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Abstract Most methods that address computer vision prob-
lems require powerful visual features. Many successful
approaches apply techniques motivated from nonparametric
statistics. The channel representation provides a framework
for nonparametric distribution representation.Althoughearly
work has focused on a signal processing view of the rep-
resentation, the channel representation can be interpreted
in probabilistic terms, e.g., representing the distribution of
local image orientation. In this paper, a variety of approxi-
mative channel-based algorithms for probabilistic problems
are presented: a novel efficient algorithm for density recon-
struction, a novel and efficient scheme for nonlinear gridding
of densities, and finally a novelmethod for estimatingCopula
densities. The experimental results provide evidence that by
relaxing the requirements for exact solutions, efficient algo-
rithms are obtained.

Keywords Visual features · Channel representations ·
Approximative density estimation · Maximum entropy

1 Introduction

Visual feature descriptors are essential to solve computer
vision problems with state-of-the-art methods. Although
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deep learning [18] eliminates the need to design feature
descriptors by hand, approximative algorithms for proba-
bilistic processing of feature layers are useful, e.g., for visual-
ization [20,31]. Furthermore, certain problems require more
light-weight solutions and cannot make use of deep learning.
Instead, combinations of designed feature descriptors with
shallow networks or other machine learning approaches are
more appropriate and produce good results, e.g., for real-time
online learning of path following [21,23]. A demonstration
video of such a system is available online (https://goo.gl/
JcvqHz). The system requires obtaining a full reconstruction
of represented probability densities. Furthermore, the repre-
sentation should be adapted to nonlinear domains, such as
depth. In cases where there are dependencies between sig-
nals, statistical approaches are expected to improve if the
dependency structure can be properly handled and separated
from the marginal distributions.

Besides for machine learning, feature descriptors such
as HOG [1], SIFT [19], and distribution fields (DFs) [27]
are also used in multi-view geometry (point matching) and
visual tracking. Thus, they are of central importance to visual
computing. All these approaches have in common that they
compute local histograms, e.g., of local orientation, and are
thus related to nonparametric density estimation. Consider
the case of DFs: the image is exploded into several layers
representing different ranges of intensity; see Fig. 1.

Whereas DFs make an ordinary bin assignment and
apply post-smoothing, channel representations apply a soft-
assignment, i.e., pre-smoothing. This has shown to be more
efficient [4]. Similarly, SIFT descriptors can be considered as
a particular variant of channel representation of local orien-
tation and the latter framework allows generalizing to color
images [7]. HOG descriptors are a specific variant of chan-
nel coded feature maps CCFMs [16], but in contrast to the
former no additional visualization [30] is required. CCFMs
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Fig. 1 Illustration of distribution fields: the image (top) is exploded
into several layers (here: 7), each covering a different interval of the
grayscale range. In these layers, intensity represents activation, where
dark is no activation and white is full activation. Each layer represents
a range of intensity values of the original image. The bottom layer
represents dark intensities, i.e., the high activations in the bottom layer
are at pixels with low image intensity. Each new layer above the bottom
one represents respectively higher intensities. In the seventh layer, the
high image intensity pixels appear active

are based on frame theory, which comes with a decoding
methodology that also covers visual reconstruction [3].

Thus, channel representations is a general framework for
building feature descriptors, and the goal of this article is to
formulate efficient algorithms for three different tasks:

• From the measured coefficients in the nonparametric
density representation, a continuous density is to be esti-
mated under the assumption of minimum information
(maximum entropy) [15].

• Whereas histogram bins are often equally distributed,
i.e., the bin centers sample the input space regularly,
highly varying densities require a nonlinear transforma-
tion of the input space before gridding. The resulting
non-constant measure is to be compensated during the
non-regular gridding of the input space.

• A joint density can be turned into a Copula distribution
by transforming its marginals into uniform distributions.
Similar to the second problem, the induced measure is

to be taken care of during the calculation of the Copula
distribution.

The remainder of the article is structured as follows. Sec-
tion 2 reviews relevant methods and properties of channel
representations. Section 3 addresses the first problem of effi-
cient maximum entropy reconstruction. Section 4 addresses
the second problem of non-regular gridding of the input
space. Section 5 addresses the transformation of densities
to uniform distribution for the estimation of the Copula dis-
tribution. The article is concluded with Sect. 6.

