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Abstract
The enhancement and detection of elongated structures in noisy image data are relevant for many biomedical imaging
applications. To handle complex crossing structures in 2D images, 2D orientation scoresU : R2 × S1 → C were introduced,
which already showed their use in a variety of applications.Hereweextend thiswork to 3Dorientation scoresU : R3×S2 → C.
First, we construct the orientation score fromagiven dataset,which is achieved by an invertible coherent state type of transform.
For this transformationwe introduce 3D versions of the 2D cakewavelets, which are complexwavelets that can simultaneously
detect oriented structures and oriented edges. Here we introduce two types of cake wavelets: the first uses a discrete Fourier
transform, and the second is designed in the 3D generalized Zernike basis, allowing us to calculate analytical expressions
for the spatial filters. Second, we propose a nonlinear diffusion flow on the 3D roto-translation group: crossing-preserving
coherence-enhancing diffusion via orientation scores (CEDOS). Finally, we show two applications of the orientation score
transformation. In the first application we apply our CEDOS algorithm to real medical image data. In the second one we
develop a new tubularity measure using 3D orientation scores and apply the tubularity measure to both artificial and real
medical data.

Keywords Orientation scores · 3D wavelet design · Zernike polynomials · Scale spaces on SE(3) · Coherence-enhancing
diffusion · Tubular structure detection · Steerable 3D wavelet

1 Introduction

The enhancement and detection of elongated structures are
important in many biomedical image analysis applications.
These tasks become problematic when multiple elongated
structures cross or touch each other in the data. In these
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cases it is useful to work with multi-orientation represen-
tations of image data. Such multi-orientation representations
can be made using various techniques, such as invertible
orientation scores (which is obtained via a coherent state
transform) [3,5,10,30,36,42], continuous wavelet transforms
[10,28,30,64], orientation lifts [13,71], or orientation chan-
nel representations [35]. Here we focus on constructing an
invertible orientation score. In order to separate the crossing
or touching structures (Fig. 1), we extend the domain of the
data to include orientation. This is achieved by correlating
our 3D data f : R

3 → R with a set of oriented filters to
construct a 3D orientation score U : R3 × S2 → C. As the
transformation between image and orientation score is stable,
due to our design of anisotropic wavelets, we can robustly
relate operators on the score to operators on images. To take
advantage of the multi-orientation decomposition, we con-
sider operators on orientation scores and process our data via
orientation scores (Fig. 2).

Regarding the invertibility of the transform from image to
orientation score, we note that in comparison to continuous
wavelet transforms (see, e.g., [4,48,50,51] and many others)
on the group of 3D rotations, translations and scalings,we use
all scales simultaneously and exclude the scaling group from
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Fig. 1 2D orientation score for an exemplary image. In the orientation
score crossing structures are disentangled because the different struc-
tures have a different orientation

Fig. 2 A schematic view of image processing via invertible orientation
scores

the wavelet transform and its adjoint, yielding a coherent
state type of transform [2]. This makes it harder to design
appropriate wavelets, but has the computational advantage
of only needing one all-scale transformation.

The 2D orientation scores have already showed their
use in a variety of applications. In [37,64] the orientation
scores were used to perform crossing-preserving coherence-
enhancing diffusions. These diffusions greatly reduce the
noise in the data, while preserving the elongated crossing
structures. Next to these generic enhancement techniques,
the orientation scores also showed their use in retinal ves-
sel tracking [8,10,19], in vessel segmentation [70] and
biomarker analysis [11,60], where they were used to better
handle crossing vessels. Here we aim to extend such tech-
niques to 3D data.

To perform detection and enhancement operators on the
orientation score, we first need to transform a given grayscale
image or 3D dataset to an orientation score in an invertible
way. In previous works various wavelets were introduced
to perform a 2D orientation score transform. Some of these
wavelets did not allow for an invertible transformation (e.g.,
Gabor wavelets [48]). A wavelet that allows an invert-
ible transformation was proposed by Kalitzin et al. [46].
A generalization of these wavelets was found by Duits
[25] who derived formal unitarity results and expressed the
wavelets in a basis of eigenfunctions of the harmonic oscil-
lator. This type of wavelet was also extended to 3D. This
wavelet, however, has some unwanted properties such as
poor spatial localization (oscillations) and the fact that the
maximum of the wavelet does not lie at its center. In [25]
a class of 2D cake wavelets was introduced that have a

cake-piece-shaped form in the Fourier domain. The cake
wavelets simultaneously detect oriented structures and ori-
ented edges by constructing a complex orientation score
U : R

2 × S1 → C. Because the family of rotated cake
wavelets cover the full Fourier spectrum, invertibility is guar-
anteed.

In this article we propose a 3D version of the cake
wavelets. A preliminary attempt to generalize these filters
was done in [44], where the plate detectors in [25] were
extended to complex-valued cake wavelets with a line detec-
tor in the real part. Compared to these previous works, the
filters in this work are now exact until sampling in the Fourier
domain. For these filters we have no analytical description
in the spatial domain as filters are obtained via a discrete
inverse Fourier transform (DFT). Therefore, we additionally
consider expressing filters of this type in the 3D generalized
Zernike basis. For this basis we have analytical expressions
for the inverse Fourier transform, allowing us to find analyt-
ical expressions for the spatial filters. This has the additional
advantage that they allow for an implementation with steer-
able filters, see App. A. These analytical expressions are then
used to validate the filters obtained using the DFT method.
We also show applications of these filters and the orienta-
tion score transformation in 3D vessel analysis. That is, we
present crossing-preserving diffusions for denoising 3D rota-
tional Xray of blood vessels in the abdomen and we present a
tubularity measure via orientation scores and features based
on this tubularity measure, which we apply to cone beam
CT data of the brain. An overview of the applications is
presented in Fig. 3. Regarding our nonlinear diffusions of
3D rotational Xray images via invertible orientation scores,
we observe that complex geometric structures in the vascu-
lature (involving multiple orientations) are better preserved
than with nonlinear diffusion filtering directly in the image
domain. This is in line with previous findings for nonlin-
ear diffusion filtering of 2D images [37] and related works
[54,63,66] that rely on othermore specific orientation decom-
positions.

For the sake of general readability, we avoid Lie group the-
oretical notations, until Sect. 6.1 where it is strictly needed.
Let us nevertheless mention that our work fits in a larger Lie
group theoretical framework, see, for example, [3,7,25,26,
39] that has many applications in image processing. Besides
the special cases of the Heisenberg group [6,31,57], the 2D
Euclidean motion group [5,9,21,22,30,53,59], the similitude
group [4,56,64] and the 3D rotation group [52], we now
consider invertible orientation scores on the 3D Euclidean
motion group (in which the coupled space of positions and
orientations is embedded). The invertible orientation scores
relate to coherent states from physics [42] for n = 3, with
a specific (semi-)analytic design for our image processing
purposes.
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Fig. 3 Overview of applications of processing via orientation scores.
Top:We reduce noise in real medical image data (3D rotational Xray) of
the abdomen containing renal arteries by applying diffusions via 3D ori-

entation scores. Bottom: Geometrical features can be directly extracted
from our tubularity measure via 3D orientation scores. We apply this
method to cone beam CT data of the brain

1.1 Contributions of the Article

The main contributions per section of the article are:

– In Sect. 2 we give an overview of the discrete and contin-
uous 3D orientation score transformation. Additionally,
we present a transformation which is split in low and
high frequencies and quantify the stability of the trans-
formation in Lemma 1. item In Sect. 3 we present the
cake wavelets obtained using the DFT method and give
an efficient implementation using spherical harmonics
which is summarized in Result 1. Furthermore, we ana-
lyze the stability of the transformation for these filters
(Proposition 1).

– In Sect. 4 we present the analytical versions of the cake
wavelets obtained by expansion in the Zernike basis

followed by a continuous Fourier transform which is
summarized in Result 2.

– In Sect. 5 we compare the two types of filters and show
that the DFT filters approximate their analytical counter-
parts well.

– In Sect. 6 we show two applications of the orientation
score transformation:

1. Wepropose an extension of coherence-enhancing dif-
fusion via our invertible orientation scores of 3D
images. Compared to the original idea of coherence-
enhancing diffusion acting directly on image data
[16,17,69], there is the advantage of preserving cross-
ings. Here we applied our method to real medical
image data (3D rotational Xray) of the abdomen con-
taining renal arteries.We show quantitatively that our
method effectively reduces noise (quantified using
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contrast-to-noise ratios (CNR)) while preserving the
complex vessel geometry and the vessel widths. Fur-
thermore, qualitative assessment indicates that our
denoising method is very useful as preprocessing for
3D visualization (volume rendering).

2. We develop a new tubularity measure in 3D ori-
entation score data. This extends previous work on
tubularity measures using 2D orientation scores [19]
[9, Ch. 12] to 3D data. We show qualitatively that our
measure gives sharp responses at vessel centerlines
and show its use for radius extraction and complex
vessel segmentation in cone beam CT data of the
brain.

1.2 Outline of the Article

To summarize,wegive a global outline of the article: First,we
discuss the theory of invertible orientation score transforms
in Sect. 2. Then we construct 3D cake wavelets and give a
new efficient implementation using spherical harmonics in
Sect. 3, followed by their analytical counterpart expressed in
the generalized Zernike basis in Sect. 4. Then we compare
the two types of filters and validate the invertibility of the ori-
entation score transformation in Sect. 5. Finally, we address
two application areas for 3D orientation scores in Sect. 6
and show results and practical benefits for both of them. In
the first application (Sect. 6.1), we present a natural extension
of the crossing-preserving coherence-enhancing diffusion on
invertible orientation scores (CEDOS) [37] to the 3D setting.
In the second application (Sect. 6.2) we use the orientation
score to define a tubularity measure and show experiments
applying the tubularity measure to both synthetic data and
brain CT data. Both application sections start with a treat-
ment of related methods.

