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Abstract
We study the one-dimensional version of the Rudin–Osher–Fatemi (ROF) denoisingmodel and some related TV-minimization
problems. A new proof of the equivalence between the ROF model and the so-called taut string algorithm is presented, and a
fundamental estimate on the denoised signal in terms of the corrupted signal is derived. Based on duality and the projection
theorem in Hilbert space, the proof of the taut string interpretation is strictly elementary with the existence and uniqueness
of solutions (in the continuous setting) to both models following as by-products. The standard convergence properties of
the denoised signal, as the regularizing parameter tends to zero, are recalled and efficient proofs provided. The taut string
interpretation plays an essential role in the proof of the fundamental estimate. This estimate implies, among other things,
the strong convergence (in the space of functions of bounded variation) of the denoised signal to the corrupted signal as the
regularization parameter vanishes. It can also be used to prove semi-group properties of the denoising model. Finally, it is
indicated how the methods developed can be applied to related problems such as the fused lasso model, isotonic regression
and signal restoration with higher-order total variation regularization.

Keywords Total variation minimization · Taut string · Regression splines · Lewy–Stampacchia inequality · Denoising
semi-group · Fused Lasso · Isotonic regression · Higher-order total variation

1 Introduction

More than 25 years have passed since Leonid Rudin, Stanley
Osher and Emad Fatemi proposed their classical model for
edge-preserving denoising of images [37]. Given an image
corrupted with zero-mean Gaussian noise. If this image is
modelled as a function f : Ω → R, where Ω is a bounded,
piecewise smooth domain in the plane, then the original
Rudin–Osher–Fatemi (ROF) model proposes to recover the
clean image as the function u0 : Ω → R which solves the
following constrained minimization problem:

min
∫

Ω

|∇u(x)| dx subject to
∫

Ω

u dx =
∫

Ω

f dx and
∫

Ω

(u − f )2 dx = σ 2.
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Here, the expression
∫
Ω

|∇u(x)| dx represents the total vari-
ation in the function u. (The set of functions for which the
total variation is finite is denoted BV(Ω).) The linear con-
straint models that the noise has zeromean, and the quadratic
constraint, that it has variance σ 2. In practice, one studies
the Lagrange formulation of this problem and minimizes the
functional

λ

∫
Ω

|∇u| dx + 1

2

∫
Ω

(u − f )2 dx

over functions u ∈ BV(Ω). The linear constraint is then
automatically satisfied (see Sect. 4), and it was shown early
on, by Chambolle and Lions [19], that there exists a positive
value for the Lagrange multiplier λ such that the quadratic
constraint is satisfied as well. (It is convenient to place the
Lagrange multiplier in front of the objective function instead
of in front of the constraint.)

The present paper will carry out a thorough analysis of
the one-dimensional ROFmodel: we takeΩ to be a bounded
interval I = (a, b) and let f ∈ L2(I ) denote a given (noisy)
signal. To this signal, we associate the (ROF) functional
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Eλ(u) = λ

∫ b

a
|u′(x)| dx + 1

2

∫ b

a
( f (x) − u(x))2 dx ,

where λ > 0 is a parameter, and define the denoised signal as
the function uλ ∈ BV(I ) which minimizes this energy, i.e.

uλ := arg min
u∈BV(I )

Eλ(u) . (1)

Precise definitions of the total variation and the space BV(I )
will be given in Sects. 2 and 3.

We are going to compare the one-dimensional ROFmodel
to the taut string algorithm, which is an alternative method
for denoising of signals with applications in statistics, non-
parametric estimation, real-time communication systems and
stochastic analysis. In the continuous setting, for analogue
signals, the taut string algorithm can be stated in the follow-
ing manner (cf. Fig. 1):

The Taut String Algorithm

Input: A bounded interval I = (a, b), a (noisy) signal
f ∈ L2(I ) and a parameter λ > 0.

Output: The denoised signal fλ ∈ L2(I ).

Step 1. Compute the cumulative signal,

F(x) =
∫ x

a
f (t) dt , x ∈ I = [a, b].

Step 2. Set

Tλ =
{
W ∈ H1(I ) : W (a) = F(a), W (b) = F(b),

and F − λ ≤ W ≤ F + λ
}

.

(The set of L2-functions with weak derivatives in L2 and
graphs lying within a tube around F of width λ.)

Step 3. Compute the unique minimizer Wλ ∈ Tλ of the
shortest path problem

min
W∈Tλ

L(W ) :=
∫ b

a

√
1 + W ′(x)2 dx (2)

(Wλ is the ‘Taut string’ in the name of the algorithm.)

Step 4. Set fλ = W ′
λ (distributional derivative.)

End.

The taut string algorithm has been extensively studied in
the discrete setting byMammenanddeGeer aswell asDavies
and Kovacs [20,29] and Dumgen and Kovacs [21]. Recently,
using the highly developed methods of real interpolation

theory (Peetre’s K -functional and the notion of invariant
K -minimal sets, etc.), Niyobuhingiro [31] has investigated
the ROF model in the discrete case and Setterqvist [40]
has probed the limits to which taut string methods may be
extended.

The taut string algorithm instructs us tominimize the curve
length functional L(W ) in (2) among all functionsW whose
graphs are curves through the points (a, F(a)) and (b, F(b))
and which lies within the tube Tλ. The name of the algorithm
derives from this shortest path problem. It turns out that one
may just as well minimize the energy associated with an
elastic rubber band satisfying the same boundary conditions
and the same constraints:

min
W∈Tλ

E(W ) := 1

2

∫ b

a
W ′(x)2 dx , (3)

That the new problem (3) has the same solution (Wλ) as (2)
is the content of the following interesting lemma:

Lemma 1 Let H : R → R be a convex C1-function and set

LH (W ) =
∫
I
H(W ′(x)) dx .

If W∗ := arg minW∈Tλ
E(W ), then W∗ is also a solution to

the minimization problem minW∈Tλ LH (W ). Moreover, if H
is strictly convex then W∗ is the unique minimizer in Tλ of
LH .

If we take H(s) = (1 + s2)1/2, it follows that (2) and (3)
have precisely the same minimizer in Tλ, namely Wλ. While
this statement seems intuitively clear from our everyday
experience with rubber bands and strings, the mathematical
assertion is not equally self-evident. A proof is consequently
offered in “Appendix A”.

The paper, which is a considerably modified and enlarged
version of the author’s preprint [32] and subsequent confer-
ence paper [33], has twomain purposes. The first is to present
a new, elementary proof of the following remarkable result:

Theorem 1 The taut string algorithm and the ROF model
yield the same solution; fλ = uλ.

This is not new—a discrete version of this theorem was
proved in [20,29]. In the continuous setting, the equivalence
result was explicitly stated and proved by Grassmair [24].
There is also an extensive treatment in [39, Ch. 4]. Indeed,
a few years earlier, Hintermüller and Kunisch [26, p.7], in
a brief (but inconclusive) remark, refer to the close relation
between the one-dimensional ROF model and the taut string
algorithm. The new proof is given in Sect. 5 after the basic
existence theory for the ROF model has been developed.

The second main purpose of the paper is to prove the
following “fundamental” estimate on the denoised signal (see
Sect. 8):
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(a) (b)

(c) (d)

Fig. 1 Graphical illustrations of the steps in the taut string algorithm applied to a piecewise constant signal

Theorem 2 If the signal f belongs to BV(I ), then for any
λ > 0, the denoised signal uλ satisfies the inequality

− ( f ′)− ≤ u′
λ ≤ ( f ′)+ , (4)

where ( f ′)+ and ( f ′)− denote the positive and the negative
variations, respectively, of f ′ (distributional derivative).

Here, f ′, as well as the derivative u′
λ, is computed in

the distributional sense and is, in general, a signed measure.
Recall that ( f ′)+ and ( f ′)− are finite positive measures sat-
isfying f ′ = ( f ′)+ − ( f ′)−, see, e.g. [38, Sect. 6.6]. As an
example, the reader may compute the derivatives of f and
uλ = fλ shown in Fig. 1d. Theorem 2 immediately implies
the “edge-preserving” property of the one-dimensional ROF
model: the solution uλ can only have a “jump” at points
where the data f has a jump, a qualitative result which holds
even in the multidimensional case, as proved by Caselles et
al. [16]. In the one-dimensional case, we obtain, in addition,
a quantification of these jumps; they have the same sign as
and are dominated by the jumps in the data. This assertion
is embodied in the estimate (4) which does not carry over
to higher dimensions. The proof of Theorem 2 is based on
(an extension to bilateral obstacle problems of) the classic
Lewy–Stampacchia inequality [28] and uses the taut string

interpretation (Theorem 1) in an essential way. The proof of
Theorem 2 and its implications are given in Sect. 8.

Our Theorem 2 turns out to be a special case of an estimate
proved in Briani et al. [14, Lemmas 3, 4] and is related to a
result (Lemmas 2, 3) in Bonfore and Figalli [11, p. 4459].
Both papers study the gradient flows associated with certain
one-homogeneous functionals. In [14], it is functionals of the
form

∫
Ω

| div w| dx for vector fieldsw defined onΩ , and the
paper was not directly concerned with the ROF model. The
relevance of these papers was first pointed out the author
after the publication of [33]. Moreover, our method of proof
differs from those in [11,14] and we use Theorem 2 to derive
the number of fundamental properties of the one-dimensional
ROF model.

Perhaps, themost significant consequence of Theorem2 is
that for any in-signal f belonging to BV(I ), we get uλ → f
strongly in BV(I ) as λ → 0+, in particular we show that∫ | f ′−u′

λ| dx → 0 as λ → 0+, see Proposition 8. The usual
Moreau–Yosida approximation result, see, for example, [2,
Ch. 17], only contains the weaker assertion that uλ → f in
L2(I ) and

∫
I |u′

λ| dx → ∫
I | f ′| dx as λ tends to zero.

The literature on the ROFmodel is extensive, andmany of
the results about the one-dimensional case are often scattered
throughout research articles and monographs as examples
illustrating the more general multidimensional theory that is
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their real focus. This sometimes makes these results hard to
find and, once found, these examples may be hard to follow
as they rest on the general theoretical framework already
developed up to that point in the text. Newcomers to the
field as well as more application-oriented researchers would
probably welcome an introduction to the topic which could
give an overview of the theory of the one-dimensional ROF
model, on the one hand, and introduce him to some of the
ideas which is used in the analysis of the general case.

The present paper may be seen as such an overview.
Here, the theory is developed from scratch and known
properties of the ROF model are collected in one place
and given efficient proofs within a unified framework.
The style is expository and is considered to be accessi-
ble to anyone who wants to learn about total variation
techniques—a little bit of measure theory, knowledge of
basic functional analysis and of Sobolev spaces in one
dimension are the only prerequisites needed to follow
the text. In fact, once the total variation of a function
has been properly defined, it turns out that the theory of
the ROF model in one dimension hinges on little more
than the projection theorem (onto closed convex sets) and
completion by squares. As we shall see, this elementary
setting allows us to introduce and highlight, in a con-
crete setting, some of the interesting phenomena which
occur in the analysis of more general convex variational
problems.

Some of the known results, apart from Theorems 1 and
2, for which new proofs have been supplied are: (i) Propo-
sitions 4 where some basic properties of the ROF model
are re-derived, and (ii) Propositions 6 and 5, where some
precise results on the rate of convergence uλ → f , and
of the value function Eλ(uλ), are given as λ tends to
zero—collecting all such result in one place! (iii) More-
over, a new and slick proof of the fact that uλ is a
semi-group with respect to λ is given (Proposition 10),
and we also derive the infinitesimal generator of this semi-
group. (iv) Finally, we indicated how our method can be
modified prove the “lower convex envelope” interpreta-
tion of the solution to the isotonic regression problem,
Sect. 11.

Some entirely new results have also emerged: Proposi-
tion 8, which asserts that uλ → f in BV(I ) as λ → 0+
whenever f ∈ BV(I ) is new. The author also believes that
the statement in part 2 of Proposition 9 is new and likewise
is its consequence in Corollary 2. The explicit solution to the
ROFmodel given in Example 5 also seems to appear here for
the first time. And, at least in the context of the ROF model,
the improved convergence rate proved in Proposition 6 seems
to have gone unnoticed until now. Moreover, Proposition 3
gives an improvement to a known “gap” estimate found in
[44]. Finally, our treatment of the fused lasso model in the
continuous setting in Sect. 10 seems to be the first of its kind.

2 Our Analysis Toolbox

Throughout this paper, I denotes an open, bounded interval
(a, b), where a < b are real numbers and Ī = [a, b] is the
corresponding closed interval.

C1
0(I ) denotes the space of continuously differentiable

(test) functions ξ : I → R with compact support in I , and
C( Ī ) is the space of continuous functions on the closure of
I .

For 1 ≤ p ≤ ∞, L p(I ) denotes the Lebesgue space
of measurable functions f : I → R with finite p-norm;
‖ f ‖p := ( ∫ b

a | f (x)|p dx)1/p < ∞, when p is finite, and
‖ f ‖∞ = ess supx∈I | f (x)| < ∞ when p = ∞. The space
L2(I ) is a Hilbert space with the inner product 〈 f , g〉 =
〈 f , g〉L2(I ) := ∫ b

a f (x)g(x) dx and the corresponding norm
‖ f ‖ := (〈 f , f 〉L2(I ))

1/2 = ‖ f ‖2.
We are going to need the Sobolev spaces over L2:

H1(I ) = {
u ∈ L2(I ) : u′ ∈ L2(I )

}
,

where u′ denotes the distributional derivative of u. This
is a Hilbert space when equipped with the inner product
〈u, v〉H1 := 〈u, v〉 + 〈u′, v′〉 and the corresponding norm
‖u‖H1 = (‖u′‖22 + ‖u‖22)1/2. Any u ∈ H1(I ) can, after cor-
rection on a set of measure zero, be identified with a unique
function in C( Ī ). In particular, a unique value u(x) can be
assigned to u for every x ∈ Ī .