2 The Channel Representation

The channel representation has been proposed by Gran-
lund [11]. It shares similarities to population codes [25,29]
and similar to their probabilistic interpretation [32] they
approximate a kernel density estimator [5]. Themathematical
proof has basically already been given in context of averaged
shifted histograms [26]. A further related representation, ori-
entation scores, is based on generalized wavelet theory [2].

An intuitive understanding of channel representations,
including their encoding and decoding, is obtained by con-
sidering the example of channel smoothing [5,6], which is
sometimes also considered as an efficient version of bilateral
filtering [17,24]; see Fig. 2.

Bilateral filtering allows to denoise a signal or an image
without blurring edges because the different intensity/color
levels on the two sides of the edge are represented in different
parts of themodel after the encoding. Thus, the two levels are
not confused during spatial averaging. Instead, close to the
edge a metamery region is formed, i.e., two different modes
occur. The task during decoding is then to pick the stronger
mode and to determine its maximum.
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Fig. 2 Illustration of channel smoothing [6]: The noisy signal (left) is
smoothed without blurring the edge (right). This is achieved by encod-
ing, spatial averaging of the channels, and decoding
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2.1 Encoding

This section makes use of notation and derivations accord-
ing to [15]. The channel representation is built by channel
encoding samples x (m) from a distribution with density p,
resulting in the channel vector

c(m) = [c(m)
1 , . . . , c(m)

N ]t (1)

= [K (x (m) − ξ1), . . . , K (x (m) − ξN )]t , (2)

where m denotes the sample index, cn the channel coeffi-
cients, K () the encoding kernel, and ξn the channel centers.

In contrast to previous work on maximum entropy recon-
struction [15], we will use cos2-kernels instead of quadratic
B-splines

K (x) =
{

2
3 cos

2(πx/3) |x | ≤ 3/2

0 otherwise
. (3)

The reason for this choice is the uniqueness of cos2-kernels
as minimal overlap kernels on the regular grid with constant
l2-norm, see Theorems 2.1 and 2.2 in [8].

Consider the sample set {x (m)} of size M . Summing over
it, the nth channel coefficient becomes

cn = 1

M

M∑
m=1

c(m)
n = 1

M

M∑
m=1

K (x (m) − ξn). (4)

Since we draw the samples x (m) from the density p, the
expectation of cn is

E[cn] =
∫ ∞

−∞
p(x)K (x − ξn) dx . (5)

2.2 Decoding/Reconstruction

Various ways to decode channel representations for different
kernels have been suggested in the past [5,10]. For the cos2-
kernel, different degrees of overlap and confidence measures
have been considered [10]. In this short review, we describe
the recently suggested maximum likelihood decoding [8].

The first step is to select an index n of c, which will be the
center of the decoding window of width three

c = [. . . , cn−2, cn−1, cn, cn+1︸ ︷︷ ︸
decoding window

, cn+2, . . .]t . (6)

How to select this index will be explained below.
By rotating the 3-vector in the decoding window cn =

[cn−1, cn, cn+1]t , we obtain the pn vector, which is

parametrized in (rn, sn, αn)

pn : =
⎡
⎣rn cos(2παn/3)
rn sin(2παn/3)

sn

⎤
⎦

= 1√
3

⎡
⎣

√
2

√
2 cos(2π/3)

√
2 cos(4π/3)

0
√
2 sin(2π/3)

√
2 sin(4π/3)

1 1 1

⎤
⎦ cn .

Usually,1 αn ∈ [π/3;π ], andwe select the decodingwindow
according to

n̂ = argmax
n

rn + √
2sn . (7)

The corresponding decoded value x̂ = max(min( 3
2π (αn̂ −

2π/3), 1
2 ),− 1

2 ) + n̂ is the maximum likelihood estimate of
c assuming independent noise [8]

x̂ = argmax
x

p(x |c) (8)

= argmin
x

‖[K (x − ξ1), . . . , K (x − ξN )]t − c‖22.