2 Invertible Orientation Scores

2.1 Continuous Orientation Score Transform

Throughout this article we use the following definition of the
Fourier transform on R

3:

f̂ (ω) = (F f )(ω) =
∫
R3

e−iω·x f (x)dx. (1)

An invertible orientation score Wψ [ f ] : R3 × S2 → C is
constructed from a given ball-limited 3D dataset

f ∈ L
�

2(R
3) = { f ∈ L2(R

3) | supp(F f ) ⊂ B�}, (2)

with ball B� = {ω ∈ R
3 | ‖ω‖ < �} of radius � > 0, by

correlation � with an anisotropic kernel

(Wψ [ f ])(x,n) = (ψn� f )(x)

=
∫
R3

ψn(x′ − x) f (x′)dx′.
(3)

This is illustrated in Fig. 4. Here ψ ∈ L2(R
3) ∩ L1(R

3) is a
wavelet aligned with and rotationally symmetric around the
z-axis, and ψn ∈ L2(R

3) the rotated wavelet aligned with n
given by

ψn(x) = ψ(RT
n x). (4)

Here Rn ∈ SO(3) is any 3D rotation which rotates the z-
axis onto n where the specific choice of rotation does not
matter because of the rotational symmetry of ψ . The over-
line denotes a complex conjugate. The exact reconstruction
formula [25] for this transformation is given by

f (x) = (W−1
ψ [Wψ [ f ]])(x)

= F−1

⎡
⎢⎣M−1

ψ F

⎡
⎢⎣x̃ �→

∫

S2

(ψ̌n�Wψ [ f ](·,n))(x̃)dσ(n)

⎤
⎥⎦
⎤
⎥⎦ (x),

(5)

with ψ̌n(x) = ψn(−x). The function Mψ : R
3 → R

+ is
given by

Mψ(ω) =
∫
S2

∣∣∣ψ̂n(ω)

∣∣∣2 dσ(n), (6)

and vanishes at ∞, where the circumflex (ˆ) again denotes
Fourier transformation. Due to our restriction to ball-limited
data (2), this does not cause problems in reconstruction (5).
The function Mψ quantifies the stability of the inverse trans-
formation [25], since Mψ(ω) specifies how well frequency
componentω is preserved by the cascade of construction and
reconstruction when M−1

ψ would not be included in Eq. (5).
An exact reconstruction is possible as long as

∃M>0,δ>0∀ω∈B� : 0 < δ ≤ Mψ(ω) ≤ M < ∞. (7)

In practice it is best to aim for Mψ(ω) ≈ 1, in view of
the condition number of transformation Wψ : L

�

2(R
3) →

L
�
2(R

3 × S2) given by:

cond(Wψ) = ‖Wψ‖‖W−1
ψ ‖ = M

δ
, (8)

where M and δ are assumed to be tight bounds in (7). In the
codomain spatial frequencies are again limited to the ball:
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Fig. 4 Construction of a 3D orientation score. Top: The data f are cor-
related with an oriented filter ψex to detect structures aligned with the
filter orientation ex . Bottom left: This is repeated for a discrete set of
filters with different orientations. Bottom right: The collection of 3D

datasets constructed by correlation with the different filters is an orien-
tation score and is visualized by placing a 3D dataset on a number of
orientations

L
�
2(R

3 × S2)

= {U ∈ L2(R
3 × S2)|∀n∈S2 U (·,n) ∈ L

�

2(R
3)}. (9)

Also, in the case we have Mψ(ω) = 1 forω ∈ B� we have
L2-norm preservation

‖ f ‖2
L2(R3)

= ‖Wψ f ‖2
L2(R3×S2), for all f ∈ L

�
2(R

3), (10)

and reconstruction Eq. (5) simplifies to

f (x) =
∫
S2

(ψ̌n�Wψ [ f ](·,n))(x)dσ(n). (11)

We can further simplify the reconstruction for wavelets for
which the following additional property holds:

Nψ(ω) =
∫
S2

ψ̂n(ω) dσ(n) ≈ 1. (12)

In that case the reconstruction formula is approximately an
integration over orientations only:

f (x) ≈
∫
S2
Wψ [ f ](x,n) dσ(n). (13)

For the reconstruction by integration over angles only we can
analyze the stability via the condition number of themapping
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that maps an image f ∈ L
�

2(R
3) to an orientation integrated

score

Aψ( f ) =
∫
S2
Wψ f (·,n) dσ(n). (14)

Its condition number is given by cond(Aψ) =
max
ω∈B�

Nψ (ω)

min
ω∈B�

Nψ (ω)
.

In practice, we always use this last reconstruction because
practical experiments show that performing an additional
convolution with the wavelet as done in reconstruction (5)
after processing the score can lead to artifacts. It is, however,
important to also consider the reconstruction (5) and Mψ

because it is used to quantify the stability and norm preser-
vation of the transformation from image to orientation score.

The fact that we use reconstruction by integration while
still taking into account normpreservation by controllingMψ

leads to restrictions on our wavelets which are captured in
the following definition:

Definition 1 (Proper wavelet) Let us set a priori bounds1

δ, M > 0, 0 < ε � 1. Furthermore, let � be an a priori
maximum frequency of our ball-limited image data. Then, a
wavelet ψ ∈ L2(R

3) ∩ L1(R
3) is called a proper wavelet if

1.) ∀α∈[0,2π) : ψ(R−1
ez ,αx) = ψ(x), (15)

2.) ∀ω∈B� : δ ≤ Mψ(ω) ≤ M, (16)

where Rez ,α ∈ SO(3) is the 3D rotation around axis ez over
angle α.

If, moreover, one has

3.) ∃ 1
2�<�0<�∀ω∈B�0

: Nψ(ω) ∈ [1 − ε, 1 + ε], (17)

then we speak of a proper wavelet with fast reconstruction
property, cf. (13).

Remark 1 The 1st condition (symmetry around the z-axis)
allows for an appropriate definition of an orientation score
rather than a rotation score. The 2nd condition ensures
invertibility and stability of the (inverse) orientation score
transform. The 3rd condition allows us to use the approxi-
mate reconstruction by integration over angles only.

Remark 2 Because of finite sampling in practice, the con-
straint to ball-limited functions is reasonable. The constraint
is not a necessary one when one relies on distributional trans-
forms [10, App. B], but we avoid such technicalities here.

1 In practice we choose the default values δ = 1
8 and M = 1.1 and

ε = 0.01 and note it is actually the ratio M
δ
that determines the condition

number. It is just a convenient choice to set the upper bound close to 1.

2.1.1 Low-Frequency Components

In practice we are not interested in the zero and lowest fre-
quency components since they represent average value and
global variations which appear at scales much larger than
the structures of interest. We need, however, to store these
data for reconstruction. Therefore, we perform an additional
splitting of our wavelets into two parts

ψ = ψ0 + ψ1, with ψ̂0 = Ĝsρ ψ̂, ψ̂1 = (1 − Ĝsρ )ψ̂,

(18)

with Gaussian window in the Fourier domain given by

Ĝsρ (ω) = e−sρ‖ω‖2 , (19)

After splitting, ψ0 contains the average and low-frequency
components and ψ1 the higher frequencies relevant for fur-
ther processing. In continuous wavelet theory it is also
common to separately store very low-frequency components
separately, see, e.g., [51,65]. In this case we construct two
scores: one for the high-frequency components

(Wψ1 [ f ])(x,n) = (ψ1,n� f )(x), (20)

and one for the low-frequency components

(Wψ0 [ f ])(x,n) = (ψ0,n� f )(x). (21)

Here we again have ψi,n(x) = ψi (RT
n x), as in Eq. (4). The

vector transformation is then defined as

Wψ [ f ] = (Wψ0 [ f ],Wψ1 [ f ]). (22)

For this transformation we have the exact reconstruction for-
mula

f (x) = (W−1
ψ Wψ f )(x)

= F−1
[
M−1

ψ F
[
x̃ �→

∫
S2

(ψ̌1,n�Wψ1 [ f ](·,n))(x̃)

+ (ψ̌0,n�Wψ0 [ f ](·,n))(x̃)dσ(n)

]]
(x) (23)

with

Mψ(ω) =
∫
S2

(∣∣∣ψ̂0,n(ω)

∣∣∣2 +
∣∣∣ψ̂1,n(ω)

∣∣∣2
)
dσ(n). (24)

Again, Mψ quantifies the stability of the transformation. The
next lemma shows us that the stability of the transformation
is maintained after performing the additional splitting.
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Lemma 1 Letψ ∈ L2(R
3)∩L1(R

3) such that Eq. (7) holds,
δ = minω∈B� Mψ(ω) and M = maxω∈B� Mψ(ω). Then the
condition number ofWψ : L�

2(R
3) → L

�
2(R

3 × S2) is given
by

| cond(Wψ)|2 = ‖Wψ‖2‖W−1
ψ ‖2 = M

δ
. (25)

The condition number of Wψ : L
�
2(R

3) → L
�
2(R

3 × S2)

obtained from Wψ by performing an additional splitting in
low- and high-frequency components is given by

| cond(Wψ)|2 = ‖Wψ‖2‖W−1
ψ ‖2 ≤ 2M

δ
, (26)

thereby guaranteeing that stability is maintained after per-
forming the splitting.

Proof First, we find the condition number of Wψ :

| cond(Wψ)|2 = sup
f ∈L�

2 (R3)

‖ f ‖2
L2

‖Wψ f ‖2
L2

· sup
f ∈L�

2 (R3)

‖Wψ f ‖2
L2

‖ f ‖2
L2

.

(27)

For the first factor in Eq. (27) we find

sup
f ∈L�

2 (R3)

‖ f ‖2
L2

‖Wψ f ‖2
L2

= sup
f ∈L�

2 (R3)

‖F f ‖2
L2

‖FWψ f ‖2
L2

= sup
f ∈L�

2 (R3)

∫
R3 | f̂ (ω)|2dω∫

S2
∫
R3 |ψ̂n(ω)|2| f̂ (ω)|2dωdσ(n)

= sup
f ∈L�

2 (R3)

∫
R3 | f̂ (ω)|2dω∫

R3 Mψ(ω)| f̂ (ω)|2dω

= max
ω∈B�

1

Mψ(ω)
.

(28)

where in the last step the supremum is attained by a sequence
of images whose Fourier transform concentrates around the
maximum of Mψ . Similarly, we get maxω∈B� Mψ(ω) for the
second factor in Eq. (27). Then we obtain

cond(Wψ) = max
ω∈B�

1

Mψ(ω)
· max
ω∈B�

Mψ(ω) = M

δ
. (29)

Similarly the condition number of Wψ is given by

cond(Wψ) = max
ω∈B�

1

Mψ(ω)
· max
ω∈B�

Mψ(ω). (30)

Next we express Mψ in Mψ of the original wavelet as

Mψ(ω) =
∫
S2

∣∣∣ψ̂0,n(ω)

∣∣∣2 +
∣∣∣ψ̂1,n(ω)

∣∣∣2 dσ(n)

=
∫
S2

∣∣∣ψ̂0,n(ω) + ψ̂1,n(ω)

∣∣∣2 dσ(n)

−
∫
S2
2 Re

(
ψ̂0,n(ω)ψ̂1,n(ω)

)
dσ(n)

= Mψ(ω) − I (ω).

