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Abstract Modeling magnitude magnetic resonance images
(MRI) Rician denoising in a Bayesian or generalized Tikh-
onov framework using total variation (TV) leads naturally
to the consideration of nonlinear elliptic equations. These
involve the so called 1-Laplacian operator and special care is
needed to properly formulate the problem. The Rician statis-
tics of the data are introduced through a singular equation
with a reaction term defined in terms of modified first-
order Bessel functions. An existence theory is provided here
together with other qualitative properties of the solutions.
Remarkably, each positive global minimum of the asso-
ciated functional is one of such solutions. Moreover, we
directly solve this nonsmooth nonconvexminimization prob-
lemusing a convergent Proximal PointAlgorithm.Numerical
results based on synthetic and real MRI demonstrate a bet-
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ter performance of the proposed method when compared to

previous TV-based models for Rician denoising which reg-
ularize or convexify the problem. Finally, an application on
real Diffusion Tensor Images, a strongly affected by Rician
noise MRI modality, is presented and discussed.

Keywords 1-Laplacian · Total variation operator · Rician
denoising · Nonsmooth nonconvex energy minimization ·
Global minimizer · Magnetic resonance imaging · Diffusion
tensor imaging

1 Introduction

Multiple applications in computer vision and digital image
processing can bemodeled from the field of quasilinear ellip-
tic equations. Variational formulations of these equations
allow to introduce a concept of weak solution, which is well
adapted to image analysis, providing faithful discontinuous
solutions. Furthermore, the discrete formulations of these
equations are readily suited for fast image processing. In
particular, medical image denoising is an important applica-
tion which allows to reduce scanning time of the patients,
while preserving a good image quality. Moreover, several
imaging applications like segmentation, classification, regis-
tration, super-resolution, object recognition, or tracking can
benefit of preprocessed denoised images.

In this paper, we focus on the modality of Magnetic Reso-
nance Imaging (MRI), where clinicians typically work with
images contaminated by Rician noise. MRI scanners acquire
complex data where both real and imaginary parts are cor-
rupted with zero-mean uncorrelated Gaussian noise with
equal variance. The calculation of themagnitude image trans-
forms the original complex Gaussian noise into Rician noise
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[30,31]. The Rician distribution considerably differs from a
Gaussian distribution when low signal-to-noise-ratio (SNR)
data are considered. This is the reason why several denois-
ing methods that take into account the Rician distribution of
the noise are focused on Diffusion-Weighted Images (DWI),
one of the MRI modalities more severely affected by noise
[9,41,44].

In particular, modeling these statistics in the framework of
a Tikhonov Regularization through the Total Variation (TV)
operator leads to consider a 1-Laplacian elliptic equationwith
a nonlinear lower-order term defined in terms of modified
Bessel functions.

The TV operator

T V (u) = sup

{∫
Ω

u div φ

∣∣∣φ ∈ C∞
c (Ω,RN ), ‖φ‖∞ ≤ 1

}

(1)

was introduced in the image community by Rudin, Osher,
and Fatemi, [38] through their celebrated denoising model
(ROF in the following) which is the Gaussian counterpart of
the Rician model we are considering. The 1-Laplacian oper-
ator characterizes the subdifferential of the TV functional;
for a proof of such result in the L2-framework, we refer to
[5] (see [5, Proposition 1.10]). We point out that in [12],
the 1-Laplacian operator has also been characterized as the
pointwise subdifferential of the TV operator in form

−div

(
Du

|Du|
)

∈ ∂T V (u) .

It is well known that inverse ill-posed problems can be
dealt with in the framework of generalized Tikhonov reg-
ularization. The resulting functional is composed of two
basic terms which reflect our belief in the data through one
or more (hyper)-parameters weighting the amount of reg-
ularization. This in turn determines the smoothness of the
denoised image, and functional analysis is invoked in order
to select the appropriate functional space. Sobolev spaces are
rapidly ruled out because of their excessive smoothing which
generates continuous unrealistic images. So this very nonlin-
ear operator, the TV operator emerges because it allows for
(weak) distributional solutions in the very large space of func-
tions of bounded variation, those whose gradient is a Radon
measure [1]. Such a sophisticated setting is a generalized
approach which allows for truly discontinuous functions and
opens the way to theoretical as well as practical and accurate
digital image processing [18]. Since the seminal paper from
Rudin, Osher, and Fatemi [38], there has been a burst in the
application of the Total Variation regularization to many dif-
ferent image processing problems which include inpainting,
blind deconvolution, or multichannel image segmentation
(see for instance [19] for a review on this topic). Fast and

robust numerical methods have been proposed to exactly
solve convex optimization problems with TV regularization,
such as the dual approach of [15] and, more recently, the
Split- Bregman method [29] and the primal–dual approach
of [17].

Our proposedmodel equation arises as the (formal) Euler–
Lagrange equation associated to an energy minimization
problem obtained in a Bayesian framework. A key feature
of this problem is that the nonlinear term modeling Rician
noise in the energy functional can be a nonconvex chang-
ing sign function with a double-well profile. This leads to
the study of nonconvex nonsmooth minimization problems.
In fact, this nonconvexity of the energy functional is crucial
because otherwise we could show uniqueness of the triv-
ial solution u ≡ 0. The variational minimization problem
associated to the model equation we consider was proposed
in [35], where the multivalued Euler–Lagrange equation for
the 1-Laplacian operator is deduced as a first-order neces-
sary optimality condition. This minimization problem was
simultaneously and independently considered in [26], where
blurring effects were included, and existence and compari-
son results in the pure denoising case were reported. In order
to cope with the multivalued Euler–Lagrange equation an ε-
regularization of the TV term was introduced in both works
[26,35] .More recently, in [20] a convexvariationalmodel for
restoring blurred images corrupted byRician noise have been
proposed to overcome the difficulties related to the noncon-
vex nature of the original problem we are considering here.

The nonsmoothness property of the model comes from
the very singular 1-Laplacian elliptic equation, which had
firstly been studied as a limit of equations involving the p-
Laplacian. The interest in studying such a case came from an
optimal design problem in the theory of torsion and related
geometrical problems (see [32] and [33] for constant data,
and [21] for more general data). The suitable notion of solu-
tion to the 1-Laplacian had to wait at the turn of the century
[3]. Other important related papers published in the early
twenty first century include [4,6,10,11,23,24,34]. Due to its
unique properties, this operator has been the optimal choice
for PDE-based image processing in the last twenty years.
Briefly, the 1-Laplacian describes isotropic diffusion within
each level surface with no diffusion across different level sur-
faces. In this way, its action does not over-regularize the data
and preserves edges and fine details. This is not true when the
p-Laplacian operator, for p > 1, is used, since an artificial
smoothing is introduced.

While the ROF model has been mathematically studied
and existence anduniqueness results havebeenobtained [16],
the Euler–Lagrange quasilinear equation associated to the
Rician problem has not been considered yet formathematical
analysis. Notice that the same is true even for the semilinear
equation accounting for Rician noise and linear diffusion.
Here, we focus on the mathematical analysis of the TV-
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based Rician model. We show that the nonlinear 1-Laplacian
problem has, aside from the trivial solution, at least a posi-
tive distributional solutionwhich is also a globalminimumof
the energy problem (provided that the datum is big enough).
This result makes the solutions of the TV-Rician denoising
model attractive for the application in MRI and in particu-
lar for the DWI modality. The existence result is based on
the consideration of a sequence of approximating problems
of the p-Laplacian type for which no existence results are
known due to the very special nonlinearity associated to the
Rician noise term. Standard techniques can be used. When
p = 2, existence and uniqueness of positive solutions is also
deduced. In contrast, for general 1 ≤ p < 2, the uniqueness
of positive solutions is still an open problem. Nevertheless,
it is proved that for constant data we have uniqueness of
constant solutions for any p.

The numerical resolution of the proposed model is also
challenging because the energy functional is nonconvex for
any p and also nonsmooth for p = 1. To cope with the
nonconvexity, we propose a suitable decomposition of the
energy functional, which allows to write it as a Difference
of Convex (DC) functionals. A primal–dual approach (suit-
able for nondifferentiable energy functionals such as the TV
operator) embedded into a proximal algorithm (suitable for
DC functionals) is then applied to show, also numerically, the
convergence of the p-Laplacian approximate solutions to the
true 1-Laplacian solution when p → 1. This provides a uni-
fied framework in which these problems can be solved using
the same algorithm and then fairly compared. Our numerical
method is then successfully compared with the primal gradi-
ent descent algorithm presented in [26] and the convexified
models of [26] and [20].

This paper is organized as follows. In Sect. 2, we define
the model problem characterizing the Bessel ratio function
and its properties jointlywith the statement of ourmain result
(see Theorem 1 below).Weak solutions are defined in Sect. 3
where themain result is obtained considering the suitable reg-
ularizing approximating problems of the p-Laplacian type.
Some qualitative properties are discussed in Sect. 4, before
the numerical resolution of the relatedminimization problem
is presented in Sect. 5. Finally, in Sect. 6, the performance of
the algorithm is compared to other related methods and an
application on real DTI is presented.

2 Preliminaries

2.1 The Model Problem and the Statement of the Main
Result

Let Ω be an open, bounded domain in R
N (N ≥ 2)

with Lipschitz boundary ∂Ω (usually a rectangle in image
processing). Thus, there exists a outer unit normal vector

n(x) at x ∈ ∂Ω , forHN−1-almost all point; here and in what
follows,HN−1 stands for the (N−1)-dimensional Hausdorff
measure.

We will consider in Ω a Neumann problem involving the
1-Laplacian. This operator has to be studied in the frame-
work of functions of bounded variation. Recall that a function
u : Ω → R is said to be of bounded variation if u ∈ L1(Ω)

and its distributional gradient Du is a (vector) Radon mea-
sure having finite total variation. We denote by BV (Ω) the
space containing all functions of bounded variation. For a
systematic study of this space, we refer to [1] (see also [28]).
The appropriate concept of solution to deal with the Neu-
mann problem for the 1-Laplacian is introduced in [3]. For
a review on the early development of variational models in
image processing and a deep study of equations involving
the 1-Laplacian, see [6].

The boundary value problem in which we are interested is

⎧⎪⎪⎨
⎪⎪⎩

−div

(
Du

|Du|
)

+ h′(x, u) = 0, inΩ,(
Du

|Du|
)

· n = 0, on ∂Ω .

(2)

We shall assume that h′ : Ω × R → R is a nonmonotone
Carathéodory function defined as

h′(x, u) =
(

λ

σ 2

)
u −

(
λ

σ 2

)
rσ (x, u) f (x), (3)

whereλ > 0 and σ 2 
= 0 are real given parameters, f (x) ≥ 0
for almost all x ∈ Ω , and the function

rσ (x, u) =
I1

(
u(x) f (x)

σ 2

)

I0

(
u(x) f (x)

σ 2

) (4)

is the ratio between the first- and zero-order-modified Bessel
functions of the first kind. Series representations and general
properties can be found in [43]. Notice the dependence (that
we shall omit) rσ (x, u) = r(x, u) of the Bessel ratio func-
tion on the parameter σ 2, which is the estimated variance of
the original Gaussian noise of the complex MRI data. This
implicit dependence renders problem (2) a truly 2-parametric
problem in so far σ 2 cannot be scaled out from λ and it has
to be estimated from the noisy data f (x).