2.3 Maximum Entropy Reconstruction

In contrast to the decoding as suggested above, which just
estimates the mode of the distribution, maximum entropy
decoding [15] attempts to extract the whole distribution. The
idea is to find the simplest, i.e., the least informative, distri-
bution, which fits the channel coefficients, by maximizing its
differential entropy

H(p) = −
∫ ∞

−∞
p(x) log p(x) dx . (9)

Fitting the channel coefficients is guaranteed by the con-
straints∫ ∞

−∞
p(x)K (x − ξn) dx = cn, 1 ≤ n ≤ N (10)∫ ∞

−∞
p(x) dx = 1. (11)

Using a variational approach with Lagrange multipliers
λn, 0 ≤ n ≤ N , we obtain

p(x) = exp λ0 exp

(
N∑

n=1

λnK (x − ξn)

)
. (12)

To the best of our knowledge, the explicit solution of λn
cannot be calculated, and it has been suggested to apply a

1 If αn is outside that range, rn needs to be modified [8].
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Newton method using numerical evaluations of the integrals
on a very fine grid [15]. Obviously, this comes with an enor-
mous efficiency penalty and is thus only interesting for single
simulations.

3 Maximum Approximative Entropy
Reconstruction

In order to improve efficiency, the differential entropy as used
in previous work [15] is approximated using the linear Taylor
expansion of the logarithm in (9)

H2(p) =
∫ ∞

−∞
3

2
p(x)(1 − p(x)) dx . (13)

This objective is maximized under the same constraints (10)
and (11). Using a variational approach with Lagrange multi-
pliers λn, 0 ≤ n ≤ N , we obtain:

p(x) = λ0

3
+ 1

2
+ 1

3

N∑
n=1

λnK (x − ξn) (14)

Note the finite support of K and the infinite integration in
(11) imply λ0 = − 3

2 . Thus, the first two terms in (14) cancel
out and we will skip λ0 in what follows.

The approximation is limited to a linear expansion in (13)
to simplify subsequent equations. Higher orders might lead
to better accuracy, but at the cost of significantly more com-
plicated solution than (14).

3.1 Direct Solution

In contrast to previouswork [15], (14) can be directly inserted
into (10), resulting in:

cn =
∫ ∞

−∞

(
1

3

N∑
n′=1

λn′K (x − ξn′)

)
K (x − ξn) dx

= 1

3

N∑
n′=1

λn′
∫ ∞

−∞
K (x − ξn′)K (x − ξn) dx

= 1

3

N∑
n′=1

λn′

⎧⎪⎨
⎪⎩

1
2 n = n′
1
6 +

√
3

8π n = n′ ± 1
1
12 −

√
3

8π n = n′ ± 2

= 1

3

((
1

12
−

√
3

8π

)
(λn+2 + λn−2)+

+
(
1

6
+

√
3

8π

)
(λn+1 + λn−1) + λn

2

)

where λn = 0 if n < 1 or n > N . Note that c is obtained
from λλλ = [λ1, . . . , λN ]t by a discrete linear filter such that
the sums of components behave as

∑N
n=1 cn = 1

3

∑N
n=1 λn .

Thus, a normalized c implies that the sum of Lagrange mul-
tipliers λλλ is 3 and we obtain the linear system

Aλλλ = c (15)

where

A = 1

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 a1 a2 0 . . . 0

a1
. . .

. . .
. . .

. . .
...

a2
. . .

. . .
. . .

. . . 0

0
. . .

. . .
. . .

. . . a2
...

. . .
. . .

. . .
. . . a1

0 . . . 0 a2 a1 a0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(16)

with

a0 = 1

2
a1 = 1

6
+

√
3

8π
a2 = 1

12
−

√
3

8π
. (17)

Once the coefficients λn are determined from (15), we can
exploit (14) to compute necessary conditions for local max-
ima x0 by requiring a vanishing first derivative and a negative
second derivative, i.e.,

p′(x0) = 1

3

N∑
n=1

λnK
′(x0 − ξn) = 0 (18)

p′′(x0) = 1

3

N∑
n=1

λnK
′′(x0 − ξn) < 0. (19)

From (3) we determine

K ′(x) =
{

− 4π
9 sin(2πx/3) |x | ≤ 3/2

0 otherwise
(20)

K ′′(x) =
{

− 8π2

27 cos(2πx/3) |x | ≤ 3/2

0 otherwise
. (21)

Instead of inverting the matrix (16), we derive a recur-
sive filter that traverses the channel vector c forth and back,
similar to the decoding method for B-spline kernels [5]. We
start looking at the z-transform of the filter realized by (16)

(defining a = 1
3 −

√
3

2π )

H(z) = az−2 + (1 − a)z−1 + 2 + (1 − a)z + az2

12
(22)
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and thus we obtain

H−1 = 12z−2

a + (1 − a)z−1 + 2z−2 + (1 − a)z−3 + az−4

= 12

a

1

z−2 − z1z−1 + 1

z−2

z−2 − z2z−1 + 1
(23)

where

z1/2 = 1

2
− 1

2a
±

√
a−2 − 10a−1 + 9

2
. (24)

