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Abstract Mathematical morphology is a theory with appli-
cations in image processing and analysis. This paper presents
a quantale-based approach to color morphology based on
the CIELab color space in spherical coordinates. The novel
morphological operations take into account the perceptual
difference between color elements by using a distance-based
ordering scheme. Furthermore, the novel approach allows for
the use of non-flat structuring elements. An illustrative exam-
ple reveals that non-flat dilations and erosions may preserve
more features of a color image than their corresponding flat
operations. Furthermore, the novel non-flat morphological
operators yielded promising results on experiments concern-
ing the detection of the boundaries of objects on color images.

Keywords Mathematical morphology - Complete lattice -
Quantale - Color image processing and analysis - Boundary
detection

1 Introduction

Broadly speaking, mathematical morphology (MM) is a the-
ory that uses geometric and topological concepts for image
processing and analysis [22,41]. Applications of MM cover,
for instance, boundary detection, automatic image segmen-
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tation and reconstruction, pattern recognition, and signal and
image decomposition [9,18,35,39].

The first morphological operators have been developed
by Matheron and Serra in the 1960s for the analysis of
binary images. Subsequently, many approaches—including
umbra, level-sets, and threshold approaches—have been suc-
cessfully devised to generalize MM to cope with gray-scale
images [43,45]. Some gray-scale morphological operators
have also been developed using concepts from fuzzy set the-
ory and fuzzy logic [8,15,17,32,45].

From the theoretical point of view, MM can be very well
defined in a mathematical structure called complete lattice
[22,33,36]. A complete lattice is a partially ordered set in
which any subset has both a supremum and an infimum.
Since the requirement is a partial ordering with well-defined
extrema operators, complete lattices allowed for the develop-
ment of morphological operators for multivariate data such
as color images [4,28]. Precisely, multivariate MM attracted
the attention of many researchers since the 1990s [13,19,46].
In general terms, researches on multivariate MM focused
on appropriate ordering schemes. A comprehensive discus-
sion on several approaches for multivariate MM, including
color MM, can be found in [4]. In particular, total order-
ings such as the conditional ordering schemes have been
widely used in multivariate MM partially because they pre-
vent the appearance of “false colors” [5,40]. For instance,
Hanbury and Serra introduced a conditional ordering on the
CIELab space for color MM [21]. Also, Sartor and Weeks
proposed an ordering scheme based on the distance to a ref-
erence color followed by a lexicographical cascade used to
resolve ambiguities [38]. Distance-based ordering schemes
have also been proposed by prominent researchers such as
Angulo [3], Aptoula and Lefevre [6], De Witte at al. [55],
Ledoux et al. [26,27], Deborah et al. [16], and Al Otum
[2]. Recent developments in multivariate MM include oper-
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ations that are invariant to a certain group of transformations
[25,49,51], probabilistic pseudo-morphology [14], opera-
tions derived from Einstein addition and Loewner ordering
scheme [10,50], and flexible mathematical structures such as
sponges [52,53].

Despite the suitability of complete lattices, many impor-
tant approaches to MM are defined in richer mathematical
structures [29,37,42]. For example, the umbra approach
is defined on a complete lattice-ordered group extension
(cloge), which is obtained by enriching a complete lattice
with an order-preserving group operation [44]. The cloge
structure have also been used implicitly by [7] in a hit-
or-miss transform for multivariate images. In fact, some
researchers advocate that many morphological operators can
be defined in a structure called quantale [37,42]. In brief,
a quantale is a complete lattice endowed with an associa-
tive binary operation that commutes with the supremum
operation. From an algebraic point of view, the quantale
framework comprises the approaches based on a cloge
but it is included in the general complete lattice frame-
work.

It turns out that Valle and Sussner introduced a quantale
based on the CIELab color space in spherical coordinates,
referred to as the spherical CIELab quantale [48]. Although
the spherical CIELab quantale has been successfully applied
for the development of a class of associative memories, it
have not been used as the mathematical background for color
MM yet. The purpose of this paper, which completes of the
conference paper [47], is to provide support and insights into
the implementation of color MM using the spherical CIELab
quantale.

The paper is organized as follows. Next section provides
the basic concepts on MM, including the complete lattice
and quantale-based frameworks. Four approaches to color
MM are briefly revised in Sect. 3. The spherical CIELab
quantale is discussed in Sect. 4. The novel approach to
color MM is introduced in Sect. 5. Section 6 contains an
application to boundary detection. The paper finishes with
concluding remarks in Sect. 7. We would like to point
out that the reader familiar with the fundamentals of MM
may overlook Sect. 2. Also, the reader who knows the
spherical CIELab may choose to skip Sect. 4 or read it
later.

2 Two Algebraic Frameworks to MM

As pointed out in the introduction, complete lattices consti-
tute an appropriate framework for a general theory of MM
[36]. However, many classical approaches to MM are defined
on a richer mathematical structure called quantales [37,42].
In this section, we briefly review the complete lattice and the
quantale-based frameworks to MM.

@ Springer

2.1 Mathematical Morphology on Complete Lattices

A complete lattice .Z is an ordered set in which any sub-
set X C % has both a supremum and an infimum, denoted
respectively by \/ X € £ and A X € £. From an alge-
braic point of view, the two elementary operations of MM
are defined as follows using the adjunction relationship [22]:

Definition 1 (Adjunction, Dilation, and Erosion) Given
complete lattices .2 and .#, we say that the operators
e: L — M and § : M — £ form an adjunction between
% and ./ if the following equivalence holds true for x € &
andy € 4

() =x &=y =<e(). ey

In this case, 6 and ¢ are called, respectively, a dilation and an
erosion.

Many other operations of MM are obtained by combining
dilations and erosions [41]. For example, an opening and a
closing, denoted, respectively, by y : £ — £ and ¢ :
M — M, are obtained by the compositions
y=38o0¢e and ¢ =¢€o08. 2)
The operations of opening and closing are used, for instance,
in granulometries as well as for the removal of noise [22,41].

2.2 Mathematical Morphology on Quantales

A quantale, denoted in this paper by the triple (2, <, -),is the
algebraic structure in which the set 2, ordered by the rela-
tion “<”, is a complete lattice and the binary operation “-”
commutes with the supremum in both arguments. In math-
ematical terms, the following equations hold true for any
geQand X C 2:

g-(Vx)=V@» ad (\Vx)g=\ o).

xeX xeX
3

@ 9

The binary operation “-” is often referred to as the multiplica-
tion of the quantale. We say that (2, <, -) is a commutative
quantale if the multiplication “-” is a commutative binary
operation. Similarly, we have a unital quantale if “-” has an
identity, that is, if there existe € 2 suchthate-g = g-e = ¢
forallg € 2.

