2, where the three different ROIs were identified.
Figure 1 shows the signal templates for each of the different
tissue regions.

One spoke of k-space data was simulated for each of the
simulated images, leading to a dynamic experiment with
2800 spokes of k-space data. The time scale of the simula-
tion was set to be similar to the in vivo measurements where
the repetition time of the GA measurements was 38.5ms.
The measurement noise in real and imaginary channels of
MRI data is commonly modelled as uncorrelated complex
Gaussian additive white noise, see, e.g. [25,43]. In the simu-
lation, Gaussian complex white noise (i.e. e = ξ1+ iξ2, ξi ∼
N (0, σ 2 I )) at σ equal to 5% of the mean of the absolute val-
ues of the signal without noise was added to the simulated
k-space signal.

The simulated test case was carried out using a k-space
trajectory which combines the golden angle and the concen-
tric squares sampling strategies. The k-space trajectory of
this sampling is illustrated for a few consecutive spokes in
Fig. 2a. This sampling strategy is similar to the linogram
method [12] developed for computed tomography imaging,
but the lines in linogram sampling are equidistant in tan θ ,

Fig. 1 Simulated signals in different ROIs. Top left: The simulated
imagewith tumourROImarked in red and labelled ‘1’, and vascularROI
marked in blue and labelled ‘2’. Top right: Simulated tumourROI signal.
Bottom left: Simulated vascular ROI signal. Bottom right: Simulated
signal in tissue outside both ROIs. The vertical axis in the three figures
is the multiplier for the signal added to the base signal and not the added
signal itself

whereas here the angles were chosen according to the golden
angle method [47].

Unlike the conventional radial sampling pattern with
spokes of equal length, the concentric squares sampling strat-
egy also covers the corners of the k-space. The sampling
pattern therefore also collects information of the high fre-
quencies in the corners of the k-space, leading to reduction
of artefacts caused by the lack of sampling in the corners. This
sampling pattern thus allows better comparison of the differ-
ent methods compared to conventional radial GA sampling.
This artefact reduction is demonstrated in Fig. 2b, where
error images of inverse NUFFT reconstructions from 2000
GA spokes of conventional radial sampling and concentric
squares sampling are shown. With 2000 spokes of data, the
inverse NUFFT reconstruction of conventional radially sam-
pled data has significant artefacts in the peripheral regions of
the image domain, whereas the reconstruction of concentric
squares sampled data does not.

In the NUFFT implementation, the measurements were
interpolated into a twice oversampled cartesian grid with
min-max Kaiser-Bessel interpolation with a neighbourhood
size of 4 [15]. Compared to a conventional radial sampling
pattern, the interpolation distances of the radial concen-
tric squares sampling strategy are shorter to the cartesian
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Fig. 2 a Center of the concentric squares sampling grid with the dots
marking the sampled points and lines indicating the set of points sam-
pled after a single echo. The measurement points form concentric
squares instead of concentric circles as in a conventional radialmeasure-
ment. b The simulated target (Left) and reconstruction error images of
inverse NUFFT reconstructions from 2000 GA spokes of conventional
radially sampled data (Middle) and concentric squares sampled data
(Right). The error images have the same color scale

grid, resulting in smaller interpolation error. If the measure-
ment angles are equidistant in slope rather than angle, the
pseudo-polar Fourier transform can also be applied [5]. The
pseudo-polar FT has been used in CS MRI in [48].

3.2 In VivoMeasurements from a Rat

3.2.1 Animal Preparation

All animal experiments were approved by the Animal
Health Welfare and Ethics Committee of University of East-
ern Finland. 1 × 106 C6 (ECACC 92090409) rat glioma
cells (Sigma) were implanted into the brain of a 200 g
female Wistar rat under ketamin/medetomidine hydrochlo-
ride anaesthesia. Tumour imaging was performed 10 days
post-implantation. During the experiments, the animal was
anaesthetized with isoflurane (5 % induction, 1-2 % upkeep)
and kept in fixed position in a holder which was inserted into
the magnet. A needle was placed into the tail vein of the
animal for the injection of the contrast agent.