Assuming λ > 0, σ 2 
= 0 fixed and f (x) ∈ L∞(Ω)

given, problem (2) reads

⎧⎪⎪⎨
⎪⎪⎩

(
λ

σ 2

)
u − div

(
Du

|Du|
)

=
(

λ

σ 2

)
r(x, u) f, in Ω;(

Du

|Du|
)

· n = 0, on ∂Ω.

(5)
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The modified Bessel functions Iν(s), ν ≥ 0, s ≥ 0 which
define the ratio r(x, u) (4) are monotone exponentially
growing functions and this distinguish their behavior from
ordinary Bessel functions which have oscillating wave-like
forms [2,37]. Moreover I0(0) = 1, I0(s) > 1 for any s > 0
and Iν(0) = 0, Iν(s) > 0 for any s > 0 and ν > 0 so
r(x, 0) = 0 and the Bessel ratio function r(x, u) in (4) is
well-defined and nonnegative for any f ≥ 0 and u ≥ 0. Also
I1(s) < I0(s) for any s > 0 and then 0 ≤ r(x, u) < 1.
By (3) we then have h′(x, 0) = 0, and u ≡ 0 is always a
solution of (2) and (5) for any nonnegative datum f (x) and
fixed parameters λ > 0 and σ 2 
= 0.

The specific form of h′(x, u) given in (3) describes the
Rician noise distribution of a given datum image f (x) and
it has been deduced in several papers dealing with medical
imaging since the paper [9] where it was proposed for DTI.
When dealing with the image processing application, we
shall assume that f ∈ L∞(Ω) even if our existence theory
applies more generally to f ∈ L2(Ω).

The function h′(x, u) is the Gateaux derivative of h(x, u):

h(x, u) =
∫ u

0
h′(x, t)dt.

Using (3) we have

h(x, u) =
(

λ

2σ 2

)
u2 − λ log I0

(
u f

σ 2

)
(6)

with h(x, 0) = 0 and the logarithm is well-defined and non-
negative for any f ≥ 0 and u ≥ 0 because of I0(s) ≥ 1,
∀ s ≥ 0.

Following the Bayesian modeling approach, the associ-
ated minimization problem is

min
u∈BV (Ω)

J1(u) + H(u, f ) ,

where J1(u) = T V (u) is the Total Variation regularization
functional, previously defined in (1), and that can also be
denoted as

J1(u) =
∫

Ω

|Du| .

The fidelity term (modeling Rician noise) is

H(u, f ) =
∫

Ω

h(x, u)dx

=
(

λ

2σ 2

)∫
Ω

u2dx − λ

∫
Ω

log I0

(
u f

σ 2

)
dx . (7)

Notice that H(0, f ) = 0, ∀ f .

The minimization problem for image denoising of Rician
corrupted data is formulated as follows. An equivalent for-
mulation is considered in [26]. Fixed real parameters λ > 0
and σ 2 
= 0 and given a noisy image f ∈ L∞(Ω) recover a
clean image u ∈ BV (Ω) ∩ L∞(Ω) minimizing the energy:

E1(u) = J1(u) + H(u, f )

=
∫

Ω

|Du| + λ

∫
Ω

u2

2σ 2 − λ log I0

(
u f

σ 2

)
dx . (8)

This minimization problem can naturally be studied in the
L2-setting since

|H(u, f )| ≤ λ

2σ 2

∫
Ω

u2 dx + λ

σ 2

∫
Ω

|u| f dx

(see (10) in Lemma 1 below). Thus, our main result can be
stated as follows:

Theorem 1 Let λ > 0 and σ 2 
= 0 be given real parameters.
For every nonnegative f ∈ L2(Ω), there exists a nonnegative
u ∈ BV (Ω) ∩ L2(Ω) which is a solution to problem (2), in
the sense of Subsection 3.1, and it is a global minimum of
functional E1 in (8).

Remark 1 This existence result relates problem (2) and the
global minimization of functional (8), which is a nonsmooth
and nonconvex optimization problem. Its proof can be found
in Sect. 3 below, while Sect. 4 is devoted to complete this
theorem. Among others, it is shown that the solution we find
satisfies the following properties:

1. If f ∈ L∞(Ω), then u ∈ L∞(Ω) and ‖u‖∞ ≤ ‖ f ‖∞.
2. Solution u vanishes identically when f (x) ≤ √

2σ 2 a.e.
in Ω .

3. Solution u is strictly positive when f (x) ≥ μ >
√
2σ 2

a.e. x ∈ Ω , and moreover E1(u) < 0 holds.

This last feature provides a sufficient condition in order to
have a nontrivial minimizer of functional (8).

Remark 2 The problem ofminimizing E1 has also been con-
sidered by Getreuer et al. (their results were announced in
[26] and proved in [27,40]). It is worth comparing these
results with those in the present paper since both approaches
are very different. We prove our results through the formal
Euler–Lagrange equationof theminimizationproblem,while
the results in [27,40] are obtained by direct methods. We
explicitly point out two aspects:

1. Our existence result is more general, since we take data
f belonging to L2(Ω), and [27,40] consider data f ∈
L∞(Ω) with the additional assumption infx∈Ω f (x) ≥
α > 0.
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2. One important feature of the present paper is that a simple
condition is provided to distinguish data which lead to
nontrivial solutions. Instead, the results by Getreuer et
al. do not identify nontrivial solutions.

Remark 3 Uniquenes of nontrivial solutions is still an open
problem. Using the same arguments from [8] and some prop-
erties of the modified Bessel Functions, a comparison result
for the solutions of the minimization problem is stated in
[26, Theorem 2] and proved in [27,40]. This comparison
result establishes that given 0 < f1 < f2 a.e. x ∈ Ω , then
u1 ≤ u2 a.e. x ∈ Ω , with u1, u2 being minimizers of (8)
for f = f1, f = f2 respectively. Since f1 and f2 must be
different, it does not imply uniqueness. Some partial results
about uniqueness of nontrivial solutions shall be presented
in Sect. 4.2

The existence result in Theorem 1 will be proved by
approximating our functional through functionals defined
on the Sobolev space W 1,p(Ω) and having p-growth (with
p > 1). The main advantage of these approximating func-
tionals is their differentiability (in contrast with E1, which is
not differentiable). So,we introduce, for subsequent analysis,
the (differentiable) energy

Ep(u) = Jp(u) + H(u, f )

= 1

p

∫
Ω

|∇u|p dx+λ

∫
Ω

u2

2σ 2 −λ log I0

(
u f

σ 2

)
dx .

(9)

Notice that Ep(0) = 0 for any p > 1, and also E1(0) = 0.
The weak (distributional) solutions of (5) formally coincide
with the critical points of (8). The crucial point is that these
energies (including (9) for p > 1)maybenonconvexdepend-
ing on the datum f and the (estimated) parameter σ 2. This
fact does not depend on the regularizer but it is a feature of
the Rician likelihood function. To explore further this point,
we analyse the behavior of the Bessel ratio function defined
in (4) which governs the qualitative properties of the ener-
gies (8) and (9). This leads to show the coerciveness of the
functional in Sect. 2.3, implying the existence result for the
p-approximating problems in Sect. 2.4.

2.2 A Nonconvex Semilinearity

The characterization of themodel semilinearity h(x, u) leads
to the study of the properties of themodified Bessel functions
of the first kind.Our results are founded on some fundamental
inequalities regarding the ratio function r(x, u) and its deriv-
ative which can be found in [2]. These results will allow to
characterize suitable growth conditions related to the Rician
statistics. Moreover, we shall prove that, depending on the

data and parameters of the problem, h
′′
(x, u) is negative near

u = 0 and hence h′ is nonmonotone and h is nonconvex.

Lemma 1 Let h′ be defined as in (3) with datum f (x) ≥ 0
and fixed parameters λ > 0 and σ 2 
= 0. Then

|h(x, u)| ≤ λ

2σ 2 u
2 + λ

σ 2 |u| f (x), a.e. x ∈ Ω. (10)

|h′(x, u)| ≤
(

λ

σ 2

)
(|u| + f (x)), a.e. x ∈ Ω. (11)

and

(
λ

σ 2

)(
1 − f 2

2σ 2

)
≤ h

′′
(x, u) ≤

(
λ

σ 2

)
, a.e. x ∈ Ω.

(12)

Moreover

lim
u→0+ h

′′
(x, u) = h

′′
(x, 0) =

(
λ

σ 2

)(
1 − f 2

2σ 2

)
, (13)

and

lim
u→∞ h

′′
(x, u) = λ

σ 2 , a.e. x ∈ Ω. (14)

Proof In order to simplify the notationwhen using the results
of [2], we define s = u(x) f (x)/σ 2 for fixed x ∈ Ω and
denote the ratio function r(x, u) = r(s) = I1(s)/I0(s), s ≥
0. Please notice that r ′(x, u) is the Gateaux derivative, while
r ′(s) is the derivative w.r.t the real, nonnegative parameter s.

By definition and the monotonicity properties of the mod-
ified Bessel functions 0 ≤ r(s) < 1 for any s > 0 and
r(s) → 1 when s → ∞. The first inequality is then
straightforward. We simply use definition (3), the fact that
0 ≤ r(x, u) < 1 and the triangle inequality to deduce that h′
verifies the sublinear growth condition (11) for a.e x ∈ Ω .

As a consequence, we obtain (10). Indeed,

|h(x, u)| ≤
∫ |u|

0
|h′(x, t)| dt

≤ λ

σ 2

∫ |u|

0
(|t | + f (x)) dt ≤ λ

σ 2

(u2
2

+ |u| f (x)
)
.

In order to show (12), we compute the second derivative of
h(x, u) with respect to u which reads

h
′′
(x, u) =

(
λ

σ 2

)
[1 − r ′(x, u) f (x)]

= λ

σ 2

⎡
⎢⎢⎣1−

(
f 2

2σ 2

)⎛
⎜⎜⎝1+

I2

(
u f

σ 2

)

I0

(
u f

σ 2

)−2
I 21

(
u f

σ 2

)

I 20

(
u f

σ 2

)
⎞
⎟⎟⎠
⎤
⎥⎥⎦

(15)
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where we used that I
′′
0 (s) = I

′
1(s) = (1/2)[I2(s) + I0(s)],

∀ s ≥ 0 [2].
Reasoning as in [2] and using its formulas 11, 12, 15,

pg.242, the following bounds hold:

0 ≤ s

1 + √
s2 + 1

≤ r(s) ≤ s√
s2 + 4

< 1, s ≥ 0.

