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Abstract This paper introduces a new method for esti-
mating the angular difference between two tomographic
projections belonging to a set of projections taken at unknown
directions in 2D and 3D. Our method relies on the pro-
jection neighbor selection in projection moment space, the
calculation of the angular differences between these neigh-
boring projections using moment properties and a projection
moment neighborhood graph. The accuracy and the robust-
ness of our method are shown on a test database including
fifty 2D and 3D gray-level images at different resolutions and
with different levels of noise.

Keywords Computed tomography · Tomographic recon-
struction ·Unknown direction · Euclidean distance ·Angular
difference · Moment

1 Introduction

Tomographic reconstruction is a process for recovering an
object from a finite set of projections acquired by various
techniques such as CT, MRI and PET scanning in medical
imaging or electron microscopy in structural biology. There
are many well-known tomographic reconstruction methods
that can be categorized into three groups: Fourier methods,
backprojection methods and algebraic methods. The details
of thesemethods can be found in [11]. Inmost cases of tomo-
graphic reconstruction, the projection directions are known
and then can be used to perform the reconstruction. However,
there are some cases in which the projection directions are
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unknown, for example, when studying the particles in cryo-
electronmicroscopy orwhen the studied objectmoves during
the acquisition. Thus, the projection directions need to be
estimated in the tomographic reconstruction process of these
cases. During this process, the Euclidean distance between
two projections is often used for projection set clustering
or refinement [4,6,7,25]. Instead of using the Euclidean
distance for projection refinement, the cross-correlation coef-
ficient [26] can be used tomeasure the distances between two
projections, but the projection refinements obtained using the
Euclidean distance or the cross-correlation coefficient are not
different as shown in [9]. The Euclidean distance is also used
in [3] as a cost for simultaneously driving the estimation of
the projection directions and the object reconstruction.

However, the relation between the projection direction
angular differences and the projection Euclidean distance
is not monotonic, nor even one-to-one, even when the two
projection directions are close. Thus, using such a non-
monotonic distance measure when classifying or refining the
projections may lead to errors.

To tackle this problem, we propose in this paper a new
method that can estimate the angular difference between two
projections in both the 2D and the 3D cases. The problem of
the angular difference estimation in 2D is different from that
in 3D. Thus, the two cases need to be treated separately.

In 2D, formulae for the angular difference estimation have
already been developed based on the relationship between
the object moments and its projection moments. This rela-
tionship, known as the moment method for the projection
direction estimation, is well studied in [1,2,20]. Here, our
objective is different. We focus on the angular difference
estimation between two projections without knowing nor
estimating the projection directions. Our developed formulae
are not robust when the angular difference between two pro-
jections is large. Therefore, these formulae are just applied to
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estimate the angular differences between neighboring projec-
tions. In order to find the neighbors of each projection, local
adaptive thresholds are proposed in the projection moment
space. The given thresholds correspond to the assumption
that the projection directions are uniformly distributed on the
semicircle. However, other distributions can be used instead.
After estimating the angular differences between the neigh-
boring projections, we build a weighted neighborhood graph
whose vertices are the projections and whose edges con-
nect the neighboring projections and are weighted by the
estimated angular difference. Finally, the angular difference
between any two projections on the neighborhood graph is
calculated by using a shortest path algorithm [5].

In 3D, the angular reconstruction method [24,26] is often
used to find the projection directions and can be applied to
estimate the angular differences between projections. The
method is based on the central slice theorem in which two
projections share one common line in the Fourier’s space.
This common line is perpendicular to the projection direc-
tions, and the combination of common lines between sets of
three projections enables us to find any projection direction.
Further history of this method can be found in [8,15,17,27].
However, searching the common lines between projections is
time- consuming and may lead to accumulative errors when
the common lines are not correctly identified. We therefore
prefer to extend to 3D our approach based on the 2D ver-
sion of the moment method described in [10,20]. In [20], the
author shows that the moment method is fast and does not
lead to the accumulation of errors as in the common-line-
based method.

While our previous work [18] only solved the 2D case of
angular difference estimation, here we (1) extend it to 3D,
(2) explain more in detail the mathematical proofs and (3)
provide more experimental results. The rest of this paper is
organized as follows: In Sect. 2, somebackground notions are
provided. Then, in Sect. 3,wedealwith the angular difference
estimation in 2D tomography and we extend our results to
3D in Sect. 4. The performance of our method is carried out
in Sect. 5 for both 2D and 3D images. Finally, the conclusion
is given in Sect. 6.