3.2.2 Acquisition of the Data

The experimental small animal data were collected using
a 9.4 T horizontal magnet interfaced to Agilent imaging
console and a volume coil transmit/quadrature surface coil
receive pair (Rapid Biomed, Rimpar, Germany). The data
were collected with conventional radial golden angle sam-
pling using a gradient-echo-based radial pulse sequence with
repetition time 38.5ms, echo time 9ms, flip angle 30 degrees,
field-of view 32mm× 32mm, slice thickness 1.5 mm, num-
ber of points in each spoke 128. 610 spokes were collected in
sequential order, after which the next spoke would differ less
than 0.1 degrees from zero, so to simplify the experimental
sequence, the cycle of 610 spokes was repeated for 25 times,
leading to an overallmeasurement sequence of 15,250 spokes
of data for a total measurement duration of nearly 10min.

Fig. 3 Cartesian gradient-echo pulse sequence full data IFFT recon-
structions from before and after contrast injection used as reference.
The two images have different adjusted color scales for visualization
purposes

In the computations, 7310 spokes of data were used for
evaluation of the different models to speed up the compu-
tations, starting from the beginning of the measurements.
Measurement time for a full cycle of 610 spokes was 610 ·
38.5ms = 23.46 s. Gadovist (1mmol/kg) was injected i.v.
one minute after the beginning of the dynamic scan over a
period of 3 s.

Anatomical images were acquired from the same slice
before and after the dynamical experiment using a gradient-
echo pulse sequence with otherwise similar parameters as
in the dynamic sequence but using a Cartesian sampling of
128 × 128 points of k-space data. The full data anatomical
images from before and after the experiment are shown as
reference for the dynamical reconstructions with undersam-
pled data in Fig. 3.

The dynamical experiment also served as a basis for creat-
ing the signal templates shown in Fig. 1 for the simulated test
case. For the simulation, three regions were identified from
the in vivo reconstructions: vascular region (superior sagittal
sinus), glioma region, and the rest of the brain tissue.

3.3 Computation

The Chambolle–Pock primal-dual algorithm [9,37] was used
for all image reconstructions. The ratio of the primal and dual
step sizes was varied according to the regularization coeffi-
cient and method, such that the primal step size was smaller
for larger regularization parameters and the smooth Huber-
regularization and TS-regularization had less variation in the
step lengths. Usage of asymmetrical step sizes in the algo-
rithm has been shown to lead to faster convergence in some
cases in both linear [32] and non-linear [41] problems. The
operator norm of the forward problem was calculated with
the power method and the operator was scaled to have a norm
of ‖A‖ = √

12 to be on the same order of magnitude as the
difference operators which were used in the computation of
the image gradients.
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3.3.1 Error Metric

Root mean square error (RMSE) values were first calculated
for the three regions (tumour region, vascular region, rest of
the image) separately after the reconstructed signals of each
pixel were linearly interpolated in the temporal direction to
match with the temporal resolution of segment length of one.
Thus, after the interpolation all signals reconstructed with
different segment lengths had the same number of time points
as the series of the ground truth images enabling the com-
parison of reconstructions with different segment lengths.
Specifically, the RMSEs were calculated by

RMSEROIn =
∑

k∈�ROIn

√√√√√
∑T

t=1

((
‖ut,interpk ‖ − ‖I tk‖

)2)

T
,

(14)

where �ROIn denotes the pixels in the n’th ROI, T is the
number of simulated time frames and measurement spokes,
uinterp is the time-interpolated reconstructed pixel signal and
I is the ground truth image.

After the separate ROI RMSEs were computed, a joint
RMSE was computed by taking the norm of the separate
RMSEs

RMSEjoint =
√
RMSE2

ROI1 + RMSE2
ROI2 + RMSE2

ROI3.

(15)

This was done to weigh the small ROIs appropriately in the
error metric that is used for performance comparisons.

4 Results

4.1 Simulation

Reconstructions with varying segment lengths and different
temporal regularization methods were calculated for a wide
range of the temporal regularization parameter. The tested
segment lengths were chosen to be 8, 13, 21, 34, 55 and 89.
These segment lengths are Fibonacci numbers, which pro-
vide optimal measurement profile distribution when golden
angle measurements are used. These segment lengths are
optimal in the sense that the k-space is more uniformly sam-
pled when the segment length is a Fibonacci number, having
only two different azimuthal gaps (i.e. angular separation
between adjacent spokes) instead of three [47].

The spatial regularization parameter was constant at α =
0.001 in all reconstructions. This level of spatial regular-
ization was found to provide accurate reconstructions with

all segment lengths and temporal regularization models. For
TGV, the ratio of the first- and second-order terms was set to
γ = √

2 as in [6]. For the Huber model, the Huber parameter
was set to γ = 0.001. This value corresponds to approx-
imately 92%-96% of the simulated pixel changes between
true images at intervalsmatching the varying segment lengths
being under the threshold.