(31)

So it remains to quantify I (ω). For awavelet splitting accord-
ing to (18) we have

I (ω) =
∫
S2
2 Re

(
ψ̂0,n(ω)ψ̂1,n(ω)

)
dσ(n)

=
∫
S2
2 Re

(
Ĝsρ (ω)ψ̂n(ω)(1 − Ĝsρ (ω))ψ̂n(ω)

)
dσ(n)

= 2(Ĝsρ (ω)(1 − Ĝsρ (ω)))Mψ(ω). (32)

Hence

Mψ(ω) =
(
1 − 2

(
Ĝsρ (ω)

(
1 − Ĝsρ (ω)

)))
Mψ(ω). (33)

And since 1
2 ≤ 1 − 2x(1 − x)) ≤ 1 for 0 ≤ x ≤ 1 we have

for Mψ satisfying (7) the following bounds on Mψ :

0 < δ/2 ≤ Mψ(ω) ≤ M < ∞, for all ω = B�, (34)

thereby guaranteeing stability after the splitting (18). As we
cannot guarantee that δ/2 andM are tight bounds in Eq. (34),
combining it with (29) will only give us an upper bound for
the condition number in Eq. (26). ��

For this vector transformation we can also use the approx-
imate reconstruction by integration (for Nψ ≈ 1) over
orientations. Thus we have

f (x) ≈
∫
S2
Wψ [ f ](x,n)dσ(n)

=
∫
S2
Wψ1 [ f ](x,n)dσ(n)+

∫
S2
Wψ0 [ f ](x,n)dσ(n)

︸ ︷︷ ︸
Lψ0 [ f ](x)

.

(35)

As said we are only interested in processing of Wψ1 [ f ] and
not in processing of Wψ0 [ f ], and so we directly calculate
Lψ0 [ f ] via

Lψ0 [ f ](x) = (φ0� f )(x), with φ0 =
∫
S2

ψ0,n dσ(n). (36)
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For a design with Nψ(ω) = 1 for all ω ∈ B�, we have
φ̂0 = Ĝsρ and so

φ0(x) = Gsρ (x) = 1

(4πsρ)3/2
e
− ‖x‖2

4sρ . (37)

Then Eq. (35) becomes

f (x) ≈
∫
S2
Wψ1 [ f ](x,n) dσ(n) + (Gsρ ∗ f )(x). (38)

2.2 Discrete Orientation Score Transform

In the previous section, we considered a continuous orienta-
tion score transformation. In practice, we have only a finite
number of orientations. To determine this discrete set of ori-
entations we uniformly sample the sphere using a simple2

electrostatic repulsion model [18].
Assume we have a number No of orientations V =

{n1,n2, . . . ,nNo} ⊂ S2, and define the discrete invertible
orientation score Wd

ψ [ f ] : R3 × V → C by

(Wd
ψ [ f ])(x,ni ) = (ψni � f )(x). (39)

The exact reconstruction formula is in the discrete setting
given by

f (x) = ((Wd
ψ)−1[Wd

ψ [ f ]])(x)
= F−1

[
(Md

ψ)−1F
[

x̃ →
No∑
i=1

(ψ̌ni �Wd
ψ [ f ](·,ni ))(x̃)Δi

]]
(x),

(40)

with Δi the discrete spherical area measure (
∑No

i=1 Δi =
4π ) which for reasonably uniform spherical sampling can be
approximated by Δi ≈ 4π

No
, and

Md
ψ(ω) =

No∑
i=1

∣∣∣ψ̂ni (ω)

∣∣∣2 Δi . (41)

For spherical samplings that are constructed by triangulariza-
tion (such as tessellations of the icosahedron), one can rely
on surface areas of spherical triangles to compute Δi more
accurately. See for example [29, Eq. 83]).

Again, an exact reconstruction is possible iff 0 < δ ≤
Md

ψ(ω) ≤ M < ∞ and we have norm preservation when

Md
ψ=1. Again, for the wavelets for which

2 For our applications this numerical approach in [18] was sufficient.
There are alternative approaches [40] with profound analysis on opti-
mized spherical samplings minimizing squared quadrature errors in
Fourier transforms.

Nd
ψ =

No∑
i=1

ψ̂ni (ω)Δi ≈ 1, (42)

the image reconstruction can be simplified by a summation
over orientations:

f (x) ≈
No∑
i=1

Wd
ψ [ f ](x,ni )Δi . (43)

For this reconstruction by summation we can analyze the
stability via the condition number of the mapping that maps
an image f ∈ L

�
2(R

3) to an orientation integrated score

Ad
ψ( f ) =

No∑
i=1

ψni � f Δi . (44)

This transformation has condition number cond(Ad
ψ) =

max
ω∈B�

Nd
ψ (ω)

min
ω∈B�

Nd
ψ (ω)

.

Similar to Definition 1 for the continuous case, the recon-
struction properties of a set of filters is captured in the
following definition:

Definition 2 (Proper wavelet set) Let us again set a priori
bounds δ, M > 0, 0 < ε � 1. Let � be an a priori max-
imum frequency of our ball-limited image data. Then, a set
of wavelets {ψni ∈ L

�

2(R
3) ∩ L1(R

3) | i = 1, . . . , No}, with
a reasonable uniform spherical sampling (Δi ≈ 4π

No
), con-

structed as rotated versions of ψ is called a proper wavelet
set if

1.) ∀α∈[0,2π) : ψ(R−1
ez ,αx) = ψ(x), (45)

2.) ∀ω∈B� : δ ≤ Md
ψ(ω) ≤ M, (46)

where Rez ,α ∈ SO(3) is a 3D rotation around axis ez over
angle α.

If, moreover, one has

3.) ∃ 1
2�<�0<�∀ω∈B�0

: Nd
ψ(ω) ∈ [1 − ε, 1 + ε], (47)

then we speak of a proper wavelet with fast reconstruction
property, cf. (43).

2.2.1 Low-Frequency Components

For the discrete transformation we will also perform a split-
ting in low- and high-frequency components as explained
in Sect. 2.1.1. The reconstruction formula by summation in
Eq. (43) is now given by

f (x) ≈
No∑
i=1

Wd
ψ1

[ f ](x,ni )Δi + (Gsρ ∗ f )(x). (48)
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2.3 Steerable Orientation Score Transform

Throughout this article we shall rely on a spherical harmonic
decomposition of the angular part of proper wavelets in the
spatial and the Fourier domain. This has the benefit that one
can obtain steerable [36,38,61] implementations of orienta-
tion scores, where rotations of the wavelets are obtained via
linear combination of the basis functions. As such, compu-
tations are exact and no interpolation (because of rotations)
takes place. Details are provided in Appendix A.

3 Wavelet Design Using a DFT

A class of 2D cake wavelets, see [10,27,37], was used for
the 2D orientation score transformation. We now present 3D
versions of these cake wavelets. Thanks to the splitting in
Sect. 2.1.1 we no longer need the extra spatial window used
there. Our 3D transformation using the 3D cake wavelets
should fulfill a set of requirements, compare [37]:

1. The orientation score should be constructed for a finite
number (No) of orientations.

2. The transformation should be invertible, and reconstruc-
tion should be achievedby summation. Therefore,we aim
for Nd

ψ ≈ 1. Additionally, to guarantee all frequencies
are transferred equally to the orientation score domain
we aim for Md

ψ ≈ 1. The set should be a proper wavelet
set with fast reconstruction property (Definition 2).

3. The kernel should be strongly directional.
4. The kernel should be separable in spherical coordinates

in the Fourier domain, more explicitly (Fψ)(ω) =
g(ρ)h(ϑ, ϕ), with

ω = (ωx , ωy, ωz)

= (ρ sin ϑ cosϕ, ρ sin ϑ sin ϕ, ρ cosϑ).
(49)

Because by definition the wavelet ψ has rotational sym-
metry around the z-axis we have h(ϑ, ϕ) = h(ϑ).

5. The kernel should be localized in the spatial domain,
since we want to pick up local oriented structures.

6. The real part of the kernel should detect oriented struc-
tures, and the imaginary part should detect oriented
edges. The constructed orientation score is therefore a
complex-valued orientation score, as the wavelets are
complex-valued. For an intuitive preview, see the boxes
in Fig. 7.

3.1 Construction of Line and Edge Detectors

Wenowdiscuss the procedure used tomake 3Dcakewavelets
before splitting in low and high frequencies according to

Fig. 5 Radial part g of ψ̂ , see Eq. (50) and radial parts g0 and g1 of ψ̂0
and ψ̂1 after splitting according to Sect. 2.1.1. The parameter γ controls
the inflection point of the error function, here γ = 0.8. The steepness
of the decay when approaching ρN is controlled by the parameter σer f

with default value σer f = 1
3 (ρN − �). At what frequency the splitting

of ψ̂ in ψ̂0 and ψ̂1 is done is controlled by parameter σρ = √
2sρ , see

Eq. (18)

(18) in Sect. 2.1.1 takes place. Following requirement 4 we
only consider polar separablewavelets in the Fourier domain,
so that (Fψ)(ω) = g(ρ)h(ϑ). To satisfy requirement 2 we
should choose radial function g(ρ) = 1 for ρ ∈ [0, �]. In
practice, this function should go to 0 when ρ tends to the
Nyquist frequency ρN to avoid long spatial oscillations. For
the radial function g(ρ) we use,

g(ρ) = 1

2

(
1 − erf

(
ρ − �

σer f

))
, (50)

with erf(z) = 2√
π

∫ z
0 e−x2 dx , which is approximately equal

to one for largest part of the domain and then smoothly goes
to 0 when approaching the Nyquist frequency. We fix the
inflection point of this function g and set the fundamental
parameter for ball limitedness to

� = γ ρN , (51)

with 0 � γ < 1. The steepness of the decay when approach-
ing ρN is controlled by the parameter σer f which we by
default set to σer f = 1

3 (ρN − �). The additional splitting in
low and high frequencies according to Sect. 2.1.1 effectively
causes a splitting of the radial function, see Fig. 5.

In practice the frequencies in our data are limited by
the Nyquist frequency (we have � ≈ ρN ), and because
radial function g causes Md

ψ to become really small close
to the Nyquist frequency, reconstruction Eq. (40) becomes
unstable. We solve this by using approximate reconstruc-
tion Eq. (13). Alternatively, one could replace Md

ψ by

max(Md
ψ, ε) in Eq. (5), with ε small. Both make the recon-

struction stable at the cost of not completely reconstructing
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Fig. 6 When directly setting orientation distribution A of Eq. (35) as
angular part of the wavelet h we construct plate detectors. From left
to right: Orientation distribution A, wavelet in the Fourier domain,
the plate detector (real part) and the edge detector (imaginary part).

Orange: Positive iso-contour. Blue: Negative iso-contour. Parameters
used: so = 1

2 (0.25)2, σerf = 3, γ = 0.85 and evaluated on a grid of
51 × 51 × 51 pixels (Color figure online)

the highest frequencies which causes a small amount of blur-
ring.

We now need to find an appropriate angular part h for
the cake wavelets. First, we specify an orientation distribu-
tion A : S2 → R

+, which determines what orientations the
wavelet should measure. To satisfy requirement 3 this func-
tion should be a localized spherical window, for which we
propose the spherical diffusion kernel [20]:

A(n(ϑ, ϕ)) = GS2
so (n(ϑ, ϕ)), (52)

with so > 0 and n(ϑ, ϕ) = (sin ϑ cosϕ, sin ϑ sin ϕ, cosϑ).
The parameter so determines the trade-off between require-
ments 2 and 3 listed in the beginning of Sect. 3, where higher
values give a more uniform Md

ψ at the cost of less direction-
ality.