In a quantale (2, <, -), the multiplication is always resid-
uated [37]. Specifically, there exist binary operations “\”
and “/” such that the following equivalences hold true for

x,y,z € Q:

X - y<zé=x<z/y<=y<x\z “)
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The operations “/” and “\” are called, respectively, the left
and the right residuums of “.””. Also, they are uniquely deter-
mined by the equations

x\y:V{zeQ:x-zSy}, Q)
and
y/x=\/{ze=@:z-x§y}- (6)

for any x, y € 2. It is important to remark that the left and
right residuums coincide in a commutative quantale, that is,
x\y =y/xifandonlyifx -y =y -xforallx,y € 2.

The following briefly reviews how the elementary oper-
ations of MM are defined using a quantale [37,42]. For
simplicity, we shall restrict our attention to images f : X —
2, where (2, <, -) is acommutative unital quantale and X is
a subset of either R or Z¢. The set of all images f : X — 2
is denoted by 2%.

Like classical approaches to MM, the operations of ero-
sion and dilation on 2% are defined using an structuring
element (SE) s : Y — 2, where Y is also a subset of either
R? or Z4. The SE is used to extract relevant information
about the shape and form of objects in the probing image.
Formally, the two elementary operations of MM on a com-
mutative unital quantale are defined as follows:

Definition 2 (Quantale-based Erosion and Dilation) Let
(2, <, -) denote acommutative unital quantale. The quantale-
based erosion of an image f € 2% by an SEs € 27,
denoted by 8;9( f), is the image defined as follows where
“/” denotes the residuum of the multiplication “.”:

e2(Hm = N\ (fa+y/sk). YxeX. 0

yey,
x+yeX

Dually, the quantale-based dilation of f € 2% by an SE
s € 2Y, denoted by 5;9 (f), is the image given by

2(Hw =\ (fx=y-s(). YreX. (8

yey,
x—yeX

Remark 1 Ttis not hard to show that the set 2% is a complete
lattice under the induced ordering defined as follows for any
f, g € 2%:

f<g f(x) <gkx), Vx e X. 9)
Moreover, from (4), we conclude that the operators e;@ and

8 form an adjunction on 2% for any fixed SE s € 2.
Therefore, according to Definition 1, the operators defined

by (7) and (8) are indeed an erosion and a dilation, respec-
tively. Further morphological operators, such as openings and
closings, can be obtained by combining these two elementary
operations.

Remark 2 Let (2, <, -)beaquantaleand f € 2% animage.
The horizontal translation of f by y € X, denoted by f), is
the image defined by fy(x) = f(x — y) forall x € X.
The vertical translation of f by «, denoted by «f, is the
image given by (af)(x) = af(x), for all x € X. We say
that an image operator ¢ : 2X — 2% is invariant under
horizontal translation if ¥ (fy) = [ (f)], for all f € 2%
andx € X. Similarly, ¥ is invariant under vertical translation
if Y(af) = ay(f), forall f € 2% and @ € 2. Maragos
showed that a dilation § : 2X — 2% is invariant under
both horizontal and vertical translations if and only if it is
given by (8) [29]. Therefore, the quantale-based approach
is used whenever one imposes that the dilation is invariant
under horizontal and vertical translations.

We would like to conclude this section recalling that many
important approaches, including the widely used umbra
or additive approach [36,43], the multiplicative approach
[23,24], and some fuzzy-based approaches [32,45], belong
to the quantale-based framework. Further examples of mor-
phological operators on quantales can be found in [37,42].

3 Some Approaches to Color MM

In this section, we briefly review some approaches to color
MM. The reader interested in a comprehensive study on mul-
tivariate MM, including color MM, is invited to consult [4].
According to our terminology, a color image is a function
f : X — %, where the domain X € R? or X € Z¢ and
%, usually a subset of R?, is the color space. There are many
color spaces in the literature but, in this paper, we restrict our
attention to the RGB and CIELab spaces [34].

3.1 The RGB and the CIELab Color Spaces

The RGB color space is based on the tristimulus theory of
vision in which a color is decomposed into the primitives:
red (R), green (G), and blue (B) [34]. Geometrically, this
color space is represented by the cube Grgs = [0, 1] x
[0, 1]x [0, 1] whose axes correspond to the intensities in each
primitive. In the RGB space, a certain color ¢ = (cg, ¢G, CB)
is a point in or inside the cube 6rgp. The origin corresponds
to “black” while the edge (1, 1, 1) represents “white”.
Although the RGB color space is widely used by imag-
ing devices as well as for color image representation and
processing, it is not a perceptually uniform color space [34].
Specifically, it is claimed that the Euclidean distance between
two elements ¢, ¢’ € Grgp hardly resembles the perceptual
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difference between the two colors. As a consequence, the
RGB color space is not advisable for applications in which
the visual perception of the colors is pertinent. A perceptually
uniform color space, such as the CIELab color space, is rec-
ommended in such applications. Besides been a perceptually
uniform color space, the CIELab is device-independent color
space, which means that the color elements do not depend
on the image capture and display devices.

In the CIELab color space, denoted in this paper by 1. <
[0, 100] x R x R, the components of a color element ¢ =
(cL, ca, cp) have the following connotations [1,34]:

— The component c¢; models the lightness.
— The component ¢, indicates the green—red position.
— The component ¢, yields the blue—yellow position.

The value ¢, = ,/ cfz + c}%, referred to as chroma, measures
the colorfulness of ¢ with respect to white. Also, the angle
cp, = tan’l(cb/ca) € (—m, ] is called hue of the color
¢ [54]. Gray-scale elements are in the line segment c;, =
[0, 100], ¢, = ¢p = 0. The reader interested in the details of
the conversion between the RGB and CIELab color spaces
is invited to consult [1,34].

3.2 The Marginal and the Lexicographical Approaches

A straightforward extension of the gray-scale MM to color
images, referred to as the marginal or component-wise
approach, is obtained by processing separately each color
component [4,13]. Although the marginal approach yielded
excellent results in computational experiments concerning
the removal of Gaussian noise [4], there is the possibility
of altering the color balance or object boundaries [13]. For
example, a certain feature can be removed or enhanced in
one of the color components but not in the others. In fact,
the marginal approach does not take into account the corre-
lations between the color components. In contrast, the color
elements are ranked sequentially according to an order of
“importance” in the lexicographical approach. The lexico-
graphical approach have been widely used in color MM
partially because it prevents the apparition of “false col-
ors” when a flat SE is used. On the downside, it prioritizes
excessively the first condition in the lexicographical cascade.
Hence, the lexicographical approach is almost always used
in combination with a suitable domain in which the rele-
vant information is placed in the first components [4]. In
this paper, both marginal and lexicographical approaches are
defined using the CIELab color space.