The following subspace of H1(I ) plays an important role
in our analysis:

H1
0 (I ) = {

u ∈ H1(I ) : u(a) = 0 and u(b) = 0
}

.

Here, 〈u, v〉H1
0 (I ) := ∫ b

a u′(x)v′(x) dx defines an inner prod-
uct on H1

0 (I ) whose induced norm

‖u‖H1
0 (I ) = ‖u′‖2

is equivalent to the norm inherited from H1(I ) (by the
Poincaré inequality).

Finally, let H be a (general) real Hilbert space with inner
product between u, v ∈ H denoted by 〈u, v〉 and the cor-
responding norm ‖u‖ = √〈u, u〉. The following result is
standard [13, Théorème V.2]:

Proposition 1 (Projection Theorem) Let K ⊂ H be a non-
empty closed convex set. Then, for every z ∈ H there exists
a unique point x∗ ∈ K such that

‖z − x∗‖ = min
x∈K ‖z − x‖.

Moreover, the minimizer x∗ is characterized by the following
property:
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x∗ ∈ K and 〈z − x∗, x − x∗〉 ≤ 0, for all x ∈ K . (5)

The point x∗ is called the projection of z onto K and is
denoted x∗ = PrK (z).

Recall that the projection onto a set K is a non-expansive
mapping:

‖PrK (y) − PrK (x)‖ ≤ ‖y − x‖ (6)

for all x, y ∈ H . We also need the nonlinear mapping Sr K :
H → H defined as the residual after projection onto K ;

Sr K (z) := z − PrK (z), (z ∈ H). (7)

This is called the shrinkage mapping associated with PrK ,
and it is also non-expansive,

‖Sr K (y) − Sr K (x)‖ ≤ ‖y − x‖ (8)

for all x, y ∈ H .
The two estimates (6) and (8) follow immediately from

the inequality,

‖PrK (y) − PrK (x)‖2
+ ‖Sr K (y) − Sr K (x)‖2 ≤ ‖y − x‖2 (9)

which is valid for all x, y ∈ H . To derive this inequality, take
u = PrK (y) − PrK (x) and v = Sr K (y) − Sr K (x) in the
parallelogram identity 2(‖u‖2 + ‖v‖2) = ‖u − v‖2 + ‖u +
v‖2. After the second term on the right-hand side has been
expanded and the resulting identity simplified, we obtain:

‖PrK (y) − PrK (x)‖2 + ‖Sr K (y) − Sr K (x)‖2
= ‖y−x‖2−2〈PrK (y)−PrK (x), Sr K (y) − Sr K (x)〉.

Now, (9) follows if it can be proved that

−〈PrK (y) − PrK (x), Sr K (y) − Sr K (x)〉 ≥ 0.

This follows from the characterization of the projection map
(Theorem 1) by first applying (5) to the projection of y taking
v = PrK (x) and then applying (5) to the projection of x
with v = PrK (y). If the resulting inequalities are added, the
above inequality follows. This proves (9).

Example 1 As an illustration, consider the existence and
uniqueness of a taut string as defined by (3). Assume, for
simplicity, that the cumulative signal F satisfies F(a) =
F(b) = 0. Then, Tλ is a closed convex subset of H1

0 (I )—
non-empty because F ∈ Tλ. Since ‖u‖H1

0 (I ) = ‖u′‖L2(I ),
we immediately see that (3) is equivalent to

min
W∈Tλ

‖z − W‖H1
0 (I ),

with z = 0 (the origin). It follows from the projection theo-
rem that there exists a unique solutionWλ = PrTλ(0) of this
minimization problem.

Example 2 An even simpler example is the following. The set
B := {u ∈ L2(I ) . ‖u‖∞ ≤ 1} is a closed convex subset of
L2(I ). For λ ≥ 0, let λB := {λu : u ∈ B}. The projection
of ϕ ∈ L2(I ) onto λB is given by truncation:

PrλB(ϕ) = Pr [−λ,λ] ◦ ϕ , (10)

where Pr [−λ,λ] : R → R is the function given by

Pr [−λ,λ](t) =
{
t if |t | ≤ λ ,

λ sign(t) otherwise.
(11)

This is, in fact, the projection in one dimension of t ∈ R
onto the closed interval [−λ, λ]. Since Pr [−λ,λ] ◦ ϕ clearly
belongs to λB, we only need to verify the condition 〈ϕ −
Pr [−λ,λ] ◦ ϕ , v − Pr [−λ,λ] ◦ ϕ〉 ≤ 0 for all v ∈ λB. Now,
this inequality follows from a simple calculation:

〈ϕ − Pr [−λ,λ] ◦ ϕ , v − Pr [−λ,λ] ◦ ϕ〉
=

∫
{ϕ≥λ}

(ϕ − λ)(v − λ) +
∫

{ϕ≤λ}
(ϕ + λ)(v + λ) ≤ 0

which holds because v ∈ λB implies −λ ≤ v(x) ≤ λ

for almost all x ∈ I . The “residual” ϕ − Pr
λĈ (ϕ) of

the projection is given by the formula Sr [−λ,λ] ◦ ϕ, where
Sr [−λ,λ] : R → R is the so-called soft threshold map or
shrinkage map defined by Sr [−λ,λ](t) = t− Pr [−λ,λ](t). We
shall meet both functions again in the sequel.

3 Precise Definition of the ROFModel

The expression
∫
I |u′| dx for the total variation makes sense

for u ∈ H1(I ) but is otherwise merely a convenient sym-
bol. A more general and precise definition is needed: one
which works when u′ does not exist in the classical sense.
The standard way to define the total variation is via duality:
For u ∈ L1(I ) set,

J (u) = sup
{ ∫ b

a
u(x)ξ ′(x) dx : ξ ∈ C1

0(I ), ‖ξ‖∞ ≤ 1
}
.

If J (u) < ∞, u is said to be a function of bounded
variation on I , and J (u) is called the total variation of
u (using the same notation as in [17,19]). The set of all
integrable functions on I of bounded variation is denoted
BV(I ), that is, BV(I ) = {

u ∈ L1(I ) : J (u) < ∞}
.

This becomes a Banach space when equipped with the norm
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‖u‖BV := J (u)+‖u‖L1 . Notice that, as already mentioned,
if u ∈ H1(I ) J (u) = ∫

I |u′| dx < ∞, so u ∈ BV(I ).
Let us illustrate how the definition works for a function

with a jump discontinuity:

Example 3 Let u(x) = sign(x) for x ∈ I = (−1, 1). For any
ξ ∈ C1

0(I ), satisfying |ξ(x)| ≤ 1 for all x ∈ I , we have

∫ 1

−1
u(x)ξ ′(x) dx

=
∫ 1

0
ξ ′(x) dx −

∫ 0

−1
ξ ′(x) dx = −2ξ(0) ≤ 2,

where equality holds for any admissible ξ which satisfies
ξ(0) = −1. So J (u) = 2 and u ∈ BV(I ), as predicted by
intuition. Here, the supremum is attained for many choices
of ξ . This is not always the case; if u(x) = x on I = (0, 1),
then J (u) = 1, but the supremum is not attained by any
admissible test function.

The following lemma shows that the definition of the total
variation J and the space BV(I ) can be moved to a Hilbert
space setting involving L2 and H1

0 .

Lemma 2 Every u ∈ BV(I ) belongs to L2(I ) and

J (u) = sup
ξ∈K

〈u, ξ ′〉L2(I ) , (12)

where K = { ξ ∈ H1
0 (I ) : ‖ξ‖∞ ≤ 1 }, which is a closed

and convex set in H1
0 (I ).

Proof If u ∈ BV(I ), then Sobolev’s lemma for functions of
bounded variation, see [2, p. 152], ensures that u ∈ L∞(I ).
This in turn implies u ∈ L2(I ) because I is bounded. The
(ordinary) Sobolev’s lemma asserts that H1

0 (I ) is continu-
ously embedded in L∞(I ). Since K is the inverse image
under the embedding map of the unit ball in L∞(I ), which
is both closed and convex, we draw the conclusion that K is
closed and convex in H1

0 .
It only remains to prove (12). Clearly, J (u) cannot exceed

the right-hand side because the set { ξ ∈ C1
0(I ) : ‖ξ‖∞ ≤

1 } is contained in K . Toverify that equality holds, it is enough
to prove the inequality

〈u, ξ ′〉L2(I ) ≤ J (u)‖ξ‖∞, for all ξ ∈ H1
0 (I ), (13)

as it implies that the right-hand side of (12) cannot exceed
J (u). To do this, we first notice that the inequality holds for
all ζ ∈ C1

0(I ). This follows by applying homogeneity to the
definition of J (u). Second, if ξ ∈ H1

0 (I ) we can use that
C1
0(I ) is dense in H1

0 (I ) and find functions ζn ∈ C1
0(I ) such

that ζn → ξ in H1
0 (I ) (and in L∞(I ) by the continuous

embedding). It follows that

〈u, ξ ′〉L2(I ) = lim
n→∞〈u, ζ ′

n〉L2(I )

≤ J (u) lim
n→∞ ‖ζn‖∞ = J (u)‖ξ‖∞,

which establishes (13) and the proof is complete. ��
The inequality (13) shows that ξ → 〈u, ξ ′〉 extends to a

continuous linear functional on C0(I ). Riesz’ representation
theorem (cf., e.g. [2, Thm. 1.54]) therefore implies that the
distributional derivative u′ of u ∈ BV(I ) is a signed (Radon)
measure μ on I , and that we may write

〈u, ξ ′〉L2(I ) =
∫
I
ξ dμ .

This will be useful later on.
We can now give the precise definition of the ROF model:

For any f ∈ L2(I ) and any real number λ > 0, the ROF
functional is the function Eλ : BV(I ) → R given by

Eλ(u) = λJ (u) + 1

2
‖ f − u‖2L2(I ) . (14)

Denoising according to the ROF model is the mapping
L2(I ) � f �→ uλ ∈ BV(I ) defined by (1). To emphasize the
role of the in-signal f , we sometimes write Eλ( f ; u) instead
of Eλ(u) and denote the corresponding ROF minimizer uλ

by the more elaborate uλ( f ). Well-posedness of the ROF
model is demonstrated in Sect. 5 after some simple observa-
tions about the symmetry properties of Eλ( f , ·) have been
presented in the next section.

4 Simple Symmetries of the ROF Functional

We begin with some simple observations. For any u ∈
BV(I ), the total variation functional J satisfies J (u + c) =
J (u) for all c ∈ R and J (cu) = cJ (u)whenever c > 0. This
implies the following formulas for the ROF functional:

Eλ( f ; u) = Eλ( f + c; u + c) , for c ∈ R, and

c2Eλ( f , u) = Ecλ(c f ; cu) , for c > 0.

When uλ denotes the minimizer of Eλ( f ; ·), the first of these
identities implies that theminimizer of the functional Eλ( f +
c; ·) is the function uλ + c. Likewise, if c > 0, the second
identity shows that the function cuλ/c minimizes Eλ(c f ; ·).
These symmetry properties (translation and scaling of the
dependent variable) can be expressed as

uλ( f + c) = uλ( f ) + c and (c ∈ R) (15)

uλ(c f ) = cuλ/c( f ), (c > 0.) (16)

We also have Eλ(− f ;−u) = Eλ( f ; u), so changing the
sign of the signal will just change the sign of the minimizer;
uλ(− f ) = −uλ( f ). For any integrable function f , let f I =
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|I |−1
∫
I f dx denote the mean value of f on the interval I .

The formula (15) with c = − f I becomes

uλ( f ) = uλ( f − f I ) + f I (17)

which shows that we may restrict ourselves to consider sig-
nals with zero mean, f I = 0. In fact, the following easily
verified identity

Eλ(u − uI ) = Eλ(u) − 1

2
‖uI ‖2

implies that the minimizer uλ of Eλ has zero mean. (For
general f , we have (uλ)I = f I which is seen by taking
mean values in (17).) Consequently, if f I = 0 it is enough
to minimize Eλ over functions u with zero mean.

5 Existence Theory for the ROFModel

The following theorem contains the key result for developing
the properties of the ROF model. It proves existence and
uniqueness of the ROF minimizer uλ for a general signal f
in L2 and gives a necessary and sufficient characterization
of this minimizer in terms of itself and a dual variable (ξλ

in the theorem). Throughout the analysis, we assume that f
has mean value zero in I = (a, b). This assumption, which
is strictly speaking not needed in order for the result to be
true, implies that the cumulative signal F(x) satisfies F(a) =
F(b) = 0, and hence, F ∈ H1

0 (I ), which will simplify the
exposition.

Theorem 3 We have the equality

min
u∈BV(I )

Eλ(u) = max
ξ∈K

1

2

{
‖ f ‖2L2(I ) − ‖ f − λξ ′‖2L2(I )

}
,

(18)

with the minimum achieved by a unique uλ ∈ BV(I ) and the
maximum achieved by a unique ξλ ∈ K. The two functions
are related by the identities

uλ = f − λξ ′
λ , (19a)

and

J (uλ) = 〈uλ, ξ
′
λ〉L2(I ) . (19b)

Moreover, if uλ �= 0, then ‖ξλ‖∞ = 1. Conversely, the con-
ditions (19a) and (19b) characterize the solution; if a pair of
functions ū ∈ BV(I ) and ξ̄ ∈ K satisfy ū = f − λξ̄ ′ and
J (ū) = 〈ū, ξ̄ ′〉L2(I ), then ū = uλ and ξ̄ = ξλ.