First consider setting h = A so that ψ has compact sup-
port within a convex cone in the Fourier domain. The real
part of the corresponding wavelet would, however, be a plate
detector and not a line detector (Fig. 6). The imaginary part
is already an oriented edge detector,3 and so we set

hIm(ϑ) = 1

2
(A(n(ϑ, ϕ)) − A(−n(ϑ, ϕ)))

= 1

2

(
GS2

so (n(ϑ, ϕ)) − GS2
so (−n(ϑ, ϕ)

)
,

(53)

where the real part of the earlier found wavelet vanishes by
anti-symmetrization of the orientation distribution A while
the imaginary part is unaffected. Note that the right-hand
side of (52) and (53) is the same for all values of ϕ. As to
the construction of hRe, there is the general observation that

3 This can be observed in Fig. 6, where we recognize a planar derivative
filter in the direction of n because it is anti-symmetric and has a mainly
positive and mainly negative side.

we detect a structure that is perpendicular to the shape in
the Fourier domain, so for line detection we should aim for
a plane detector in the Fourier domain. To achieve this we
apply the Funk transform to A, and we define

hRe(ϑ, ϕ) = FA(n(ϑ, ϕ))

= 1

2π

∫
Sp(n(ϑ,ϕ))

A(n′) ds(n′), (54)

where integration is performed over Sp(n) denoting the great
circle perpendicular to n. This transformation preserves the
symmetry of A, so we have hRe(ϑ, ϕ) = hRe(ϑ). Thus, we
finally set

h(ϑ) = hRe(ϑ) + hIm(ϑ). (55)

For an overview of the transformations, see Fig. 7.
As discussed before, the additional splitting in low and

high frequencies as described in Sect. 2.1.1 effectively causes
a splitting in the radial function.How this affects the coverage
of the Fourier domain is visualized in Fig. 8.

3.2 Efficient ImplementationVia Spherical
Harmonics

In Sect. 3.1 we defined the real part and the imaginary part
of the wavelets in terms of a given orientation distribution.
In order to efficiently implement the various transformations
(e.g., Funk transform) and to create the various rotated ver-
sions of the wavelet, we express our orientation distribution
A in a spherical harmonic basis {Ym

l } up to order L:

A(n(ϑ, ϕ)) =
L∑

l=0

l∑
m=−l

aml Y
m
l (ϑ, ϕ), L ∈ N. (56)
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Fig. 7 Cake Wavelets. Top: 2D
cake wavelets. From left to
right: Illustration of the Fourier
domain coverage, the wavelet in
the Fourier domain and the real
and imaginary part of the
wavelet in the spatial domain
[10]. Bottom: 3D cake wavelets.
Overview of the transformations
used to construct the wavelets
from a given orientation
distribution. Upper part: The
wavelet according to Eq. (53).
Lower part: The wavelet
according to Eq. (54). IFT:
Inverse Fourier Transform.
Parameters used:
so = 1

2 (0.25)2, γ = 0.85 and
evaluated on a grid of
81 × 81 × 81 pixels

An�-
symmetrize

2D Cake-wavelets

3D Cake-wavelets

Line Detector
[Re]

Edge Detector
[Im]

IFT

IFT

IFT

Edge Detector
[Im]

Tube Detector
[Re]

Funk 
Transform

Fig. 8 Coverage of the Fourier domain before and after splitting accord-
ing to Sect. 2.1.1. Left:The different wavelets cover the Fourier domain.
The “sharp” parts when the cones reach the center, however, cause the
filter to be non-localized, which was solved in earlier works by applying

a spatial window after filter construction. Right: By splitting the filter
in lower and higher frequencies we solve this problem. In the figure we
show g(ρ)A(n(ϑ, ϕ)) for the different filters, before applying the Funk
transform to the orientation distribution A

The spherical harmonics are given by

Ym
l (ϑ, ϕ) = ε

√
2l + 1

4π

√
(l − |m|)!
(l + |m|)!e

imϕP |m|
l (cosϑ), (57)

where Pm
l is the associated Legendre function, ε = (−1)m

for m < 0 and ε = 1 for m > 0 and with integer l ≥ 0 and
integer m satisfying −l ≤ m ≤ l. For the diffusion kernel,
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which has symmetry around the z-axis we only need the
spherical harmonicswithm = 0, andwehave the coefficients
[20]:

aml =
⎧⎨
⎩
0 m �= 0,√

2l+1
4π e−l(l+1)so m = 0,

(58)

and Eq. (56) reduces to

A(n(ϑ, ϕ)) =
L∑

l=0

a0l Y
0
l (ϑ, ϕ). (59)

3.2.1 Funk Transform

According to [23], the Funk transform of a spherical har-
monic equals

FYm
l (ϑ, ϕ) = 1

2π

∫
Sp(n(ϑ,ϕ))

Ym
l (n′) ds(n′)

= Pl(0) Y
m
l (ϑ, ϕ),

(60)

with Pl(0) the Legendre polynomial of degree l evaluated at
0. We can therefore apply the Funk transform to a function
expressed in a spherical harmonic basis by a simple transfor-
mation of the coefficients aml → Pl(0) aml .

3.2.2 Anti-symmetrization

We have Ym
l (π −ϑ, ϕ +π) = (−1)lYm

l (ϑ, ϕ). We therefore
anti-symmetrize the orientation distribution, see Eq. (53), via

aml → (1−(−1)l )
2 aml .

3.2.3 Making RotatedWavelets

To make the rotated versions ψn of wavelet ψ , we have to
find hn in ψ̂n(ω) = g(ρ) hn(ϑ, ϕ). To achieve this we use
the steerability of the spherical harmonic basis. Spherical har-
monics rotate according to the irreducible representations of
the SO(3) group Dl

m,m′(γ, β, α) (Wigner-D functions [41]):

(RRγ,β,αY
m
l

)
(ϑ, ϕ) =

l∑
m′=−l

Dl
m,m′(γ, β, α)Ym′

l (ϑ, ϕ). (61)

Here α, β and γ denote the Euler angles with counterclock-
wise rotations, where we rely on the convention Rγ,β,α =
Rez ,γRey ,βRez ,α . This gives

hn(ϑ, ϕ) =
(
RRγ,β,α

h
)

(ϑ, ϕ)

=
L∑

l=0

l∑
m=−l

l∑
m′=−l

cml Dl
m,m′ (γ, β, α)Ym′

l (ϑ, ϕ), (62)

where cml are the coefficients of h given by

cml = Pl(0) a
m
l + (1 − (−1)l)

2
aml . (63)

Because both anti-symmetrization and Funk transform pre-
serve the rotational symmetry of A, we have h(ϑ, ϕ) =∑L

l=0 c
0
l Y

0
l (ϑ, ϕ), and Eq. (62) reduces to

hn(ϑ, ϕ) =
L∑

l=0

l∑
m′=−l

c0l D
l
0,m′(γ, β, 0) Ym′

l (ϑ, ϕ). (64)

The filters from this section are summarized in the follow-
ing result:

Result 1 Let A : S2 → R
+ be a function supported mainly

in a sharp convex cone around the z-axis and symmetrically
around the z-axis and g as radial function of Eq. (50). Then
A provides our wavelet ψ̂ in the Fourier domain via

ψ̂(ω) = g(ρ) (FA(nω) + A(nω) − A(−nω)) , (65)

with ω = ρ nω = ρ n(ϑ, ϕ). The real part of ψ is a tube
detector given by

Re(ψ) = F−1 (ω �→ g(ρ)(FA)(nω)) . (66)

The imaginary part of ψn is an edge detector given by

Im(ψ) = 1

i
F−1 (ω �→ g(ρ) (A(nω) − A(−nω))) . (67)

When expanding the angular part in spherical harmonics up
to order L and choosing A = GS2

so :

A(n(ϑ, ϕ)) =
L∑

l=0

a0l Y
0
l (ϑ, ϕ),

a0l =
√
2l + 1

4π
e−l(l+1)so ,

(68)

we have the following wavelet in the Fourier domain

ψ̂(ω) = g(ρ)

L∑
l=0

c0l Y
0
l (ϑ, ϕ), (69)

and the coefficients of A and ψ̂ relate via

c0l =
(
Pl(0) + (1 − (−1)l)

2

)
a0l . (70)
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We obtain rotated versions of our filter via

ψ̂n(ω) = g(ρ)

L∑
l=0

l∑
m′=−l

c0l D
l
0,m′(γ, β, 0)Ym′

l (ϑ, ϕ), (71)

with n = n(β, γ ).
As we do not have analytical expressions for the spa-

tial wavelets ψn, we sample the filter in the Fourier domain
using Eq. (71) and apply a DFT afterward. The wavelet ψ

is a proper wavelet with fast reconstruction property (Defi-
nition 1).

Remark 3 The heat kernel on S2 is given by

GS2
so (n(ϑ, ϕ)) =

∞∑
l=0

a0l Y
0
l (ϑ, ϕ)

=
∞∑
l=0

√
2l+1
4π e−so(l+1)l Y 0

l (ϑ, ϕ),

(72)

where we recall Eq. (68). Because of the exponential decay
with respect to l, we can describe the diffusion kernel well
with the first few coefficients. In all experiments we truncate
at smallest L such that a0L/a00 < 10−3 (e.g., L = 21 for
so = 1

2 (0.25)
2).

3.3 Stability of the Discrete Transformation with
Fast Reconstruction for Filters of Result 1

To make a fast reconstruction by summation possible
(requirement 2), we need a proper wavelet set with the fast
reconstruction property (Definition 2) with Nd

ψ ≈ 1.We now

focus on finding bounds for Nd
ψ such that we can choose our

parameters in a deliberate way.

Proposition 1 Let {ψn(βi ,γi ) | i = 1 . . . No} be a set of
wavelets constructed via the procedure in Result 1. Then we
have bounds on Nd

ψ given by

1 −
L∑

l=1

‖dl‖
√
2l + 1

4π
≤ Nd

ψ(ω) ≤ 1 +
L∑

l=1

‖dl‖
√
2l + 1

4π
,

for all ω ∈ Bρ0 (73)

with dl = (dml )lm=−l , d
m
l =

No∑
i=1

c0l · Δi · Dl
0,m(0, βi , γi ) and

here the norm is the �2-norm on C
2l+1.