In mathematical terms, given a color image f and an SE s,
the elementary operations of the marginal and lexicographi-
cal approaches to color MM are defined by
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gH = N\ (Fa+n-s®), VxeX, (10

yey,
x+yeX

and

sH@ =\ (fa-»+sm). ¥xeX, (1D

yey,
x—yeX

where the operations of sum and subtraction are performed
in a component-wise manner. The supremum and infimum
are both computed using either the marginal or the lexico-
graphical ordering schemes.

The marginal ordering is obtained by comparing sepa-
rately the components of the colors. Precisely, given two
color elements ¢, ¢’ € 6Lap, We have

c<upycd & cL<cp, ca<c,, andcp <c). (12)

The marginal CIELab erosion and dilation of f by s are
denoted respectively by 8'{// (f) and 8'/[ f).

The lexicographical ordering, which yields a total order
in %Lapb, is obtained by comparing sequentially each color
component. Formally, given two color elements ¢, ¢’ € 6Lap.,
we have

/
cL <cj,
c<gcd = 1c =c) and ¢, < ¢, or, (13)

cL=cp,cq=2¢c,, and ¢, <c).

The lexicographical CIELab erosion of f by s is denoted
respectively by egf (f). Similarly, the lexicographical
CIELab dilation is written as 8:Z (f). Note that the lexico-
graphical cascade in (13) prioritizes the lightness.

Remark 3 The marginal and lexicographical approaches can
be expressed in terms of (7) and (8) if we extend 6Lqp to R3,
where R = RU {+00, —oc}. In this case, the multiplication
“.” coincides with “+” given that the addition is appropriately
defined in the infinities [45]. Evidently, the residuum of “+”
is the subtraction “—" and the identity of “+ is (0, 0, 0).

3.3 The Vector-Based Approach of Witte et al.

In the lexicographical CIELab approach, the color elements
are ordered sequentially by comparing, respectively, the
lightness, green-red, and blue-yellow components. A sim-
ilar approach, referred in this paper shortly as the approach
of Witte, have been proposed by Witte et al. [54]. Specifically,
Witte et al. considered more than one color space. However,
due to page constrain, we only present the approach in the
CIELab space in order to provide a fair comparison with the
other approaches.
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First, the colors are ordered sequentially by considering
respectively the lightness, chroma, and hue. Formally, given
¢, ¢ € 6L, we have

cL <ch,
¢ <y < jcL=cjandc. > ¢, or, (14)

cL =cp.cc=cl, andcy < ¢,

where the angle c¢j; is measured in degrees. Note that the
smaller between two colors is the darker one. If two colors
have the same lightness, the smaller is the one with greater
chroma. The last condition avoids ambiguities. In contrast to
some works concerning the morphological processing of hue
[6,20], the circularity of this component has not been taken
into account in (14).

Apart from the color ordering given by (14), Witte et al.
defined two binary operations, denoted here by the symbols
“+.” and “— 7. In a general form, an operation, ‘-, ",
which can be either “+.,” or “—.,”, is defined as follows
for any colors ¢, ¢’ € GLab:

(mp,cy,cp), ¢ =0,
Cxy ¢ = J(mp, cq, Cp), c. =0,
(mr, mecos(my), mesin(my)), otherwise.
(15)

The values my,, m., and my, are obtained by a kind of arith-
metic mean and its complement. Unfortunately, the binary
operations defined by Witte et al. do not have an identity [54].
Hence, inspired by the Lukasiewicz fuzzy conjunction and
implication [32,45], we slightly adapted “+-,” and “—-,” by
considering mp, m., and my, given as follows: The addition
¢ ++ ¢ is derived from (15) by setting

mp =0V (cg + ¢} —100),

m _cc+cé
=Ty (16)
cn +¢,
my = ———.
2

Dually, the subtraction ¢ — ¢’ is given by (15) with

my =100 A (100 — ¢} + cL),
ce— ¢l

2 a7
ch — ¢,

my = 7

me =

Note that (100, 0, 0) € %Lap, which corresponds to white, is
an identity of both addition and subtraction. In other words,
¢+ (100,0,0) = c and ¢ — (100, 0, 0) = ¢ for all color

¢ € GLap. Furthermore, the following equivalence holds true
for any ¢, ¢’ € éLap and ¢ € [0, 100]:

C+W (tvovo) 57/ C/<:>C§W C/ —w (I,0,0) (18)

Hence, the subtraction “—., " is the residuum of the addition
“+.,” if the second argument corresponds to an achromatic
color.

Now, given a color image f € %ﬁ;b andan SE s € CKLYab,
the elementary operations of erosion and dilation of f by s,
denoted, respectively, by 8;’//( f) and 8;’//( f), are the color
images in 4%, defined by

e/ (Hwy = N (fa+»)—ws(). VxeX, (19

Y€y,
x+yeX

and

sV (H =\ (fG=»+rs(), VxeX, (0

Y€y,
x—yeX

where the supremum and infimum are both computed using
(14).

Remark 4 The elementary morphological operations 8;// and
8;// are dual with respect to a certain negation (or comple-
ment) defined on %1ap [54]. Also, from (18), we conclude
that ¢/ () and 87" (f) form an adjunction if s € X}, cor-
responds to a gray-scale image, i.e., s,(x) = sp(x) = 0 for
all x € X. The approach of Witte have been successfully
applied for the removal of noise in satellite images [54].

3.4 The Distance-Based Approach of Angulo

In contrast to the marginal and lexicographical ordering dis-
cussed previously, a reduced ordering or R-ordering ranks
the elements according to a real-valued function. In particu-
lar, a distance-based ordering is an R-ordering in which the
elements are ranked by comparing the distance to a certain
reference. Despite the irregularity problem of total order-
ings [12], distance-based ordering schemes have been used
by many prominent researchers to implement morphologi-
cal operators [6,13,26,27,38,55]. A generalization of many
distance-based approaches to color MM for flat structur-
ing elements have been proposed by Angulo [3]. In general
terms, the distance-based approach of Angulo is based on an
ordering scheme which first compares the distance to a cer-
tain color reference. The subsequent comparisons follow the
usual lexicographical cascade. In this paper, we only consider
the Euclidean distance in the CIELab color space.
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Formally, let r € %Lap be a reference color. Given two
color ¢, ¢’ € 6Lap, We have ¢ <y ¢ if and only if

lle=rl2 > llc" =rl2,

lc =rll2=llc" =rll2and ¢ < ¢},
le —rll2=llc" = rll2,c = ¢}, andcq > ¢}, or,
lc=rla=Ilc" =rl2,cL =cp.ca =c, and ¢y < ¢},

2

where [lc —rll2 = /(e = r2)? + (ca —ra)> + (e — 13)?
is the usual Euclidean distance between the color element
¢ and the reference r in the CIELab space. At this point,
we would like to recall that the ranking of color elements
by (21) is strongly determined by the distance to r. Indeed,
although the Euclidean distance in the CIELab space has
interesting perceptual properties, Angulo remarked that the
most important issue in the implementation of (21) refers to
the choice of the reference color [3].