This result is an instance of the Fenchel–Rockafellar the-
orem, see, for example, Brezis [13, p. 11]. It is tailored with
our specific needs in mind and will be proved with our bare
hands using the projection theorem. (The general version
was used by Hintermüller and Kunisch [26] in their analy-
sis of the multidimensional ROF model with the “Manhattan
metric”.) In one of the first theoretical analyses of the ROF
model, Chambolle and Lions [19] proved the existence of a
minimizer (for a more general case) using the standard argu-
ment where a minimizing sequence is shown to converge
weakly to function which can be shown to be the desired
solution. The equality (18) has played an important role in
the development of numerical algorithms for total variation
minimization, either directly, as in Zhu et al. [44] or, more
indirectly, as in Chambolle [17].

Before the proof starts, let us remind the reader of the
following general fact: If M and N are arbitrary non-empty
sets and Φ : M × N → R is any real-valued function, then
the inequality

inf
x∈M sup

y∈N
Φ(x, y) ≥ sup

y∈N
inf
x∈M Φ(x, y) , (20)

is always true, as is easily checked. The use of inf’s and sup’s
is crucial, as neither the greatest lower bounds nor the least
upper bounds are necessarily attained.

Proof Since Eλ(u) = supξ∈Kλ〈u, ξ ′〉+ 1
2‖ f −u‖2, it follows

from (20) that

inf
u∈BV(I )

Eλ(u) ≥ sup
ξ∈K

{
inf

u∈BV(I )
λ〈u, ξ ′〉 + 1

2
‖u − f ‖2

}
.

We first solve, for ξ ∈ K fixed, the minimization problem
on the right-hand side. Expanding ‖ f − u‖2 and completing
squares with respect to u yields:

λ〈u, ξ ′〉 + 1

2
‖u − f ‖2

= 1

2

{
‖u − ( f − λξ ′)‖2 − ‖ f − λξ ′‖2 + ‖ f ‖2

}

The right-hand side is clearly minimized by the L2(I )-
function u = f − λξ ′ and

inf
u∈BV(I )

Eλ(u) ≥ sup
ξ∈K

1

2

{
‖ f ‖2 − ‖ f − λξ ′‖2

}
(21)

holds. The maximization problem on the right-hand side is
equivalent to

inf
ξ∈K ‖ f − λξ ′‖ = inf

ξ∈K ‖F ′ − λξ ′‖
= λ inf

ξ∈K ‖λ−1F − ξ‖H1
0 (I ) . (22)

123



Journal of Mathematical Imaging and Vision (2019) 61:1276–1300 1283

By Proposition 1, this problem has the unique solution
ξλ = PK (λ−1F) ∈ K , so the supremum is attained in (21).
Now, let the function uλ be defined by (19a) in the theorem.
A priori, uλ belongs to L2(I ), but we are going to show that
uλ ∈ BV(I ): the characterization of ξλ according in the pro-
jection theorem states that ξλ ∈ K and 〈 f −λξ ′

λ, λξ ′−λξ ′
λ〉 ≤

0 for all ξ ∈ K . If we use the definition of uλ and divide by
λ > 0, this characterization becomes

〈uλ, ξ
′〉 ≤ 〈uλ, ξ

′
λ〉 for all ξ ∈ K ,

where the right-hand side is finite. It follows from the defi-
nition of the total variation that uλ ∈ BV(I ) with J (uλ) =
〈uλ, ξ

′
λ〉, as asserted in the theorem. (This reasoning can be

reversed; if (19b) is true, then ξλ is the minimizer in (22).)
Also, if uλ �= 0 then ‖ξλ‖∞ < 1 is not consistent with
the maximizing property (19b), and hence, ‖ξλ‖∞ = 1, as
claimed.

It remains to be verified that uλ minimizes Eλ and that
equality holds in (21). This follows from a direct calculation:

inf
u∈BV(I )

Eλ(u) ≥ max
ξ∈K

1

2

{
‖ f ‖2 − ‖ f − λξ ′‖2

}

= 1

2
‖ f ‖2 − 1

2
‖uλ‖2

= 1

2
‖ f ‖2 + 1

2
‖uλ‖2 − ‖uλ‖2

= 1

2
‖ f ‖2 + 1

2
‖uλ‖2 − 〈uλ, f − λξ ′

λ〉

= 1

2
‖ f − uλ‖2 + 〈uλ, λξλ〉

= 1

2
‖ f − uλ‖2 + λJ (uλ)

= Eλ(uλ) .

So inf Eλ(u) = Eλ(uλ), the infimum is attained, and equality
holds in (21). The inequality Eλ(u) − Eλ(uλ) ≥ 1

2‖u −
uλ‖2 implies the uniqueness of uλ. The converse statement
is proved by backtracking the steps of the above proof. ��

The equivalence of the two denoising models can now be
established:

Proof of Theorem 1 It follows from Theorem 3 that the min-
imizer uλ of the ROF functional is given by uλ = f − λξ ′

λ

where ξλ is the unique solution of

min
ξ∈K

1

2
‖ f − λξ ′‖2L2(I ) . (23)

If we introduce the new variable W := F − λξ , where F ∈
H1
0 (I ) is the cumulative signal, then W ∈ H1

0 (I ) and the
condition ‖ξ‖∞ ≤ 1 implies that W satisfies F(x) − λ ≤
W (x) ≤ F(x) + λ on I . Therefore, (23) is equivalent to

min
W∈Tλ

1

2
‖W ′‖2L2(I ) ,

which is the minimization problem in step 3 of the taut string
algorithm whose solution is denoted by Wλ. It follows that
Wλ = F − λξλ and differentiation yields fλ = W ′

λ = f −
λξ ′

λ = uλ, the desired result. ��

Our proof of Theorem 1 is essentially a change of vari-
ables and, as such, becomes almost a “derivation” of the taut
string interpretation. We also get the existence and unique-
ness of solutions to both models in one stroke. The proof
given in [24] first shows that uλ and W ′

λ satisfy the same set
of three necessary conditions, and that these conditions admit
at most one solution. Then, it proceeds to drive home the
point by establishing existence separately for both models.
The argument assumes f ∈ L∞ and involves a fair amount of
measure-theoretic considerations. The proof of equivalence
given in [39] is based on a thorough functional analytic study
of Meyer’s G-norm and is not elementary.

The last two proofs contain the following useful observa-
tions:

Corollary 1 The optimal dual variable ξλ is given by projec-
tion in H1

0 (I ) onto K ,

ξλ = PrK (λ−1F) ,

and the taut string Wλ by the shrinkage map,

Wλ = SrλK (F) = λSr K (λ−1F) ,

where F ∈ H1
0 (I ) is the cumulative signal and λ > 0.

Denoising according to the ROFmodel is amapping f �→
uλ( f ) which is contractive and continuous with respect to
λ > 0:

Proposition 2 (a) For signals f , f̄ ∈ L2(I ), we have

‖uλ( f̄ ) − uλ( f )‖L2(I ) ≤ ‖ f̄ − f ‖L2(I ).

(b) For any f ∈ L2(I ),

‖uλ( f ) − uν( f )‖L2(I ) ≤ 2|λ − ν|
max(λ, ν)

‖ f ‖L2(I )

for all λ, ν > 0,

The first assertion of the proposition is awell-known prop-
erty of theMoreau–Yosida approximation (or of the proximal
map), see [6, Theorem 17.2.1]. Both assertions are easy con-
sequences of the corollary.
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Proof (a) We apply the taut string interpretation. Let F and
F̄ be the cumulative signals corresponding to f and f̄ ,
and let Wλ and W̄λ be the associated taut strings. The non-
expansiveness of the shrinkage map (8) yields

‖uλ( f̄ ) − uλ( f )‖L2(I ) ≤ ‖W̄λ − Wλ‖H1
0 (I )

= ‖SrλK (F̄) − SrλK (F)‖H1
0 (I )

≤ ‖F̄ − F‖H1
0 (I )

= ‖ f̄ − f ‖L2(I ) ,

which is the desired estimate.
(b) This time, we use the non-expansiveness of the pro-

jection map to obtain a bound on the difference:

‖uλ − uν‖L2(I ) = ‖λξ ′
λ − νξ ′

ν‖L2(I )

= ‖λξλ − νξν‖H1
0 (I )

= ‖λPrK (λ−1F) − νPrK (ν−1F)‖H1
0 (I )

≤ ‖λPrK (λ−1F) − λPrK (ν−1F)‖H1
0

+ ‖λPrK (ν−1F) − νPrK (ν−1F)‖H1
0

≤ λ‖λ−1F − ν−1F‖H1
0

+ ν−1|λ − ν| ‖F‖H1
0

≤ 2
|λ − ν|

ν
‖ f ‖L2(I ) .

Here, it was used that ‖PrK (F)‖H1
0 (I ) ≤ ‖F‖H1

0 (I ). This
follows from the non-expansiveness of the projection since
PrK (0) = 0. If the roles of λ and ν are interchanged, then
we get another bound,

‖uλ − uν‖L2(I ) ≤ 2
|λ − ν|

λ
‖ f ‖L2(I ) .

Taking the smaller of the two gives the desired result. ��
It is an interesting observation that Theorem 3 associates

a unique test function (or dual variable), ξλ ∈ K , with the
solution uλ of the ROFmodel, namely the onewhich satisfies
J (uλ) = 〈uλ, ξ

′
λ〉L2 . In particular, as demonstrated in Exam-

ple 3, because there are functions u for which the supremum
in the definition of J(u) is not attained. An explicit example
of a ROF minimizer looks as follows:

Example 4 Consider the step function on I = (−1, 1),

f (x) = sign(x) , x ∈ I .

An easy calculation, based on the taut string interpretation,
shows that

uλ = (1 − λ)+ sign(x) and ξλ = |x | − 1

max(1, λ)
∈ H1

0 (I ).

In fact, the cumulative signal is F(x) = |x | − 1 and, in
the case when 0 < λ < 1, it is easy to check that Wλ(x) =
(1−λ)F(x). It follows from the taut string interpretation that
uλ = W ′

λ and ξλ can then be computed from (19a). Notice
that the dual variable ξλ is not in C1

0(I ), so the extension
of the space of test functions from C1

0 to H1
0 is essential to

our theory. For λ ≥ 1, we find uλ = 0 (draw a picture) and
ξλ = λ−1F(x). Note that ‖ξλ‖∞ = 1 when uλ �= 0.

This example was considered in Strong and Chan [42], one
of the very first papers treating explicit solutions to the ROF
model. At the time, they did neither have access to the the
duality formulation of the ROFmodel nor its taut string inter-
pretation, and their solution consequently goes over several
pages.

Another observation is the following: if we derive the
Euler–Lagrange equation for the ROF functional Eλ(u) =
λ

∫
I |u′| + (1/2)

∫
I ( f − u)2 in a purely formal manner, we

get

−λ
d

dx

( u′

|u′|
)

= f − u.

Themeaning of the nonlinear differential operator on the left-
hand side of this equation is unclear as it stands. However,
we know from (19a) in Theorem 3 that the minimizer uλ

satisfies uλ = f − λξ ′
λ, which, if compared to the formal

Euler–Lagrange equation above, leads to the interpretion,

− d

dx

( u′
λ

|u′
λ|

)
= ξ ′

λ (24)

by homogeneity. In Example 4, we found that the ROF mini-
mizerwas proportional to the signal f , namelyuλ = (1−λ) f
for 0 < λ < 1. Therefore,

− d

dx

( u′
λ

|u′
λ|

)
= − d

dx

( f ′

| f ′|
)
.

On the other hand, ξ ′
λ = min(1, λ−1) f = f which combined

with the above equation and (24) yields

− d

dx

( f ′

| f ′|
)

= f , (25)

that is, f is an eigenfunction of the nonlinear operator
u �→ (d/dx)(u′/|u′|). Eigenfunctions of this sort have been
extensively studied in the two-dimensional setting in Bel-
lettini et al. [9]. There it was shown that if f is any such
eigenfunction, then uλ = (1 − λ)+ f minimizes the two-
dimensional ROF functional with regularization weight λ

(see also [1,8]).
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6 Certifying the Quality of Approximate
Solutions

If we define the functional

Lλ(ξ) = 1

2

{‖ f ‖2 − ‖ f − λξ ′‖2}, (26)

then Theorem 3 states that Eλ(u) ≥ Lλ(ξ) holds for all u ∈
BV(I ) and all ξ ∈ K , and that we have equality if and only
if u = uλ and ξ = ξλ. In this section, we ask ourselves the
followingquestion: suppose (u, ξ) is an approximate solution
in the sense that Eλ(u) is only slightly bigger than Lλ(ξ),
does it follow that (u, ξ) is a good approximation to the ROF
minimizer in the sense that u is close to uλ and ξ close to ξλ

in their respective functional spaces?
To investigate this question, we follow Zhu et al. [44] and

introduce the “gap function”

gap(u, ξ) := Eλ(u) − Lλ(ξ)

= λJ (u) + 1

2
‖ f − u‖2L2(Ω)

+ 1

2
‖ f − λξ ′‖2L2(Ω)

− 1

2
‖ f ‖2L2(Ω)

, (27)

where u ∈ BV(I ) and ξ ∈ K . Using this “gap function”, we
can prove the following refined version of an estimate found
in [44]:

Proposition 3 For all u ∈ BV(Ω) and ξ ∈ K, the following
estimate holds

gap(u, ξ) ≥ 1

2
‖u − uλ‖2L2(Ω)

+ 1

2
‖λξ ′ − λξ ′

λ‖2L2(Ω)
,

where uλ and ξλ are the solution of the ROF problem and its
dual.