Proof First we expand function Nd
ψ in spherical harmonics:

Nd
ψ(ω) =

No∑
i=1

F[ψni ](ω)Δi = g(ρ)

No∑
i=1

hni (ϑ, ϕ)Δi

= g(ρ)

L∑
l=0

l∑
m′=−l

No∑
i=1

c0l D
l
0,m′(0, βi , γi )Δi

︸ ︷︷ ︸
dm

′
l

Y m′
l (ϑ, ϕ)

= g(ρ)

L∑
l=0

l∑
m′=−l

dm
′

l Ym′
l (ϑ, ϕ) (74)

We have g(ρ) = 1 for ρ = ‖ω‖ ≤ ρ0, but we
still need to quantify the angular part. We define YN

l =
(Y−l

l ,Y−l+1
l , . . . ,Y l−1

l ,Y l
l ), so that

L∑
l=0

l∑
m′=−l

dm
′

l Y m′
l (ϑ, ϕ) =

L∑
l=0

dl · Yl(ϑ, ϕ)

= Y 0
0 (ϑ, ϕ)d00 +

L∑
l=1

dl · Yl(ϑ, ϕ)

= 1 +
L∑

l=1

dl · Yl(ϑ, ϕ)

(75)

This varying component should remain small. We use the
Cauchy-Schwarz inequality for each order l:∣∣∣∣∣

L∑
l=1

dl · Yl(ϑ, ϕ)

∣∣∣∣∣ ≤
L∑

l=1

|dl · Yl(ϑ, ϕ)|

≤
L∑

l=1

‖dl‖‖Yl(ϑ, ϕ)‖

=
L∑

l=1

‖dl‖
√
2l + 1

4π
, (76)

from which (73) follows. ��
See Fig. 9 for visual inspection of bounds of Md

ψ and Nd
ψ ,

and numerical results for the bounds of Nd
ψ .

Corollary 1 Given our analytical bounds (73) from Propo-
sition 1 and No = 42, we can guarantee that our set of
wavelets fromResult 1 is a proper wavelet set with fast recon-
struction property according to Definition 2 with ε = 0.05
when choosing parameter s0 � 0.04. In practice we have a
proper wavelet set with fast reconstruction property already
for smaller values of so (see Fig. 9).

4 Wavelet Design with Continuous Fourier
Transform and Analytical Description in
the Spatial Domain

In the previous section we described wavelets which were
analytical in the Fourier domain and were sampled and
inverse discrete Fourier transformed to find the wavelets in
the spatial domain.
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Fig. 9 Inspection of the stability of the transformation for different val-
ues of so given an orientation distribution A = GS2

so and for No = 42.
Left: Spherical plot of A and the angular part of polar separable func-
tion Nd

ψ and Md
ψ . Orientation coverage is more uniform as the plots for

Nd
ψ and Md

ψ look more like a ball. Right: The upper and

lower bounds of Nd
ψ . Comparison of the bounds according to

Eq. (73) (filled blue line) and numerical results (dashed blue line) of the
bounds by a very fine sampling of the sphere (≈ 500 orientations). Fur-
thermore, we show 1+ ε and 1− ε (orange dashed lines) for ε = 0.05
(Color figure online)

To get more control on the wavelet properties in both the
spatial and Fourier domain, it would be convenient to have an
analytical description of the wavelets in both domains. This
could be achieved by expressing the wavelets in a basis for
which we have analytical expressions for the Fourier trans-
form. We will now discuss 2 such options for the basis and
describe filters expressed in them.

4.1 A Review on Expansion in the Harmonic
Oscillator Basis

The first basis in which we could expand our wavelets are the
eigenfunctions of the harmonic oscillator H = ‖x‖2 − Δ,
whichwas also studied in [25,67].Wewill quickly review this
work and show the problems which were encountered when
using this basis, before moving onto an alternative basis in
the next section which aims to solve these problems.

When using the eigenfunctions of the harmonic oscillator
as a basis, the idea is that operator H and the Fourier trans-
form commute (F ◦ H = H ◦ F) and eigenfunctions of H
are also eigenfunctions of F . We then expand our wavelets
in these eigenfunctions restricting ourselves to eigenfunc-
tions which are symmetric around the z-axis: the spherical
harmonics with m = 0. The wavelet is then given by

ψ(x) =
∞∑
n=0

L∑
l=0

αn
l g

l
n(r) Y

0
l (θ, φ),

ψ̂(ω) =
∞∑
n=0

L∑
l=0

αn
l (−1)n+l i l gln(ρ) Y 0

l (ϑ, ϕ),

(77)

with Ym
l the spherical harmonics, (r , θ, φ) and (ρ, ϑ, ϕ)

spherical coordinates for x and ω, respectively, i.e.,

x = (r sin θ cosφ, r sin θ sin φ, r cos θ),

ω = (ρ sin ϑ cosϕ, ρ sin ϑ sin ϕ, ρ cosϑ),
(78)

and gln given by

gln(ρ) = 1

ρ
E
l+ 1

2
n (ρ),

Eν
n (ρ) =

(
2(n!)

Γ (n + ν + 1)

) 1
2

ρν+ 1
2 e− ρ2

2 L(ν)
n (ρ2),

(79)

where L(ν)
n (ρ) is the generalized Laguerre polynomial. We

then choose the case with least radial oscillations αn
l = αlδ0n .

If we then choose

αl =
√

Γ
(
l + 3

2

)
Γ (l + 1)

, (80)

we have that Mψ(ω) approximates 1 for all ω ∈ R
3 in the

Fourier domain as L → ∞ andweget the followingwavelet4

[27]:

4 The series in (81) converges point-wise but not in L2-sense. So for
taking the limit L → ∞ one must rely on a distributional wavelet
transform, since ψ L→∞

H /∈ L2(R
3) but ψ L→∞

H ∈ H−4(R
3), i.e., it is

contained in the dual of the 4th-order Sobolev space. Such technicalities
do not occur in the Zernike basis as we will see later in Sect. 4.
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ψH ψH(0, ·, ·)

Fig. 10 Wavelet expanded in the harmonic oscillator basis according
to Eq. (81) for L = 15. Left: 3D visualization showing one negative
(blue) and one positive (orange) iso-contour. Right:Cross section of the
wavelet at x = 0 (Color figure online)

ψH (x) =
L∑

l=0

1√
l!r

le− r2
2 Y 0

l (θ, φ). (81)

For this wavelet we have an analytical description in both
spatial and Fourier domain.

4.2 Expansion in the Zernike Basis

The wavelets from the previous subsection have some
unwanted properties such as poor spatial localization (long
oscillations) and the fact that the wavelets maximum does
not lie at the wavelets center, see Fig. 10. A possible expla-
nation is that the basis used is orthogonal on the full L2(R

3)

space and not limited to the ball in the Fourier domain, and
truncation of this basis at the Nyquist frequency could lead
to oscillations. An alternative basis for the unit ball is the
Zernike basis which we can scale to be a basis in the Fourier
domain for ball-limited images f ∈ L

�

2(R
3), recall Eq. (2).

The 2D Zernike basis is often used in applications as
optics, lithography and acoustics [1,12,15], since efficient
recursions can be used for calculating the basis functions
and analytic formulas exist for many transformations among
which the Fourier transform. The basis is therefore highly
suitable for problems such as aberration retrieval where a
wave function in the Fourier domain should be estimated
from measurements in the image domain [24].

Orthogonal polynomials of several variables on the unit
ball were considered by Louis [49] in the context of inversion
of the Radon transform for tomographic applications. For a
modern treatment of orthogonal polynomials on the unit ball,
see [33, Ch. 4]. Here we will use the generalized Zernike
functions [43], which vanish to a prescribed degree at the
boundary of the unit ball, with explicit expansion results for
particular functions supported by the unit ball. Since this
basis is orthogonal on the unit ball and has explicit results for
the Fourier transform it is highly suitable for the application

in mind. Derivations for the results used in the following
section can be found in [43].

4.2.1 The 3D Generalized Zernike Basis

The generalized Zernike functions are given by

Zm,α
n,l (ω) = Rl,α

n (ρ)Ym
l (ϑ, ϕ), (82)

with spherical coordinates

ω = ρ n(ϑ, ϕ), (83)

integer n, l ≥ 0 such that n = l + 2p, integer p ≥ 0 and
m = −l,−l + 1, . . . , l and α > 0. The angular part is the
spherical harmonic function and the radial part is given by

Rl,α
n (ρ) = ρl(1 − ρ2)αP

(
α,l+ 1

2

)

p= n−l
2

(2ρ2 − 1), (84)

where P
(α,l+ 1

2 )
p denotes the Jacobi polynomial. The general-

ized Zernike functions are orthogonal on the unit ball

∫∫∫

‖ω‖≤1

Zm1,α
n1,l1

(ω)Zm2,α
n2,l2

(ω)
dω

(1 − ρ2)α

= Nα
n,lδn1,n2δm1,m2δl1,l2 , (85)

with δ the Kronecker delta and with normalization factor

Nα
n,l = (p + 1)α(

p + l + 3
2

)
α

1

2
(
n + α + 3

2

) , (86)

in which (x)α = Γ (x+α)
Γ (x) is the (generalized) Pochhammer

symbol.

Fourier Transform The inverse Fourier transform of the gen-
eralized Zernike function

(F−1Zm,α
n,l )(2πx) =

∫∫∫

‖ω‖≤1

e2π i(ω·x)Rl,α
n (ρ) Ym

l (ϑ, ϕ)dω

(87)

is given by

(F−1Zm,α
n,l )(2πx) = 4π i l Sα

n,l(2πr) Y
m
l (θ, φ), (88)

with x = r n(θ, φ) and

Sα
n,l(q) =

∫ 1

0
Rl,α
n (ρ) jl(qρ) ρ2dρ
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=

⎧⎪⎨
⎪⎩
2α(−1)p(p + 1)α

√
π
2q

J
n+α+ 3

2
(q)

qα+1 if q > 0,
√

π Γ (1+α)

4Γ ( 52+α)
δn,0 if q = 0.

(89)

Here Ja and ja are the Bessel functions and spherical Bessel
functions [55]. For integer α, the expression in Eq. (89) for
q > 0 reduces to

2α(−1)p(p + 1)α
jn+α+1(q)

qα+1 . (90)

Expansion of Separable Functions An additional constraint
for thewavelets is that they should be separable in the Fourier
domain, i.e., (Fψ)(ω) = F(ω) = A(ϑ, ϕ)B(ρ). When
expanding such a function in the generalized Zernike basis,

F(ω) =
∑
n,l,m

cm,α
n,l (F) Zm,α

n,l (ω), (91)

we can split the coefficients in radial coefficients and angular
coefficients

cm,α
n,l (F) = 1

Nα
n,l

∫∫∫

‖ω‖≤1

F(ω) Zm,α
n,l (ω)

dω

(1 − ρ2)α

= aml (A) b̃l,αn (B), b̃l,αn (B) = 1

Nα
n,l

bl,αn (B)

(92)

where

aml (A) =
π∫

0

2π∫

0

A(n(ϑ, ϕ)) Ym
l (ϑ, ϕ) sin ϑ dϑdϕ, (93)

bl,αn (B) =
∫ 1

0
B(ρ) Rl,α

n (ρ)
ρ2dρ

(1 − ρ2)α
. (94)

The coefficients cm,α
n,l in (92) reflect the separation of F

as a product of an angular and radial factor as well as a
corresponding separation of the generalized Zernike basis
functions in (82). In the latter, the index l appears both in the
angular and radial factor. Thus we have

A(n(ϑ, ϕ)) =
∑
l,m

aml Y
m
l (ϑ, ϕ), (95)

while for all l = 0, 1, . . .