The optimal temporal regularization parameter β for each
regularization method and segment length was selected to be
the one yielding the lowest joint RMSE. Table 1 shows the
optimal regularization parameters for the different methods
with respect to segment length. In all cases optimal tem-
poral regularization parameter increases monotonically as
segment length decreases. This behavior is expected, since
shorter segment length means less data per image and there-
fore the reconstructions require stronger regularization. The
Huber method has the smallest change in the regularization
parameter when segment length changes, whereas the opti-
mal parameter for the TS model changes by multiple orders
of magnitude when segment length is changed.

Table 2 and Fig. 4a show the joint RMSE with differ-
ent segment lengths and temporal regularization methods
with the optimal temporal regularization parameters. Seg-
ment length of 34 is optimal for all but TS andHuber models,
for which segment length of 55 is slightly better. For TV, the
reconstruction accuracy with segment lengths of 34 and 55
are also very close. TGV produces the most accurate recon-
structions for all segment lengths. TS performs theworst here
with all segment lengths,which is due to its poor performance
in the vascular ROI accuracy as is evident from Fig. 4c.

While the TV-T model without spatial regularization per-
forms well in reconstructing the vascular ROI as seen in
Fig. 4c, it does considerably worse in reconstructing the
tumour ROI and the rest of the image as seen in Figs. 4b,
d.

Figure 5 shows closeups of the reconstructionswhere both
the tumour ROI and the vascular ROI are visible. Methods
using spatial TV display mostly similar visual image quality.
TV-T, which uses only temporal TV, shows visible deteriora-
tion in the single frame image quality as the image contains
more spatial noise due to the lack of spatial regularization.

The number of iterations needed for the reconstructions,
and the corresponding computation times are shown in
Table 3. The computations were done inMATLAB (R2016b,
The MathWorks, Inc., Natick, MA) on a server computer
using 2 Intel Xeon E5-2630 v4 CPUs. The stopping criterion
for the iterationswas a relative change of less than 10−7 in the
objective value in 10 consecutive iterations. The smooth tem-
poral regularization methods, TS and Huber, exhibit faster
convergence than the non-smooth methods.

Even though the computation times for a single iteration
with the TV-Tmethod were shorter than with the other meth-
ods, the total computation times were longer than with TV
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Table 1 Optimal temporal regularization parameters β with different
segment lengths and methods

Regularization parameter β

8 13 21 34 55 89

TV 0.1 0.056 0.01 0.01 0.0056 0.0056

TS 0.56 0.32 0.1 0.032 0.01 0.0001

TV-T 0.1 0.056 0.032 0.032 0.01 0.01

Huber 0.056 0.056 0.018 0.01 0.0056 0.0056

TGV 0.1 0.056 0.01 0.01 0.01 0.01

The tested parameters were logarithmically even spaced

Table 2 Joint RMSEs with all segment lengths used and the five dif-
ferent methods

Joint RMSE

8 13 21 34 55 89

TV 0.0425 0.0431 0.0413 0.0379 0.0382 0.0513

TS 0.0555 0.0557 0.0553 0.0546 0.0538 0.0595

TV-T 0.0427 0.0416 0.0410 0.0382 0.0404 0.0511

Huber 0.0410 0.0408 0.0391 0.0374 0.0373 0.0507

TGV 0.0366 0.0376 0.0373 0.0354 0.0372 0.0505

The best RMSE for each method is highlighted in italic and the best
RMSE for each segment length is bolded

since the TV-Tmethod requiredmore iterations to reach con-
vergence. With segment lengths 21 and 34, TV-T was the
slowest to compute while TGV was the slowest with the
other segment lengths.

Single pixel signals from the tumour and vascular regions
are shown in Fig. 6. In the tumour signal, the TV-T and TS
reconstructions showmore error to the true simulated signal.
TGV has the best signal accuracy, while TV and Huber have
similar signal accuracy with some staircasing visible. In the
vascular signal, the TS reconstruction shows smoothing near
both the minimum and the maximum of the signal. TGV
has slightly better accuracy in the minimum of the vascular
signalwhereTV,TV-TandHuber have similar reconstruction
quality.