If we assume that the function u and the dual variable
ξ satisfy the relation u = f − λξ ′, as is the case in many
numerical algorithms for TV-minimization, then we get the
following estimate as a corollary of the above proposition:

gap(u, ξ) ≥ ‖u − uλ‖2 . (28)

This is the actual result stated in [44].

Proof We first introduce any ROF solution pair uλ, ξλ into
the definition of the duality gap and expand:

gap(u, ξ) := λJ (u) + 1

2
‖ f − uλ + uλ − u‖2

+ 1

2
‖ f − λξ ′

λ + λξ ′
λ − λξ ′‖2 − 1

2
‖ f ‖2

= λJ (u) − 〈u, λξ ′
λ〉 + 〈uλ, λξ ′

λ〉

+ 〈uλ, λξ ′
λ − λξ ′〉

+ 1

2
‖ f − uλ‖2 + 1

2
‖ f − λξ ′

λ‖2 − 1

2
‖ f ‖2

+ 1

2
‖u − uλ‖2 + 1

2
‖λξ ′ − λξ ′

λ‖2

≥ 1

2
‖ f − uλ‖2 + 〈uλ, λξ ′

λ〉 + 1

2
‖ f − uλ‖2

− 1

2
‖ f ‖2 + 1

2
‖u − uλ‖2 + 1

2
‖λξ ′ − λξ ′

λ‖2

= 1

2
‖u − uλ‖2 + 1

2
‖λξ ′ − λξ ′

λ‖2 ,

and the proof is complete. ��

7 Consequences of Theorem 3 and the Taut
String Interpretation

We now prove some known, and some new, properties of the
ROF model.

The taut string algorithm suggests thatWλ = 0, and there-
fore, uλ = 0, when λ is sufficiently large, and that Wλ must
touch the sides F ± λ of the tube Tλ when λ is small. These
assertions can be made precise:

Proposition 4 (a) The denoised signal uλ = 0 if and only if
λ ≥ ‖F‖∞, and

(b) if 0 < λ < ‖F‖∞ then ‖F − Wλ‖∞ = λ.
(c) ‖Wλ‖∞ = max(0, ‖F‖∞ − λ).

The results (a) and (b) arewell known, and proofs, valid in the
multidimensional case, can be found inMeyer’s treatise [30].
The natural estimate in (c) seems to be stated here for the first
time.Notice that themaximumnorm‖F‖∞ of the cumulative
signal F coincides, in one dimension, with the Meyer’s G-
norm ‖ f ‖∗ of the signal f . Theorem 3 and the taut string
interpretation of the ROF model allow us to give very short
and direct proofs of all three properties.

Proof (a) By Theorem 1, the denoised signal uλ is zero if and
only if the taut stringWλ is zero.We know thatWλ = F−λξλ

where, as seen from (22), ξλ is the projection in H1
0 (I ) of

λ−1F onto the closed convex set K . Therefore, uλ = 0 if
and only if λ−1F ∈ K , that is, if and only if ‖F‖∞ ≤ λ, as
claimed.

(b) If 0 < λ < ‖F‖∞, then uλ �= 0 hence ‖ξλ‖∞ = 1,
by Theorem 3. The assertion now follows by taking norms
in the identity λξλ = F − Wλ.

(c) The equality clearly holds when λ ≥ ‖F‖∞ because
Wλ = 0 by (a). When c := ‖F‖∞ − λ > 0, we use
a truncation argument: If W belongs to Tλ, then so does
Ŵ := min(c,W ), in particular c > 0 ensures that Ŵ (a) =
Ŵ (b) = 0. Since E(Ŵ ) ≤ E(W ), and Wλ is the (unique)
minimizer of E over Tλ, we conclude that maxI Wλ ≤ c.
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A similar argument gives −minI Wλ ≤ c. Thus, ‖Wλ‖∞ ≤
max(0, ‖F‖∞ −λ). The reverse inequality follows from (b).

��

As an application of the above result and of Theorem3,we
consider the following exactly solvable example which con-
firms the result of several numerical simulations and which
wouldmost likely be out of reach if one had used themethods
developed in [42]:

Example 5 On the interval, I = (0, 2π ] and for some posi-
tive integer, n define f (x) = cos(nx). If, for simplicity, we
change the setting a little and impose periodic boundary con-
ditions on the admissible functions u in Eλ(u), then we find
that

If λ ≥ 1/n, then uλ = 0 and for 0 < λ < 1/n, there
exists a number α = α(λ) such that 0 < α < 1 and the
denoised signal is given by truncation,

uλ = Pr [−α,α] ◦ f . (29)

Here, Pr [−α,α] : R → R denotes projection onto the closed
(convex) interval [−α, α]. The case with n = 3 is illustrated
in Fig. 2.

Let us first clarify what we mean by periodic boundary
conditions. It is the same as defining and minimizing the
ROF functional Eλ for functions defined on the unit circle T
rather than over an interval I . The theory developed earlier,
in particular Theorem 3, still holds if we replace H1

0 (I ) by
H1(T ) and define the closed convex set K accordingly.

First, notice that the cumulative function F(X) =∫ x
0 f (t) dt = n−1 sin(nx) satisfies ‖F‖∞ = 1/n so, by
Proposition 4, uλ = 0 if λ ≥ 1/n. Therefore, it is enough to
study the case when 0 < λ < 1/n. To deal with that case, we
set u∗ = Pr [−α,α] ◦ f and try to find a dual function ξ∗ ∈ K
such that the sufficient conditions for optimality (19a) and
(19b) hold for then u∗ = uλ by Theorem 3. It follows from
the first of these conditions that ξ∗ must be unique periodic
function which satisfies

ξ ′∗ = f − u∗
λ

,

whose mean value over I is zero. It remains to be verified
that ‖ξ∗‖∞ ≤ 1 and that the second of the two conditions
holds. We consider the latter first. It is easy to see that

J (u∗) = 4nα.

we consequently need to show that there exists a number
α between zero and one such that 〈u∗, ξ ′∗〉 = 4nα. Using
periodicity and symmetry of the functions u∗ and ξ ′∗, it is
easy to see that

〈u∗, ξ ′∗〉 = 2n
∫ a

−a
α
cos(nt) − α

λ
dt

where a in the limits of the integral is the smallest positive
number such that α = cos(na). We note that 0 < a < π/2n,
see Fig. 2. Evaluation of this integral leads to the following
condition on the number a, and therefore, on α:

sin(na) − na cos(na) = nλ (0 < a < π/2n). (30)

Since the function θ �→ sin θ − θ cos θ is strictly increasing
on the interval [0, π/2] with range [0, 1], it follows that Eq.
(30) has a unique solution aλ ∈ (0, π/2n). Thus, we have
shown that the condition (19b) holds if we take α = α(λ) =
cos(naλ). The proof will be complete if we can verify that
ξ∗ satisfies ‖ξ∗‖∞ ≤. But this essentially follows from the
work already done and the calculation, which holds for 0 ≤
x ≤ aλ:

0 ≤ ξ∗(x) =
∫ x

0
ξ ′∗(t) dt

=
∫ x

0

cos(nt) − cos(naλ)

λ
dt

≤
∫ aλ

0

cos(nt) − cos(naλ)

λ
dt

= sin(naλ) − naλ cos(naλ)

nλ
= 1 ,

since aλ is the solution of (30). Since the function is periodic,
it now easy to see that |ξ∗(x)| ≤ 1 on the entire interval I
and the verification is complete.

Fig. 2 In-signal
f (x) = cos(nx) with n = 3 and
the ROF minimizer uλ with
3λ = sin(π/3) −
(π/3) cos(π/3) = (3

√
3 − π)/6

and α(λ) = cos(π/3) = 1/2
superimposed
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We continue with some additional properties of the ROF
model. Define, for λ > 0, the value function

e(λ) := inf
u∈BV(I )

Eλ(u),

that is, e(λ) = Eλ(uλ). The next two theorems contain the
essentially well-known results.

Proposition 5 The function e : (0,+∞) → (0,+∞) is
non-decreasing and concave, hence continuous, and satisfies
e(λ) = ‖ f ‖2/2 for λ ≥ ‖F‖∞. Moreover, for f ∈ L2(I )

lim
λ→0+ e(λ) = 0.

and if f ∈ BV(I ) then e(λ) = O(λ) as λ → 0+.

Proof If λ2 ≥ λ1 > 0, then the inequality Eλ2(u) ≥ Eλ1(u)

holds trivially for all u. Taking infimum over the functions
in BV(I ) yields e(λ2) ≥ e(λ1), so e is non-decreasing.

For any u, the right-hand side of the inequality

e(λ) ≤ Eλ(u) = λJ (u) + 1

2
‖u − f ‖2 ,

is an affine and therefore a concave, function of λ. Because
the infimum of any family of concave functions is again con-
cave, it follows that e(λ) = infu∈BV(I ) Eλ(u) is concave.

For λ ≥ ‖F‖∞, we know from the previous theorem that
uλ = 0, so e(λ) = Eλ(0) = ‖ f ‖2/2.

To prove the assertion about e(λ) as λ tends to zero from
the right, we first assume that f ∈ BV(I ), in which case it
follows that 0 < e(λ) ≤ Eλ( f ) = λJ ( f ), so e(λ) = O(λ)

because J ( f ) < ∞.
If we merely have f ∈ L2(I ), an approximation argu-

ment is needed: For any ε > 0, take a function fε ∈
H1
0 (I ) such that ‖ f − fε‖2/2 < ε. Then fε ∈ BV(I )

and 0 ≤ e(λ) ≤ Eλ( fε) < λJ ( fε) + ε. It follows that
0 ≤ lim supλ→0+e(λ) < ε. Since ε is arbitrary, we get
limλ→0+ e(λ) = 0. ��

Themap f → uλ is in fact theMoreau–Fenchel resolvent
of the total variation functional J , see [6, Sect. 17.2.1], and
the following proposition is a therefore a special case of a
muchmoregeneral result from the theoryofMoreau–Fenchel
approximations. Notice, however, that the second part of our
proposition contains a refined quantification of the rate of
convergence of uλ to f as λ → 0 in that the common O(λ)

is replaced by o(λ). The latter is not easily located in the
literature.

Proposition 6 For any f ∈ L2(I ), we have uλ → f in L2

as λ → 0+. Moreover, if f ∈ BV(I ) then J (uλ) → J ( f )
and ‖uλ − f ‖L2(I ) = o(λ1/2) as λ → 0+.

Proof The obvious inequality ‖ f − uλ‖2/2 ≤ e(λ) and
the fact limλ→0+ e(λ) = 0, proved above, implies the first
assertion. When f ∈ BV(I ), it follows from the inequality
λJ (uλ) + 1

2‖uλ − f ‖2
L2(I )

= e(λ) ≤ Eλ( f ) = λJ ( f ) that

‖uλ − f ‖2L2(I ) ≤ 2λ(J ( f ) − J (uλ)) . (31)

Consequently, ‖uλ − f ‖2
L2(I )

= O(λ) and we also notice
that J (uλ) ≤ J ( f ) for all λ > 0. But we can do slightly
better than that. Since uλ → f in L2 as λ → 0+, we have

J ( f ) ≤ lim inf
λ→0+ J (uλ) ,

where the lower semi-continuity of the total variation J , cf.
[2, Prop. 3.6], was used. Since J (uλ) ≤ J ( f ), we also obtain
an estimate from below: lim supλ→0+ J (uλ) ≤ J ( f ). We
conclude that limλ→0+ J (uλ) = J ( f ). If this is used in (31),
we find that ‖uλ − f ‖2

L2(I )
= o(λ) as λ → 0+. ��

The next example shows that the convergence rate stated
in the proposition is optimal in the sense that the exponent
cannot be lowered.

Example 6 On the interval I = (0, 1) and with α > 1, let
the data be given by f (x) = αxα−1 for x ∈ I . Since f is
monotone, J ( f ) = limε→0+( f (1 − ε) − f (ε)) = α < ∞,
and hence, f ∈ BV(I ). Applying the taut string interpreta-
tion to the cumulative function is F(x) = xα shows that the
denoised signal uλ is constant near the interval end points
and coincides with f in between. In fact, near the left inter-
val end point we have uλ(x) = α(λ/(α − 1))(α−1)/α for
0 ≤ x ≤ (λ/(α − 1))1/α . It follows, by an easy computa-
tion, that for each choice of α there exists a positive constant
C = C(α) such that ‖ f −uλ‖2L2(I )

≥ Cλ2−1/α . This bounds
the rate of convergence from below.

The following result, mentioned in by Burger and Osher [15,
Sect. 5], shows that if the data f belong to the space of
functions with bounded variation and satisfy an additional
regularity condition, then the convergence rate for the limits
uλ → f and J (uλ) → J ( f ) as λ → 0+ can be improved
(considerably) to O(λ) .

Proposition 7 Suppose the data f ∈ BV(I ) satisfy J ( f ) =
〈ξ ′

0, f 〉 for some test function ξ0 ∈ K, then we have the
bounds

‖ f − uλ‖L2(I ) ≤ 2‖ξ ′
0‖L2(I ) · λ (32a)

and

0 < J ( f ) − J (uλ) ≤ 2‖ξ ′
0‖2L2(I ) · λ (32b)

for any λ > 0.
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The additional requirement on the data—the supremum
in J ( f ) = supξ∈K 〈ξ ′, f 〉 being attained for some ξ0—is an
instance of the so-called source condition. The source con-
dition for non-quadratic convex variational regularization of
inverse problems was identified in [15] and used to derive
convergence rates for the generalized Bregman distances.
The authors point out that the above result, which they write
in a slightly different way, may be proved along the same
lines as their other estimates. Here, we provide the details:

Proof Clearly, Eλ(uλ) ≤ Eλ( f ) implies the inequality

λJ (uλ) + 1

2
‖ f − uλ‖2 ≤ λJ ( f ).