B(ρ) =
∑

n=l,l+2,...

b̃l,αn Rl,α
n (ρ). (96)

For each l, the radial functions Rl,α
n with n varying are a

basis for functions defined on the interval [0, 1]. For separa-
ble functions, we expand the same radial function B(ρ) for

each l, and it can be shown that there is a recursion formula
for the radial coefficients [43].

4.2.2 Wavelets

We now choose appropriate radial and angular functions for
our wavelets expressed in the generalized Zernike basis.

Angular Function for the Zernike Wavelets For the angular
functionsweagain chooseorientationdistribution A(n(ϑ, ϕ))

= GS2
so (n(ϑ, ϕ)) for which the spherical harmonic coef-

ficients are given by (58). After this we apply the same
transformations (Funk transform and anti-symmetrization)
to obtain the angular part of the wavelet.

Flat Radial Profile for All-Scale Transform Recall the proce-
dure of splitting of the lowest frequencies as described in
Sect. 2.1.1 resulting in filters ψ0 and ψ1. In this section we
design a radial function for ψ1 which is relevant for fur-
ther processing. Furthermore, we already have an analytical
description for φ0, which we set to φ0 = Gsρ (see Eq. (37)).

The radial function of ψ0 should therefore approximate
B(ρ) = 1 − Gsρ (ρ) on the interval [0, �] and should
smoothly go to zero when approaching the edges of the inter-
val. For the moment, we set � = 1 and we include the scaling
later. To start, we define the function

Bα,β(ρ) = (1 − ρ2)αρβ, (97)

see Fig. 11a for the case α = 6, β = 2. For this function we
have the following coefficients

bl,α,β
n=l+2p =

( β−l
2
p

)

(2α + β + l + 2p + 3)
( 1
2 (β+l+1)+α+p

α+p

) . (98)

Toobtain aflatter functionwemultiply the function Bα,β with
a second-order Taylor expansion of the reciprocal function
ρ �→ (Bα,β(ρ))−1 around the function’s maximum obtained
at

ρmax =
(

1
2β

α + 1
2β

) 1
2

, (99)

see Fig. 11b. The resulting function is again a sum of func-
tions of type (97) with different values for β, so we can find
the coefficients bl,αn=l+2p for the flattened function as well.
For the specific case β = 2 we get the following flattened
function

Bflat
α,2(ρ) = Bα,2(ρ) Brec

α,2(ρ)
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= 1

Bmax
ρ2(1−ρ2)α

(
1+ (α+1)3

2α
(ρ2−ρ2

max)
2
)

,

(100)

with Bmax = Bα,2(ρmax). For this flattened function the coef-
ficients are given by

bl,flatn=l+2p =
2∑

i=0

cib
l,α,2+2i
n=l+2p , (101)

with ci the coefficients of ρ0, ρ2 and ρ4 in the second-order
Taylor series of the reciprocal. These coefficients follow from
(100) and are given by

Brec
α,2(ρ) =

2∑
i=0

ciρ
2i = c0 + c1ρ

2 + c2ρ
4,

with

⎛
⎝c0c1
c2

⎞
⎠ =

⎛
⎜⎝
1 + (α+1)3

2α ρ4
max

−2 (α+1)3

2α ρ2
max

(α+1)3

2α

⎞
⎟⎠ . (102)

The filters from this section are summarized in the follow-
ing result:

Result 2 (Analytic 3D-wavelets in Zernike basis) Let α > 0
and let A : S2 → R

+ be a function supported mainly in
a sharp convex cone around the z-axis and symmetrically
around the z-axis. Then A provides our wavelet ψ̂ in the
Fourier domain via Eq. (65). The real part of ψ is a tube
detector and the imaginary part of ψ is an edge detector,
see Fig. 7. We choose radial function g(ρ) = Bflat

6,2(
ρ

ρN )

in Eq. (18) for ψ1 and angular function A(n(ϑ, ϕ)) =
GS2

so (n(ϑ, ϕ)) and expand in the generalized Zernike basis:

ψ̂1(ω) =
∑

n − l = 2p,
l, n ≥ 0

c0n,l R
l,α
n

(
ρ

ρN

)
Y 0
l (ϑ, ϕ). (103)

The coefficients c0n,l follow by expanding A in spherical har-

monics and Bflat
6,2 in the radial Zernike polynomials, recall

Eqs. (95) and (96). This yields a0l (Eq. (58)) and bα
n,l

(Eq. (101)) and coefficients c0n,l :

c0n,l =
(
Pl(0) + 1 − (−1)l

2

)
a0l b̃

α
n,l . (104)

The spatial wavelet is given by

ψ1(x) =
∑

n − l = 2p,
l, n ≥ 0

c0n,l4π i
l Sα

n,l(2πrρN ) Y 0
l (θ, φ), (105)
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Fig. 11 Left: Function B6,2(ρ) = (1 − ρ2)6ρ2. Right: Flattened
function which are obtained from Bα,β(ρ) by multiplying with the
second-order Taylor approximation of its reciprocal around the function

maximum: Bflat
6,2(ρ) = 1

Bmax
(1 + 73

12 (ρ2 − 1
7 )2)B6,2(ρ)

with Sα
n,l given by Eq. (89) and Ym

l the spherical harmonics
of Eq. (57). Then we obtain rotated filters via

ψ1,n(x) = ∑
n − l = 2p,
l, n ≥ 0

l∑
m′=−l

(cn)m
′

n,l 4π i l Sα
n,l(2πrρN ) Ym′

l (θ, φ),

with (cn)m
′

n,l := (cn(β,γ ))
m′
n,l = c0n,l D

l
0,m′ (γ, β, 0).

(106)

Since now we do have analytical expressions for the spatial
filter, in contrary to the filters from Sect. 3, we sample the
filters in the spatial domain using Eq. (106). The filter is
a proper wavelet with fast reconstruction property (recall
Definition 1).

5 Experiments with the Filters and the
Transform Between a 3D Image and Its
Orientation Score

Before considering applications of the filters in the next sec-
tion, we first compare filters obtained by DFT (Sect. 3) to
filters expressed in the generalized Zernike basis (Sect. 4)
and inspect the quality of the reconstruction.

5.1 Comparison ofWavelets Obtained via DFT and
Analytical Expressions Using the Zernike Basis

First we compare the filters obtained by sampling in the
Fourier domain followed by a DFT (Sect. 3) to the filters
obtained by expansion in the Zernike basis (Sect. 4). Settings
were chosen such that the radial functions of both wavelets
matched best and the same settings for the angular function
were used. In Fig. 12 we show that the filters are very sim-
ilar in shape. We see no major artifacts caused by sampling
followed by an inverse DFT.

5.2 Quality of the Reconstruction

A visual inspection of the reconstruction after the transfor-
mation and reconstruction procedure can be found in Fig. 13.
As expected, a small amount of regularization is observed.
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Fig. 12 Comparison of the filters obtained by sampling in the Fourier
domain and performing an inverse DFT (Result 1 in Sect. 3) and the fil-
ters expressed in the generalizedZernike basis (Result 2 in Sect. 4).Left:
Iso-contour plot of the filter aligned with the x-axis showing one posi-
tive iso-contour (orange) and one negative iso-contour (blue). Middle:

Cross section of the filter for z = 0. Right: The low-pass filter. Top Fil-
ters according to Result 1 with parameters sρ = 1

2 (1.9)2 and γ = 0.85.
Bottom: The filters according to Result 2 with α = 3 and β = 2. Both
have so = 1

2 (0.4)2 and are evaluated on a grid of 31 × 31 × 31 voxels
(Color figure online)

We see no qualitative differences between the two recon-
structions.

6 Applications

Next we present two applications of 3D image processing
via invertible orientation score transforms. Figure 14 sum-
marizes the different datasets on which we validate this kind
of processing. In the invertible orientation score transform
used in all experiments, we choose to use the wavelets from
Result 1 and the default values of Table 1, unless stated oth-
erwise. The reason for only using the wavelets from Result 1
is that the wavelets from Result 2 are over 10 times slower
in our current implementations, partly due to the fact that the
series in (106) is converging, but unfortunately not rapidly
converging.

6.1 DiffusionVia Invertible Orientation Scores

6.1.1 Background and Related Methods

Manymethods exist for enhancing elongated structures based
on nonlinear diffusion equations. Coherence-enhancing dif-
fusion (CED) filtering [69] uses the structure tensor to steer
the diffusion process to mainly apply diffusion along the
elongated structures, therefore preserving the edges. One
downside of this method is that at situations where multi-
ple oriented structures occur at the same position, one of
the structures gets destroyed. This renders this method not
suitable for crossing structures and in 3D data bifurcating
vessels. Interesting extensions dealingwith crossings by ana-
lyzing the environment using higher-order derivatives have
been proposed [63].

Methods that deal with crossings by applying coherence-
enhancing diffusion via 2D orientation scores have been
developed for 2Ddata [37,64].Here,wepropose an extension
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Fig. 13 Comparison of construction and reconstruction of data A.1
using the different types of filters with the same settings as in Fig. 12.
In each row, from left to right, an iso-contour of the data and 3 slices
through the center of the data along the three principal axis. Top: The

original data. Middle: the data after construction and reconstruction
using the filters from Result 1. Bottom: the data after construction and
reconstruction using the filters from Result 2

of coherence-enhancing diffusion via 3D orientation scores
to enhance elongated structures, while preserving crossings
and bifurcating vessels. Preliminary results on artificial data
have been shown in [32]. Here we show first results on real
data, quantify the results and furthermore add additional
adaptivity to the diffusion equation.

6.1.2 CEDOS

We now use the invertible orientation score transformation
to perform data enhancement according to Fig. 2. Because
R
3 × S2 is not a Lie group, it is common practice to embed

the space of positions and orientations in the Lie group of
positions and rotations SE(3) by setting

Ũ (x,R) = U (x,R · ez), U (x,n) = Ũ (x,Rn), (107)

with Rn any rotation for which Rn · ez = n. The operators
Φ which we consider are scale spaces on SE(3) (diffusions),
and are given by Φ = Φt with

Φt (U )(y,n) = W̃ (y,Rn, t). (108)

Here W̃ is the solution of a nonlinear diffusion equation:

⎧⎪⎪⎨
⎪⎪⎩

∂W̃

∂t
(g, t) =

6∑
i, j=1

Ai |gDi j (Ũ )A j |gW̃ (g, t),

W̃ (g, 0) = Wψ1 [ f ](x,R · ez), g = (x,R)

(109)

where in coherence-enhancingdiffusiononorientation scores
(CEDOS) Di j is adapted locally to initial condition W̃ (g, 0)
based on exponential curve fit (see [32]), and with Ai |g =
(Lg)∗Ai |e the left-invariant vector fields on SE(3). The diffu-
sion is better understood in locally adaptive frame {Bi }6i=1.
Here B3 follows from an exponential curve fits and points
along our structure. B1 and B2 span the plane spatially per-
pendicular to our structure, and B4,B5 and B6 correspond
to angular diffusion (embedding in SE(3) leads to a third
angular dimension). Our diffusion then takes the diagonal
form
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Fig. 14 Overview of the datasets used in our experiments

∂W̃

∂t
(g, t) =

6∑
i=1

Dii (Ũ )Bi |2gW̃ (g, t)

= D11(Ũ )
(
B1|2g + B2|2g

)
W̃ (g, t)

+ D33(Ũ )B3|2gW̃ (g, t)

+ D44

(
B4|2g + B5|2g + B6|2g

)
W̃ (g, t)

(110)

where we limit ourselves to diffusion of type D11 = D22,
and D44 = D55 = D66 to preserve the data symmetry of
Eq. (107). The diffusion system in Eq. (110) has been set up
in previous work [45] with constant D11 and D33.