Using that r ′(s) = 1− r(s)

s
− r2(s), s > 0, and inequalities

0 < r ′(s) <
r(s)

s
, s > 0 (formula 15 in [2]) we get the

improved bounds

0 < r ′(s) <
1

1 + √
s2 + 1

<
r(s)

s
<

1√
s2 + 4

<
1

2
, (16)

for all s > 0.
To show (12), we derive with respect to u the relationship

r(x, u) = r(s) to have

f (x)r ′(s) = σ 2r ′(x, u)

and

0 ≤ σ 2r ′(x, u) = f (x)r ′(s) <
f (x)

2
, a.e. x ∈ Ω

because r ′(s) <
1

2
for any s ≥ 0 by (16). Using (15), the

above inequality implies:

(
λ

σ 2

)[
1 −

(
f 2

2σ 2

)]
≤ h

′′
(x, u)

=
(

λ

σ 2

) [
1 − r ′(x, u) f (x)

] ≤ λ

σ 2

and (12) holds true. Finally (13) is checked using (15)
and I0(0) = 1, Iν(0) = 0 for any ν > 0. Because of
I2(s)/I0(s) → 1, I1(s)/I0(s) → 1 when s → ∞we deduce
(14). ��

As a consequence of the above analysis h
′′
(x, u) > 0 a.e.

in Ω for (uniformly) small data f (x) <
√
2σ 2 and then h′ is

monotone, increasing and uniqueness of the trivial solution
can be deduced (see Sect. 4.2 below). Summing up we have
shown (see Fig. 1) that h

′′
(x, 0) > 0 for f (x) <

√
2σ 2,

h
′′
(x, 0) = 0 for f (x) = √

2σ 2 and h
′′
(x, 0) < 0 for

f (x) >
√
2σ 2.

The same fact is true for small u as h′′(x, u) is continu-
ous with respect to u. These properties characterize the local
behavior near u = 0 of h(x, u). It turns out that h

′′
(x, u)

is a changing sign function depending on the datum f , and
the parameter σ 2. Then h(x, u) is possibly nonconvex. This
implies that h′(x, u) is nonmonotone. Multiple solutions to
problem (2) corresponding to critical points of the energy

Fig. 1 The profile of h
′′
(x, u) is computed for constant data f = 1 and

parametric values f 2/σ 2 = 1, f 2/σ 2 = 2 and f 2/σ 2 = 3. The values
of λ are chosen to get a constant ratio λ/σ 2 = 3. A limit behavior is
obtained when f 2/σ 2 = 2 (σ = 1/

√
2, in red). For f 2/σ 2 ≤ 2, we

have uniqueness. On the other hand, for f 2/σ 2 > 2 we have f 2 > 2σ 2,
and the corresponding profile is negative in a neighborhood of s = 0.
Some properties of h′′(x, u), (12), (13), and (14), can be observed in
the figure (Color figure online)

functionalmay exist. For f ≡ 0,wehaveh(u) = (λ/2σ 2)u2,
h′(u) = (λ/σ 2)u, and h

′′
(u) = λ/σ 2 > 0. Multiplying

(formally) by u in the model equation appearing in (2) and
integrating, it is easily seen that u ≡ 0 is the unique solution.
We shall see in Sect. 4.2 that the same phenomenon is true
when f is small enough.

To get a deep insight into the features of the energy term
related to Rician noisy data, in this subsection, we fix x ∈
Ω and describe the profile of h(x, u) defined in (6). The
qualitative behavior of h′′(u) and h(u) is shown in Figs. 1
and 2 respectively. We have

Lemma 2 Let h be defined as in (6) with datum f (x) ≥ 0,
a.e. x ∈ Ω and fixed parameters λ > 0 and σ 2 
= 0. Then

lim
t→±∞ h(x, t) = +∞, a.e. x ∈ Ω. (17)

Moreover:

1. If f (x)2 ≤ 2σ 2 a.e. x ∈ Ω , then the function t �→ h(x, t)
is convex and its minimum is attained at 0.

2. If f (x)2 > 2σ 2 a.e. x ∈ Ω , then t �→ h(x, t) has a
unique positive critical point where it attains a global
minimum.

Proof We fix x ∈ Ω . When f (x) = 0, the result is straight-

forward since then h(x, t) =
(

λ

2σ 2

)
t2.
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Fig. 2 The double-well potential for parametric values λ = σ 2 = 5
is obtained when f 2 > 2σ 2 = 10. In the figure above, we represent
the profile of function t �→ h(t) for f 2 = σ 2 = 5 (Convex case),
f 2 = 2σ 2 = 10 (limiting behavior), f 2 = 4σ 2 = 20 (double well)

Assuming that f (x) > 0, we begin by showing the limit
behavior. Consider (3) written in form

h′(x, u) +
(

λ

σ 2

)
r(x, u) f (x) =

(
λ

σ 2

)
u .

As h′(x, u) is the Gateaux derivative of h(x, u) we formally
integrate in (0, |u|) with respect to u to obtain

h(x, |u|) +
(

λ

σ 2

)∫ |u|

0
r(x, t) f (x)dt =

(
λ

2σ 2

)
|u|2.

We deduce from the boundedness |r(x, t)| ≤ 1 a.e. in Ω for
any t , the inequality

0 ≤
(

λ

σ 2

)∫ |u|

0
r(x, t) f (x)dt ≤

(
λ

σ 2

)
|u| f,

and owing to the fact that h(x, t) is an even function (because
I0 is even), it yields

h(x, u) +
(

λ

σ 2

)
|u| f (x) ≥

(
λ

2σ 2

)
u2. (18)

Now, Young’s inequality implies

(
λ

σ 2

)
|u| f (x) ≤

(
λ

σ 2

)[(ε

2

)
u2 +

(
1

2ε

)
f (x)2

]

for any ε > 0. Thus, (18) becomes

h(x, u) ≥ 1

2

(
λ

σ 2

)[(
1 − ε

)
u2 − 1

ε
f (x)2

]
, (19)

from where (17) follows choosing ε < 1.

To go on, we need to know more features of the function

s �→ r(s)

s
. Our starting point is (16). Indeed, letting s → 0

in (16), it yields lim
s→0

r(s)

s
= 1

2
and letting s → +∞, we

deduce lim
s→+∞

r(s)

s
= 0. On the other hand, (16) implies that

the function s �→ r(s)
s is (strictly) decreasing in [0,+∞[.

Next let w(x) be a positive critical point of

h(x, t) =
(

λ

2σ 2

)
t2 − λ log I0

(
t f (x)

σ 2

)
,

then h′(x, w(x)) = 0 and so w(x) = r
( f (x)w(x)

σ 2

)
f (x).

In other words,

σ 2

f (x)2
=

r
( f (x)w(x)

σ 2

)
f (x)w(x)

σ 2

.

According to (16), it leads to the following dichotomy:

1. If 0 < f (x)2 ≤ 2σ 2, then σ 2

f (x)2
≥ 1

2 , so that we cannot
find a positive critical point. In this case, h(x, t) is convex
and its minimum is attained at 0.

2. If f (x)2 > 2σ 2, then 0 < σ 2

f (x)2
< 1

2 . As the function

s �→ r(s)
s is (strictly) decreasing, recall (16), there exists

a unique s f > 0 satisfying

σ 2

f (x)2
= r(s f )

s f
.

Choosing w(x) such that f (x)w(x)
σ 2 = s f , we deduce that

w(x) > 0 and h(x, t) has a critical point at t = w(x).
Since h(x, t) is negative in a neighborhood of 0 (as a
consequence of h′′(x, 0) < 0 and h′(x, 0) = h(x, 0) =
0) and limt→±∞ h(x, t) = +∞, it follows that h(x, t)
has, at least, a local minimum; wherewith that positive
critical pointmust be a localminimum.Therefore, h(x, t)
is an even function that, on [0,+∞[, has the following
profile: it is negative anddecreasing in [0, w(x)]; it attains
a global minimum at the pointw(x); from the pointw(x)
on, it is increasing and goes to +∞ as t → +∞. ��

2.3 Coercitiveness and Lower Bound

In this Subsection, we show that the energy minimization
problem related to the (formal) Euler–Lagrange equation
in (2) is coercive in BV (Ω) ∩ L2(Ω) because the energy
H(u, f ) defined in (7) is coercive in L2(Ω). This shall be
used to show that the energy E1(u) has, at least, a positive,
nontrivial minimum (provided that the datum is big enough).
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Integrating (19) in Ω , using definition (7) and noticing
that r(x, 0) = 0 we deduce

H(u, f ) ≥(1
2

− ε
)(

λ

2σ 2

)∫
Ω

u2dx − 1

ε

(
λ

σ 2

)∫
Ω

f 2dx,

where 0 < ε < 1/2, and the functional H(u, f ) is coercive
in L2(Ω). Then the energy functional Ep(u) in (9) is coercive
in W 1,p(Ω) ∩ L2(Ω) and E1(u) [defined in (8)] is coercive
in BV (Ω) ∩ L2(Ω). These energies are also (uniformly)
bounded from below

Ep(u) ≥ −1

ε

(
λ

σ 2

)
‖ f ‖22, p ≥ 1.

2.4 Existence Result for the Approximating Problems

The analysis of problem (2) begins with the consideration of
problems involving the p−Laplacian:

⎧⎨
⎩

−div
(
|∇u|p−2∇u

)
+ h′(x, u) = 0, inΩ,(

|∇u|p−2∇u
)

· n = 0, on ∂Ω.
(20)

Since wewant let p → 1, it is enough to take 1 < p < 2. For
such p, the existence of a solution to (20) is a standard result
although we have not found references for this specific prob-
lem; so that we include its proof for the sake of completeness.
We are proving the following adaptation of Theorem 1.

Proposition 1 Let 1 < p < 2 and λ > 0, σ 2 
= 0 be given
real parameters.

For every nonnegative f ∈ L2(Ω), there exists a nonneg-
ative u ∈ W 1,p(Ω) ∩ L2(Ω) which is a solution to problem
(20) and it is a global minimum of functional Ep.

Proof Consider the functional, written in terms of (6),

Ep(u) = 1

p

∫
Ω

|∇u|p dx + λ

2σ 2

∫
Ω

u2dx

− λ

∫
Ω

log I0
(u f

σ 2

)
dx .

Since the Euler–Lagrange equation corresponding to the
functional Ep is (20) and Ep is differentiable, it is enough to
find a nonnegative minimizer of Ep in the spaceW 1,p(Ω)∩
L2(Ω).

The weakly lower semicontinuity of Ep can be obtained
as follows. If (un)n is a sequence inW 1,p(Ω)∩ L2(Ω) such
that

un ⇀ u , weakly in L2(Ω)

∇un ⇀ ∇u , weakly in L p(Ω;RN ) ;

then, due to the lower semicontinuity of the p-norm and the
2-norm, it yields

∫
Ω

|∇u|p ≤ lim inf
n→∞

∫
Ω

|∇un|p∫
Ω

u2 ≤ lim inf
n→∞

∫
Ω

u2n .