Moreover, since J (uλ) ≥ 〈ξ ′
0, uλ〉, by the definition of the

total variation, we find that the extra assumption on the data
f gives yet an inequality:

J ( f ) − J (uλ) ≤ 〈ξ ′
0, f − uλ〉. (33)

If these two estimates are combined, together with the
Cauchy–Schwarz inequality, then we get

‖ f − uλ‖2 ≤ 2λ〈ξ ′
0, f − uλ〉 ≤ 2λ‖ξ ′

0‖ ‖ f − uλ‖ ,

which gives (32a). If we apply the Cauchy–Schwarz inequal-
ity once more, this time to the right-hand side of (33) and use
(32a) then (32b) follows. ��

8 Proof and Applications of Theorem 2

We begin with the proof of the fundamental estimate on the
derivative of the denoised signal:

Proof of Theorem 2 The estimate (4) is a consequence of an
extension of the original Lewy–Stampacchia inequality [28]
to bilateral obstacle problems. The bilateral obstacle prob-
lem, in the one-dimensional setting, is tominimize the energy
E(u) := 1

2

∫ b
a u′(x)2 dx in (3) over the closed convex set

C = {u ∈ H1
0 (I ) : φ(x) ≤ u(x) ≤ ψ(x) a.e. I }. The obsta-

cles are given by the functions φ,ψ ∈ H1(I ) which satisfy
the conditions φ < ψ on I , and φ < 0 < ψ on ∂ I = {a, b}.
The latter ensures that C is non-empty.

Suppose φ′ and ψ ′ are in BV(I ), such that φ′′ and ψ ′′ are
signed measures, then the solution u0 of the minimization
problem minu∈C E(u) satisfies the following inequality (as
measures)

− (φ′′)− ≤ u′′
0 ≤ (ψ ′′)+ . (34)

Here, the notation μ+ and μ− is used to denote the positive
and negative variations, respectively, of a signed measure

μ. The estimate in (34) is the extension of the Lewy–
Stampacchia inequality. We prove this result in “Appendix
B”. Our proof is based on an abstract argument, valid inmuch
more general settings, given in [23].

The assumption of our theorem that f ∈ BV(I ) implies
that F ′′ = f ′ is a signed measure. If we apply (34) with
φ = F − λ and ψ = F + λ, then we find that the taut string
Wλ satisfies

−(F ′′)− ≤ W ′′
λ ≤ (F ′′)+ .

The estimate (4) follows ifwe substitute the identities F ′ = f
and W ′

λ = uλ into the above inequality. ��
Having established Theorem 2, we are able to prove the

following result about the strong convergence inBV(I ) of the
ROF minimizer as the regularization parameter approaches
zero.

Proposition 8 If f ∈ BV(I ) then

J ( f − uλ) = J ( f ) − J (uλ). (35)

In particular, both J ( f − uλ) and ‖ f − uλ‖BV tend to zero
as λ → 0+.

Proof The measures ( f ′)+ and ( f ′)− are concentrated on
disjoint measurable sets (Hahn decomposition, see [38,
Sect. 6.14]), so Proposition 2 implies the pair of inequali-
ties, 0 ≤ (u′

λ)
+ ≤ ( f ′)+ and 0 ≤ (u′

λ)
− ≤ ( f ′)−. A direct

calculation, using the fact that J (v) = (v′)+(I ) + (v′)−(I )
for any function v ∈ BV(I ), yields

J ( f − uλ) = ( f ′ − u′
λ)

+(I ) + ( f ′ − u′
λ)

−(I )

= ( f ′)+(I ) − (u′
λ)

+(I ) + ( f ′)−(I ) − (u′
λ)

−(I )

= J ( f ) − J (uλ),

where the right-hand side tends to zero asλ → 0+, by Propo-
sition 6. ��

Theorem 2 also implies the first part of

Proposition 9 Suppose f is a piecewise constant function on
I . 1) The ROF minimizer uλ is again piecewise constant for
all λ > 0. 2) There exists a number λ̄ > 0 and a piecewise
linear function ξ̄ ∈ K such that ξλ = ξ̄ for all λ, 0 < λ ≤ λ̄.

Proof If f is piecewise constant, then there exists nodes
a = x0 < x1 < · · · < xN−1 < xN = b which partitions
the interval I = (a, b] into N subintervals Ii = (xi−1, xi ]
such that f equals the constant value fi ∈ R on Ii for
i = 1, . . . , N . The derivative of the signal becomes

f ′ =
N−1∑
i=1

biδxi (36)
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where bi = fi+1− fi for i = 1, . . . , N−1 and δx denotes the
Diracmeasure supported at x .Wemay assume that fi+1 �= fi
and therefore bi �= 0 for all i = 1, . . . , N − 1. From (36),
it follows that J ( f ) = ∑N−1

i=1 |bi | < ∞ so f belongs to
BV(I ) and Theorem 2 is applicable:

N−1∑
i=1

min{0, bi }δxi

= −( f ′)− ≤ u′
λ ≤ ( f ′)+

=
N−1∑
i=1

max{0, bi }δxi .

This estimate shows that there exists numbers ci (λ) such
that u′

λ = ∑N−1
i=1 ci (λ)δxi and that the ci (λ)’s satisfy 0 ≤

ci (λ) · b−1
i ≤ 1 for i = 1, . . . , N − 1. Since the derivative is

zero except at a finite set of points, we draw the conclusion
that uλ is piecewise constant function, as claimed. Observe
that the set of nodes of uλ is contained in the set of nodes
of f . (The latter is the “edge-preserving” property of the
one-dimensional ROF model.)

Theproof of the secondpart of the proposition is suggested
by the taut string interpretation of the ROF model: When the
parameter λ is sufficiently close to zero, the taut string will,
at each node of the signal f , meet either the upper obstacle
F + λ or the lower obstacle F − λ, and here. The idea of the
proof is to guess ξ̄ and set

ūλ = f − λξ̄ ′ , (37)

as required by (19a), and then verify the identity (19b). Then
Theorem 3 implies that ūλ = uλ and ξ̄ = ξλ, as claimed.

As ξ̄ we choose the continuous piecewise linear function
which is zero at the end points of the interval I and satisfies

ξ̄ (xi ) = − sign(bi ) , i = 1, . . . , N − 1 ,

and, as mentioned above, let ūλ be defined by (37). It is clear
that ‖ξ̄‖∞ ≤ 1 so that ξ̄ ∈ K . Our task is now to verify that
the pair ūλ, ξ̄ satisfies J (ūλ) = 〈ūλ, ξ̄ 〉. First, notice that

ū′
λ = f ′ − λξ̄ ′′ =

N−1∑
i=1

(bi − λdi )δxi ,

where we have used that ξ̄ is piecewise linear such that
ξ̄ ′′ exists and equals

∑N−1
i=1 diδxi for some real numbers

d1, . . . , dN−1 (which could in principle be computed from
the definition of ξ̄ and knowledge of where f ’s node is
located.) It is now clear that we may find a positive num-
ber λ̄ such that if 0 ≤ λ < λ̄ then each of the numbers
bi − λdi , used to represent ū′

λ, has the same sign as bi . (In
fact λ̄ = (max1≤i≤N−1(di/bi ))−1 works). For any λ smaller
than λ̄, we have

〈ūλ, ξ̄
′〉 = 〈−ū′

λ, ξ̄ 〉

=
N−1∑
i=1

−(bi − λdi )〈δxi , ξ̄ 〉

=
N−1∑
i=1

(bi − λdi ) sign(bi )

=
N−1∑
i=1

|bi − λdi | = J (ūλ)

as wanted, and the proof of the second part of the proposition
is complete. ��

The proposition implies the strongest approximation rate
imaginable:

Corollary 2 If f is a piecewise constant function, then ‖ f −
uλ‖L2(I ) = O(λ) and J ( f ) − J (uλ) = O(λ) as λ → 0+.

Proof Clearly, f ∈ BV(I ) so the result will follow from the
bounds in Proposition 7 provided J ( f ) = 〈ξ ′

0, f 〉 for some
ξ0 ∈ K . But this is a consequence of the result just proved:
ξλ = ξ̄ when λ is close to zero, hence

J ( f ) = lim
λ→0+ J (uλ) = lim

λ→0+〈uλ, ξ̄
′ 〉L2(I ) = 〈 f , ξ̄ ′ 〉L2(I ),

so we may take ξ0 = ξ̄ . ��

9 ROF Denoising as a Semi-Group

We now turn our attention to ROF denoising as the map
f �→ uλ and therefore need to adjust notation to incorporate
the dependence of uλ upon the signal f in a natural manner.
Therefore, for each λ ≥ 0, define a mapping Sλ : L2(I ) →
L2(I ) by setting, for any f ∈ L2(I ),

Sλ( f ) =
{
uλ if λ > 0, and

f when λ = 0.
(38)

Then {Sλ}λ≥0 is a family of nonlinear operators which we
claim has the following properties:

1. S0 = Id, the identity mapping on L2(I ).
2. For any f ∈ L2(I ), [0,+∞) � λ �→ Sλ( f ) ∈ L2(I ) is

continuous.
3. For any λ ≥ 0, Sλ is non-expansive;

‖Sλ( f2) − Sλ( f1)‖L2(I ) ≤ ‖ f2 − f1‖L2(I )

for all f1, f2 ∈ L2(I ).
4. Sλ ◦ Sν = Sλ+ν for all λ.ν ≥ 0
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Property 1) follows, of course, from the definition of Sλ

and reflects our intuition associated with the definition of uλ

in (1). This intuition is confirmed by Proposition 6 which
states that uλ → f in L2 as λ → 0+. This observation
together with part (b) of Proposition 2 implies the second
property in the above list. The third property is simply part
(a) of Proposition 2 rewritten in terms of Sλ. If the fourth and
last property can be proved, then the family {Sλ}λ≥0 satisfies
the axioms of a semi-group of nonlinear operators on the
Hilbert space L2(I ), see Barbu [7, Ch. III.1, p.98]. The last
property is the content of the following proposition:

Proposition 10 (Semi-group property) For f ∈ L2(I ), the
formula

Sλ(Sν( f )) = Sλ+ν( f ) (39)

holds for all λ, ν ≥ 0.

A proof of the semi-group property can be found in [39].
However, the fundamental estimate in Theorem 2 and the
characterization of the ROF minimizer in Theorem 3 allow
us to present short and very direct proof of this result.

Proof The assertion holds trivially if either λ or ν is equal
zero, so we may assume that λ,μ > 0. The idea of the proof
is to set

ū = Sν(uλ) = Sν(Sλ( f ))

and then show that there exists a dual variable ξ̄ ∈ K such
that

{
ū = f − (λ + μ)ξ̄ ′ and

J (ū) = 〈ū, ξ̄ ′〉. .

For then, the characterization of the ROF minimizer in The-
orem 3 implies that ū = Sλ+ν( f ) and (39) holds.

Since uλ and ū are both defined as ROF minimizers, they
satisfy the conditions (19a) and (19b) of Theorem 3. That
is, there exist uniquely determined functions ξλ and ξ̃ν in K
such that

{
uλ = f − λξ ′

λ ,

J (uλ) = 〈uλ, ξ
′
λ〉,

and

{
ū = uλ − νξ̃ ′

ν ,

J (ū) = 〈ū, ξ̃ ′
ν〉.

Here, the tilde in ξ̃ν signifies that we are dealing with the dual
variable in the denoising of uλ rather than of f .

If we set

ξ̄ = λξλ + νξ̃ν

λ + ν
,

then ξ̄ ∈ K because it is the convex combination of two
elements of K . Using the above characterizations of uλ and
ū, we find that

f − (λ + ν)ξ̄ ′ = ( f − λξ ′
λ) − νξ̃ ′

ν = uλ − νξ̃ ′
ν = ū ,

in other words ū and ξ̄ fulfil (19a), by construction. It remains
to verify that (19b) is holds as well. Since

〈ū, ξ̄ ′〉 = λ

λ + ν
〈ū, ξ ′

λ〉 + ν

λ + ν
〈ū, ξ̃ ′

ν〉

= λ

λ + ν
〈ū, ξ ′

λ〉 + ν

λ + ν
J (ū) ,

where we have used the characterization of ū stated above.
We see that (19b) follows if it can be shown that 〈ū, ξ ′

λ〉 =
J (ū). This follows from the identity in Proposition 8 applied
with uλ as in-signal:

J (ū) = J (uλ) − J (uλ − ū) .

In fact, since J (ū) ≥ 〈ū, ξ ′〉 for all ξ ∈ K , this identity
implies the inequality

J (ū) ≤ J (uλ) − 〈uλ − ū, ξ ′
λ〉

= J (uλ) − J (uλ) + 〈ū, ξ ′
λ〉

= 〈ū, ξ ′
λ〉

hence J (ū) = 〈ū, ξ ′
λ〉 and the proof is complete. ��

The last part of the proof yields

Corollary 3 If λ > 0 then J (uλ) = 〈uλ, ξ
′
ν〉L2(I ) for all ν,

0 < ν ≤ λ.

That is, the total variation of uλ can be computed by taking
inner product with any of the previous ξν’s.

We now know that ROF denoising defines a family of
nonlinear operators {Sλ}λ≥0 which forms a contractive semi-
groupunder composition. It is natural to seek the infinitesimal
generator of this semi-group.