In the light of (21), the elementary morphological opera-
tors are defined as follows in the approach of Angulo. Given
a color image f € (fLXab and a binary (or flat) SE Y, the ero-
sion and dilation of f by Y, denoted respectively by 83,‘2{ )

and 8?"{ (f), are the color images defined by

& (N0 = J\ fx+y, VreX, (22)
xyl—i)éX
and
57 (N =\ fle—y. ¥xeX. (23)
er,X
xX—y€e

It is not hard to show that 8;‘{ (f)and 8;;7 (f) form an adjunc-
tion in ‘ngb for any fixed ¥ C X. Hence, the approach of
Angulo belongs to the general complete lattice framework.
Except for a minor modification in the lexicographical cas-
cade, the spherical CIELab approach introduced in the next
section generalizes the approach of Angulo by allowing for
non-flat SEs.

4 The Spherical CIELab Quantale

In this section, we review the spherical CIELab quantale
introduced by Valle and Sussner [48]. Briefly, we first express
the color elements of 61 4 using spherical coordinates cen-
tered at a reference color r. Then, a total order is defined
by comparing, in a lexicographical cascade, the radius, ele-
vation, and azimuth of two elements. Finally, we obtain a
quantale structure by endowing the complete lattice with a
certain multiplication.

@ Springer
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Fig. 1 Synthetic color image f

4.1 The Spherical CIELab System

A color element ¢ = (¢, ¢q, Cp) € GLab can be expressed
as (¢, ¢y, cp) using spherical coordinates centered at a fixed
colorreferencer = (rz, ryq, rp) € GLab- Recall that the spher-
ical coordinates ¢, (radius), ¢y (elevation), and ¢y (azimuth)
are given by

cp=llc—rll2,
Cp = tan~! oL
\/(Ca - "'a)2 + (cp — rb)z 24)
cp—r
co = tan~! A s
Cq —Ta
where ¢, € Ryp = {x e R : x > 0}, ¢y € & =

[-m/2,7/2], and ¢y € ® = (—m, ]. From now on, the
symbol .7, = R>( x ® x @ denotes the CIELab color space
in spherical coordinates centered at a reference color r.

The following example illustrates the representation of a
color image in the spherical CIELab system centered at red.

Example 1 Consider the synthetic colorimage f of size 9 x9
depicted in Fig. 1. This image is composed of 9 squares of
size 3 x 3 with the colors: gray, black, blue, magenta, red,
green, cyan, white, and yellow. The CIELab and spherical
CIELab components of each 3 x 3 color square as well as
their spatial representation are shown in Fig. 2 using red
as reference color. Specifically, the coordinates above and
below the name of a color in Fig. 2a) gives the position
of the color using, respectively, the usual CIELab and the
spherical CIELab. Fig. 2b) depicts the nine colors in the
spherical CIELab space, which is equivalent to the CIELab
space shifted by (53.24, 80.09, 67.20) € %Lab. Note that the
origin of the shifted CIELab space shown in Fig. 2b) corre-
sponds to red.
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(a) Representation of colors using CIELab and spherical CIELab.

(76.07,0.00,0.00)
eray —

(107.02,0.21,—2.44)

(0.00,0.00,0.00)
— black —
(117.33,—-0.47,-2.44)

(32.30,79.19,—107.86)
— blue —
(176.31,—-0.12,—1.58)

(60.32,98.24,—60.83)

(53.24,80.09,67.20)

(87.74—86.1883.18)

(156.46,0.24, —2.58)

(114.53,0.42,-2.44)

— magenta — —red — — green —
(129.50,0.05,—1.43) (0.00,0.00,0.00) (170.57,0.20,3.05)
(91.11,—48.09,—14.13) (100.00,0.00,0.00) (97.14,—21.55,94.48)

— cyan — — white — — yellow —

(114.03,0.40,2.88)

(b) Spatial representation of the colors in the spherical CIELab space centered at red.

Fig. 2 The colors of the image shown in Fig. 1 in the CIELab (above the
color name) and spherical CIELab (below) spaces as well as their spatial
representation, a representation of colors using CIELab and spherical
CIELab, b spatial representation of the colors in the spherical CIELab
space centered at red

4.2 The Spherical CIELab Complete Lattice

Let us now enrich the spherical CIELab system .%; with a
total ordering scheme. Given two elements ¢ = (¢,, ¢g, ¢o) €
S and ¢’ = (c;), cfb, cy) € S, we define

cp > c"o, or
c<g = {c, = ¢y, and ¢y < cjy, or (25)

_ _ /
Cp =Cp, Cp = Cy, and ¢y < ¢y,

where “>"" denotes the usual greater than ordering on R, “<”
is the ordering given by

, or
r <y lx| < 1yl 26)
|x| =lyland x <y,

andx < yifandonlyifx < yorx = y.

The total ordering given by (25) can be interpreted as fol-
lows: The greater of the two elements ¢ and ¢’ is the color
closer (in the Euclidean distance sense) to the reference r,
which corresponds to the origin (0, 0, 0) in the spherical
CIELab system .. Hence, the lattice structure of the spher-
ical CIELab quantale is very similar to the one obtained from
(21). In case both ¢ and ¢’ have the same distance to r, the

ORI

Fig. 3 Ranking of some colors in the complete lattice (%, <&, ) using
red as the reference color (Color figure online)

greater is the one with larger elevation, which corresponds to
the one chroma of which is closer to the chroma of the refer-
ence r. Finally, the last condition in (25) avoids ambiguities
and makes “< ¢ ” a total ordering scheme. We would like to
point out that, since the dilation is based on the supremum,
the ordering “< &~ given by (25) yields an operator that
enlarges the structures having a color close to the reference.
Dually, the erosion shrinks the objects which have a color
close to the reference because of the infimum operation.