Hence, we get the following recursions

c+
n = cn + z1c

+
n−1 − c+

n−2 (n = 3, . . . , N )

c−
n = c+

n + z2c
−
n+1 − c−

n+2 (n = N − 2, . . . , 1)

λn = 12

a
c−
n (n = 1, . . . , N ). (25)

It has been assumed that cn = 0 for n < 1 or n > N .
Therefore, the initial conditions of the filters are2

c+
1 = c1 c+

2 = c2 + z1c1 (26)

c−
N = c+

N c−
N−1 = c+

N−1 + z2c
+
N . (27)

In contrast to (12), which is nonnegative by design, nega-
tiveλn might lead to (14) violating the nonnegativity property
of density functions and a separate consideration of this prop-
erty is required.

3.2 Nonnegativity Constraint

Conjecture 1 According to (14) let

p(x) = 1

3

N∑
n=1

λnK (x − ξn) (28)

then p(x) ≥ 0 iff for all n = 1, 2, . . . , N

λn < 0 →
√√√√ n+1∑

k=n−1

λ2k ≤
n+1∑

k=n−1

λk , (29)

where coefficients outside the valid range are taken to be
λ0 = λN+1 = 0.

This conjecture is motivated by simulation results where the
nonnegativity of p(x) has been studied for increasingly finer
grids in the space of reconstruction coefficients λ. For any

2 Note that the boundary conditions (27) are nontrivial: Due to the
instability of the filters, numerical results might differ. However, we
know from our assumptions that all λn = 0 for n < 1 or n > N and
thus cn = 0 for n > N .

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Non-negative p(x)
Negative p(x)
Pure channel vectors
Double-radius
Barycentric coordinates
Conjecture boundary

Fig. 3 Numerical verification of the conjecture. Red crosses indicate
reconstruction coefficients generating function values belowzerowithin
the current decoding interval. Blue circles indicate nonnegative recon-
structions. The boundary of the conjecture is indicated by a thick
magenta line. The solid circle shows pure channel vectors, i.e., encod-
ings of single values. The dashed circle, passing through (1 0 0)t and
(0 0 1)t , has precisely twice the radius of the solid line circle. Coef-
ficient vectors are normalized such that

∑n+1
k=n−1 λk = 1. The solid

line circle is a section from the cone of valid channel representations.
Due to overlapping decoding intervals, the continuation of the conjec-
ture boundary outside the dashed line circle can be chosen anywhere
between the radial line and the tangential line at the transition point (the
cyan area) (Color figure online)

negative coefficient λn , all valid solutions, and no invalid
solutions arewithin the conewith twice the radius of the cone
of valid channel representations c. This can be expressed as
the relation of the l2 norm and the sum over three coeffi-
cient windows. Since the overlap is three, it is necessary and
sufficient for the condition to be satisfied for all such win-
dows. The condition on one such window is illustrated in
Fig. 3, where the coefficients in the window have been nor-
malized to unit sum, allowing presentation in a plane. The
symmetry axis of the cone is perpendicular to the plane and
passes through the origin of the figure coordinate system.
The general geometry of the channel representation is fur-
ther explored in [8].

These constraints can be enforced either in the channel
space or the reconstruction space because they are con-
nected by the linear operator A. Enforcing the constraint
in Conjecture 1 should not change the corresponding chan-
nel coefficients cn by an arbitrary amount. From a statistical
point of view, small coefficients build on fewer observations
than large ones. The penalty for changing coefficients should
thus scale with their value. This is fulfilled by the weighted
quadratic error, and we thus aim to minimize

ε(λλλ) = ‖CAλλλ − Cc‖2 s.t. λn < 0 
⇒√√√√ n+1∑
k=n−1

λ2k ≤
n+1∑

k=n−1

λk , n = 1, . . . , N (30)
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where the diagonal weight matrix C = diag(c)w + I(1 −
w), with the parameter w controlling the influence of the
weighting. The quadratic norm is a special case w = 0.
The conditional constraint makes this problem hard to solve.
We choose an iterative heuristic approach starting from λλλ

according to (25). This initial λλλ results in two index sets, C+
and C−, such that C+ ∩ C− = ∅, C+ ∪ C− = {1, . . . , N },
λn ≥ 0 for n ∈ C+, and λn < 0 for n ∈ C−. We assume
that coefficients λn will not change sign and thus C− remains
static.