In this work we include further adaptivity by making the
constants D11 and D33 data adaptive. We aim to enhance
oriented structures and reduce noise as much as possible.
Therefore, non-oriented regions are smoothed isotropically
by setting

(D11(Ũ ))(g) = 1 − exp

(
−
(

c1

s(Ũ )(g)

)2
)

, (111)

Table 1 Default values for the parameters of the orientation score trans-
form used in the application section

Parameter Default value Defining Eq.

No 42 (39)

γ 0.85 (51)

σer f
1
3 (ρN − �) (50)

sρ
1
2 (16)2 (18)

so
1
2 (0.45)2 (52)

Discrete wavelet size 11 × 11 × 11 –

with c1 a constant automatically set to the 50% quantile of
s(Ũ ) and s(Ũ )(g) ameasure for orientation confidence given
by minus the Laplacian in the space orthogonal to the struc-
ture orientation B3:

s(Ũ )(g) = −
∑

i∈{1,2,4,5,6}
Bi |2gŨ (g). (112)

Since we want to stop diffusion when reaching the end of a
structure, we set
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Fig. 15 Selected regions for determining the contrast-to-noise ratios
for dataset B.1. Left: Grid containing slices of the data (top row), the
same sliceswith segmented vessel parts (second row) and the sliceswith

three selected background regions (third row), the slices after applying
CEDOS. Right: 3D visualization of the data

(D33(Ũ ))(g) = 1 − exp

⎛
⎝−

(
c2

B3|gŨ (g)

)2
⎞
⎠ , (113)

with c2 a constant automatically set to the 50% quantile of
|B3|g(Ũ )|.

We then obtain Euclidean invariant image processing via

Υ f = W−1,ext
ψ ◦ Φ ◦ Wψ f = W−1

ψ ◦ PψΦ ◦ Wψ f , (114)

which includes inherent projection Pψ of orientation scores,
even if Φ = Φt maps outside of the space of orientation
scores. We write W−1,ext

ψ because we extend the inverse to

L2(R
3 × S2).

6.1.3 Quantification Via Contrast-to-Noise Ratio

In the next section, we quantify the denoising capabilities
of the diffusion in Eq. (110) with the contrast-to-noise ratio.
Next we will explain how we calculate this measure for our
real medical image data.

For signal f with noise N the noisy data is given by:

fN (x) = f (x) + N (x). (115)

Given such data, the noise is quantified via the contrast-to-
noise ratio (CNR):

CN R( fN , f ) =
max
x

f (x) − min
x

f (x)

σ ( f − fN )
, (116)

where σ( f − fN ) denotes the standard deviation of the dif-
ference signal f − fN , and where the numerator denotes the
contrast in our data.

For real data we do not have a ground truth f but only
noise signal fN and we will use the following estimation
for the standard deviation of the noise and the contrast of
the signal. First we estimate the contrast by determining the
average value over manually segmented parts of the vessel
given by region ΩS and background regions given by ΩB :

μS = 〈 fN |ΩS 〉, μB = 〈 fN |ΩB 〉. (117)

For estimating the noise of the signal, we select regions
for which the signal f can be expected to be constant (see
Fig. 15). Given such a region ΩB we estimate the noise stan-
dard deviation by

σN = σ( fN |ΩB ). (118)
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The contrast-to-noise ratio (CNR) is then given by

CN R( fN ) = μS − μB

σN
, (119)

where the numerator denotes the contrast in our data.

6.1.4 Results on Cone Beam CT Data of the Abdomen

We tested our method on real Cone Beam CT data of the
abdomen (Fig. 14b). The data were acquired using a Philips
Allura Xper FC20 system, using a Cone Beam CT backpro-
jection algorithm (XperCT) to generate the final volumetric
image.

To quantify our method, we segmented the vessels and
selected background regions, see Fig. 15. We then applied
CEDOS with different end times and computed the CNR for
these different end times ranging from 1 to 6, see Fig. 17.
Diffusion constants D11 and D33 were determined using
Eqs. (111), (113), and we set D11 = 0.001. For the ori-
entation score transformation, we used so = 1

2 (0.45)
2 and

sρ = 1
2 (16)

2. For CED we used the following settings:
α = 0.2 and c the 50%-quantile of κ (see [69]).

As one can expect, in all cases we recognize a peak
since initially noise is reduced whereas later also contrast is
reduced. Compared toGaussian diffusion andCED,we reach
a higher CNR (Fig. 16). Furthermore, in the CEDOS and
CED case, the CNR does not decrease much when applying
more diffusion making it more robust with respect to choice
in diffusion time. The fact that CED does not achieve high
CNR ratios and performs relatively bad in this test is that
the diffusion matrix is not designed to reduce background
noise (which is used here to quantify noise) but mainly to
enhance orientated patterns; for this reason we also set α rel-
atively high to still achieve noise reduction in the background
regions.

For 3D visualization of the diffusion results for optimal
diffusion time (determined from the CNR), see Fig. 18.
Here we see that compared to Gaussian diffusion our
anisotropic diffusion reduced more noise while still main-
taining the important structures. A similar thing is achieved
by anisotropic diffusion in CED but bifurcating vessels are
destroyed by this method, as in this method the diffusion is
mainly performed along the orientation of one of the vessels
at the bifurcation (see the black circles in Fig. 18).

6.1.5 Influence of CEDOS on Vessel Edge Location

In order to test the influence of our regularization method
on vessel features, we implemented a simple edge detection
algorithm. We manually selected positions in the data and
detect the edges in the vessel cross sections by extracting
radial profiles from the centerline outward and looking for

1 2 3 4 5 6

2

4

6

8

10

12

Fig. 16 Contrast-to-noise ratio (CNR) against diffusion time for
CEDOS compared to Gaussian regularization and CED of data B.1
depicted in Fig. 15. The times denoted by a, b and c correspond to the
diffusion times shown in Fig. 17

the minimum in first-order gaussian derivative. Compared
to Gaussian regularization, the vessel edge position is not
influenced by our regularization method (Fig. 19), which
is highly important for applications which rely on accurate
vessel lumen measurements, e.g., stent positioning and navi-
gation of endovascular devices. The key explanation for this
benefit is that at the vessel we get a very low D11 (Eq. 111)
and therefore we smooth only along the vessel.

6.2 Tubularity Measure

6.2.1 Background and Related Methods

In this section we propose a tubularity measure based on
the edge information in our orientation scores. This tubular-
ity measure is then used for vessel width measurements and
could be used for vessel segmentation.

Tubularity measures are designed to have a high response
on the centerline of tubular structures. One such tubularity
measure is the image gradient flux filter [14]which is used for
vessel segmentation. An extension of the gradient flux filter
is the optimally oriented flux filter [47] which introduces the
notion of oriented fluxmaking the filter orientation sensitive.

A 2D tubularity measure based on orientation scores was
proposed in [9]. The advantage of this tubularity measure
is that it included nonlinearity and that the implementation
via orientation scores still has a response at crossing vessels.
Here we propose an extension of this tubularity measure to
3D making use of 3D orientation scores.

6.2.2 Tubularity Via Orientation Scores

For the tubularity measure we detect edges in the plane per-
pendicular to orientation n. Within this plane, the product of
two opposite edges at radius r and in-plane orientation θ at
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Fig. 17 Results of coherence-enhancingdiffusionvia orientation scores
on dataset B.1, see Eq. (110). Top: CEDOS for different amounts of
diffusion time. Middle: Result for CED. Bottom: Result for isotropic
Gaussian regularization. For all datasets, we show one iso-contour at
μBG +0.7(μFG −μBG), where μBG and μFG are the mean of the back-
ground and foreground in the (processed) data determined using the

selected regions used for determining the CNR. For a better impression
of the full volume, see Fig. 18. We plot results for three different times
according to Fig. 16, where case (a) corresponds to optimal diffusion
time for Gaussian regularization and case (c) corresponds to optimal
CEDOS which is also approximately equal to optimal CED time. We
see that CEDOS preserves the complex vascular geometry

position x ∈ R
3 is given by

Eprod(x,n, r , θ) = Im+[U (x + rn⊥(θ),n⊥(θ))] ·
Im+[U (x − rn⊥(θ),−n⊥(θ))], (120)

where Im+(z) = max{0, Im(z)} and n⊥(θ) = cos θ e1 +
sin θ e2, with {e1, e2} an orthogonal basis for the orthogonal
complement of 〈n〉 = span{n}. The product of the two Im+
edge responses in Eq. (120) yields a better performance than
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Fig. 18 Volume rendering of the diffusion results for datasets B.1, B.2 and B.3 (from top to bottom) visualized in the Philips viewer [62] using
default settings in all cases. For all cases we used optimized diffusion time according to Fig. 16

taking the sum, as is done in [9, Fig. 12.2] and [19]. The
idea behind taking the product instead of the sum is that we
need a high edge response in both directions. See Fig. 20
for a schematic visualization. Since for a real tube all edges
should be present, and we do no want any response for, e.g.,
plate structures, we take a minimum over the perpendicular
orientations parametrized by θ . This is done as follows

V (x,n, r) = min
θ∈[0,2π)

π∫

0

K or
σ V
o

(θ − θ ′) Eprod(x,n, r , θ ′)dθ ′.

(121)

For the angular regularization kernel we use the simple 2π
periodic 1D-diffusion kernel

K or
σoV

(θ) = ∑
k∈Z

G
σ V
o
S1

(θ + 2kπ) = ∑
k∈Z

1√
2πσv

o
e
− |θ+2kπ |2

2|σVo |2

over θ , instead of the true diffusion kernel (72), where for

practical values we use σ V
o = π/8 the series of rapidly con-

verging kernels can be reasonably truncated already at the
first term k = 0.