Although the greatest element of .%; is the origin, the alge-
braic structure (%, < ¢ ) is not a complete lattice because it
does not have a least element. We can circumvent this prob-
lem by introducing an artificial point 1. = (400, 0, 0) as the
least element of .. Now, the set ., = .%, U {L} is a com-
plete lattice under the total ordering “< " given by (25).
The artificial element L plays a role similar to the infinities
+00 and —oo on the extended real numbers R.

Example 2 Fig. 3 shows some color elements ranked accord-
ing to the ordering given by (25), or similarly by (21), withred
r = (1,0, 0) € ¥ras as the reference color. Note that, since
red and green are opposite colors in the CIELab space, the
largest colors are reddish while the smallest are greenish. On
the downside, there are many different colors in the middle
which are distanced similarly to the reference. Unfortunately,
the last remark holds for any reference color besides red
because a small change in either elevation or azimuth angles
may cause a significant visual change of colors if the radius
is sufficiently large. In fact, Chevallier and Angulo demon-
strated that any total order—including the distance-based
scheme defined by (25)—always introduce irregularities on
a color space [12].

4.3 The Spherical CIELab Quantale

Let us now endow the complete lattice (52,, <.¢) with
a binary operation “- & ” such that the algebraic structure
(A, <., %) is a commutative unital quantale.

Given elements ¢ = (cp,cp,c0) € 7 and ¢/ =
(c;), cfp, cy) € <, the multiplication ¢ - & ¢’ is defined by

c- c/=(cp X/C;),C(Z)AC;,CQAC/Q), 27
where the binary operation “A” is given by

x, ifx <y,
X hy= =7 (28)
y, otherwise.
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The operation “x’” coincides with the usual multiplication
on R>q and it is extended to the infinity by means of the
equations (+00) x' x = x x’ (+00) = +oo for all x €
R0 = R U {+o00}.

_The identity of “- & ” is the element e = (1, % n) IS
. Furthermore, the residuum of the multiplication is the
binary operation “/ & given by the following equation for
alle, c € .9

c/gc = (cp/’c;,,cd)/q’c(’p,ce/@cg), (29)

where the symbols /", “/®”, and “/©” denote the binary
operations defined as follows for appropriate elements x and

y and “+” denotes the usual division of real numbers:
0, if x = +o0,
0, ifx=0, y=0,

y/x = ey (30)
400, ifx=0,y>0,
y =+ x, otherwise,
Z, ifx =<y,

y/“’x=[2 nr=d (31)
y, otherwise,

and

o m, ifx <y,

y/ox= . (32)

y, otherwise.

E)_cample 3 The multiplicationof ¢ = (114.03, 0.40, 2.88) €
-7, which represents the yellow shown in Fig. 1, by the ele-
ment s; = (1.2, 7, ) is

c1 = (114.03,0.40,2.88) - & (1.20, 1.57,3.14)
— (136.84, 0.40, 2.88),

while the residuum is

¢y = (114.03,0.40, 2.88)/ & (1.20, 1.57, 3.14)
— (95.03,0.40, 2.88).

Similarly, the multiplication and the residuum of the color

magenta by sp = (0.8, 3%, —7) satisfy

c3 = (129.50, 0.05, —1.43) - & (0.8,2.36, —0.79)
= (103.60, 0.05, —0.79),

and

¢4 = (129.50, 0.05, —1.43)/ (0.8, 2.36, —0.79)
= (161.87,0.05, 3.14).
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1 = (136.84,0.40,2.88)

¢ = (95.03,0.40,2.88)

Fig. 4 Visual interpretation of the color cy, ..., c4 of Example 3

Figure 4 provides a visual interpretation of the color ele-
ments cy, ..., c4 obtained above. Note that the elevation
and the azimuth angles of s correspond to the identities
of the minimum operation “A” on ¢ and ©, respectively.
As a consequence, the multiplication and the residuum of
a color element by s; preserve the angles but the radius
is respectively multiplied and divided by 1.2. Thus, the
orange color given by c¢; is closer to red than the yel-
low given by cj in the CIELab Euclidean distance sense,
ie., c2 <g c1. In contrast, the elevation and azimuth
angles of s» do not correspond to the identity of “A”.
Hence, the multiplication and the residuum of a color ele-
ment ¢ by s» change the angles besides the operations
performed on the radius of c. Indeed, the residuum of
magenta by s, yielded the dark green element c4. This
example shows that the multiplication and the residuum
given, respectively, by (27) and (29) may produce unexpected
colors. Hence, these two operations must be used with cau-
tion.

Remark 5 We would like to point out that the spherical quan-
tale can be extended to multivariate elements (with more than

3 channels) as follows: Let ¢ = (cp, g, Chys -+ -5 Cyy)s
with ¢, € [0,00), ¢y, € (=7, 7], and ¢y, € [—7/2, /2]
forany i = 2,...,n — 1, be the n-dimensional spherical

coordinates a multivariate element. Given two multivariate
elements ¢ and ¢/, we write ¢ < o ¢’ if and only if

cp > ¢, or

cp =c), and ¢y, < c;)l, or
cp=C ,co =cC, ,...,cC = and c, <c, .
14 02 ¢ 1’ » Con2 Pn—2’ Pu-1 = ¢,y
Also, the multiplication ¢ - gn ¢’ is defined by

C o = (cp ><’c;),c¢Jl A C;w ..

S Chyy A C(/lanfl)'

The extension of the spherical quantale to multivariate ele-
ments require investigation and it will not be considered
further in this paper.
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5 Morphological Operators on the Spherical
CIELab

According to Definition 2, the operations of MM on the
spherical CIELab quantale (%, <.¢,-v) are defined as
follows: The spherical CIELab erosion of a color image
f € JZrX by an SE s € ,SZrY, denoted by ss‘y"(f), is the
color image given by

e (HW = N\ (Fe+»/750)), YxeX, (33)

yey,
x+yeX

where “/ " denotes the residuum given by (29). Dually,
the spherical CIELab dilation of f € .#X by ans € .77,

denoted by (Ssy’ (f), is the color image obtained as follows:

57 (NH@ =\ (f&r=2 %)), YxeX. (34)

Y€y,
x—yeX

Remark 6 The spherical CIELab erosion and dilation are
closely related to the elementary operators of the multiplica-
tive approach to gray-scale morphology [23]. Specifically, a
gray-scale image f can be interpreted as a function f : X —
%Lab such that fr(x) € [0,100] and f,(x) = fp(x) =0
for all x € X. Similarly, a gray-scale SE corresponds to
s 1 X — @Lab, where s;, € [0, 100] and s, (x) = sp(x) = 0.
By considering black (0, 0, 0) € %Lap as the reference color,
the gray-scale image f and the SE s are given in the spher-
ical CIELab space by f(x) = (f,(x),0,0) and s(x) =
(5p(x),0,0), where f,(x) = fr(x) and s,(x) = sp(x).
Hence, the first component of the spherical CIELab dilation
S;y’ (f) is the supremum of the product f,,(y) X’ s,(y — x),
such as the dilation of the multiplicative approach applied
only in the lightness. Dually, the first component of the spher-
ical CIELab erosion is the minimum of a quotient like the
erosion of the multiplicative approach. We would like to
recall that the multiplicative approach to gray-scale MM has
been applied for edge enhancement in X-ray images [24].
Furthermore, there is a one-to-one correspondence between
the multiplicative approach and the classical umbra approach
[23].