Introducing Lagrange multipliers γn , n ∈ C−, we refor-
mulate the optimization (30) as

ε(λλλ) = ‖CAλλλ − Cc‖2 + γ0r0 +
∑
n∈C−

γnrn (31)

with

rn =
√√√√ n+1∑

k=n−1

λ2k −
n+1∑

k=n−1

λk, r0 =
(

N∑
n=1

λn − 3

)2

(32)

the latter keeping the total weight constant.
Let 0 be a zero vector of suitable size,

rn = drn
dλ

= 1√
λ2n−1 + λ2n + λ2n+1

⎛
⎜⎜⎜⎜⎝

0
λn−1

λn
λn+1

0

⎞
⎟⎟⎟⎟⎠ − 1 (33)

and

r0 = dr0
dλ

= 2

(
N∑

n=1

λn − 3

)
. (34)

Furthermore, the gradient of the weighted quadratic norm is

Δλ = 1

‖CAλλλ − Cc‖2A
tC2(Aλλλ − c). (35)

A valid solution to (30) is thus found by iterating

λ := λ − a

⎡
⎣Δλ − Δλ ‖ span{rn}n∈ {0}∪C−

+r0 +
∑
n∈C−

rn

⎤
⎦ , (36)

where Δλ ‖ span{rn}n∈ {0}∪C− is the part of Δλ in the sub-
space spanned by r0 and rn , n ∈ C−. The step length a is set
to 0.1.

A faster convergence to valid solutions (however, not nec-
essarily minimal) can be obtained by a Newton approach,
replacing the last part of (36)with a solutionq to r+qtR = 0,
with R = (r0, . . . , rn, . . .) and r = (r0, . . . , rn, . . .)t where
n ∈ C−. Note that the equation system is underdetermined
in general.

3.3 Simulation Experiments

The reconstruction procedures are evaluated on samples
drawn from known distributions. The N = 10 channel coef-
ficients c are set to their expected values, corresponding to
infinitely many samples. From the channel coefficients, the
maximum entropy and approximate entropy estimates of the
distributions are calculated using the methods of Sects. 2.3
and 3, respectively.

The results are shown in Fig. 4, after six iterations and after
convergence. The maximum entropy approach uses Newton
iterations as suggested [15]. Note that each element of the
Jacobian requires numerical evaluation of an integral. The
maximumapproximative entropy approach usesNewton iter-
ations for fulfilling the nonnegativity constraints and gradient
descent for minimizing (30). The Jacobian is obtained by
matrix computations, with the number of elements related
to the number of channels used. Using Matlab implementa-
tions and gridding the integrals at 100 points, each iteration of
the maximum entropy approach requires 3–5ms of computa-
tion time. For themaximum approximative entropy approach
using Newton iterations, each iteration takes 0.5–0.6ms.
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Fig. 4 Reconstruction experiment from known distributions. Left: six
iterations. Right: iteration until convergence. Top: non-smooth dis-
tribution. Bottom: smooth distribution. Black: original distribution.
Magenta:MaxEntropy reconstruction [15].Green:MaxApproximative
Entropy reconstruction (w = 0). Blue: Max Approximative Entropy
reconstruction (w = 0.9) (Color figure online)
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For samples drawn fromdistributionswith smooth density
functions, the initial solution using the approximate entropy
is close to the final solution. For density functions with dis-
continuities (upper row), the initial solution obtains negative
values.However, less than six iterations are required to obtain
a valid density function. The use of a weighted norm (30)
has a small impact on the final result, generating a solution
slightly closer to the true distribution function in the high-
density areas in Fig. 4, top right.

3.4 Regression Learning Experiments

The results from the simulation experiment above are con-
firmed by regression learning experiments. In these experi-
ments, the head yaw angle for a set of people, taken from the
Multi-PIE dataset [13], has to be estimated. The experiment
is described in detail in [14] and the channel-based regression
method has been described in [21]. Channel-based regression
clearly outperforms robust regression as introduced in [14],
which is why we use the former as baseline below.

We have repeated the same evaluation as in [21], but
changed the decoding for calculating the yawangle to the pro-
posed approximative maximum entropy reconstruction; see
Sect. 3.1, and subsequent detection of maxima. The results
are displayed in Fig. 5 and show that the regression per-
formance is significantly improved using the new decoding
mechanism.