The infinitesimal generator, should it exist, is given by the
right-hand derivative of Sλ( f ) at λ = 0:

lim
λ→0+

Sλ( f ) − f

λ
= lim

λ→0+
uλ − f

λ
= − lim

λ→0+ ξ ′
λ ,

where we have used (19a). If the limit limλ→0+ ξλ := ξ0
exists in H1(I ), then it follows that

d

dλ
Sλ( f )

∣∣
λ=0 = −ξ ′

0. (40)

So in order to determine the infinitesimal generator of the
semi-group, we first need to show that the limit ξ0 :=
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limλ→0+ ξλ exists for sufficiently many f ∈ BV(I ) and then
characterize ξ0 in terms of f alone. A first step in this char-
acterization is based on Lemma 3, where the notion of the
subgradient of a convex function is used.

We recall the definition of the subdifferential of a convex
functional, restricting ourselves to the Hilbert space case.
Let H be a real Hilbert space and Φ : H → (−∞,∞] a
lower semi-continuous convex functional defined in H such
that DomΦ := {x ∈ H : Φ(x) < ∞} is non-empty. Let
x0 ∈ DomΦ and suppose there is a vector y ∈ H such that
the following inequality holds

Φ(x) − Φ(x0) ≥ 〈y, x − x0〉 for all x ∈ DomΦ.

Then y is called a subgradient of Φ at x0. The set of all such
subgradients is called the subdifferential of Φ at x0 and is
denoted ∂Φ(x0). The map x �→ ∂Φ(x) is a set-valued oper-
ator. It is possible that ∂Φ(x0) = ∅. The map x �→ ∂Φ(x)
is monotone in the sense that if x, x0 are points satisfying
∂Φ(x) �= ∅ and ∂Φ(x0) �= ∅, then for any ξ ∈ ∂Φ(x) and
ξ0 ∈ ∂Φ(x0) we have 〈ξ − ξ0, x − x0〉 ≥ 0. This follows
immediately from the definition of the subgradient.

If we take H = L2(I ) and let Φ(u) = J (u) be the total
variation of u, thenDom J = BV(I ) andwe can characterize
the subdifferential ∂ J in the following manner:

Lemma 3 Let u0 ∈ Dom J then η ∈ ∂ J (u0) if and only if
there exists ξ0 ∈ K such that η = ξ ′

0 and J (u0) = 〈u0, ξ ′
0〉.

The total variation J is considered as a function on L2(I )
so η ∈ L2(I ). Example 3 in Sect. 3 shows that there are cases
where u0 ∈ Dom J but ∂ J (u0) = ∅. The lemma is the one-
dimensional instance of a more general multidimensional
result, seeAlter et al. [1,Lemma1, p. 335] aswell asBellettini
et al. [8]. For completeness of exposition, we provide a proof:

Proof Assume first that the equality J (u0) = 〈u0, ξ ′
0〉 holds

for some ξ0 ∈ H1
0 (I ) and let u ∈ BV(I ). By the definition of

the total variation, we have J (u) ≥ 〈u, ξ ′
0〉. Subtracting the

first identity from this inequality yields

J (u) − J (u0) ≥ 〈u − u0, ξ
′
0〉 , (41)

which is precisely the condition for ξ ′
0 ∈ ∂ J (u0).

Conversely, suppose η ∈ ∂ J (u0) such that the inequality
(41) holds for all u ∈ BV(I ). If we set ξ0(x) = ∫ x

a η(t) dt
then ξ0 ∈ H1 with η = ξ ′

0. Clearly, ξ0(a) = 0 so to conclude
that ξ0 ∈ H1

0 (I ) we need to show that ξ0(b) = 0. This, on
the other hand, follows if we can show that 〈η, 1〉 = 0. By
substituting u = u0 +1 into the definition of the subgradient
of J at u0, we get

0 = J (u) − J (u0) ≥ 〈η, u − u0〉 = 〈η, 1〉.

Similarly, if u = u0 − 1 we find the reverse inequality and
may conclude that 〈η, 1〉 = 0. Consequently, ξ0 ∈ H1

0 (I ).

Our next aim is to show that ξ0 belongs to K . For any
v ∈ BV(I ), we set u = u0+v. An application of the triangle
inequality for J and the inequality (41) implies

J (v) ≥ J (u0 + v) − J (u0) ≥ 〈v, ξ ′
0〉 .

Since this inequality holds for all v ∈ BV(I ), we conclude
that ‖ξ0‖∞ ≤ 1, and hence, ξ0 ∈ K . (In fact, any v ∈ H1

belongs to BV with J (v) = ‖v′‖L1 and may therefore be
used in the above estimate;

‖v′‖L1 = J (v) ≥ 〈v, ξ ′
0〉 = 〈−v′, ξ0〉 ,

where integration by parts was used in the last step. This
shows that Ł2 � f �→ 〈 f , ξ0〉 ∈ R extends by continuity
to a bounded linear on functional L1. Riesz’ theorem then
implies that ξ0 ∈ L∞ with ‖ξ0‖∞ ≤ 1.)

Now, if we take u = (1/2)u0 in (41) and use the positive
homogeneity of J then this inequality becomes

−1

2
J (u0) ≥ −1

2
〈u0, ξ ′

0〉

or

J (u0) ≤ 〈u0, ξ ′
0〉 ,

which, in view of the definition of J , implies J (u0) =
〈u0, ξ ′

0〉, and the proof is complete. ��
In view of Lemma 3, the necessary and sufficient condi-

tions (19a) and (18) in Theorem 3 can be reformulated as
λ−1( f − uλ) ∈ ∂ J (uλ), i.e. Fermat’s rule for a minimum
(for convex functions.) We note in passing that the equation
u + ∂ J (u) � f has a unique solution (namely uλ) for each
f ∈ L2(I ). Hence, ∂ J is a maximal monotone (or −∂ J is a
maximal dissipative) set-valued operator on L2, cf. Barbu [7,
p. 71].

Now, suppose that f ∈ L2(I ) is such that the limit ξλ →
ξ0 exists in H1

0 (I ) as λ → 0+. Here, as usual, ξλ is the
unique element in K associated with the ROF minimizer
uλ = Sλ( f ). Clearly, ξ0 ∈ K . Since the identity

J (uλ) = 〈uλ, ξ
′
λ〉

holds for all λ > 0 and uλ → f in L2(I ) as λ → 0+ by
Proposition 6, the lower semi-continuity of the total variation
implies

J ( f ) ≤ lim
λ→0+〈uλ, ξλ〉 = 〈 f , ξ ′

0〉 .

We conclude from this that f ∈ Dom J = BV(I ) with
J ( f ) = 〈 f , ξ ′

0〉. Moreover, Lemma 3 implies that ξ ′
0 ∈

∂ J ( f ) so, by (40), we arrive at
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− d

dλ
Sλ( f )

∣∣∣
λ=0

= ξ ′
0 ∈ ∂ J ( f ).

Notice that the derivative (d/dλ)Sλ( f )
∣∣
λ=0 exists for all f

in a dense subset of L2(I ). To see this, we use that the limit
limλ→0+ ξλ := ξ0 exists whenever f is a piecewise constant
function (by Proposition 9) and that the piecewise constant
functions on I are dense in L2(I ). We have proved (Cf. [7,
Th. 1.2, p.175]):

Theorem 4 The infinitesimal generator of the nonlinear con-
tractive semi-group {Sλ}λ≥0 is the nonlinear set-valued
mapping f �→ −∂ J ( f ).

Using the formal notation introduced in Sect. 5, this result
may be expressed by saying that u(x, λ) := uλ(x) solves the
following Cauchy problem:

∂λu = ∂x

( ∂xu

|∂xu|
)

on I × [0,∞) and u(·, 0) = f .

The nonlinear parabolic PDE above is known as the total
variation flow. The total variation flow in higher dimensions
has been extensively studied in Andreu et al. [3,4], Bellettini
et al. [8] and Alter et al. [1]. They all start with the con-
struction of the minimizing gradient flow associated with the
total variation functional and then go on to derive its various
properties including its relation to the ROF model. Here, we
have started at the other end: using the nice properties of the
one-dimensional case, it is proved that the ROF model gives
rise to a semi-group of nonlinear contractive operators. We
then proceed to derive its infinitesimal generator, which turns
out to be the minus, the subdifferential of the total variation.

In view of the characterization of J ’s subgradient given
in Lemma 3, it follows from Example 3 that there exist f ∈
L2(I ) such that ∂ J ( f ) consists of more than one element. If
f is such a function and the derivative −(d/dλ)Sλ( f )|λ=0

exists, then it is reasonable to ask which element of ∂ J ( f )
this derivative corresponds to. The answer is provided by the
following result.

Proposition 11 Suppose f ∈ L2(I ) is such that the deriva-
tive (d/dλ)Sλ( f )

∣∣
λ=0 := −ξ ′

0 exists. Then ξ ′
0 is the element

in ∂ J ( f ) with the smallest L2-norm.

Proof The assumption on f implies that the limit ξλ → ξ0
exists in H1

0 (I ) as λ → 0+. For each λ > 0, ξλ is character-
ized as the unique member of K which solves

max
ξ∈K

{
‖ f ‖2 − ‖ f − λξ ′‖2

}
.

It follows that

2〈 f , ξ ′
λ〉 − λ‖ξ ′

λ‖2 ≥ 2〈 f , ξ ′〉 − λ‖ξ ′‖2

for all ξ ∈ K . If we pick ξ in ∂ J ( f ), then 〈 f , ξ ′〉 = J ( f ),
by the Lemma, and we find

‖ξ ′‖2 − ‖ξ ′
λ‖2 ≥ 2

λ

{
J ( f ) − 〈 f , ξ ′

λ〉
}

≥ 0 ,

which is the desired result. ��
A very detailed and well-written analysis of the one-

dimensional total variation flow can be found in the paper
by Bonforte and Figalli [11]. Here, the theory of the flow
is developed as a limit of a time-discretized problem (the
Crandall–Liggett approach) which leads them to study cer-
tain properties of the ROF functional, some of which are
close to ours (e.g. Lemma 2.3 in [11] seems to contain the
same insight as our Theorem 2.)

10 Application to Fused Lasso

In this section and the next, we briefly analyze two TV-
minimization problems that are related to the ROF model.
First out is a generalization of the ROF model obtained by
adding a positive multiple of the L1-norm of the variable u
to the ROF functional (14):

Eλ,μ(u) = λJ (u) + μ‖u‖L1(I ) + 1

2
‖ f − u‖2L2(I ) , (42)

where λ,μ ≥ 0 are regularization parameters. Suppose f is
a piecewise constant function on I = (a, b] with equidistant
nodes a = x0 < x1 < · · · < xN−1 < xN = b and with
the constant value fi on each subinterval (xi−1, xi ] for i =
1, . . . , N , i.e.

f =
N∑
i=1

fiχ(xi−1,xi ].

Also, restrict minimization to the set of functions u which are
piecewise constant with the same nodes as f and the constant
value ui on the i th subinterval; u = ∑N

i=1 uiχ(xi−1,xi ]. Sub-
stitution of such f and u into (42) leads to the minimizing
the following discretized functional,

Eλ,μ(u)=λ

N−1∑
i=1

|ui+1 − ui | + μ

N∑
i=1

|ui | + 1

2

N∑
i=1

| fi − ui |2.

This minimization problem, known as the fused lasso model
(in Lagrange form), was introduced in Tibshirani et al. [43].
The functional is strictly convex and has compact sub-
level sets and therefore possesses a unique minimum u∗ =∑N

i=1 u
∗
i χ(xi−1,xi ] which is called the fused lasso signal

approximator. The idea of the fused lasso model is to simul-
taneously promote sparsity in u∗ and its (discrete) derivative.
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As shown by Friedman et al. [22], there is a close relation-
ship between the fused lasso model and the discrete ROF
model (i.e. Eλ,μ with μ = 0): the fused lasso signal approx-
imator u∗ can be obtained from the discrete ROF minimizer
uλ = ∑N

i=1 uλ,iχ(xi−1,xi ] by soft thresholding at level μ,

u∗
i =

{
uλ,i − μ sign(uλ,i ) for |uλ,i | > μ

0 otherwise,

for i = 1, . . . , N .
The purpose of this section is to extend this result to the

continuous fused lasso model (42). In the continuous case,
the fused lasso signal approximator is defined by

uλ,μ = arg min
u∈BV(I )

Eλ,μ(u) .

and the claimed relation to the ROF model is:

Theorem 5 The fused lasso signal approximator uλ,μ can be
computed, for all λ,μ ≥ 0, from the ROF minimizer uλ by
the formula

uλ,μ = Sr [−μ,μ] ◦ uλ , (43)

where the function Sr [−μ,μ] : R → R given by

Sr [−μ,μ](t) = t − μt

max(μ, |t |) , t ∈ R , (44)

is the soft threshold map (or shrinkage map) at level μ (cf.
Sect. 2).

Proof The total variation is again expressed in terms of a dual
variable ξ as J (u) = supξ∈K 〈u, ξ ′〉. We follow the same
pattern and represent the L1-norm by ‖u‖L1 = supη∈B〈u, η〉
where B := {η ∈ L∞(I ) : ‖η‖∞ ≤ 1} denotes the closed
unit ball in L∞ ( which is a subset of L2(I ) because I is
bounded.) This formula holds because L∞ is the dual of L1,
cf. [38, Thm. 6.16]. It follows that (42) may be written as

Eλ,η(u) = sup
η∈B,ξ∈K

{
λ〈u, ξ ′〉 + μ〈u, η〉 + 1

2
‖ f − u‖2

}
.

Now, the convex sets K ′ := {ζ = ξ ′ : ξ ∈ K } and B are
both closed in L2(I ). The same is true for the dilated sets
λK ′ and μB and for their Minkowski sum

C := λK ′ + μB.