According to (2), the spherical CIELab closing and open-
ing are given, respectively, by the compositions

v =570 and ¢ =687 0e", (35)

s

for afixed SE s € 5’7,’( . The achromatic morphological gra-
dient of a color image f € %X with respect to a fixed SE
s € X is defined by

07 (@) = 11877 (f)x) — &7 ()X ]2, Vx € X, (36)

where “|| - ||2”” denotes the Euclidean norm computed in the
CIELab system. As pointed out by Angulo, the achromatic
morphological gradient gives the contours of the original
color image. Thus, it can be used for boundary or edge detec-
tion [3]. According to Yang and Li, boundary detection often
serves as an early stage in image understanding and other
high level computer vision applications [56]. For a better
visual interpretation of the achromatic morphological gra-
dient, in this paper, we also considered the re-scaled and
complemented version é'f’ (f) of Q;Z (f) given by

A,
Z?Y%(f)(x) =-1— LQ(X), Vx € X. 37
Vyex 05 " (H()

Note that é’sy’ (f) € [0, 11¥ is a gray-scale image such that

5 () =1 = o7 (fHx) =0, (38)

and

87 (HN) =0 <= o7 (HwW =\ o (HG).
yeX
(39)

Remark 7 A GNU Octave/MATLAB subroutine imple-

menting the operations of erosion, dilation, opening, closing,

and the achromatic morphological gradient is available at

www.ime.unicamp.br/~valle/Codes/SphCIELabMM_Codes.
zip. The zip file also contains some codes used in the subse-

quent experiments.

In the following, we evaluate the performances of the
spherical CIELab approach as well as the other approaches to
color MM in experiments using synthetic and natural images.
For simplicity, we use in the spherical CIELab approach the
SEs p, s : Y — .¥, defined by

el e |e S1 | S1 | S1
p=le| e|e and s=|s1| e | s} (40)
e (4 Sl Sl S1

where ¥ = {—1,0, 1}2, e = (1, %,n) is the identity of
the quantale (LSZr, <7,-.9), and s1 = (I, %, ) for some
positive real number f,. The shaded cell refers to the origin
of the SE.

Remark 8 Note that p corresponds to a flat (or planar) SE.
Loosely speaking, the dilation 51‘77’ (f) replaces the color of
a pixel on the input image by the color closer to red (in the
CIELab Euclidean distance sense) in the 3 x 3 square neigh-
borhood. Dually, the erosion epy’ (f) substitutes the color
of a pixel by the color farther to red in the 3 x 3 square
neighborhood. Besides the use of flat SEs, the quantale-based
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Fig. 5 Spherical CIELab erosion and dilation of the color image f depicted in Fig. 1 using a flat and a non-flat SE, respectively

approach allows for non-planar SEs such as s given by (40).
The effect of the SE s in the spherical CIELab dilation 6;7’ fH
can be interpreted intuitively as follows: f(x) is replaced by
FO) 7s(y=—0)if fo(x) = I f(x)=rl2 <l f ) —rll2 =
ty fo(y) for y # x in the 3 x 3 neighborhood of x.

Similarly, we use the following non-flat SEs w and b, also
defined on Y = {—1,0, +1}?, in the approach of Witte as
well as in the marginal and lexicographical approaches:

by by by wi w1 w1
b=| b by | by and w=| w wo | wy |,
by by by wi U} wi

(41)
Where bl = (tb10a0)9 bO = (09070)7 wl = (tU)’OyO)’

and wg = (100, 0, 0) for certain numbers 7, and t,,. These
two SEs have been chosen in a way similar to the SE s
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in (40). For instance, the color image 8;? (f) is intuitively
obtained replacing f(x) by f(y) + b(x — y) if the lightness
fL(x) < fo(y) + 1, for y # x in the 3 x 3 neighborhood
of x. Moreover, since the binary operations defined by (15),
(16), and (17) are inspired by fuzzy logic operation, an SE
with high lightness values must be used in the approach of
Witte. Finally, the SE in the approach of Angulo is the square
Y ={—1,0, +1}2.

5.1 Illustrative Example Using a Synthetic Image

Let us compute the spherical CIELab erosion and dilation
of the synthetic color image f depicted in Fig. 1 by p and
s given by (40) with z, = 2, that is, 51 = (2, %, 7). Here,
we are assuming that f, p, and s are all represented in the
spherical CIELab system with pure red as the reference color.
A visual interpretation of the flat erosion sf’ (f) and dilation

8}?’ (f) can be seen in Fig. 5. This figure also shows the
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Fig. 6 Dilation of the image f displayed in Fig. 1 using different approaches to color MM

spherical CIELab erosion and dilation of f by the non-flat
SEs e SX.

We also computed the dilation and erosion of the synthetic
color image f depicted in Fig. 1 using the four approaches
reviewed in Sect. 3. Due to page constraint, Fig. 6 only
shows the images produced by the dilations 817//1 (f) (mar-
ginal approach), 8;? (f) (exicographical approach), 8:{/ f)
(approach of Witte), and § ;‘57 (f) (approach of Angulo). Sim-
ilar to the spherical CIELab approach, we used red as the
reference color in the approach of Angulo. Also, we consid-
ered by = (—10,0,0) and w; = (90, 0, 0) in (41).

Note that the red region has been expanded by both
spherical CIELab dilations 87" () and 8" (f). The dila-
tion 8? (f) also expanded the red region of the image f. In
fact, the reader may observe the equality 8? ()= 35’ ),
which holds because the first condition dominated the lexico-
graphical cascade in both ordering schemes, <, and < o .

Furthermore, since both orderings, < ¢ and <, compare
first the lightness of the color elements, 6;? (f) and (SZ{/ fH
are very similar. Visually, the dilations, 8;? (f) and SWW ),
expanded the bright regions of f. For instance, the gray
region expanded over the magenta region because the light-
ness of the former is 76.07, while the lightness of the latter is
60.32. Finally, observe that Bl{// (f) has many “false colors”
produced by the maximum operation. Indeed, the marginal
maximum operation yields bright red or yellow colors due to
the large values of the components cy,, ¢, Cp.