The experiment is providing a successively growing
amount of training data to the regression method, which is
evaluated on the respectively subsequent batch of data before
using it for training. When comparing the performance of
the new decoding method and the original method [21], we
observe an increase in error after about 50 training samples,
before both methods coincide after about 500 training sam-
ples. This intermediate decay of performance is presumably
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Fig. 5 Experiment from [21], Fig. 4. The solid, dashed, dash-dotted,
and dotted lines correspond to 0, 20, 40, and 80% corrupted images,
respectively. qHebb is the method from [21] and qHAME is the pro-
posed method (Color figure online)

caused by secondary modes in the density function originat-
ing from the regression.

Beyond 1000 training samples, the baseline method with
standard decoding [21] does not further improve, it even
decays slightly, presumably caused by bias effects from the
maximum operation on the channels. The proposed method,
however, further improves performance until the end of the
experiment and is likely to further improve if more data had
been available. The final improvement of performance is
larger than 15%.

4 Non-regular Channel Placement

In most applications, the channel centers are distributed
evenly in the space to be represented. In certain applications,
however, other channel placements are beneficial. In this
section, logarithmic and log-polar placements are presented
along with some results and pointers to suitable applications.

4.1 Logarithmic Channels

Using logarithmic channels, the ability to resolve nearby
encoded values varies over the domain. One typical applica-
tion would be encoding events in time, where high resolution
is required for recent events and low resolution suffices for
older events. Referring to an event “about an hour ago,” the
precision is some tens of minutes, while referring to an event
“about 3months ago,” the precision is some tens of days.

Using logarithmic channel placement, the support of each
channel is a constant factor wider than the support of the
previous channel. The basis functions used are

Kn(x)=cos2
(
(logd(x) − n)

π

3

) 1

x
, dn−1.5≤ x≤dn+1.5

(37)

and zero everywhere else. Using the base d logarithm, the
parameter d determines the rate of expansion of the channels.
The factor 1

x normalizes the weight of the basis functions,
compare with the functional determinant of the logarithm.
Recreating a continuous function from channel coefficients
uses unscaled basis functions. The scaling can bemoved from
the analysis to the synthesis side. See Fig. 6.

Letting d = 2, each channel will be twice as wide as the

previous channel. Instead letting d = 2
1
3 , the basis function

support will be doubled every third channel, i.e., when a
channel support ends, the new channel will be twice as wide;
see Fig. 7.

The major advantage of logarithmic transformations is
that scaling of the encoded values will lead to a shift of the
channel coefficients. In the example above, scaling values
by a factor of two will lead to a shift of coefficient by three
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Fig. 6 From top to bottom: five regular channels, five logarithmic
channels, and five scaled logarithmic channelswith constant area (Color
figure online)
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Fig. 7 Layout of basis function supports using logarithmic channels

and expansion parameter d = 2
1
3 . Crosses indicate the channel support

bounds and overlapping channel supports are distributed on the three
lines (Color figure online)

channels. Since humans often perceive entities in relative
terms, see the example regarding temporal precision above
or pitch spaces in music, the logarithmic mapping is biolog-
ically well-motivated. Also in projective geometry, relative
changes are of interest, e.g., in depth estimation.

4.2 Log-Polar Channels

Apolar coordinate system can be employed to extend the log-
arithmic channels to images. Log-polar coordinate systems
have been applied to images before, e.g., for filter design in
the Fourier domain [12] and similitude group invariant trans-
forms, both globally [9] and locally [28].

In the log-polar channel arrangement, channels are reg-
ularly placed around concentric circles (representing ori-
entation) with logarithmically increasing distance from the
center. The setup stems from foveal vision, with higher res-
olution in the central parts; see Fig. 8.

The primary efficiency gain here stems from the resolution
reduction further out in the visual field. This allows wider
fields of view while avoiding the quadratic growth of the
number of pixels in a regularly sampled image. Certainly,

Fig. 8 Left: example of basis functions using three radial and five
angular channels. For clarity of presentation, the normalization factor
is removed and thus the amplitude of all basis functions are the same.
Right: the sumof all normalized basis functions, generating aflat surface
on the disk-shaped representable range

this is only applicable if the objects of interest can be moved
to the central area of the image, e.g., pan-tilt cameras.

A Cartesian image position (x, y) is mapped to the log-
polar grid (r, θ) by the complex logarithm r+iθ = Log(x+
iy). The logarithmic radial position r and the angular position
θ are encoded in an outer product channel representation.