We can therefore rewrite the fused lasso energy as

Eλ,η(u) = sup
ζ∈C

{
〈u, ζ 〉 + 1

2
‖ f − u‖2

}
.

By following the proof of Theorem 3 step by step, we can
show that

min Eλ,η(u) = max
ζ∈C

1

2

{
‖ f ‖2 − ‖ f − ζ‖2

}
(45)

where equality is attained for a unique pair of function u∗ ∈
BV(I ) and ζ∗ ∈ C . Moreover, this pair is characterized by
the condition that

u∗ = f − ζ∗ and 〈 f − ζ∗, ζ − ζ∗〉 ≤ 0 , ∀ζ ∈ C .

By definition, u∗ = uλ,μ, the fused lasso estimator.
Now, the second member ζ∗ may be written as a sum ζ∗ =

λξ ′∗ +μη∗ for some ξ∗ ∈ K and η∗ ∈ B. This decomposition
of ζ∗ is usually not unique, but the following argument holds
for any such decomposition. The necessary and sufficient
condition for optimality in (45) may be expressed as

{
〈 f − λξ ′∗ − μη∗ , ζ − λξ ′∗ − μη∗〉 ≤ 0 ,

for all ζ ∈ λK ′ + μB .
(46)

This, in turn, can be split into a pair of conditions by choosing
first ζ = λξ ′ + μη for ξ ∈ K and then ζ = λξ ′∗ + μη∗ in
(46):

〈 f − λξ ′∗ − μη∗ , ξ ′ − ξ ′∗〉 ≤ 0 , ∀ξ ∈ K , (47)

〈 f − λξ ′∗ − μη∗ , η − η∗〉 ≤ 0 , ∀η ∈ B . (48)

These conditions together are both necessary and sufficient
for ζ∗ = λξ ′∗ + μη∗ to be the maximizer of the right-hand
side of (45). By the projection theorem, (48) implies that
μη∗ = PrμB( f − λξ ′∗). This means that the fused lasso
solution can be written in terms of ξ∗ as

uλ,μ = f − ζ∗
= f − λξ∗ − μη∗
= ( f − λξ ′∗) − PrμB( f − λξ ′∗)
= Sr [−μ,μ]( f − λξ ′∗). (49)

It remains to be proved that we can take ξ∗ to be the optimal
dual variable ξλ in the ROF model. This is a consequence of
the following argument: From Sect. 2, we know that the pro-
jection μη∗ of f − λξ ′∗ onto μB can be computed explicitly
by the formula

μη∗ = μ ( f − λξ ′∗)
max(μ, | f − λξ ′∗|)

. (50)

If this expression is substituted into (47), it follows that ξ∗
satisfies:

〈 Sr [−μ,μ]( f − λξ ′∗) , ξ ′ − ξ ′∗ 〉 ≤ 0 ∀ξ ∈ K . (51)
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where Sr [−μ,μ] is the soft threshold (44). Now, let the func-
tion H : R → R be defined by

H(t) =

⎧⎪⎨
⎪⎩

1
2 (t − μ)2 for t ≥ μ ,

0 when − μ ≤ t ≤ μ and
1
2 (t + μ)2 for t ≤ −μ .

(52)

This function is convex and differentiable, and it is easy to
check that its derivative is H ′(t) = Sr [−μ,μ](t). Thus, (51)
can be rewritten as

〈 H ′( f − λξ ′∗) , ξ ′ − ξ ′∗ 〉 ≤ 0 ∀ξ ∈ K ,

which is the necessary and sufficient condition for ξ∗ ∈ K to
be a solution to the minimization problem

inf
ξ∈K LH ( f − λξ ′) where LH (W ) :=

∫
I
H(W ′) dx . (53)

In summary, for anydecomposition of ζ∗ into a sumλξ ′∗+μη∗
where ξ∗ ∈ K and η∗ ∈ B, the first function ξ∗ solves (53)
and the second one η∗ can be computed from ξ∗ using (50).
Conversely, if we find a solution ξ∗ of (53) and define η∗ by
the explicit formula in (50) then ζ∗ = λξ ′∗ + μη∗ maximizes
the right-hand side in (45). Now, Lemma 1 implies that the
ROF minimizer ξλ is a solution to (53). Since uλ = f −λξ ′

λ,
the formula (43) follows immediately from (49). ��

11 Application to Isotonic Regression

As a second example, we briefly outline, mostly without
proofs, how the theory developed for the ROF model can
be modified in order to derive the so-called “lower convex
envelope” interpretation of the isotonic regression estimator.
Isotonic regression is a method from mathematical statistics

used for nonparametric estimation of probability distribu-
tions, see for instance, [5]. It is a least-squares problem
with a monotonicity constraint: for f ∈ L2(I ), determine a
non-decreasing function u↑ ∈ L2(I ) which solves the mini-
mization problem,

min
u∈L2↑(I )

1

2
‖u − f ‖2L2(I ) , (54)

where L2↑(I ) denotes the set of all non-decreasing func-

tions in L2(I ). The “lover convex envelope” interpretation is
shown for a piecewise constant signal f in Fig. 3.

The idea is to reformulate (54) as an unconstrained opti-
mization problem by replacing the total variation term J of
the ROF functional by regularization term J↑ that can distin-
guish between functions that are non-decreasing or not. To
achieve this, we set

K+ = {
ξ ∈ H1

0 (I ) : ξ(x) ≥ 0 for all x ∈ I
}

and define the functional

J↑(u) = sup
ξ∈K+

〈u, ξ ′〉L2(I ).

It can be shown that

J↑(u) =
{
0 if u ∈ L2↑(I ) ,

+∞ otherwise.

In the terminology of convex analysis, J↑ is the indicator
function of the closed convex cone L2↑(I ). It follows that the
isotonic regression problem (54) is equivalent to finding the
minimizer u↑ in L2(I ) of the functional

E↑(u) := J↑(u) + 1

2
‖u − f ‖2L2(I ). (55)

(a) (b)

Fig. 3 Graphical illustrations of the taut string interpretation of isotonic regression
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Notice that, there is no need for a positive weight (such as
the λ in the ROF functional) in this functional because the
regularizer assumes only the values zero and infinity.

Again, we may assume that f mean value equal to zero
so that the cumulative function F(x) := ∫ x

a f (t) dt belongs
to H1

0 (I ). This will be used below.
Mimicking the proof of Theorem 3, we get:

min
u∈L2(I )

E↑(u) = max
ξ∈K+

1

2

{
‖ f ‖2 − ‖ f − ξ ′‖2L2(I )

}
, (56)

where the minimum on the left-hand side is attained by a
unique function u↑ ∈ L2↑(I ) and the maximum on the right-
hand side by a unique ξ↑ ∈ K+. These pair of functions
satisfy

u↑ = f − ξ ′↑ and 〈u↑ , ξ ′↑〉 = 0. (57)

These conditions are also sufficient for a pair of functions,
u↑ ∈ L2↑(I ) and ξ↑ ∈ K+ to be the optimizers in (56).

Notice that if the two conditions of (57) are combined,
the solution to the isotonic regression problem (54) can be
characterized by the conditions u↑ ∈ L2↑(I ) and f − u↑ ∈
K ′+ := {ξ ′ : ξ ∈ K+} and 〈u↑ , f − u↑〉 = 0. Thus, K ′+ is
the dual cone of L2↑(I ) and the pair u↑, f −u↑ is the Moreau
decomposition of f .

Example 7 For f (x) = 1− |x |, −1 < x < 1, the solution of
the isotonic regression problem is

u↑(x) =
{
f (x) for − 1 < x < α − 1,

α for α − 1 ≤ x < 1,
,

where α = 2− √
2. To verify this, observe that u↑ is clearly

in L2↑(−1, 1) and if we define ξ ′↑ = f − u↑, then

〈u↑ , ξ ′↑〉 =
∫ α−1

−1
0 dx +

∫ 1

α−1
α( f (x) − α) dx = 0 ,

so that the conditions (57) are both fulfilled. Since it is easy
to verify that ξ↑(x) := ∫ x

−1 ξ↑(t) dt ≥ 0 for all −1 < x < 1,
so that ξ↑ ∈ K+, it follows from the above characterization
that u↑ is indeed the isotonic regressor associated with f .

Now, to prove the lower envelope interpretation we introduce
the new variable W = F − ξ , where ξ ∈ K+, and set

T = {W ∈ H1
0 (I ) : W (x) ≤ F(x), x ∈ I }.

Maximization of the right-hand side of (55) is seen to be
equivalent to solving the obstacle problem

min
W∈T

1

2
‖W ′‖2L2(I ) ,

which admits a unique solution W↑ by the projection the-
orem. It follows that (55) also has the unique solution
u↑ = W ′↑ (distributional derivative) which belongs to

L2↑(I ) because E↑(u↑) is finite and therefore zero.
The solutionW↑ of the obstacle problem satisfiesW ′′↑ ≥ 0

(this is the “easy” part of the original Lewy–Stampacchia
inequality, 0 ≤ W ′′↑ ≤ (F ′′)+) and is therefore automatically
a convex function. In fact, by optimality, W↑ is the maximal
convex function lying below F , i.e. it is the lower convex
envelope of F . Similar problems are considered in the mul-
tidimensional case, using higher-order methods (the space
of functions with bounded Hessians), in Hinterberger and
Scherzer [25].

12 Higher-Order Total Variation
Regularization

In this section, we briefly consider the analogue of the
ROF model and its taut string interpretation for denoising
using higher-order total variation regularization. The one-
dimensional nth order ROFmodel is defined asminimization
of the functional

En
λ(u) := λ

∫ b

a
|u(n)(x)| dx + 1

2

∫ b

a
( f (x) − u(x))2 dx,

where u(n) denotes the nth derivative of u ∈ Cn(a, b) and
λ > 0 is the regularization parameter. Here, we shall treat
only the case n = 2, i.e. the second-order ROF model. In
the multidimensional setting, second- and higher-order reg-
ularizations have been considered early on by Pöschl and
Scherzer [36] as well as by Breides et al. [12]. They have
subsequently found applications in restoration of MRI [27]
and image inpainting [35], to mention just two examples. A
detailed account of the second-order regularization in image
restoration, as well as additional references, can be found in
Begrounioux [10]. The one-dimensional case has be studied
in a purely discrete setting in Steidl et al. [41], and one-
dimensional examples are found in [34,36], among others.

We first give a proper definition of the second-order
total variation, J2, which will replace the formal expression∫ b
a |u′′| dx used in the definition of the second-order ROF
functional E2

λ(u). For u ∈ L1(I ), where I = (a, b), we
define

J2(u) = sup
∫ b

a
uξ ′′ dx

with the supremum being taken over all ξ ∈ C2
c (I ) which

satisfies |ξ(x)| ≤ 1 for all x ∈ I . The set of functions for
which J2 has a finite value is denoted BV2(I ). It is clear
from this definition that if u ∈ H1(I ) then J2(u) = J (u′);
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just apply integration by parts in the above integral and recall
the definition of J . It can be shown that any u ∈ BV2(I ) is
automatically a member of H1(I ) (in fact u ∈ W 1,∞(I )
holds). In particular, u ∈ L2(I ) and therefore the definition
of the second-order total variation J2 may be rephrased as

J2(u) = sup
ξ∈K2

〈u, ξ ′′〉L2(I ),

where K2 := {ξ ∈ H2
0 (I ) : ‖ξ‖∞ ≤ 1}. Recall that H2

0 (I )
is the closure of C2

c (I ) in the Hilbert space H2(I ), in fact

H2
0 (I ) = {

ξ ∈ H2(I ) : ξ = ξ ′ = 0 at ∂ I = {a, b}} ,

see Brezis [13, p. 134, Remarque 18]. Moreover, the map
u �→ ‖u′′‖L2(I ) defines a Hilbert space norm on H2

0 (I ), i.e.
the norm induced by the bilinear form 〈u′′, v′′〉L2(I ), which
defines an inner product on H2

0 (I ) The precise definition of
the second-order ROF functional is

E2
λ(u) := λJ2(u) + 1

2
‖ f − u‖2L2(I ).

The function uλ : I → R given by

uλ := arg min
u∈BV2(I )

E2
λ(u) ,

is the denoising of f ∈ L2(I ) using the second-order total
variation regularization with weight λ.

The function uλ, if it exists, is the solution of the uncon-
strained minimization problem for E2

λ over BV2(I ). By
considering variations of the form u = uλ +a0 +a1x , where
a0, a1 ∈ R, then the optimality of uλ implies that ∂E2

λ/∂a0 =
∂E2

λ/∂a1 = 0. Since J2(u + a0 + a1x) = J2(u) for all

u ∈ BV2(I ), this leads to the two conditions:
∫ b
a uλ = ∫ b

a f

and
∫ b
a xuλ = ∫ b

a x f .Wemay therefore assume, without loss
of generality, that the data f satisfies

∫ b

a
f (x) dx = 0 and

∫ b

a
x f (x) dx = 0.

This assumption is imposed throughout the rest of this sec-
tion, unless otherwise stated.

Using the methods introduced in the study of the (ordi-
nary) ROFmodel, it is possible to prove the following result:

Theorem 6 We have the identity

min
u∈BV2(I )

E2
λ(u) = max

ξ∈K2

1

2

(
‖ f ‖2L2(I ) − ‖ f − λξ ′′‖2L2(I )

)
,

(58)

with the minimum achieved by a unique uλ ∈ BV2(I ) and
the maximum by a unique ξλ ∈ K2, the two functions are
related by

uλ = f − λξ ′′
λ , (59a)

and

J2(uλ) = 〈 uλ , ξ ′′
λ 〉L2(I ). (59b)

Moreover, if uλ �= 0, then ‖ξλ‖∞ = 1. Conversely, the con-
ditions (59a) and (59b) are sufficient for uλ to be a solution
of the second-order ROF model.