Huber reconstructions were also calculated for Huber
parameters ranging from γ = 10−6 to γ = 0.1. The joint
RMSE of the reconstructions was very similar for the recon-
structions with the parameter γ ranging from γ = 10−6

to γ = 0.001. For parameters larger than γ = 0.001, the
joint RMSE was closer to that of the TS model and thus the
accuracy was worse. The computation times for the Huber
reconstructions decreased when the Huber parameter was
increased. Huber parameter γ = 0.001 provided good bal-
ance between reconstruction accuracy and computation time.

(a) Joint RMSE (b) Tumour ROI RMSE

(c) Vascular ROI RMSE (d) Rest of the image RMSE

Fig. 4 a Joint RMSE and b–d RMSEs of the three different regions
at different segment lengths with the optimal temporal regularization
parameters for each segment length selected according to lowest joint
RMSE

Fig. 5 Closeups of the reconstructions at time t∼100s with segment
length of 34 showing the tumour ROI and the vascular ROI

Table 3 Computation times (top) and number of iterations (bottom)
with the five different methods at different segment lengths

Computation time (min) & Iterations

8 13 21 34 55 89

TV 203 107 14 7.9 4.2 2.9

4600 4047 873 757 639 621

TS 9.4 4.8 2.8 1.8 1.2 0.9

207 179 163 176 181 197

TV-T 244 131 80 41 6.2 4.2

7841 6869 6439 5326 1216 1172

Huber 26 14 6.3 2.2 1.1 0.7

550 501 352 199 160 155

TGV 303 137 21 12 9.0 6.3

6039 4495 1167 1067 1185 1267
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Fig. 6 Single pixel signals from tumour (Top) and vascular (Bottom)
regions at a segment length of 34 with the different methods at their
optimal parameters according to the joint RMSE

Fig. 7 Closeups of the tumour area from the in vivomeasurements with
the five different methods approximately 1min after the injection of the
contrast agent

Fig. 8 Time course of a line, which is marked in red in the left image,
through the tumour in the in vivo dataset reconstructedwith the different
methods

Fig. 9 Single pixel signals from the reconstructions of the in vivo
dataset from tumour (Top) and vascular (Bottom) regions. The images
were reconstructed with a segment length of 34

4.2 In VivoMeasurements

The in vivo measurements were reconstructed using the five
differentmethods. Segment lengthwas set to 34 for all recon-
structions since this selection provided good reconstruction
accuracy in the simulation. The temporal resolution of the
image series was thus 1.309 s. The in-vivo measurements
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were scaled to be on the same intensity level as the simula-
tion, so the same regularization parameters were used in the
in vivo reconstructions as in the simulation reconstructions.
Namely, these parameters were: α = 0.001 for all recon-
structions, β = 0.01 for TV, Huber and TGV, β = 0.032 for
TS and TV-T, γ = 0.001 for Huber and γ = √

2 for TGV,
as is also shown in Table 1 for the temporal regularization
parameter β.

Figure 7 shows closeups of the tumour region of the
reconstructions. Compared with the other methods, the TV-T
model has worse visual image quality. All the methods using
spatial regularization show visually similar image quality.

Time courses of a line through the tumour area with the
different reconstructions are shown in Fig. 8. The TS recon-
struction appears clearly noisy and the TV-T reconstruction
has strong staircasing. The TV and Huber reconstructions
suffer from some staircasing, whereas the TGV reconstruc-
tion is smooth and does not suffer from staircasing.

Figure 9 shows single pixel signals from the tumour and
vascular regions with the different models. Here, the TV-
T model exhibits clear staircasing effect, especially on the
smooth tumour signal, and the TS model shows a smoothing
effect in the sharp transient changes in the signal of the vas-
cular region. The TV-T reconstruction shows higher intensity
in the vascular signal than the other reconstructions due to
the lack of spatial regularization. TV, Huber and TGV show
mostly similar signal dynamics.

5 Discussion

In this work, we investigate the effects of four different tem-
poral regularizationmodels and six different segment lengths
to reconstruction accuracy in DCE-MRI. The evaluations are
carried out usingboth simulated and in vivodata.Wealsopro-
pose a new temporal regularization model; the Huber model.

The Huber model performs slightly better than the widely
used TV in the simulation reconstruction accuracy with all
segment lengths, and it is much faster to compute due to the
smoothness of the temporal regularization functional. The
Huber model is also quite insensitive to changes in the Huber
parameter; changing the parameter from γ = 10−6 to γ =
0.001 had almost no effect on the reconstruction accuracy
and only affected the computational time.