The angular channels are modular, mending the
branch cut of the logarithm function. This domain is rep-
resented by a periodic kernel

Kmod =
∞∑

k=−∞
K

(
Nθ

2π
− kN

)
(38)

when using N channels to represent the angle θ . In the exam-
ple of Fig. 8, using N = 5 channels with channel centers
ξn = n − 1/2, the modular channel coefficients representing
an angle θ are

cn =
∞∑

k=−∞
K

(
5θ

2π
− (n − 1/2 + 5k)

)
(39)

forn = 1, . . . , 5. In practice the usual non-periodic kernel (3)
is used. Since the kernel has compact support and assuming θ

in the range 0–2π , the summation is limited to k ∈ {−1, 0, 1}.
Note further that for k = 1 and the maximum θ = 2π ,
K (−n + 1/2) �= 0 implies n = 0. Similarly, for k = −1
and the minimum θ = 0, K (5 − n + 1/2) �= 0 implies
n = 6. Thus, the periodicity is solved by calculating two extra

coefficients, cn = K
(
5θ
2π − n + 1/2

)
for n ∈ {0, 6} and

forming themodular channel vector [c1+c6, c2, c3, c4, c5+
c0]t .

Channel coefficients are scaled with a factor 1/(x2 + y2)
to maintain a constant weight of all basis functions, compen-
sating for the polar coordinate system and the logarithm of
the radial position. Note that the supported radial range is
limited at both ends, avoiding an infinite channel density at
the origin.
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Fig. 9 Left: the log-polar channel encoded and decoded cameraman
image. Right: the original image

Fig. 10 Estimated difference between translated representations of
one frame compared to the representation of the next frame, sampled
on a log-polar grid and interpolated using log-polar channel basis func-
tions. In the left case, the precise translation is uncertain; however, there
is a strong indication that the tracked object has moved downwards in
the image. In the right case, the precise translation is more certain. The
white markers indicate global minima of the error function with respect
to translations. Blue indicate the smallest differences and red the largest
(Color figure online)

The channel arrangement is illustrated in Fig. 9, where
the pixel coordinate system is centered in the middle of the
image. The image is channel encoded, using log-polar chan-
nels for spatial position and regular channels for intensity.
The encoded information is illustrated by a decoded image
to the left. Note that the spatial resolution is reduced radially,
however, intensity resolution and sharp edges are preserved.
Since pixel positions are constant, position-dependent coef-
ficients can be pre-calculated.

4.3 Visual Tracking

One application for the log-polar channel layout is visual
tracking. The operation of moving the central position of the
log-polar grid followed by re-encoding the image is approx-
imated by a linear operation directly on the previous channel
coefficients. Since the high-resolution area will be at a dif-
ferent part of the image after translation, where only lower
resolution information is available in the previous representa-
tion, only an approximation of the representation is obtained.

For rotations of the image in increments of the channel
spacing in the angular direction, the corresponding newchan-
nel coefficients are obtained through a circular shift of the old
coefficients. Combining the rotation operation with a sin-
gle translation operation, translations in all directions can be
generated through combined rotation-shift-inverse-rotation
operations.

With shift operations of different lengths, effects of oper-
ations in the 2D translation space can be sampled. By
comparison with the representation of the next frame, trans-
lation information between the frames is obtained. This is
illustrated in Fig. 10, where the errors after operations in
the translation space are sampled in a log-polar grid and
illustrated using log-polar channels. In this manner, more
information regarding the local error surface is obtained.

5 Uniformization and Copula Estimation

Extending the idea of non-regular channel placement, chan-
nels should be placed depending on the data to be encoded,
with high channel density where samples are likely. This can
be obtained by mapping samples using the cumulative den-
sity function of the distribution from which the samples are
drawn. Usually this function is not available, but using the
ideas of density reconstruction from Sect. 3, a useful repre-
sentation of the cumulative density function can be obtained
and maintained online.