To pass to the limit in the remainder term, another conse-
quence is in order, namely: the sequence ( f un)n is weakly
convergent in L1(Ω), so that it is equi-integrable. Thus, it
follows from the estimate

λ log I0
(un f

σ 2

)
≤ λ

σ 2 f |un|

that the sequence
(
λ log I0

(
un f
σ 2

))
n
is equi-integrable as

well. Moreover, applying the compact embedding of W 1,p

(Ω) into L1(Ω), we will assume that

un(x) → u(x) , pointwise a.e. in Ω .

This fact implies

λ log I0
(un(x) f (x)

σ 2

)
→ λ log I0

(u(x) f (x)

σ 2

)
, a.e. in Ω .

By Vitali’s Theorem we conclude that

Ep(u) ≤ lim inf
n→∞ Ep(un) .

On the other hand, we have already proved the coerciveness
of Ep previously in Sect. 2.3. Therefore, there exists u ∈
W 1,p(Ω) ∩ L2(Ω) which minimizes Ep.

Moreover, we may choose u to be nonnegative. This fea-
ture is a consequence of being h(x, s), an even function with
respect to s, since this fact induces Ep(|u|) = Ep(u) and so
|u| is a minimizer of Ep as well. ��
Remark 4 Regarding uniqueness of problem (20), we point
out that there always exists the trivial solution u ≡ 0. This
solution may be unique if the datum is small enough (see
Sect. 4 below).

Nevertheless, we are interested in uniqueness of positive
solutions. When p = 2, we may invoke the results in [13]

and, noting that the function u �→ r(x, u)

u
is decreasing,

deduce that the positive solution to (20) must be unique.

Since u �→ r(x, u)

u p−1 is not decreasing, this argument does not

hold for p < 2, so that we cannot presume that the positive
solution we have found is unique.

123



210 J Math Imaging Vis (2017) 57:202–224

3 Solving the Model Problem

In this section, we write rigorously the model equation for-
mally introduced in (2). We shall prove the existence of a
weak (distributional) solution which is a global minimum of
the energy functional E1(u) in (8).

3.1 Definition of Solution for the Model Problem

We shall say that u ∈ BV (Ω) ∩ L2(Ω) is a weak solution
of problem (2) if h′(x, u) ∈ L2(Ω) and there exists a vector
field z ∈ L∞(Ω,RN ), with ‖z‖∞ ≤ 1, such that

1. −div(z) + h′(x, u) = 0 in D′(Ω)

2. the equality (z, Du) = |Du| holds in the sense of mea-
sures

3. [z, n] = 0,HN−1-a.e. on the boundary ∂Ω .

Roughly speaking, z plays the role of Du
|Du| . The expres-

sions (z, Du) and [z, n] have sense thanks to the Anzellotti
theory (see [7] or [5, Appendix C]) which defines a Radon
measure (z, Dw), when w ∈ BV (Ω) ∩ L2(Ω) and div(z) ∈
L2(Ω), and provides the definition of a weakly trace on ∂Ω

to the normal component of z, denoted by [z, n]. That Radon
measure is defined, as a distribution, by the expression

〈(z, Dw), ϕ〉 = −
∫

Ω

wϕ div(z) dx −
∫

Ω

wz · ∇ϕ dx, (21)

and its total variation satisfies the fundamental inequality

|(z, Dw)| ≤ ‖z‖∞|Dw| . (22)

Furthermore, this theory also guarantees a Green’s formula
that relates the function [z, n] and the measure (z, Dw)

∫
Ω

w div(z) dx +
∫

Ω

(z, Dw) =
∫

∂Ω

[z, n]w dHN−1.

Using this Green formula, we deduce a variational formu-
lation of the solution to problem (2), namely

∫
Ω

|Du| −
∫

Ω

(z, Dv) +
∫

Ω

h′(x, u)(u − v) = 0 , (23)

for all v ∈ BV (Ω) ∩ L2(Ω).
This formulation allows us to show in which sense solu-

tions to problem (2) are critical points of the functional
E1 = J1 + H . In fact, it follows from (23) that

−
∫

Ω

h′(x, u)(v − u) =
∫

Ω

(z, Dv) −
∫

Ω

|Du|

≤
∫

Ω

|Dv| −
∫

Ω

|Du|

for all v ∈ BV (Ω) ∩ L2(Ω). Hence,

−h′(x, u) ∈ ∂ J1(u) .

Remark 5 Observe that if we denote F(u) = λ log(
I0
( f u

σ 2

))
, then we get that F ′(u) lies in the subdifferential

at u of the convex functional defined by v �→ λ

2σ 2

∫
Ω

v2 +∫
Ω

|Dv|.

3.2 A Priori Estimates

We are proving that problem (2) has a solution u for each
f ∈ L2(Ω). Moreover, we are getting u ≥ 0.
For 1 < p < 2, consider u p ∈ W 1,p(Ω) ∩ L2(Ω) a

nonnegative solution to the approximating problem

⎧⎨
⎩

−div
(
|∇u p|p−2∇u p

)
+ h′(x, u p) = 0, inΩ,(

|∇u p|p−2∇u p

)
· n = 0, on ∂Ω.

(24)

The weak (variational) formulation of the boundary value
problem (24), written in terms of (3) and (4), is

λ

σ 2

∫
Ω

u pvdx +
∫

Ω

(|∇u p|p−2∇u p) · ∇vdx

= λ

σ 2

∫
Ω

r(x, u p) f vdx, (25)

for all v ∈ W 1,p(Ω)∩ L2(Ω). Choosing v = 1, we have the
compatibility integral condition

∫
Ω

h′(x, u p)dx = 0 (26)

i.e., h′(x, u p) has mean zero and we easily deduce a first
estimate:

‖u p‖1 =
∫

Ω

u pdx =
∫

Ω

r(x, u p) f dx

≤
∫

Ω

f dx = ‖ f ‖1 = M1.

We now use v = u p as a test function in the variational
formulation obtaining

λ

σ 2

∫
Ω

u2pdx +
∫

Ω

|∇u p|pdx

= λ

σ 2

∫
Ω

r(x, u p) f u pdx ≤ λ

σ 2

∫
Ω

f u p dx

≤ λ

2σ 2

(∫
Ω

f 2dx +
∫

Ω

u2pdx

)
,
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hence the uniform estimate

λ‖u p‖22 + 2σ 2‖∇u p‖p
p ≤ λ‖ f ‖22 = M2 .

It follows now from Young’s inequality that

‖u p‖22 + ‖∇u p‖1 ≤ ‖u p‖22 + 1

p
‖∇u p‖p

p + p − 1

p
|Ω|

≤
(
1

λ
+ 1

2σ 2

)
M2 + |Ω| = M3 .

Thus, (u p)p is bounded in BV (Ω) ∩ L2(Ω) and there exist
u ∈ BV (Ω) ∩ L2(Ω) and a subsequence, still denoted by
u p, satisfying

∇u p ⇀ Du , *-weakly as measures

u p(x) → u(x) , a.e. in Ω

u p ⇀ u , weakly in L2(Ω)

u p → u , strongly in Lr (Ω) ∀1 ≤ r < 2 (27)

We point out that u ≥ 0 due to being a pointwise limit of
nonnegative functions. We deduce from u ∈ L2(Ω) that
h′(x, u) = (λ/σ 2)[u − r(x, u) f ] ∈ L2(Ω) since r(x, u) is
bounded. The boundedness of (u p)p in BV (Ω) also implies
that for every q, 1 ≤ q < p′, we have
∫

Ω

|∇u p|(p−1)q dx ≤
( ∫

Ω

|∇u p|p dx
)(p−1)q/p|Ω|1− (p−1)q

p

≤ M
(p−1)q

p
3 |Ω|1− (p−1)q

p ≤ M3 + |Ω|.
(28)

So, for any q > 1 fixed, the sequence |∇u p|p−2∇u p

is bounded in Lq(Ω;RN ) and then there exists zq ∈
Lq(Ω;RN ) such that, up to subsequences,

|∇u p|p−2∇u p ⇀ zq in Lq(Ω;RN ) for all 1 ≤ q < +∞.

Moreover, by a diagonal argument we can find a limit z that
does not depend on q, that is

|∇u p|p−2∇u p ⇀ z in Lq(Ω;RN ) for 1 ≤ q < +∞.

(29)

Now by (28), we deduce

‖|∇u p|p−2∇u p‖Lq (Ω;RN ) ≤ (M3 + |Ω|)1/q

for 1 ≤ q < +∞ and for p ∈]1, q ′[ . Therefore, by lower
semicontinuity of the norm, we have

‖z‖Lq (Ω;RN ) ≤ (M3 + |Ω|)1/q for all 1 ≤ q < +∞ .

Letting q → ∞, we get that z ∈ L∞(Ω;RN ) and

‖z‖L∞(Ω;RN ) ≤ 1 .

3.3 Checking that Function u is a Solution to the Model
Problem (2)

We have to see that u satisfies the requirements of our defi-
nition (see Sect. 3.1 above).

Taking v = ϕ ∈ C∞
0 (Ω) in (25) and letting p → 1, it

yields

λ

σ 2

∫
Ω

uϕdx +
∫

Ω

z · ∇ϕdx = λ

σ 2

∫
Ω

r(x, u) f ϕdx,

so that our equation holds in the sense of distributions.
Once we have proved 1 in the definition of solution, we

proceed to see 2 and 3. To beginwith 2, considerϕ ∈ C∞
0 (Ω)

such that ϕ ≥ 0. Taking u pϕ as test function in (25), we
obtain

λ

σ 2

∫
Ω

u2pϕdx +
∫

Ω

ϕ|∇u p|pdx (30)

+
∫

Ω

u p|∇u p|p−2∇u p · ∇ϕdx

= λ

σ 2

∫
Ω

r(x, u p) f u pϕdx .

We are studying each term in (30) to let p → 1. We apply
Fatou’s Lemma in the first term. In the second, we use
Young’s inequality and the lower semicontinuity of the total
variation as follows:
∫

Ω

ϕ|∇u p|≤ lim inf
p→1

∫
Ω

ϕ|∇u p| dx

≤ lim inf
p→1

( 1

p

∫
Ω

ϕ|∇u p|pdx+ p − 1

p

∫
Ω

ϕ dx
)

= lim inf
p→1

∫
Ω

ϕ|∇u p|pdx .

Third term is handled using (27) and (29). In the right hand
side, it is enough to have inmind that r is bounded. Therefore,
(30) becomes

λ

σ 2

∫
Ω

u2ϕdx +
∫

Ω

ϕ|Du| +
∫

Ω

uz · ∇ϕdx

≤ λ

σ 2

∫
Ω

r(x, u) f uϕdx .

Taking into account that our equation holds in the sense of
distributions and simplifying, we may write this inequality
as
∫

Ω

ϕ|Du| +
∫

Ω

uz · ∇ϕ dx ≤ −
∫

Ω

uϕ divz dx .
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By (21), this is just

∫
Ω

ϕ|Du| ≤ 〈(z, Du), ϕ〉 ,

that is, |Du| ≤ (z, Du) as measures. The reverse inequality
is a consequence of (22). Hence, 2 is seen.

