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                    Abstract
Spectral clustering is one of the most important image processing tools, especially for image segmentation. This specializes at taking local information such as edge weights and globalizing them. Due to its unsupervised nature, it is widely applicable. However, traditional spectral clustering is \({\mathcal {O}}(n^{3/2})\). This poses a challenge, especially given the recent trend of large datasets. In this article, we propose an algorithm by using ideas from \(\varGamma \)-convergence, which is an amalgamation of maximum spanning tree clustering and spectral clustering. This algorithm scales as \({\mathcal {O}}(n \log (n))\) under certain conditions, while producing solutions which are similar to that of spectral clustering. Several toy examples are used to illustrate the similarities and differences. To validate the proposed algorithm, a recent state-of-the-art technique for segmentation—multiscale combinatorial grouping is used, where the normalized cut is replaced with the proposed algorithm and results are analyzed.
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Appendices
Appendix: Proof of Theorem 3


                  Proof

                  We first show that any matrix H of the form AKY is a solution to (7). We have
$$\begin{aligned} Tr((AKY)^t L (AKY))= & {} Tr(Y^t (AK)^t L (AK) Y)\\= & {} Tr((AK)^t L (AK)) \\= & {} Tr(K^t (A^t L A) K) \end{aligned}$$

since Y is an orthogonal matrix. Now, \(A^t L A\) is of the form
$$\begin{aligned} \left[ \begin{matrix} \lambda _1&{}\quad 0 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad \lambda _2 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad \lambda _m\\ \end{matrix}\right] \end{aligned}$$

So, we have
$$\begin{aligned} Tr(K^t (A^t L A) K)= & {} \lambda _1 + \lambda _2 + \cdots + \lambda _{l_1} + \lambda _{(m)} Tr(X^t {\mathbf {I}} X) \\= & {} \lambda _1 + \lambda _2 + \cdots + \lambda _{m} \\= & {} \min Tr(H^t L H) \end{aligned}$$

Since, the minimum value of \(Tr(H^t L H)\) is equal to \(\lambda _1 + \lambda _2 + \cdots + \lambda _{m}\) [23]. To show the other side, note that the set of all the solutions of (7) is
$$\begin{aligned} \{H \in {\mathbb {R}}^{n \times m} \mid Tr(H^t L H) = \lambda _1 + \lambda _2 + \cdots + \lambda _m\} \end{aligned}$$

 Let \(\overline{A} = [e_1, e_2, \dots e_n]\), i.e the matrix obtained by stacking all the eigenvectors of L in columns. Then any H can be written as \(\overline{A}Z\) where \(Z^t Z = {\mathbf {I}}\). Now, note that since \(\{\lambda _1, \lambda _2, \dots , \lambda _n\}\) can be arbitrary, we need to have that
$$\begin{aligned} Z_{ij} = 0 \text { if } \lambda _{i} > \lambda _{(m)}. \end{aligned}$$

Thus we can ignore the lower part of matrix Z. If \(A = [[e_1, e_2, \dots e_l]]\), then we have that H is of the form AZ where Z is a \(l \times m\) matrix such that \(Z^t Z = {\mathbf {I}}\). Now let,
$$\begin{aligned} Z = \left[ \begin{matrix} Z_{l_1, l_1} &{} Z_{l_1, m - l_1} \\ Z_{l_2, l_1} &{} Z_{l_2, m - l_1} \\ \end{matrix}\right] \end{aligned}$$

Also, note that \(A^t L A\) is of the form
$$\begin{aligned} \left[ \begin{matrix} \lambda _1&{}\quad 0 &{}\quad \cdots &{} \quad 0\\ 0 &{}\quad \lambda _2 &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad \cdots &{}\quad \cdots &{}\quad 0\\ 0 &{}\quad 0 &{}\quad \cdots &{}\quad \lambda _l\\ \end{matrix}\right] \end{aligned}$$

Since Z should satisfy \(Tr(Z^t A^t L A Z) = Tr(H^t L H) = \lambda _1 + \lambda _2 + \cdots +\lambda _m\), we need to have that \(Z_{l_1, l_1}\) is full rank, and \( Z_{l_1, l_1}^{t} Z_{l_1, l_1} = {\mathbf {I}}\). Hence Z must be of the form KY where K is a matrix of the form (26) and Y is any orthogonal matrix. Hence all the solutions to (7) must be of the form AKY. \(\square \)

                Proof of Lemma 1


                  Proof

                  One side follows from the relation
$$\begin{aligned} \mathcal {H}(\mathcal {M}(H')) \supseteq H' \end{aligned}$$