2 Background Notions

We introduce in this section the notions of projection and
moment in both the 2D and 3D cases. In the following, an
object in Rn for n = 2 or 3 corresponds to a Lebesgue mea-
surable function f : Rn → [0, 1] such that the support S f

of f , that is the closure of the set {x ∈ R
n | f (x) �= 0},

is a compact subset of Rn . Then, we define the centroid G
of the function f , also known as the center of mass [14], as
follows:

G =
∫

v f (v) dv
∫

f (v) dv
.

The group of the rotations around the origin in R
n is noted

SO(n). In SO(2), the rotation through the angle θ around the
origin is characterized by its matrix Rθ :

Rθ =
(
cos θ − sin θ

sin θ cos θ

)

.

In SO(3), the matrix of the rotation through the angles
(ϕ, θ, ψ) around x-axis, y-axis and z-axis is

Rϕ,θ,ψ = (C1,C2,C3),

where

C1 =
⎛

⎝
cos θ cosψ

sin ϕ sin θ cosψ + cosϕ sinψ

− cosϕ sin θ cosψ + sin ϕ sinψ

⎞

⎠ ,

C2 =
⎛

⎝
− cos θ sinψ

− sin ϕ sin θ sinψ + cosϕ cosψ

cosϕ sin θ sinψ + sin ϕ cosψ

⎞

⎠ and

C3 =
⎛

⎝
sin θ

− sin ϕ cos θ

cosϕ cos θ

⎞

⎠ .

2.1 Tomography in 2D

Firstly, we present the definition of the projection in 2D.
Given an object in R

2 (2D Cartesian coordinates), the pro-
jection of the object in the direction defined by the angle
θ ∈ R is obtained by rotating the coordinating system by
an angle θ , then by projecting the object along the new Oy
axis, onto the new Ox axis. This is similar to a rotation of
the object by an angle −θ and then a projection of the object
onto the Ox axis. The definition of the projection in 2D is
therefore the following:

Definition 1 Let f : R
2 → [0, 1] be a 2D object and let

θ ∈ R. The projection P f (θ) in the direction θ ∈ R is
defined by

P f (θ)(x) =
∫

R

f (ρ−θ (x, y)) dy,

where (ρθ (x, y))T = Rθ (x, y)T , Rθ ∈ SO(2).

Let us now recall that themoment of ameasurable function
g : R → R, with order d ∈ N, is given by

μd(g) =
∫

R

xdg(x) dx . (1)
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We note μ f,d(θ) the dth-order moment of the projection
P f (θ). The case of the second-order projection moments
P f (θ) is physically meaningful since it relates to the iner-
tia moments of the function f and enables us to calculate
the rotation of f as shown in [20]. The following property
proved in [16] shows that the dth-order projection moment
is a trigonometric polynomial of degree d as a function of
the projection direction θ .

Property 1 [16] Let d ∈ N. The dth-order moment of a pro-
jection P f (θ) can be presented as

μ f,d(θ) =
∑

0≤k≤d
k≡d mod 2

ak cos(kθ) + bk sin(kθ) , (2)

where ak, bk ∈ R.

From Property 1, we have μ f,d(θ + π) = (−1)d μ f,d(θ).
Then all

∣
∣μ f,d

∣
∣ are π -periodic for any d > 0. Moreover, for

any interval [a, a + π) on the circle R/2π and for any θ

in R/2π , we necessarily have either θ or θ + π in [a, a +
π). Since our method relies on the absolute moments, in the
sequel we can assume that the angles lie in [−π/2, π/2),
that is, we identify the projections P f (θ) and P f (θ + π)

(which are such that P f (θ + π)(x) = P f (θ)(−x) for any
x).

2.2 X-Ray Tomography in 3D

The projection in 3D can be obtained by an extension of
the 2D case presented above. The principal difference is that
the 3D object is rotated around the x-, y- and z-axis by the
three angles −ϕ, −θ and −ψ , respectively, and the object is
projected onto the (xOy) plane. Thus, the projection in 3D
is defined as follows.

Definition 2 Let f : R
3 → [0, 1] be a 3D object and let

ϕ, θ, ψ ∈ R. The projectionP f (ϕ, θ, ψ)of f in the direction
(ϕ, θ, ψ) is defined by

P f (ϕ, θ, ψ)(x, y) =
∫

R

f (ρ−(ψ,θ,ϕ)(x, y, z))dz, (3)

where
(
ρa(x, y, z)

)T = Ra (x, y, z)T , Ra ∈ SO(3).