It only remains to prove 3. To this end, consider v ∈
W 1,2(Ω) in (25) and take limits as p goes to 1. It yields

λ

σ 2

∫
Ω

uv dx +
∫

Ω

z · ∇v dx = λ

σ 2

∫
Ω

r(x, u) f v dx .

Using the equality
λ

σ 2 (u−r(x, u) f ) = div z, it follows that

∫
Ω

v div z dx +
∫

Ω

z · ∇v dx = 0,

so that Green’s formula implies

∫
∂Ω

v[z, n] dHN−1 = 0 .

By a density argument, this leads to [z, n] = 0 HN−1—a.e.
on ∂Ω .

Remark 6 We explicitly point out that the compatibility con-
dition (26) also holds for the solution u to problem (2). To
check this fact, it is enough to multiply

−div (z) + h′(x, u) = 0

by a constant function and apply Green’s formula. Then we
get

∫
Ω

h′(x, u)dx = 0.

The same condition can be deduced letting p → 1 in (26)
since |h′(x, u p)| ≤ C(|u p| + f ) and u p → u strongly in
L1(Ω).

3.4 Function u is a Global Minimizer of Functional E1

We will prove that the nonnegative function u considered in
Sect. 3.2, which we have shown is a solution to problem (2)
in Sect. 3.3, satisfies

E1(u) ≤ E1(v) , for all v ∈ BV (Ω) ∩ L2(Ω) .

To see it, we use several stages.
Step 1 To begin with, assume that v ∈ W 1,2(Ω). Observe
first that the interpolation inequality implies

1

p

∫
Ω

|∇v|p dx ≤ 1

p
‖∇v‖2(p−1)

2 ‖∇v‖p−2(p−1)
1

for all 1 < p < 2. Thus,

lim sup
p→1

1

p

∫
Ω

|∇v|p dx ≤
∫

Ω

|∇v| dx .

On the other hand, as a consequence of Young’s inequality,
we have
∫

Ω

|∇v| dx ≤ 1

p

∫
Ω

|∇v|p dx + p − 1

p
|Ω|,

for all 1 < p < 2; so that

∫
Ω

|∇v| dx ≤ lim inf
p→1

1

p

∫
Ω

|∇v|p dx .

Hence, the conclusion is

∫
Ω

|∇v| dx = lim
p→1

1

p

∫
Ω

|∇v|p dx,

that is

E1(v) = lim
p→1

Ep(v) . (31)

Since u p is aminimizer of Ep and v ∈ W 1,p(Ω)∩L2(Ω),
we obtain

Ep(u p) ≤ 1

p

∫
Ω

|∇v|p dx +
∫

Ω

h(x, v) dx,

for all 1 < p < 2. On account of (31), using the lower
semicontinuity of functional E1 and Young’s inequality we
deduce that

E1(u) ≤ lim inf
p→1

E1(u p) ≤ lim inf
p→1

(
Ep(u p) + p − 1

p
|Ω|

)

≤ lim
p→1

Ep(v) = E1(v).

Step 2 Assume now that v ∈ W 1,1(Ω) ∩ L2(Ω) satisfies
v
∣∣
∂Ω

∈ W 1/2,2(∂Ω). Then there exists w ∈ W 1,2(Ω) such

that v
∣∣
∂Ω

= w
∣∣
∂Ω

and so v −w ∈ W 1,1
0 (Ω)∩ L2(Ω). Thus,

there exists a sequence (vn)n in C∞
0 (Ω) such that

vn + w → v , strongly in W 1,1(Ω)

vn + w → v , strongly in L2(Ω).

Since Step 1 provides us

E1(u) ≤ E1(vn + w) , for all n ∈ N ,

it follows that

E1(u) ≤ E1(v) .
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Step 3 Consider the general case: v ∈ BV (Ω) ∩ L2(Ω).
Some approximation sequences of v are in order. First (see [1,
Theorem3.9] and [28, Remark 2.12]), there exists a sequence
(vn)n in C∞(Ω) ∩ W 1,1(Ω) ∩ L2(Ω) such that

vn → v , strongly in L2(Ω),∫
Ω

|∇vn| →
∫

Ω

|Dv|,
vn

∣∣
∂Ω

= v
∣∣
∂Ω

, for all n ∈ N.

On the other hand, given v
∣∣
∂Ω

∈ L1(∂Ω), we may find a
sequence (ϕn)n in W 1/2,2(∂Ω) satisfying

ϕn → v
∣∣
∂Ω

, strongly in L1(∂Ω).

For each n ∈ N, we apply [7, Lemma 5.5] to get wn ∈
C(Ω) ∩ W 1,1(Ω) ∩ L2(Ω) such that

∫
Ω

|∇wn| dx <

∫
∂Ω

|ϕn − v| dHN−1 + 1

n
,

∫
Ω

|wn|2 dx <
1

n
,

wn
∣∣
∂Ω

= ϕn − v
∣∣
∂Ω

, for all n ∈ N.

Summing up, we have

1. wn + vn ∈ C(Ω) ∩ W 1,1(Ω) ∩ L2(Ω) for all n ∈ N;
2. wn + vn → v, strongly in L2(Ω);
3. (wn + vn)

∣∣
∂Ω

= ϕn ∈ W 1/2,2(∂Ω) for all n ∈ N.

Moreover, since

∫
Ω

|∇(wn + vn)| dx

≤
∫

Ω

|∇wn| dx +
∫

Ω

|∇vn| dx

<

∫
∂Ω

|ϕn − v| dHN−1 + 1

n
+

∫
Ω

|∇vn| dx

and ϕn → v
∣∣
∂Ω

strongly in L1(∂Ω), it follows that

lim sup
n→∞

∫
Ω

|∇(wn + vn)| dx ≤
∫

Ω

|Dv|.

The lower semicontinuity of the total variation now leads to

lim
n→∞

∫
Ω

|∇(wn + vn)| dx =
∫

Ω

|Dv|.

Therefore,

E1(wn + vn) → E1(v).

Finally, by Step 2, we already get

E1(u) ≤ E1(wn + vn) , for all n ∈ N.

Letting n go to ∞, we see that E1(u) ≤ E1(v). Since this
fact holds for all v ∈ BV (Ω) ∩ L2(Ω), we are done.

4 Remarks and Properties of the Problem

4.1 Summability of the Solutions

We are interested in dealing with bounded data f . In this
case, the solution we find is also bounded. More generaly,
we will see in this remark that if f ∈ Lq(Ω), with q > N ,
then the solution u is bounded. It is enough to check that an
L∞-estimate holds on the approximate solutions u p. Since
q > N , then N

q ′(N−1) > 1. Fix p0, such that 1 < p0 <

N
q ′(N−1) , and take p such that 1 < p ≤ p0. For any k > 0

consider the real function Gk(s) := (s − k)+, s ≥ 0. Taking
Gk(u p) as test function in (25), we get

λ

σ 2

∫
Ω

u pGk(u p) dx +
∫

Ω

|∇Gk(u p)|p dx

≤ λ

σ 2

∫
Ω

f r(x, u p)Gk(u p) dx .

Disregarding a nonnegative term and applying r(x, u p) ≤ 1,
Hölder’s inequality leads to∫

Ω

|∇Gk(u p)|p dx ≤ λ

σ 2

∫
Ω

f Gk(u p) dx

≤ ‖ f ‖q
( ∫

Ω

|Gk(u p)|q ′
dx

)1/q ′
.

This is the starting point for using the Stampacchia technique
and get an L∞-estimate. Just be careful to check that the
various constants appearing in the calculations do not depend
on p. Details can be found at [36, Theorem 3.5, Step 3].

Furthermore, if f ∈ L∞(Ω), we may clarify a little more
the situation by seeing the estimate ‖u‖∞ ≤ ‖ f ‖∞. This
inequality makes explicit and extends the statement 8 of [26,
Theorem 1].

Taking uqp, with q > 1 large enough, as test function and
dropping a nonnegative term, we obtain

λ

σ 2

∫
Ω

uq+1
p dx ≤ λ

σ 2

∫
Ω

f r(x, u p)u
q
p dx ≤ λ

σ 2

∫
Ω

f uqp dx .

It follows from Hölder’s inequality that

∫
Ω

uq+1
p dx ≤

∫
Ω

f uqp dx

≤
( ∫

Ω

f q+1 dx
)1/(q+1)( ∫

Ω

uq+1
p dx

)q/(q+1)
,
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and so

( ∫
Ω

uq+1
p dx

)1/(q+1) ≤
( ∫

Ω

f q+1 dx
)1/(q+1)

.

Lettingq → ∞, it yields ‖u p‖∞ ≤ ‖ f ‖∞ for all 1 < p < 2,
and recalling that u is the pointwise limit of u p, we are done.

4.2 Uniqueness

We will prove that if the function t �→ h′(x, t) is increasing,
then there exists at most a solution to (2).

Proof Assume, to get a contradiction, that u1 and u2 are
two solutions to (2) in the sense of the definition stated in
Sect. 3.1 above. Denote by z1 and z2 the respective vector
fields. It follows that

−div zi + h′(x, ui ) = 0, i = 1, 2;

in the sense of distributions. Multiply both equations by
u1 − u2, use Green’s formula, recall the second condition
in the Definition of solution to problem (2) and subtract one
expression from the other to obtain

∫
Ω

|Du1| − (z2, Du1) +
∫

Ω

|Du2| − (z1, Du2)

+
∫

Ω

(h′(x, u1) − h′(x, u2))(u1 − u2) dx = 0.

The three terms are nonnegative since (zi , Du j ) ≤ ‖zi‖∞|
Du j | ≤ |Du j |, for i, j = 1, 2, and the function t �→ h′(x, t)
is increasing. Hence, they must vanish; in particular,
∫

Ω

(h′(x, u1) − h′(x, u2))(u1 − u2) dx = 0

and h′ increasing implies u1 ≡ u2, as desired. The qualitative
profiles of h′(u) depending on the data f and the parametric
value σ 2 are shown in Fig. 3. ��

4.3 NonTrivial Solutions

We have already commented that there always exists a trivial
solution u ≡ 0. On the other hand, 0 ≤ f ≤ √

2σ 2 implies
that h′(x, s) is increasing with respect to s and, as a conse-
quence of the uniqueness result of the previous subsection,
there is no other solution aside from the trivial one. Never-
theless, we are interested in the case when f ∈ L∞(Ω) is
a.e. above this threshold and in finding nontrivial solutions.

Although constant data are unrealistic, we study them to
get nontrivial solutions. In this Subsection, we are showing
that if the datum is constant f (x) = μ and μ >

√
2σ 2, then

the solution is constant and nontrivial. It is worth remarking
that we obtain uniqueness of positive solutions for constant

Fig. 3 Profile of h
′
(x, u) for fixed x ∈ Ω and the parametric values

λ = 10, σ 2 = 10 for different constant values of the data: f = 2,
f = f ∗ = √

20, and f = 10. A limit behavior is obtained when
f = f ∗ = √

20 = √
2σ 2. For f ≤ f ∗, we have uniqueness of the

trivial solution. For f > f ∗, we have f 2 > 2σ 2 and the corresponding
profile is negative in a neighborhood of s = 0. Notice that when u is
small, h′ < 0, and h′ behaves as a reactive term (a source) in the Euler–
Lagrange equation. When u is sufficiently big h′ > 0 and h′ defines an
absorption term (a sink) in the equation

data. In the next Subsection, we will derive a criterion on the
datum to obtain nontrivial solutions.