TGV outperforms the other methods with all segment
lengths in the simulation reconstruction accuracy measured
by the joint RMSE. The method is able to reconstruct the
smooth signal increase in the tumour area well while also
being able to reconstruct the sharp transient signal changes
in the vascular region accurately.

Using only temporal TV, the TV-T method performs well
in the small vascular ROI reconstruction accuracy. The good
accuracy in reconstructing the vascular ROI is likely due to

the small size of the vascular ROI. The vascular ROIwas only
4 pixels in size and therefore spatial regularization is likely to
slightly dampen the signal variations in the ROI. In the larger
tumour ROI and the rest of the image, the lack of spatial reg-
ularization results in worse reconstruction accuracy due to
having stronger staircasing and higher spatial noise level. The
results indicate that while temporal regularization is crucial
for the high time resolution joint reconstruction of dynamic
data, spatial regularization also significantly improves recon-
struction quality.

Besides improving the reconstruction quality, spatial TV
regularization also aided in convergence of the optimization
problems. The TV-T reconstructions needed the most itera-
tions to converge with all segment lengths except 89 where
TGV needed slightly more iterations to converge. The fastest
method to compute was the TS method. The computation
times of the Huber model with the used Huber parame-
ter were much shorter than the computation times for the
non-smooth total variation models. For TV, the computa-
tion times were approximately 2.2–7.8 times that of Huber
and for TGV, they were 3.3–11.7 times that of Huber. The
computation times of the Huber reconstructions depended
on the Huber parameter; reconstructions with a small Huber
parameter needed longer to converge. When looking at the
reconstruction times, it should be noted that the ratio of the
primal and dual step lengths affects the speed of convergence,
and further optimization in the ratios could have an impact
on the reconstruction times.

Using 34 spokes ofmeasurements for each temporal frame
outperformed the other segment lengths for all reconstruc-
tion methods except the TS and Huber methods, where a
segment length of 55 was slightly better. Shorter segment
lengths require stronger temporal regularization, which in
turn leads to stronger staircasing for TV-based methods or
peak diminishing for the TS model. Longer segment lengths
in turn lack the temporal resolution to be able to accurately
reconstruct sharp signal changes.

For TGV regularization the performance with shorter
segment lengths did not deteriorate as much as with the
first-order difference-based methods. For the TS method, the
differences in reconstruction accuracywith different segment
lengths were also smaller, however, the accuracy was worse
for all segment lengths.

The Huber model could also be modified to use a spatially
varyingHuber parameter, whichwould be smaller for regions
with sharp signal changes such as in vascular regions, and
higher for smoothly changing regions such as tumours. How-
ever, for a fair comparison this would need to be compared
with spatially varying temporal regularization parameters for
the other methods as well, which was out of the scope of this
study.

In the simulation study we considered the combination of
the golden angle and concentric squares sampling in order to
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obtain samples also from the corner areas of the k-space. The
combination was demonstrated to lead to reduced aliasing
artefacts in peripheral parts of the image domain when com-
pared to the conventional radial sampling. In future studies,
we seek to implement the scanning protocol for experimental
studies.

6 Conclusions

In this paper, a new temporal regularization method, tempo-
ral Huber-regularization, was proposed for DCE-MRI and
the method was compared with three existing temporal reg-
ularization methods combined with spatial total variation
regularization. The other methods were L2-difference reg-
ularization (temporal smoothness, TS), L1-difference regu-
larization (temporal total variation, TV) and total generalized
variation (TGV). The methods were also compared with
temporal total variation without spatial regularization (TV-
T). We found that Huber-regularization performs slightly
worse than TGV, but outperforms the other methods. How-
ever, the computation times for Huber-regularization were
reduced significantly compared to the TV and TGV meth-
ods, and especially large scale 4D DCE-MRI applications
requiring fast computation could benefit significantly from
using Huber model over TV or TGV.

All the methods were also tested for a wide range of seg-
ment lengths. In all cases a segment length of 34 provided
good balance between reconstruction accuracy and compu-
tation time, and we expect that this gives a rough idea about
a suitable segment length for joint reconstruction of golden
angle DCE-MRI data of the brain. The best possible segment
length, however, varies in practical applications, depending
on the relation of the actual measurement speed (time per
spoke) and the expected signal dynamics.
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