For the other side, let H be some matrix which spans the same subspace as \( \widehat{H}= A_k K Y\). Then there exists an orthogonal matrix Q such that \(H Q = \widehat{H}\). Hence \(H = \widehat{H} Q^t = A_k K Y Q^t\). This is still in the form \(A_k K Y\) where Y is some orthogonal matrix. \(\square \)

                Proof of Proposition 2


                  Proof

                  To prove (a), note that since \(C_i\) is a connected component of \({\mathcal {G}}_{\ge w_j}\), it is also a union of connected components of \({\mathcal {G}}_{\ge w_i}\) for all \(i >= j\). Also, we know that if L denotes a Laplacian of the graph, then \(L {\mathbf {1}}_{C_i} = 0\) if \(C_i\) is a connected component in the graph. Hence proved.

                  Since (a) is true, we know that C is a solution to (25) at level j. Thus all matrices of the form CY are solutions. Now, since \(Tr(C^t L_i C) = 0\) for all \(i >= j\), any vector c belonging to the column space of the solution must satisfy \(c^t L_i c = 0\) for all \(i >= j\). This implies that c belongs to the column space of the 0 eigenvectors, which are indicators of connected components. Hence c must belong to the column space of the indicators of connected components for each \({\mathcal {G}}_i\), \(i>= j\). This implies that c belongs to the column space of indicators of connected components of \({\mathcal {G}}_{\ge w_j}\), and hence belongs to the column space of C. Hence proved. \(\square \)

                Proof of Theorem 2


                  Proof

                  For the sake of simplicity, we consider x to be a 1d vector. Recall that
$$\begin{aligned} Q^{(p)}(x) = Tr(x^t L^{(p)} x) \end{aligned}$$

                    (38)
                

such that \(x^t x = 1\) and \(x^t {\mathbf {1}} = 0\). We refer to this domain as \(\mathcal {d}\).

                  Now, assume that \(\hat{x}\) is a point belonging to \(M_1\). We now show that \(\hat{x}\) is also a limit point. From [25],
$$\begin{aligned} \Vert Q^{(p)}(\hat{x}) - \min _{x \in \mathcal {d}} Q^{(p)}(x) \Vert \rightarrow 0 \text { as } p \rightarrow \infty \end{aligned}$$

                    (39)
                

On the other hand, consider a ball around \(\hat{x}\), \(B(\hat{x},\epsilon )\). Then,
$$\begin{aligned} \min _{y \in B(0,\epsilon )} Q^{(p)}(\hat{x} + y) = \hat{x}^t L^{(p)} \hat{x} + 2 \hat{x}^t L^{(p)} y + y^t L^{(p)} y \end{aligned}$$

                    (40)
                

Taking \(y = -\epsilon \hat{x}\),
$$\begin{aligned} \min _{y \in B(0,\epsilon )} Q^{(p)}(\hat{x} + y) \le \hat{x}^t L^{(p)} \hat{x}(1 - 2\epsilon + \epsilon ^2) \end{aligned}$$

                    (41)
                

From (39) and (41), for p large enough,
$$\begin{aligned} \min _{y \in B(0,\epsilon )} Q^{(p)}(\hat{x} + y) \le \min _{x \in \mathcal {d}} Q^{(p)}(x) \end{aligned}$$

                    (42)
                

In other words, for every \(\epsilon \) ball around \(\hat{x}\), there exists a minimizer of \(Q^{(p)}(x)\). Hence, \(\hat{x}\) is a limit point. \(\square \)

                
                  Fig. 14[image: figure 14]
Probability plot of sample data against the quantiles of a specified distribution—Normal for sample means and \(\chi ^2\) for sample variance. The plots are generated using bootstrap samples of size 30. The data consists of means and variances of the measures \(F_{op}\) and \(F_b\) of the methods PRcut, dPRcut, Ncut, dNcut. Figure titles at the top of each plot indicate the values being plotted along with the \(R^2\) values of the fit


Full size image


                Checking Normality for t Test in Table 1

To obtain p values in Table 1 we have assumed (a) normality of samples means and (b) \(\chi ^2\) for sample variances. Note that these assumptions are sufficient to perform the t-test. Here, we verify these assumptions empirically.
To verify these assumptions, using bootstrap technique, we generate several samples of size 30. On these subsamples, sample means and variances are computed. Then using probability plots we empirically verify the distribution to be normal and \(\chi ^2\) respectively. Figure 14 show the probability plots and the \(R^2\) values for various quantitites.
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