Considering (6), we define the function

Γ (μ, t) =
(

λ

2σ 2

)
t2 − λ log I0

(
tμ

σ 2

)

which is related to the function h(x, u) setting h(x, u) =
h( f (x), u(x)). Fixed x ∈ Ω ,wehaveΓ (μ, t) = h( f (x), u(x))
and we can use the results in the proof Lemma 2, condition
2. Computing its derivative we have, ∀μ > 0, t > 0,

Γμ(μ, t) = − λt

σ 2

[
I1(tμ/σ 2)

I0(tμ/σ 2)

]
< 0 (32)

and Γ (μ, t) is decreasing with respect to μ. Owing to μ >√
2σ 2, the function Γ (μ, t) attains a negative minimum at a

positive point, say t = γ (see the end of the proof in Lemma 2
, condition 2). Then, fixed μ, γ = argmin Γ (μ, t) satisfies
Γt (μ, t) = 0 which is

γ =
[
I1(γμ/σ 2)

I0(γμ/σ 2)

]
μ . (33)

Actually, there is just a positive point γ satisfying (33); to see
this it is enough to check that sμ = μγ

σ 2 is the unique solution
to problem

sμ = I1(sμ)

I0(sμ)

μ2

σ 2 = r(sμ)
μ2

σ 2
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and this fact is a consequence of being the function s �→ r(s)
s

decreasing in [0,+∞[ (see (16)). Thus γ is given by (33)
and satisfies

Γ (μ, γ ) < Γ (μ, 0) = 0 and 0 < γ < μ . (34)

Taking u(x) = γ for all x ∈ Ω , it yields that u is
the unique minimizer of the functional E1. Indeed, if v ∈
BV (Ω) ∩ L2(Ω), then h(x, u) ≤ h(x, v) and h(x, u) =
h(x, v) only when v(x) = γ a.e., so that

E1(u) =
∫

Ω

h(x, u) dx ≤
∫

Ω

|Dv|

+
∫

Ω

h(x, v) dx = E1(v)

and E1(u) = E1(v) only when u = v.

4.4 Comparing with Constant Functions

Using the same notation of the above subsection, we may go
further and prove that 0 ≤ μ ≤ f (x) implies γ ≤ u(x) a.e.in
Ω , where γ ≥ 0 minimizes Γ (μ, t). We also assume that
μ >

√
2σ 2, otherwise γ = 0 and the inequality becomes

obvious.
We begin by claiming that, for almost all x ∈ Ω ,

function t �→ h(x, t) is (strictly) decreasing in [0, γ ] (35)

and

function t �→ h(x, t) is (strictly) increasing in [γ2,+∞[.
(36)

In both cases,
we will use that functions

s �→ s I0(s)

I1(s)
and s �→ I1(s)

I0(s)
are increasing (37)

and these facts are derived from (16). Notice that, for almost
all x ∈ Ω , the positive minimum w(x) of h(x, t) satisfies

w(x) =
[
I1

(
f (x)w(x)/σ 2

)
I0

(
f (x)w(x)/σ 2

)
]

f (x). (38)

It follows that

s f (x) =
[
I1(s f (x))

I0(s f (x))

]
f (x)2

σ 2 ,

where s f (x) = f (x)w(x)
σ 2 . As seen in the previous subsec-

tion, a similar identity holds for the positive minimum γ of
Γ (μ, t):

sμ =
[
I1(sμ)

I0(sμ)

]
μ2

σ 2 ,

where sμ = μγ

σ 2 . Hence, by (37), μ ≤ f (x) implies sμ ≤
s f (x) a.e. and so μγ ≤ f (x)w(x) a.e. Going back to (38),
for almost all x ∈ Ω , we have

w(x)2 =
[
I1

(
f (x)w(x)/σ 2

)
I0

(
f (x)w(x)/σ 2

)
]

f (x)w(x)

≥
[
I1

(
f (x)w(x)/σ 2

)
I0

(
f (x)w(x)/σ 2

)
]

μγ

≥
[
I1

(
μγ/σ 2

)
I0

(
μγ/σ 2

)
]

μγ = γ 2,

where the last inequality is due to (37). Therefore, we have
seen that w(x) ≥ γ a.e. Finally, since h(x, ·) is decreasing
in [0, w(x)] for almost all x ∈ Ω , it yields that h(x, ·) is
decreasing in [0, γ ] for almost all x ∈ Ω and (35) is proved.
The second claim follows using a similar argument.

Now we turn to check that u(x) ≥ γ a.e. Since u is a
global minimizer of functional E1, it follows that

∫
Ω

|Du| +
∫

Ω

h(x, u) dx

≤
∫

Ω

|D(u + (γ − u)+)| +
∫

Ω

h(x, u + (γ − u)+) dx

≤
∫

Ω

|Du| +
∫

{u≥γ }
h(x, u) dx +

∫
{u<γ }

h(x, γ ) dx .

Simplifying and dropping the nonnegative gradient term, we
obtain

∫
{u<γ }

h(x, u) dx ≤
∫

{u<γ }
h(x, γ ) dx .

Applying now our first claim (35), we deduce that h(x, γ ) <

h(x, u) a.e. in {u < γ }. Therefore, |{u < γ }| = 0, that is
u(x) ≥ γ a.e. in Ω .

Starting from the inequality

∫
Ω

|Du| +
∫

Ω

h(x, u) dx

≤
∫

Ω

|D(u − (u − γ2)
+)| +

∫
Ω

h(x, u − (u − γ2)
+) dx,

it follows that

∫
{u>γ2}

h(x, u) dx ≤
∫

{u>γ2}
h(x, γ2) dx .

and our second claim (36) implies that u(x) ≤ γ2 a.e. in Ω .
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4.5 The Minimum is Decreasing with Respect to the
Datum

In this remark, we will make explicit the dependence on the
data. To this end, we stand our functional for E f

1 .
Let fi ∈ L2(Ω), i = 1, 2, be two data and denote by

ui the corresponding function where the minimum of E fi
1

is attained. We will show that f1 ≤ f2 implies E f1
1 (u1) ≥

E f2
1 (u2).
Since f1(x) ≤ f2(x) implies H(v, f1) ≥ H(v, f2) for all

v ∈ BV (Ω) ∩ L2(Ω), recall (32), it follows that

E f2
1 (u2) ≤ E f2

1 (u1) =
∫

Ω

|Du1| + H(u1, f2)

≤
∫

Ω

|Du1| + H(u1, f1) = E f1
1 (u1) .

Combining this fact with the previous subsection and hav-
ing in mind (34), we get that f (x) ≥ μ >

√
2σ 2 implies

E f
1 (u) ≤ Eμ

1 (γ ) = Γ (μ, γ )|Ω| < 0 .

4.6 Resolvents of the Subdifferential

With a view to the numerical resolution of problem (2),
we now consider some properties of the resolvents of the
subdifferential of a (possibly) quadratically perturbed Total
Variation energy functional.

It is well known that subdifferentials of convex functions
have nonexpansive resolvents. Thanks to the characterization
of the subdifferential of the Total Variation appearing in [5],
we may make explicit this feature in our case. Indeed, fix
α ≥ 0 and set

G1(u) =
⎧⎨
⎩

∫
Ω

|Du| + α‖u‖22 , if u ∈ BV (Ω) ∩ L2(Ω)

+∞ , if u ∈ L2(Ω)\BV (Ω).

(39)

Using [5, Lemma 2.4], it yields that u ∈ (I + c ∂G1)
−1( f ),

with c > 0, if and only if u is a solution to

⎧⎪⎨
⎪⎩
u + cαu − c div

( Du

|Du|
)

= f, in Ω( Du

|Du|
)

· n = 0, on ∂Ω.

(40)

We point out that this problem has a unique solution (just
follow the arguments in subsection 4.2).

Consider now ui solution to problem (40) with datum fi ,
i = 1, 2. In other words, we have ui = (I + c ∂G1)

−1( fi ),
i = 1, 2. Then there exist zi ∈ L∞(Ω;RN ) satisfying the
requirements of Sect. 3. Take u1 −u2 as test function in each

equation (40) (that with datum f1 and that with datum f2)
and subtract them. Then we get

∫
Ω

(u1 − u2)
2dx + cα

∫
Ω

(u1 − u2)
2dx

+ c
∫

Ω

(z1 − z2, D(u1 − u2))

=
∫

Ω

( f1 − f2)(u1 − u2) dx .

Dropping a nonnegative term and applying Hölder’s inequal-
ity, it follows that

(1 + cα)

∫
Ω

(u1 − u2)
2dx ≤ ‖ f1 − f2‖2‖u1 − u2‖2 ,

from where we conclude

‖u1 − u2‖2 ≤ 1

1 + cα
‖ f1 − f2‖2 .

Therefore, if α > 0, then the Lipschitz constant satisfies
1

1+cα < 1 and so each resolvent is actually a contraction.
Similar, simpler arguments show that the same result is true
for 1 < p < 2:

Gp(u) =
{ ‖∇u‖p

p + α‖u‖22 , if u ∈ W 1,p(Ω) ∩ L2(Ω)

+∞ , if u ∈ L2(Ω)\W 1,p(Ω) .

(41)

5 Numerical Resolution

In this section we shall exploit the underlying structure of
the minimization problem to write the corresponding energy
functional as the difference of convex functions. For this, we
consider functionals (8) and (9) defined as E1(u) = J1(u)+
H(u, f ) and Ep(u) = Jp(u)+H(u, f ). Using (39) and (41),
we can decompose them in form E1(u) = G1(u) − F(u, f )
and Ep(u) = Gp(u) − F(u, f ) where (compare with (7))

F(u, f ) = λ

∫
Ω

log I0

(
u f

σ 2

)
dx . (42)

The fundamental point is that the energy in (42) is convex. As
a consequence, (8) and (9) are difference of convex energy
functionals.

We now introduce a 2D discrete setting in which the func-
tionals can be minimized by a convergent Proximal Point
algorithm, inwhich a primal–dualmethod is used to solve the
proximal operator for (39) and (41) together with an ascent
gradient step for (42). The generalization to 3D (volumetric)
datasets is straightforward.