From the tubularity measure (121), we extract the follow-
ing features:

st (x) = max
n∈S2,r∈R+

V (x,n, r), (122)

n∗(x) = argmax
n∈S2

max
r∈R+ V (x,n, r), (123)

r∗(x) = argmax
r∈R+

max
n∈S2

V (x,n, r). (124)

Here st (x) is the tubularity confidence which is ameasure for
how certain we are at least one tubular structure is present at
position x. The features n∗(x) and r∗(x) are the orientation
and radius of optimal tubularity response at position x.
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Fig. 19 Measurement of vessel radius in vessel cross sections after dif-
ferent amounts of diffusion in dataset B.1. Top left: 3D Visualization of
the data with the selected slices. Top middle: Radii measurements for
increasing diffusion time for CEDOS. Top right: Radii measurements
for increasing diffusion time for Gaussian regularization. The detected

vessel width is not influenced by our regularization method while this
does occur for Gaussian regularization. Bottom: Cross sections of one
vessel for increasing diffusion time with detected vessel edge positions
(green points) and search area for edge detection (red circle) (Color
figure online)

Fig. 20 Schematic visualization of the edges used in the tubularitymea-
sure V (x,n, r). Left: A 3D iso-contour visualization of a vessel with
orientation n. The coordinates (θ, r) are polar coordinates for the plane

perpendicular to orientation n spanned by e1 and e2. Right: In this plane
opposite edges are multiplied in Eprod(x,n, r , θ). The edge is expected
to have outward orientation n⊥(θ)

6.2.3 Results on Artificial Data

For the validation of our tubularity measure, we constructed
18 artificial datasetswith a random tubular structurewith ran-
domly varying radius (Fig. 14c). For the tubularity measure

we used the following settings:σ V
o = π/8 andwe discretized

the θ -integral in Eq. (121) using 8 orientations.
As validation we compared the optimal radius to the

ground truth radius and inspect the tubularity confidence.
The transversal profiles in the tubes are modeled by Gaus-
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Fig. 21 Tubularity on artificial datasets and comparison of measured
radius against ground truth radius for datasets C.1, C.2 and C.3 (top to
bottom). Left: The data. Middle left: The centerline with ground truth
radius in color. Middle right: The tubularity confidence st (x) (max

of tubularity over radius and orientation) with radius of max response
r∗(x) in color. Right:Measured radius r∗(x) against ground truth radius
rGT(x) on the ground truth centerline. The opacity of the plotted points
is linearly scaled with the tubularity confidence

sians, and we define the ground truth radius rGT (x) = σ(x)
at the standard deviation σ(x) of the Gaussian. Thereby, the
tube boundaries are at the inflection point of the transversal
Gaussian profiles.

The tubularity confidence is selective on the vessel center-
line, and the found optimal radius is a reasonable estimation
of the ground truth radius, see Figs. 21 and 22, and follows
the correct trend although outliers typically tend to produce
an overestimate.

6.2.4 Results on 3D Rotational Angiography Data of the
Brain in Patients with Arteriovenous Malformation
(AVM)

We applied the tubularity measure to 3D rotational angiogra-
phy of the brain in patients with arteriovenous malformation
(Fig. 14a). The data were acquired using a Philips Allura
Xper FC20 system, using a 3D rotational angiography back-
projection algorithm (3DRA) to generate the final volumetric
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Fig. 22 Measured radius r∗(x) against ground truth radius on the
ground truth centerline for all 18 datasets. The opacity of the plotted
points is linearly scaled with the tubularity confidence

image. For the tubularity measure we used the following
settings: σ V

o = π/8 and we discretized the θ -integral in
Eq. (121) using 12 orientations. For the orientation score
transformation we used so = 1

2 (0.4)
2, sρ = 1

2 (5)
2 and eval-

uated on a grid of 21 × 21 × 21 pixels and default settings
for the other parameters.

In Fig. 23 we show our tubularity measure for this med-
ical data. The tubularity measure gives sharp responses for
vessel centerlines. We also show optimal orientation n∗(x)
and a simple segmentation given by the 0-iso-contour of the
distance map d(x,∪Bci ,r∗(ci )) = minci {‖x − ci‖ − r∗(ci )},
where ci are the positions given by the 1% quantile of highest
responses.

7 Conclusion

We presented theory and filters for the 3D orientation
score transformation which is valuable in handling complex
oriented structures in 3D image data. Then we showed appli-
cations of this transformation.

Fig. 23 Tubularity on real data. Top:Dataset A.1. Bottom:Dataset A.2.
Left: The data. Middle left: The projected tubularity (max over radius
and orientation) colored by radius. Middle right: Orientation of max
response for 1% quantile of highest responses in the tubularity confi-
dence. Right: Segmentation based on radius of max response for 1%

quantile of highest responses in the tubularity confidence. The plotted
surface is the 0-iso-contour of the distance map d(x,∪Bci ,r∗(ci )) =
minci {‖x − ci‖ − r∗(ci )}, where ci are the positions given by the 1%
quantile of highest responses
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First, we proposed filters for a 3D orientation score trans-
form. We presented two types of filters: The first uses a
discrete Fourier transform and the second is designed in the
3DgeneralizedZernike basiswhich allowed us to find analyt-
ical expressions for the spatial filters. Both filters allowed for
an invertible transformation. The filters and the quality of the
reconstruction are assessed in Sect. 5, where we showed that
the discrete filters approximate their analytical counterparts
well. We also verified the invertibility of our transformation
by showing data reconstructions of real medical data.

The orientation score transform was then used in two dif-
ferent applications. In the first we presented an extension
of coherence-enhancing diffusion via 3D orientation scores
which we applied to real 3D medical data and showed our
method effectively reduced noisewhilemaintaining the com-
plex vessel geometry. In the second application we propose a
new nonlinear tubularity measure via 3D orientation scores.
The tubularitymeasure has sharp responses for vessel center-
lines, andwe showed its use in radius extraction and complex
vessel segmentation.

In this work basic applications of the tubularity measure
are shown. Future work would include using the tubularity
measure in more advanced vessel segmentation procedures.
Furthermore, many other applications exist for the 3D ori-
entation scores and many techniques developed for 2D
orientation scores can now be extended to 3D. First steps are
presented in this paper, where the extension of 2D CEDOS
and a 2D tubularity measure via 2D orientation scores are
given. It is also interesting to explore the nonlinear diffusion
procedure (Eq. (110)) for contextual processing of diffusion-
weighted MRI and to compare with existing approaches
[58,68].
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A Steerable Orientation Score Transform

In this article we often rely on a spherical harmonic decom-
position of the angular part of proper wavelets in the spatial
and the Fourier domain. As the choice of radial basis varies
in Sect. 4, and since it does not affect steerable filter
[36,38,61,67] properties, we simply write {gln(r)}∞n=0 for a
radial orthonormal basis forL2(R

+, r2dr) associated to each
2l + 1-dimensional SO(3)-irreducible subspace indexed by
l. Then by the celebrated Bochner–Hecke theorem [34], this
induces a corresponding orthonormal radial basis {g̃ln(ρ)}∞n=0
in the Fourier domain which can be obtained by a Hankel-
type of transform [25, Ch. 7]. We expand our wavelets
in spherical harmonics Ym

l and ball coordinates (cf. (78))
accordingly:

ψ(x) =
∞∑
n=0

αn
l g

l
n(r) Y

0
l (θ, φ),

with x = (r cosφ sin θ, r cosφ sin θ, r cos θ),

ψ̂(ω) =
∞∑
n=0

αn
l g̃

l
n(ρ) Y 0

l (ϑ, ϕ),

with ω = (ρ cosϕ sin ϑ, ρ cosϕ sin ϑ, ρ cosϑ).

(125)

Remark 4 In Sect. 4, we consider the modified Zernike basis
in which case gln and g̃ln are given by, respectively, (85) and
(82), whereas for the harmonic oscillator basis one has gln =
i l(−1)n+l g̃ln given, respectively, by (77) and (79).

We obtain steerability via finite series truncation at n = N
and l = L . Then we rotate the steerable kernels via the
Wigner-D functions Dl

0,m(γ, β, 0) ∈ R (cf. Sect. 3.2.3) and
one obtains the following steerable implementations of ori-
entation scores:

U (x,n)

=
N∑

n=0

L∑
l=0

l∑
m=−l

αn
l Dl

0,m(γ, β, 0) · ((gln ⊗ Y 0
l )� f )(x)

=
N∑

n=0

L∑
l=0

l∑
m=−l

αn
l Dl

0,m(γ, β, 0) · F−1
[
g̃ln ⊗ Y 0

l · f̂
]
(x)

(126)

where n = (cos γ sin β, sin γ sin β, cosβ)T , � denotes cor-
relation, the overline denotes complex conjugation and with
function product (g̃ln ⊗ Ym

l )(x) = g̃ln(r) Y
m
l (θ, φ).
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B Table of Notations

Symbol Explanation Reference

B.1 Spaces and Input Data
R
3 × S2 Space of positions and orientations Page 1

L
�

2 (R
3) = { f ∈ L2(R

3)|supp(F f ) ⊂ B�}, with
� > 0

Space of frequency ball-limited images (2)

Bρ = {x ∈ R
3
∣∣‖x‖ < ρ}, with ρ > 0 The ball around the origin with radius ρ (2)

B.2 Orientation Score Transformation
Wψ Orientation score transformation (3)
W−1

ψ Data reconstruction via the inverse orientation score transformation (5)
ψ Wavelet used for the orientation score transformation (3)
ψ̂ Fourier transform of the wavelet used for the orientation score

transformation
(6)

Mψ Factor used to quantify the stability of the transformation (6)
Nψ Factor used to quantify the stability of the transformation when

using the simplified reconstruction by integration
(12)

Wd
ψ, (Wd

ψ)−1, Md
ψ, Nd

ψ Discretized versions of Wψ, (Wψ)−1, Mψ, Nψ (39), (40), (41), (42)
dσ and Δi Spherical area measure and discretized spherical area measure (5), (40)
B.3 Coordinates
x = (x, y, z) Cartesian coordinates real space -
ω = (ωx , ωy, ωz) Cartesian coordinates Fourier domain -
(r , θ, φ), x =

(r sin θ cosφ, r sin θ sin φ, r cos θ)

Spherical coordinates real space (49)

(ρ, ϑ, ϕ), ω =
(ρ sin ϑ cosϕ, ρ sin ϑ sin ϕ, ρ cosϑ)

Spherical coordinates Fourier domain (49)

B.4 Wavelets
g Radial function of the cake filters (50)
A Orientation distribution used in wavelet construction (52)
Ym
l Spherical harmonics (57)
Zm,α
n,l 3D generalized Zernike functions (82)

Rl,α
n Radial part of the 3D generalized Zernike functions (84)

Sα
n,l Radial part of the inverse Fourier transform 3D generalized

Zernike functions
(89)

B.5 Applications
V (x,n, r) Tubularity measure (121)
st (x) Tubularity confidence (122)
n∗(x) Orientation of maximum tubularity response (122)
r∗(x) Radius of maximum tubularity response (122)
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