From Sect. 3 it is clear that for a set of reconstruction
channel coefficients λ fulfilling the conjecture,

p(x) = 1

3

N∑
n=1

λnK (x − ξn) (40)

is a valid density function. Furthermore, the corresponding
cumulative density function is

P(x) =
∫ x

−∞
1

3

N∑
n=1

λnK (y − ξn) dy =

= 1

3

N∑
n=1

λn

∫ x

−∞
K (y − ξn) dy =

= 1

3

N∑
n=1

λn K̂ (x − ξn)

(41)

with the (cumulative) basis functions K̂ (x) =∫ x
−∞ K (y) dy. Only three (for three overlapping channels)
cumulative basis functions are in the transition region for any
given x, (41) can thus be calculated in constant time (inde-
pendent of channel count N ) as
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P(x) = 0+ 1

3

j+1∑
n= j−1

λn K̂ (x−ξn)+ N − ( j + 1)

N
, (42)

where j is the central channel activated by x . The function
P maps values x to the range [0, 1].

The mapped values will be close to uniformly distributed
(using the true cumulative density functions, the mapped
values will be uniformly distributed). Placing a new set of
regularly spaced channels in this transformed space, their
distribution in the original space will be sample density
dependent.

For multi-dimensional distributions, this can be used to
estimate the Copula which clearly indicates dependencies
between dimensions by removing the effect of the marginal
distributions. This is obtained by estimating marginal densi-
ties using the approach of Sect. 3, where the estimation of c
can be done incrementally. The reconstruction coefficients λ

are updated by iterating (36) once after every new data point.
The (density) Copula representation is obtained by encoding
the mapped points using an outer product channel represen-
tation on the space [0, 1] × [0, 1]. For independent random
variables, the Copula is constant (one).

5.1 Experiments

A simple simulation result for the Copula density of corre-
lated Gaussian distributions is given in Fig. 11.

Figure 12 illustrates the representation of one of the
marginal distributions and the Copula estimation basis func-
tions mapped through the inverse estimated marginal cumu-
lative density function. Since the marginal distribution is
smooth, the estimated densities follow the true densities
closely. Figure 13 indicates the state of the estimate of the
marginal distribution after 20 samples have been observed.

Copulas estimated from samples drawn from two different
multivariate Gaussian distributions are shown in Fig. 14. The
covariance matrices of these distributions are

Fig. 11 Copula distribution for correlatedGaussian distributions. Left:
simulation result using the known marginals. Right: simulation result
using the estimated marginals

0

0.1

0.2

0.3

0.4

0.5
True marginal density
Estimated marginal density

0

0.2

0.4

0.6

0.8

1 True CDF
Estimated CDF

-4 -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4

-4 -3 -2 -1 0 1 2 3 4
0

1

2

3

4

Fig. 12 Top and middle: marginal density functions estimated using
incremental channel representations and maximum approximative
entropy reconstruction, compared with the true marginal densities. Bot-
tom: basis functions for Copula estimation. The basis functions are
regularly spaced on [0, 1] and mapped through the inverse estimated
CDF. When estimating the Copula, samples are instead mapped by the
estimated CDF (Color figure online)


1 =
(
0.3 0.3
0.3 1.2

)
and 
2 =

(
0.3 0
0 1.2

)
(43)

respectively. In these estimatedCopulas, thefirst 100 samples
were only used for estimating the marginals. The follow-
ing samples were used both for updating the estimate of
the marginals and for generating the Copula estimate. As
apparent in the figures, the estimated Copula captures the
dependency structure, and the independency in the latter case
is clear.

6 Conclusion

Channel representations are descriptors for visual features,
motivated fromnonparametric statistics. Powerful visual fea-
tures are fundamental requirements for applying machine
learning techniques to computer vision problems, e.g., for
learning path following [23] and visual tracking [22].

This work extends previous work on channel represen-
tations that often only addressed orientation estimation or
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Fig. 13 Estimate ofmarginal density functions after observing 20 sam-
ples, compared with true functions. Bottom: basis functions for Copula
estimation seen through the current estimate of the cumulative density
function (Color figure online)
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Fig. 14 Copulas estimated from multivariate Gaussian distributions.
Left: covariance 
1 (dependent). Right: covariance 
1 (independent).
See (43)

smoothing problems.We have presented a variety of approx-
imative channel-based algorithms for probabilistic problems:
a novel efficient algorithm for density reconstruction, a novel
and efficient scheme for nonlinear gridding of densities, and
finally a novel method for estimating Copula densities.

The proposed algorithms have been evaluated, and the
experimental results provide evidence that by relaxing the
requirements for exact solutions, efficient algorithms are
obtained while retaining low approximation errors.

The incorporation of the proposed methods into existing
learning systems, such as [21], and into new systems remains
future work.With the novel algorithms at hand, possibly new

problems can be approached or at least known problems can
be approached in novel ways.
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