123



J Math Imaging Vis (2017) 57:202–224 217

5.1 Discrete Framework

Let Ω ⊂ R
2 be an ideally continuous rectangular image

domain and consider a discretization in terms of a regular
Cartesian gridΩh of size N ×M : (ih, jh), 1 ≤ i ≤ N , 1 ≤
j ≤ M where h denotes the size of the spacing. The matrix
(uhi, j ) represents a discrete image where each pixel ui, j is
located in the correspondent node (ih, jh). In what follows,
we shall choose h = 1 because it only causes a rescaling
of the energy through the λ parameter. Henceforth, we shall
drop the dependence of the mesh size and denote uh = u.
Let X = R

N×M be the space of solutions. We introduce the
discrete gradient ∇ : X → Y = X × X , defined as the
forward finite differences operator

(∇u)i, j =
(

(∇u)xi. j
(∇u)

y
i. j

)
=

(
ui+1, j − ui, j
ui, j+1 − ui, j

)
(43)

except for (∇u)xN , j = 0, and (∇u)
y
i,M = 0. The discrete

p-norm of the gradient for 1 ≤ p < 2 is

‖∇u‖p
p =

∑
i. j

|(∇u)i. j |p, with

|(∇u)i. j | =
√(

(∇u)xi. j

)2 +
(
(∇u)

y
i. j

)2

which for p = 1 is the discrete version of the isotropic TV
operator (1) and for 1 < p < 2, is the discrete version of
the Jp(u) term of the energy (9). The discrete energy for the
functionals defined in (8) and (9) reads as

Ep(u) = 1

p

∑
i. j

|(∇u)i. j |p + λ

2σ 2

∑
i. j

u2i, j

− λ
∑
i. j

log I0

(
ui, j fi, j

σ 2

)
, (44)

where the matrix ( fi, j ) represents the discrete noisy image,
with each pixel fi, j located at the node (i, j).

Endowing the spaces X and Y with the standard Euclidean
scalar product, the adjoint operator of the discrete gradient
(43) is ∇∗ = −div.

Given p = (px , py) ∈ Y , we have

(div p)i, j = (pxi, j − pxi−1, j ) + (pyi, j − pyi, j−1)

for 2 ≤ i, j ≤ N − 1. The term (pxi, j − pxi−1, j ) is replaced
with pxi, j if i = 1 and with −pxi−1, j if i = N , while the

term (pyi, j − pyi, j−1) is replaced with pyi, j if j = 1 and with

−pyi, j−1 if j = N .

5.2 A Proximal Point Algorithm for Rician Denoising

In this section, we address the numerical resolution of the
nonsmooth nonconvex minimization problem associated to
the energy functional (8) (p = 1) and the smooth nonconvex
approximating minimization problems related to the differ-
entiable energy (9) (1 < p < 2). To this end, we shall adapt
a general proximal point algorithm for the minimization of
the difference of convex (DC) functions proposed in [39].
A decomposition of the energy functional as a difference of
convex (DC) functions is then proposed. This is based on
the fact that I0(s) is strictly log-convex which means that
log I0(s) is strictly convex and so is the energy term defined
in (42).

In the discrete setting introduced before, we can thenwrite
the Rician denoising functional (44) as follows. Given f , let
F : X → R and Gp : X → R be the discretized analog of
functionals (42) and (39) (p = 1), (41) (1 < p < 2):

F(u) = λ
∑
i. j

log I0

(
ui, j fi, j

σ 2

)
, and

Gp(u) = 1

p

∑
i. j

|(∇u)i. j |p + λ

2σ 2

∑
i. j

u2i, j , 1 ≤ p < 2.

The functional in (44) can be seen as the difference of two
strictly convex proper l.s.c functions Gp(u) and F(u):

Ep(u) = Gp(u) − F(u), 1 ≤ p < 2

Notice that Gp(u) ≥ 0, F(u) ≥ 0, and F is differentiable
with Frechet derivative F ′(u).

Thenwe can find a globalminimizer of Ep(u) by applying
the following Proximal Point algorithm:

– Given an initial point u0 = f , let ck = c,∀k and set
k = 0 and ε = 10−6.

1. Compute wk = F ′(uk).
2. Set yk = uk + ckwk .
3. Compute uk+1 = (I + ck ∂Gp)

−1(yk)
4. If ‖uk+1−uk‖2/‖uk‖2 < ε stop.Otherwise k = k+1

and return to step 1.

Notice that we can write Steps 1-3 as

uk+1 = (I + ck ∂Gp)
−1(uk + ck F

′(uk))
= ProxckG p (uk + ck F

′(uk))
= ProxckG p (uk − ck∂(−F(uk)))

which is a forward–backward splitting algorithm (see for
example [45]).
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Step 1 is explicitly given by

wk = F ′(uk) =
(

λ

σ 2

) I1

(
uk f

σ 2

)

I0

(
uk f

σ 2

) f.

In Step 2 we set the descent direction for Step 3. Notice that
any ascent direction for F is a descent direction for E . To
compute the proximal operator (I + c ∂Gp)

−1 in Step 3,
we need to solve the following strictly convex minimization
problem:

uk+1 = argmin
u∈X

(
Gp(u) + 1

2c
‖u − yk‖22

)
(45)

= argmin
u∈X

⎛
⎝ 1

p

∑
i. j

|(∇u)i. j |p + λ

2σ 2

∑
i. j

u2i, j

+ 1

2c

∑
i. j

(
ui, j − yki, j

)2⎞⎠ (46)

Let Rp(u) = 1

p

∑
i. j

|(∇u)i. j |p, and

S(u) = λ

2σ 2

∑
i. j

u2i, j + 1

2c

∑
i. j

(
ui, j − yki, j

)2
.

Using Legendre Fenchel’s duality, wewrite theminimization
problem (45) as a saddle-point problem:

argmin
u∈X

(
Rp(u) + S(u)

)
(47)

= argmin
u∈X

(
max
v∈Y 〈∇u, v〉 − R∗

p(v)

)
+ S(u)

We distinguish two cases. When p = 1, the Fenchel con-
jugate R∗

p(v) is the indicator function IK of the convex
set K = {v ∈ Y : ‖v‖∞ ≤ 1}, i.e IK (v) = 0 if
v ∈ K , IK (v) = +∞ if v /∈ K . In the differentiable case,
1 < p < 2, we have

R∗
p′(v) = 1

p′ ‖v‖p′
p′ = 1

p′
∑
i. j

|vi, j |p′

with 1/p + 1/p′ = 1. To solve this saddle-point problem
(47), we use the Primal–Dual algorithm presented in [17].
This method allows an unified treatment of (47) for any p,
so dealing with the nondifferentiability of G1(u). This algo-
rithmperformsStep 3 in kth external iteration of the Proximal
Point algorithm and reads as follows:

Given u0 = yk , set v0 = 0̄, τd = τp = 1/
√
12, and

ū0 = u0. Iterate until convergence:

(i) vn+1 =
(
I + τd∂R∗

p′
)−1

(vn + τd∇ū)

(ii) un+1 = (I + τp∂S)−1(un + τp div vn+1)

(iii) ūn+1 = 2un+1 − un

This is an inner loop and the upper index n is the inner iter-
ation counter. Steps (i) and (ii) aim to compute the proximal
operators corresponding to R∗

p(u) and S(u) and are defined
by:
Step (i) For p = 1, we compute v̄n = vn + τd∇ūn and the
resolvent operator with respect to R∗

1 reduces to pointwise
Euclidean projector onto �2 balls:

vn+1=(
I+τd∂R

∗)−1
(v̄n) ⇐⇒ vn+1

i, j = v̄ni, j

max(1, |v̄ni, j |)

For 1 < p < 2, with v̄n = vn + τd∇ūn the computation of
the resolvent operator (I + τd∂R∗)−1 (v̄n) leads to solve the
following strictly convex minimization problem:

vn+1 = argmin
v∈Y

(
1

p′ ‖v‖p′
p′ + 1

2τd
‖v − v̄n‖22

)

= argmin
v∈Y

⎛
⎝ 1

p′
∑
i. j

|vi, j |p′ + 1

2τd

∑
i. j

(vi, j − v̄i, j )
2

⎞
⎠

The first-order necessary (and sufficient) condition for opti-
mality reads as follows:

f n(v) = τd |v|p′−2v + v − v̄n = 0

It is easily seen that f n(v) is a continuous monotone increas-
ing with f n(0) = v̄n , and the equation f n(v) = 0 has a
unique real positive solution 0 < |v| ≤ |v̄n| for any p′. For
any fixed internal iteration n, we apply the Newton’s method
to solve the nonlinear equation resulting in the following
fixed point iteration: Set j = 0, vk,n+1

j = v j , v
k,n+1
j+1 = v j+1,

and v0 = vk,n . Compute, for j = 1, 2, ... till convergence

v j+1 = φ(v j ) = τd(p′ − 2)|v j |p′−2v j + v̄

τd(p′ − 1)|v j |p′−2 + 1
.

Step (ii)The resolvent operatorwith respect to S poses simple
pointwise quadratic problems. The solution is given by

u = (I + τp∂S)−1(ū) ⇐⇒ ui, j =
σ 2

(
τp yk + cū

)
i, j

cτpλ + σ 2(c + τp)
.

6 Numerical Results

In this section we test the performance of the proposed
numerical scheme. We first validate the results of the TV-
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Fig. 4 Denoising test on a
phantom brain image. At left,
the original free-of-noise slice.
In the center, the same slice
contaminated with Rician noise
for σ = 15. At right, the best
denoised image obtained using
TV-Rician as measured by
PSNR and SSIM

Fig. 5 Denoising results of the noisy phantom brain image of Fig. 4 using the p-Laplacian for p = 1.75, 1.5, 1.5, 1.1 and 1 (Total Variation)

Rician denoisingmethod using the Proximal PointAlgorithm
(PPA), denoted by TV-Rician in the following. We also test
the numerical convergence of the p-approximating prob-
lems. Then,we compareTV-Ricianwith previously proposed
methods for TV-Rician-based denoising [20,26,35] for dif-
ferent images and noise intensities. Finally we present an
application on real Diffusion Tensor Images (DTI), which is
an MRI modality heavily affected by Rician noise [9,41].

6.1 Numerical Scheme Validation

In order to assess the performance of the proposed algorithm,
we used a synthetic brain image obtained from the BrainWeb
Simulated Brain Database1 at the Montreal Neurological
Institute [22]. The central slice of the original phantom was
extracted and normalized to be between 0 and 255. Finally,
the slice was contaminated artificially with Rician noise for
σ = 15. To compute the denoising quality, we use two differ-
ent measures: the Peak-Signal-to-Noise-Ratio (PSNR) and
the Structural Similarity Index (SSIM) [42].

1 Available at http://www.bic.mni.mcgill.ca/brainweb.

In Fig. 4, we show the denoising results of the TV-Rician
method for λ = 22. This λ value was optimized to obtain the
best PSNR and SSIM with respect to original phantom. We
can see how in the denoised image (Fig. 4c) most of the noise
has been removed, while the fine details are preserved. Using
the same regularization parameter, we repeat this test solving
(44) for different values of p, p = {1.1, 1.25, 1.5, 1.75}, to
numerically asses the convergence of the p−sequence of reg-
ularizing approximating u p solutions when p → 1. The u p

solutions are shown in Fig. 5, where, as expected, the closer
p gets to 1, themore similar the p-Laplacian solution is to the
TV image. This p-convergence can also be observed when
plotting the energy minimization evolution of the Proximal
Point Algorithm for these same values of p and the TV case
(see Fig. 6).