It follows form this theorem that the minimizer uλ of the
second-order ROF functional exists and can be obtained by
finding the solution ξλ of

min
ξ∈K2

1

2
‖ f − λξ ′′‖2L2(I )

and the set uλ = f − λξ ′′
λ .

Now, let us define F ′(x) = ∫ x
a f (t) dt and F(x) =∫ x

a F ′(t) dt such that F ′′ = f . Then F(a) = F ′(a) = 0
by construction and F(b) = F ′(b) = 0 by our assumption
of the signal f . Since f ∈ L2(I ), we see that F ∈ H2

0 (I ). If
we introduce the new variable W = F − λξ , where ξ ∈ K2,
then the above minimization problem becomes:

uλ = W ′′
λ where Wλ = arg min

W∈T 2
λ

1

2
‖W ′′‖2L2(I ).

Here, the set of admissible functions

T 2
λ = {W ∈ H2

0 (I ) : F − λ ≤ W ≤ F + λ}

is the second-order λ-tube. The condition on W := F − λξ

follows from the condition ‖ξ‖∞ ≤ 1 on the functions ξ in
K2.

The above procedure for finding uλ has amechanical inter-
pretation: The second-order regularized denoising uλ of f is
the second (weak) derivative of the function Wλ which in
turn corresponds to the energy minimizing shape of an ideal
elastic beam (a cubic spline), clamped at the end points of
I and forced to lie between a pair of parallel walls at a uni-
form distance λ from the graph of the bi-cumulative signal
F . Denoising using nth order total variation regularization
may be analyzed in a similar manner, but for n > 2 there is
no obvious mechanical interpretation.

This “restricted spline” interpretation of the second-order
ROF model can be used to “guess” the analytical solution
of the second-order ROF model for simple f . The follow-
ing example is probably the simplest imaginable non-trivial
example.

Example 8 On the interval I = (−1, 1), let the signal f :
I → R be given by f (x) = |x |− 1

2 . Notice that
∫
i f = 0 and∫

I x f = 0.We can use the necessary and sufficient condition
formulated in Theorem 6 to prove that the restored signal is
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uλ = (1 − 12λ)+ f , (60)

for any λ > 0. In particular it follows that uλ = 0 if λ ≥ 1/12
and that ‖ f − uλ‖BV2(I ) := J2( f − uλ) + ‖ f − uλ‖L1(I ) =
O(λ) as λ → 0+. The proof runs as follows: If (60) is
substituted into (59a), we obtain

ξ ′′
λ = min(12, λ−1) f .

Since the signal f satisfies
∫
I f = ∫

I x f = 0 it follows that
ξλ = min(12, λ−1)F ∈ H2

0 (I ). Moreover, ‖ξλ‖∞ ≤ 1 with
equality if and only if 0 ≤ λ ≤ 1/12. It is now easy to verify
that (59b) holds:

〈ξ ′′
λ , uλ〉 = 〈min(12, λ−1) f , (1 − 12λ)+ f 〉

= 12(1 − 12λ)+‖ f ‖2L2(I )

= 2(1 − 12λ)+ = J2(uλ) ,

the last equality being a consequence of the fact that J2( f ) =
J ( f ′) = 2. This completes the verification.

The above explicit example was first found by Papafitsoros
and Breides [34], see their Fig. 8d, but the derivation pre-
sented here is considerably shorter. Their paper focuses on a
regularization term which is a kind of weighted combination
of the first- and second-order total variation and contains only
the latter as a special case. The example may be viewed as
the second-order analogue to Example 4 where which con-
sidered denoising of a simple piecewise constant signal in
the ROF model; in both cases, the restored signal is obtained
by a simple scaling of the data.

Theorem6and its “restricted spline” interpretationmake it
clear that certain results for the (ordinary) ROFmodel carries
over to the second-order case. For instance, parts (a) and (b)
of Proposition 4 still hold: uλ = 0 if and only if ‖F‖∞ < λ

and that ‖Wλ − F‖∞ = λ also holds in that case, where F
is the bi-cumulative function and Wλ the optimal spline.

13 Concluding Remarks

We have developed the theory for the one-dimensional ROF
model for a quite general class of signals andgiven a thorough
investigation of the properties of its solutions. This includes
a useful fundamental estimate, Theorem 2, on the denoised
signal. The theory may find practical applications in signal
processing and image analysis alike. Indeed, by using the
fundamental estimate, we saw how application of the ROF
model to a piecewise constant signal leads to a piecewise
constant denoised signal with the same nodes, i.e. the model
is “edge-preserving” (Proposition 9). Our theory can bemod-
ified to cover the one-dimensional ROFmodel defined on the
real lineR or the half-lineR+. To do this, the Sobolev spaces

have to be replaced by certain Beppo Levi spaces. The theory
can also bemodified to handle regularizationwith aweighted
total variation term, something like

Jw(u) :=
∫
R

w(x)|u′(x)| dx ,

where w(x) > 0. These two extensions would allow us to
analyze the higher-dimensional ROF functional for spheri-
cally symmetric signals. The theory for the N -dimensional
ROF model can be developed along almost the same lines, it
seems,with exception for the uniqueness of the dual variables
and the fundamental estimate; when N ≥ 2 the dual vari-
ables are vector fields ξ = (ξ1, . . . , ξN ) whose magnitudes
are bounded by one. As is well known, only the divergence of
this vector field is uniquely determined, not the vector field
itself. The natural generalization of the fundamental estimate
does not seem to hold for N ≥ 2. The reason why it fails is
that if f is the characteristic function of the unit square in
the plane, then the denoising uλ has level curves which looks
like squares with the corners rounded of, see [18, Sect. 2.2.3].
Thismeans that the support of the gradient of denoised signal
is not contained in the support of the gradient of the original
signal (rather, the support shifts inward, inside the square),
and this is incompatible with a bound like the fundamen-
tal estimate. It would be interesting to know if there exists
some alternative estimate on the denoised signal which could
replace the fundamental estimate in higher dimensions.
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Appendix A

As promised in the introduction we now give a proof of
Lemma 1. The idea of the proof is to verify that the func-
tion

Wλ := argmin
W∈Tλ

E(W ) ,

i.e. the “stretched rubber band”, also solves the variational
inequality:

∫
I
h(W ′

λ)(W
′ − W ′

λ) dx ≥ 0 , for all W ∈ Tλ, (61)
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whereh = H ′. This condition is bothnecessary and sufficient
for Wλ to be a minimizer of LH over Tλ. If H happens to be
strictly convex, then the condition also ensures uniqueness
of the minimizer.

Being the minimizer of E over Tλ, Wλ ∈ Tλ satisfies the
following variational inequality (which is a special case of
(61) with H(s) = s2/2):

∫
I
W ′

λ(W
′ − W ′

λ) dx ≥ 0, for all W ∈ Tλ. (62)

Set C+ = {x ∈ I : Wλ(x) = F(x) + λ} and C− = {x ∈ I :
Wλ(x) = F(x)−λ}. These are the setswhere the graph ofWλ

touches the upper and the lower obstacles, respectively. Since
F and Wλ are continuous functions, both sets are closed. In
fact, C+ and C− are compact because λ > 0 implies that
they do not reach the boundary of I . Clearly C+ ∩ C− = ∅
and the union, C = C+ ∪ C−, is the (so-called) contact set
for Wλ.

For any non-negative function ξ ∈ C1
0(I ) with supp ξ ⊂

I\C−, there exists an number ε > 0 such thatW := Wλ−εξ

belongs to Tλ. If this W is substituted into (62) we find the
condition

−
∫
I
W ′

λξ
′ dx ≥ 0 , ∀0 ≤ ξ ∈ C1

0(I ), supp ξ ⊂ I\C− .

It follows from Riesz’ lemma that W ′′
λ is a positive measure

on I\C−, hence W ′
λ is non-decreasing on each connected

component of I\C− (but not necessarily on the set as a
whole). Similarly one proves that W ′

λ is non-increasing on
each connected component of I\C+. This means, in partic-
ular, that W ′

λ is constant on each connected component of
(I\C−) ∩ (I\C+) = I\C , i.e. away from the contact set.

Since H is convex, h is non-decreasing and so it follows
that the composite function h(W ′

λ) has the same monotonic-
ity properties as W ′

λ. Therefore, the distributional derivative
h(W ′

λ)
′ is a positive measure μ+ on I\C− and minus a pos-

itive measure, −μ−, on I\C+. Clearly suppμ+ ⊂ C+ and
suppμ− ⊂ C−, so h(W ′

λ)
′ is a signed measure μ with the

Jordan decomposition μ = μ+ − μ−. The following calcu-
lation now verifies (61): For any W ∈ Tλ we have

∫
I
h(W ′

λ)(W
′ − W ′

λ) dx = −
∫
I
W − Wλ dμ

= −
∫
I
W − Wλ dμ

+ +
∫
I
W − Wλ dμ

− ≥ 0

which holds because W − Wλ ≤ 0 on suppμ+ ⊂ C+ and
W − Wλ ≥ 0 on suppμ− ⊂ C−. This completes the proof.

Appendix B

We prove the inequality (34) used in the proof of Theorem 2.
With the notation introduced in this proof we can formulate
this result as follows:

Proposition 12 (Lewy–Stampacchia inequality) Suppose φ′′
and ψ ′′ are signed measures. Then the minimizer u0 of E
over C = {u : φ ≤ u ≤ ψ} satisfies

−(φ′′)− ≤ u′′
0 ≤ (ψ ′′)+

where μ+ and μ− denote the positive and negative varia-
tions, respectively, of the signed measure μ.

Note that the functional E is defined, convex and differ-
entiable on H1(I ) and therefore satisfies the inequality

E(v) − E(u) ≥
∫ b

a
u′(x)(v′(x) − u′(x)) dx, (63)

for all u, v ∈ H1(I ), as is easily checked. We also know that
minC E has a unique solution u0 ∈ C (use the projection the-
orem) which satisfies the necessary and sufficient condition:

∫ b

a
u′
0(v

′ − u′
0) dx ≥ 0 for all v ∈ C .

Proposition 12 was first proved for the unilateral obstacle
problem (in multiple dimensions) in [28] and since extended
to bilateral obstacle problems. Here we present a proof based
on the sub-modularity of the functional E , that is, for all
u, v ∈ H1(I ),

E(u ∧ v) + E(u ∨ v) ≤ E(u) + E(v), (64)

where u ∧ v := max(u, v) and u ∨ v := min(u, v) both
belong to H1(I ). In fact, the functional E is so simple that
equality holds for all u, v. This method of proof was invented
recently by [23] and used to prove a very general version
of the bilateral Lewy–Stampacchia inequality. We use their
approach.

Proof We prove the rightmost inequality, u′′
0 ≤ (ψ ′′)+, the

leftmost one then follows by a symmetry argument: −u0
minimizes E over the−C = {u ∈ H1

0 (I ) : −ψ ≤ u ≤ −φ}.
To simplify notation we setψ ′′ = μ. Define the new func-

tional Ê(u) = E(u)+〈μ+, u〉 and consider theminimization
problem

min
u∈H1

0 (I ):u≥u0
Ê(u). (65)

The goal is to prove that u0 itself solves this problem. This
will imply the desired inequality, as we shall see below.
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First the following claim is proved: For any u ∈ H1
0 (I )

satisfying u ≥ u0 we have

Ê(u ∧ ψ) ≤ Ê(u). (66)

Since ψ > 0 on ∂ I and u ∈ H1
0 (I ) we get u ∧ ψ ∈ H1

0 (I ),
so u∧ψ is admissible for the min-problem above. The claim
is proved using the sub-modularity (64) of E and the identity
u ∧ v + u ∨ v = u + v with v replaced by ψ :

Ê(u) − Ê(u ∧ ψ)

= E(u) − E(u ∧ ψ) + 〈μ+, u − u ∧ ψ〉
≥ E(u ∨ ψ) − E(ψ) + 〈μ+, u ∨ ψ − ψ〉
≥ E(u ∨ ψ) − E(ψ) + 〈ψ ′′, u ∨ ψ − ψ〉
≥ E(u ∨ ψ) − E(ψ) − 〈ψ ′, (u ∨ ψ)′ − ψ ′〉 ≥ 0,

where the last inequality follows from (63).
The claim (66) shows that the minimum of Ê over {u ≥

u0} coincides with the minimum over {ψ ≥ u ≥ u0}. There-
fore, since u − u0 ≥ 0, we find

Ê(u) − Ê(u0) = E(u) − E(u0) + 〈μ+, u − u0〉
≥ E(u) − E(u0) ≥ 0,

where the last estimate follows from the observation that
{u : u0 ≤ u ≤ ψ} ⊂ C and that u0 minimizes E over C .
That is, u0 is the solution of (65).

The necessary condition for u0 to be a minimizer for Ê
reads:

d

dα
Ê((1 − α)u0 + αu)

∣∣∣
α=0

≥ 0

for all u ∈ H1
0 (1) satisfying u ≥ u0. That is,

∫ b

a
u′
0(u

′ − u′
0) dx + 〈μ+, u − u0〉 ≥ 0

for all u ∈ H1
0 (I ) satisfying u ≥ u0. This implies 〈−u′′

0 +
μ+, ϕ〉 ≥ 0 for all ϕ ∈ C1

0(I ) such that ϕ ≥ 0 on I . There-
fore,−u′′

0+μ+ is a positive measure, hence u′′
0 ≤ μ+, which

is the desired result. ��
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