We would like to conclude by remarking that, in contrast
to the other approaches, the non-flat operators, S;% (f) and
8;7’ (f), expanded the red region but treated equally the other
regions. As a consequence, the achromatic morphological
gradient st’ (f) with respect to the non-planar SE s gives
better contours of the red region on f than the morphological
gradient produced by the other approaches. Figure 7 confirms
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(b))

(o) By (/)

QA

Fig. 7 Re-scaled and complemented achromatic morphological gradients of the color image f shown in Fig. 1

this last remark by showing the re-scaled and complemented
achromatic morphological gradients produced by the spher-
ical CIELab approach as well as the four color approaches
reviewed in Sect. 3.

6 Application to Color Image Boundary Detection

Let us consider an application of the achromatic morpholog-
ical gradient to detect the boundaries of an object in natural
colorimages. Precisely, consider the 300 color images as well
as the 1633 human segmented binary images from Berkeley
segmentation database [30]. We evaluated quantitatively the
performance of a color morphological approach using Pratt’s
figure of merit [34]. Formally, let T denote a binary image
corresponding to an human segmentation of a color image g
from the database. We first computed the re-scaled and com-
plemented achromatic morphological gradient o(g) using a
color morphological approach. Then, like Gonzélez-Hidalgo
et al. [18], we converted the gray-scale gradient image o(g)
into a binary image B by applying the non-maximum sup-
pression method followed by an hysteresis threshold [11,31].
For simplicity, we fixed the threshold values at 77 = 0.01 and
T> = 0.2 in our experiments. Finally, given the binary image
B with boundary of one-pixel width and the corresponding
ground truth binary image t, Pratt’s FoM is defined by

FoM(B, 1) =

1 1
(Card(B) v Card(r)) 2 a2 W

xeE

@ Springer

where Card(-) yields the number of boundary points, a is
a scaling constant, and d is the separation distance from a
boundary point of g to the ideal boundary point in 7. As
suggested in [34], we used a = 1/9. Note that higher values
of FoM represent a better boundary detection.

We evaluated the performance of the spherical CIELab
approach using the flat and non-flat SEs given by (40), with
s1 = (1.2, %, 7). Also, we considered the following refer-
ence colors: gray (a), black (k), blue (b), magenta (m), red
(r), green (g), cyan (c), white (w), and yellow (y). The Pratt’s
FoM values obtained from these two approaches (flat and
non-flat) are summarized in the box and whisker diagrams
(box plot) shown in Fig 8. Also, Table 1 shows the average
Pratt’s FoM obtained from the two approaches. We would like
to point out that for the nine reference colors, a two-sample
t test rejected the null hypothesis that the Pratt’s FoM values
obtained from flat and non-flat approaches have equal means
at a significance level 0.05. Here, we assumed that the two
populations have unequal variances. In other words, these
two approaches are not equivalent for boundary detection
even using the same reference color.

Note that the spherical CIELab approach yielded simi-
lar average FoM values for all color references. In fact, a
two-sample ¢ test applied to the flat approach with two dif-
ferent references failed to rejected the null hypothesis that
they have equal means except for gray versus green and gray
versus yellow. In contrast, the performance of the non-flat
spherical CIELab approach depends strongly on the refer-
ence color. Indeed, the average Pratt’s FoM of the non-flat
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Fig. 8 Box and whisker diagram describing the Pratt’s FoM values obtained using spherical CIELab approaches with several reference colors

Table 1 Average Pratt’s FoM values obtained using the spherical CIELab approaches with several reference colors

Reference Gray Black Blue Magenta Red Green Cyan White Yellow
Flat Approach: 0.250220  0.254130  0.256109  0.255310  0.256622  0.259841 0.255396  0.254940 0.259048
Non-Flat Approach: 0.274374  0.267266  0.011641 0.024656  0.038727  0.026430  0.221743 0.286616  0.058927
The largest average Pratt’s FoM value is given in bold

Flat approach Non-flat approach

(a) Original color image g42049

'y

(b) Flat gradient p_l‘,yred (242049)

(¢) Non-flat gradient 5;7‘5" (g42049)

(d) Ground truth image T42049

/]
.

TN

(e) Binary image Bp( red

Pratt’s FOM = 0.7185

(f) Binary image B;""

Pratt’s FOM = 0.0032

Fig. 9 Original color images and achromatic morphological gradients

approach varied from low values such as 0.01 to the largest
value 0.29, which was obtained by considering white as the
reference color. Also, a two-sample ¢ test rejected the null
hypothesis that the non-flat approach with any two different

references have equal means except for gray versus black and
green versus magenta. A short explanation of the (good or
poor) performance of the non-flat spherical CIELab approach
for some references is given below.
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(a) Original color image g124084

Flat approach
(b) Flat gradient 5Py"€d (g| 24034)

Non-flat approach
(c) Non-flat gradient 5{}“’ (g124084)

(e) Binary image ;™

Pratt’s FOM = 0.4822

R

el '(;"Sjy

Pratt’s FOM = 0.5985

Fig. 10 Original color images and achromatic morphological gradients

Anillustration of the performance of the spherical CIELab
approaches, both using red as the reference color, is illus-
trated in Figs. 9 and 10. Specifically, these figures show
images for which the flat and the non-flat spherical CIELab
approaches yielded large FoM values, respectively. Figs.
9 and 10 also show the ground truth image, the re-scaled
and complemented gradient, and the binary boundary image
obtained from both approaches. The corresponding Pratt’s
FoM values are displayed below the binary image.

On one hand, the color image shown in Fig. 9a) does not
have any red pixels. As a consequence, the non-flat gradient,
as well as the binary image ,Bsy = is an almost white image.
The almost white gradient resulted in a small FoM value.
In general, the poor performance of the non-flat spherical
CIELab approach results from a white or almost white mor-
phological gradient. An almost white morphological gradient
is obtained when the reference is far from any color in the
image. Now, the colors red, green, blue, yellow, and magenta
are near the border of the CIELab gamut. Therefore, they have
a very high probability to be far from the color elements of
a natural image such as the one show in Fig. 9a).