6.2 Comparison with Other Variational Methods for
Rician Denoising

In order to cope with the difficulties of the nonsmooth non-
convex problem (8), several methods have been proposed
for TV-based denoising of Rician contaminated images. The
first of them uses an ε-approximation of the TV term [26,35]
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Fig. 6 Energy minimization evolution of functional (44) for p =
1.75, 1.5, 1.5, 1.1, and 1 (Total Variation) for the images displayed in
Fig. 5

to obtain a smooth minimization problem. With this reg-
ularization, a gradient descent can be applied to solve the
problem. In the following, this approach will be denoted as
TVε-Rician. In the work of [26], a convexification of the
functional was also proposed. This new minimization prob-
lem is solved by a Split-Bregman approach [29]. We will
refer to this convexification as Getreuer model in the fol-

lowing. Finally, a different convexification of (8) by adding
the term 1

σ

∫
Ω

(
√
u − √

f )2dx) has been recently presented
in [20]. This new convex problem is then efficiently solved
using a primal–dual algorithm [17]. For the comparisons, we
will denote as Chen–Zeng this method.

All of these approaches rely on approximations of the
problem (8) making it differentiable or convex. Notably, the
proposed algorithm (TV-Rician) based on the PPA scheme
copes with the original nonsmooth nonconvex functional.
For this comparison, we use four images kindly provided
by the authors of [20]: one natural image Camera man (256
× 256), and three MR images Lumbar-Spine (200 × 200),
Brain (217 × 181), and Liver (214 × 304). The images are
then corrupted by Rician noise for σ = 20 and σ = 30. For
the sake of fairness, all the algorithms were run until they
fulfill the same convergence criterium based on the relative
difference between the functional energy in two consecu-
tive iterations. In our test, we set the tolerance to 1 × 10−7.
TVε-Rician, Getreuer and TV-Rician use a regularization
parameter λwhichmultiplies the data fidelity term, while the
Chen–Zeng algorithm uses a parameter γ = 1/λ multiply-
ing the TV term. For all tests, the regularization parameters
were separately optimized to get the best PSNR and to get
the best SSIMwith respect to the original images. The results
of this comparison are displayed in Table 1. Notice that the

Table 1 Comparisons of the best PSNR values and SSIM values by different methods for Rician denoising

Image Method σ = 20 σ = 30

PSNR (γ = 1/λ) SSIM (γ = 1/λ) PSNR (γ = 1/λ) SSIM (γ = 1/λ)

Camera man TVε -Rician 28.12 (0.03) 0.8077 (0.05) 24.81 (0.02) 0.7148 (0.025)

Getreuer 27.83 (0.03) 0.7478 (0.05) 25.58 (0.02) 0.6653 (0.03)

Chen–Zeng 28.44 (0.035) 0.8229 (0.045) 25.69 (0.025) 0.7539 (0.035)

TV-Rician 28.64 (0.03) 0.8272 (0.04) 26.18 (0.025) 0.7655 (0.03)

Lumbar-Spine TVε -Rician 28.27 (0.03) 0.7716 (0.03) 25.28 (0.015) 0.6609 (0.02)

Getreuer 27.66 (0.035) 0.6685 (0.035) 24.81 (0.02) 0.5115 (0.02)

Chen–Zeng 28.35 (0.035) 0.7743 (0.04) 25.53 (0.025) 0.6705 (0.03)

TV-Rician 28.84 (0.03) 0.7892 (0.053) 26.5 (0.02) 0.6998 (0.02)

Liver TVε -Rician 29.06 (0.03) 0.8033 (0.03) 26.61 (0.02) 0.7201 (0.025)

Getreuer 28.84 (0.035) 0.7723 (0.04) 26.75 (0.025) 0.6742 (0.025)

Chen–Zeng 29.25 (0.04) 0.8047 (0.04) 27.03 (0.03) 0.7371 (0.03)

TV-Rician 29.4 (0.035) 0.8088 (0.035) 27.42 (0.025) 0.7452 (0.025)

Brain TVε -Rician 26.7 (0.025) 0.6550 (0.035) 23.67 (0.015) 0.5881 (0.025)

Getreuer 29.41 (0.035) 0.8996 (0.04) 27.03 (0.025) 0.8000 (0.03)

Chen–Zeng 26.63 (0.035) 0.6634 (0.04) 23.79 (0.025) 0.6067 (0.03)

TV-Rician 28.12 (0.03) 0.6780 (0.04) 25.61 (0.02) 0.6165 (0.025)

Average TVε -Rician 28.04 (-) 0.7594 (-) 25.09 (-) 0.6710 (-)

Getreuer 28.43 (-) 0.7721 (-) 26.04 (-) 0.6628 (-)

Chen–Zeng 28.17 (-) 0.7663 (-) 25.51 (-) 0.6921 (-)

TV-Rician 28.75 (-) 0.7758 (-) 26.42 (-) 0.7068 (-)

Bold values are used to highlight the best results obtained among all the methods
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(a) I (original image) (b)TVε -Rician (c) Getreuer (d)Chen-Zang (e) TV-Rician

(f) f (noisy with σ = 20) (g) | TVε -Rician - I | (h) | Getreuer - I | (i) | Chen-Zang - I | (j) | TV-Rician - I |

Fig. 7 Denoising results on the Liver image (a) for fixed parameters
σ = 20, γ = 0.035. In b–e, the images resulting from applying the
compared methods to f (f), the noisy version of I (a), the original
image. In the second row, g–j, the absolute differences between the

denoised images and I are shown. Careful inspection reveals a better
perfomance of the proposed method (see e and j) in areas with lower
SNR (dark zones)

Table 2 PSNR and energy functional values (see (8)) for the compared
methods for Rician denoising

Image Method σ = 20, γ = 0.035

PSNR E1 (8)

Liver TVε -Rician 28.98 −1.4183 × 107

Getreuer 28.84 −1.4184 × 107

Chen–Zeng 29.18 −1.4180 × 107

TV-Rician 29.4 −1.4192 × 107

optimal regularization parameter for each case is displayed
in the table as γ .

We see that TV-Rician gets the best results in both PSNR
and SSIM for the Camera man, the Lumbar-Spine, and the
Liver images for all levels of noise. The differenceswith other
methods increase for higher noise level (σ = 30), confirming
that the original problem (8) is best suited than its approxima-
tions for Rician denoising. For the case of the phantom Brain
image, Getreuer model scores the best denoising results. In
order to convexify the Rician data fidelity term, the authors
in [26] substitute the original functional for small values of
the solution by a linear approximation. This modified func-
tional drives these values of the solution closer to 0 than the
original Rician functional we considered. Since the back-
ground of the synthetic Brain image is 0, this model achieves
a better solution for this image than the other methods. This
effect can be observed in the other images. For instance, in
Fig. 7h, the error of this model in the upper corners is con-
siderably higher than in the rest of the algorithms because
the background in the noise-free Liver image is not 0. Never-
theless, the proposed method (TV-Rician) gets higher PSNR

and SSIM than TVε-Rician and Chen–Zeng in the synthetic
Brain image, and it is the best algorithm overall when com-
puting the averaged PSNR and SSIM.

Moreover, when using the same regularization parame-
ter for all the methods, the TV-Rician method also achieves
a solution which is a lower minimum of (8). This compar-
ison is performed for the Liver image and the parameters
σ = 20 and γ = 0.035. These results are shown in
Fig. 7 and Table 2: TV-Rician achieves the best denoising
solution in terms of visual inspection, PSNR, and energy
minimization.

6.3 Application on Real Diffusion Tensor Imaging of the
Brain

The data we used consist of a Diffusion-Weighted Images
(DWI) dataset provided by Fundación CIEN-Fundación
Reina Sofía which was acquired with a 3 Tesla General Elec-
tric scanner equipped with an 8-channel coil. The DWI have
been obtained with a single-shot spin-echo EPI sequence
(FOV = 24 cm, TR = 9600 ms, TE = 91.5 ms, slice thickness
= 2 mm, spacing = 0.6 mm, matrix size = 128 × 128, NEX
= 1). The DWI data consist on a volume obtained with b=0
s/mm2 and 45 volumes with b=1000 s/mm2 corresponding
with gradient directions that equally divide the 3-D space.
These DWI, which represent diffusion measurements along
multiples directions, are denoised by solving the proposed
minimization problem (8) using the PPA. Then, Diffusion
Tensor Images (DTI) are reconstructed from the original and
denoised DWI data using the 3D Slicer tools.2 DTI is one of
the most popular methods for in vivo analysis of the white

2 Freely available in http://www.slicer.org/.
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Fig. 8 Tractography generated from a seed placed in the corpus cal-
losum. At left, the tractography generated from the original DWI (and
DTI) data. At right, the tractography generated from the TV-Rician

denoised data. Particular areas where the tractographies are different
because of the noise are pointed by white arrows in the image

Fig. 9 Tractography generated from the corpus callosum over a sagittal view of the FA image. Notice that after the preprocessing, the tracts of the
left arcuate fasciculus are recovered

matter (WM) structure of the brain, helping to detect WM
alterations that can be found from early stages in some degen-
erative diseases [25]. TheDTI information is commonly used
to generate a tractography of a particular area of the brain,
which is a 3D representation of the fibers ofWM involved. In
Fig. 8, the tractographies generated from a seed placed in the
corpus callosum are shown. White arrows indicate regions
where the noise in the image generated from the original
data (at left) affects the reconstruction of specific tractswhich
are nevertheless recovered in the tractography from the pre-
processed data (at right). In order to highlight the regions
where the fibers reconstruction differs, we display the trac-
tographies over a sagittal view of the Fractional Anisotropy
(FA) generated from the same DTI data (Fig. 9). It can be
seen how the left arcuate fasciculus cannot be reconstructed
from the original data but it is recovered after the preprocess-

ing. The correct reconstruction of the left arcuate fasciculus
is important since it is involved in important tasks like lan-
guage and praxis [14].

7 Conclusions

In this paper, we presented the mathematical analysis of
the quasilinear elliptic equation for the 1-Laplacian opera-
tor which arises from considering the minimization of the
Total Variation based-energy functional modeling Rician
denoising for MRI. Theoretical difficulties come from both
ingredients of the model: the TV regularization term, which
makes the problemnonsmooth, and theRician statistics of the
noise in MRI, which yield a nonconvex minimization prob-
lem. We provided sufficient conditions on the data for the
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existence of a bounded nontrivial BV solution of the elliptic
equationwhich turns out to be a globalminimizer of the asso-
ciated energy functional. Several qualitative properties of this
solution have been deduced. The uniqueness of a strictly pos-
itive solution is still an open problem. Extensive numerical
experiments not reported here suggest that there exists only
one such solution.

We also proposed and implemented a convergent Prox-
imal Point Algorithm to solve this nonsmooth nonconvex
minimization problem. The numerical results demonstrate
the effectiveness of the proposed method compared to previ-
ous approximations to TV-based Rician denoising. Finally,
we tested our algorithm in in vivo DTI tractography showing
the benefits of preprocessing DWI data before DTI recon-
struction.
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