On the other hand, the red flowers in the natural color
image shown in Fig. 10a) is characterized by red pixels. In
this case, the non-flat gradient Qf’.-ed (g124084) enhanced only
the red flowers. In contrast, the flat gradient prmd (g124084)
enhanced the flowers as well as some of the details on the
background. As a consequence, the binary image ﬁpy’e‘l has
many noisy pixels. Concluding, in the non-flat spherical
CIELab approach, the reference must be chosen a priori

@ Springer

+H+

O T 1 1 1 1
F NF M L W G

Fig. 11 Box and whisker diagram describing the Pratt’s FoM val-
ues obtained using the flat (F) and non-flat (NF) spherical CIELab
approaches with white as the reference color as well as the marginal
(M), lexicographical (L), Witte (W), and luminance-based gray-scale
(G) approaches

Table 2 Average Pratt’s FoM values obtained several approaches to
boundary detection

Flat Non-flat Marginal Lexicographical Witte Gray-scale

0.25494 0.28662 0.27938 0.27913 0.27913 0.27529

The largest average Pratt’s FoM value is given in bold

according to the color of the object, the boundary of which
we intend to detect.
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Fig. 12 Original color image
8135069, Ground truth image
7135069, and the boundary binary
image obtained using different
approaches

a) Original color image g135069

(b) Ground truth imaget;3s069

(c) Flat spherica | CIELab B, hi

Pratt’s FOM = 0.69173

(d) Non-flat spherica | CIELabp;”*hi

)
.‘LZ“’L

v

iy

Pratt’s FOM = 0.73520

(e) Marginal CIELab B

Pratt’s FOM = 0.72008

(f) Lexicographica | CIELab ;¥

Pratt’s FOM = 0.72303

(g) Witte et al.B”’

Pratt’s FOM = 0.72303

(h) Luminance-base d gray-scaley

e

@

Pratt’s FOM = 0.65857

Finally, if no prior knowledge about the image is avail-
able, then an achromatic reference is recommended in the
non-flat spherical CIELab approach. In particular, we sug-
gest to use white as the reference color due to the following.
As shown in Table 1, the non-flat approach based on white
yielded the largest average Pratt’s FoM value in our previ-
ous experiments. For comparison purpose, we confronted
the spherical CIELab approaches based on white with the
marginal and lexicographical CIELab approaches as well as

the approach of Witte et al. reviewed in Section 3. Here,
we used the SEs given by (41) with by = (—5,0,0) and
wi = (95,0, 0) in the approaches of Witte, marginal, and
lexicographical. We refrained from including the approach of
Angulo because it is very similar to the flat spherical CIELab
approach. In addition, we considered an approach based on
gray-scale morphological operators. Specifically, we com-
puted the traditional morphological gradient Q‘Cf, with the
square SE Y = {—1, 0, +1}2, applied only on the luminance
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(b) Ground truth image 735032
S/

(¢) Flat spherical CIELab Bp(r‘”““e

Pratt’s FOM = 0.0.19325

(d) Non-flat spherical CIELab B;” e
SRR 7 SRR

Wy S

e

(f) Lexicographical CIELab B;Z

Pratt’s FOM = 0.017627

(g) Wit

i

teetal. B,
SRS
I3

o
D
Y
R

Pratt’s FOM = 0.017627

R /\}.\l\l =

Pratt’s FOM = 0.018164

Fig. 13 Original color image g138032, ground truth image 7138032, and the boundary binary image obtained using six different approaches

of the color image. The Pratt’s FoM values are summarized
in the box and whisker diagrams shown in Fig. 11 and Table
2. Note that the non-flat spherical CIELab approach yielded
the largest average FoM value. Notwithstanding this, exclud-
ing the flat approach which produced the smallest average
FoM value, the five approaches to boundary detection exhib-
ited similar performance. More precisely, a two-sample ¢
test failed to reject the hypothesis that the non-flat spherical
CIELab approach has an average FoM equal to that produced
by the marginal, lexicographical, or Witte approaches. This
result can be partially explained by the fact that white corre-
sponds to the largest element of the complete lattices obtained
by considering all the orderings “<_,”, “< ¢”, “<y”, and
C= S e

Let us close this section with two instances of the six
approaches to boundary detection. Figs. 12 and 13 show a
natural color image, its corresponding ground truth image,
and the the binary images ﬂp‘yw““e, ,B;Sﬂ white ﬂl}//’ , ﬁl‘? , ,BZ)/ ,and
,3? obtained, respectively, by the flat and non-flat CIELab
approaches, the marginal and lexicographical approaches,
the approach of Witte, and the gray-scale approach based
on the luminance. We would like to point out that the binary

images ,ijﬂw““e, ,3,‘]/// shown in Fig. 12 yielded the maximum
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Pratt’s FoM values among all images in the database. Here,
the high values of the Pratt’s FoM confirm the excellent
performances of the approaches to the detection of the bound-
ary of the two birds depicted in Fig. 12a). In contrast, the
images shown in Fig. 13 are those for which the flat spheri-
cal CIELab, marginal, lexicographical, and Witte approaches
produced the minimum Pratt’s FoM values. Note that the
binary images obtained by all six approaches are much richer
in details than the ground truth image. This explains the low
FoM values obtained by the six approaches.

7 Concluding Remarks

MM is a theory with many applications in image and sig-
nal processing and analysis. From a theoretical point of
view, MM can be very well conducted in a mathemati-
cal structure called complete lattices [36]. The complete
lattice framework, which relies primary on a partial order-
ing with well-defined extrema operators, contributed for the
development of many approaches to color morphology [3—
5,20,21]. Notwithstanding the above, researchers such as
Russo and Stell argued that some widely used morpho-
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logical approaches are defined in a richer mathematical
structure called quantale [37,42]. The binary MM, the umbra
approach, and some fuzzy approaches to gray-scale MM are
defined using the quantale-based framework. Furthermore,
the quantale-based approach is appropriate if one requires
dilations invariant under both vertical and horizontal trans-
lations.

In [48], Valle and Sussner introduced a quantale based on
the CIELab color space in spherical coordinates. In general
terms, the spherical CIELab quantale is obtained by enrich-
ing the CIELab space with a distance-based total ordering
and a binary operation called multiplication. The total order-
ing scheme is partially motivated by the works [3,21,54].
The multiplication is given by the product of the radii and the
minimum between either the elevation or the azimuth angles.
Computational experiments revealed that the novel approach
has potential application in problems such as detection of the
boundaries of objects in color images. Notwithstanding, we
would like to point out that both elementary operations of ero-
sion and dilation are greatly influenced by both structuring
element and the reference color. Therefore, in the spheri-
cal CIELab approach to color MM, the structuring element
as well as the reference color must be carefully chosen for
certain applications. In a boundary detection application, for
instance, the reference must be chosen a priori according to
the color of the object, the boundary for which we intend to
detect. An achromatic color, such as white, is recommended
if no information is available.
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