The direction vector of the projection is the unit vector
obtained by rotating the z unit vector by Rϕ,θ,ψ :

vP (ϕ, θ) = Rϕ,θ,ψ (0, 0, 1)T

= (sin θ,− sin ϕ cos θ, cosϕ cos θ)T. (4)

Note that the projection direction vector vP (ϕ, θ) does not
depend on the angle ψ which controls the rotation of the
projection in its plane.

Also note that (ϕ, θ, ψ) �→ P f (ϕ, θ, ψ) is a periodic
function of period 2π in ϕ, θ, ψ and P f (ϕ, θ, ψ)(x, y) =
P f (ϕ, θ+π,−ψ)(−x, y) = P f (ϕ+π,−θ,−ψ)(x,−y) =
P f (ϕ, θ, ψ + π)(−x,−y). In addition, our method in 3D
relies on the projectionmoments that are invariant to the signs
of x and y. Thus, we can assume ϕ, θ, ψ ∈ [−π/2, π/2).

Next, let us recall that the moment of a measurable func-
tion g : R2 → R, with order (c, d) ∈ N

2 is given by

μc,d(g) =
∫

R

∫

R

xc yd g(x, y) dx dy. (5)

We note μ f,c,d(ϕ, θ, ψ) the projection moment of P f (ϕ,

θ, ψ) with order (c, d). For simplicity, we write P , μd and
μc,d instead of P f , μ f,d and μ f,c,d when no confusion can
occur. The projection moments with orders (2, 0), (0, 2) are
related to the inertia moments of f and the 3D rotation of
f can be calculated from this relationship as shown in [20].
The next proposition extends Property 1 to the 3D case.

Proposition 1 Let f : R
3 → [0, 1] be a 3D object. Let

ϕ, θ, ψ ∈ R and c, d ∈ N. The moment of order (c, d) of
the projectionP f (ϕ, θ, ψ) of the function f , in the direction
(ϕ, θ, ψ), is a trigonometric polynomial as a function of the
projection direction.

The proof is given in “Proof of Proposition 1.”

3 Angular Difference Estimation in 2D

3.1 Angular Difference Estimation Problem

Let f be a 2D object whose centroid is at the origin, n ∈ N

and Θ = {θ1, . . . , θn} ⊆ [−π/2, π/2) be a set of unknown
directions. We denote byΠ the set of the related projections:
Π = {P(θi ) | 1 ≤ i ≤ n}. The angular difference between
two projections is

dang(P(θi ),P(θ j )) = min(|θi − θ j |, π − |θi − θ j |).

Our main goal in this work is to estimate the angular dif-
ference dang between any two projections from the set Π .
In [20], Salzman shows that it is possible to compute the
direction θ associated with the projection P(θ) by using the
following equation:

sin2(θ) = |μ2(θ) − μm
2 |

μmax
2 − μmin

2

, (6)

where μmax
2 = maxθ∈R μ2(θ), μmin

2 = minθ∈R μ2(θ) and
μm
2 = μmax

2 if the origin of the angles is set such thatμ2(0) =
μmax
2 or μm

2 = μmin
2 if the origin of the angles is set such that

μ2(0) = μmin
2 . Note thatwe alwaysmay assume in the proofs

that the origin is set such that dang(P(θi ),P(θ j )) = |θi − θ j |.
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Since there are two possible values of θ ∈ [−π/2, π/2) in
Eq. (6), Salzman uses odd-order moments to disambiguate
the angle values. The angular difference between two pro-
jections can be estimated by subtracting the two arcsines
calculated from (6). However, due to the high slope of the
function x �→ arcsin(

√
x) near the abscissae 0 and 1, the

calculation of dang(P(θi ),P(θ j )) derived from (6) is not
robust to noise when the moment of one of the projections
is close to μmin

2 or μmax
2 , especially as the exact values of

μmin
2 and μmax

2 cannot be known precisely. Instead, we con-
struct a graphG = (V, E)whose vertices are the projections
P(θi ) and whose edges link projections with close moments
(Sect. 3.2). Then, each edge of the graph G is weighted by
the corresponding angular difference (Sect. 3.3). Rather than
computing this difference directly from Eq. (6), we use a
Taylor expansion. As shown in Sect. 5.1.2, this leads our
method to be more robust to noise. Finally, we measure
the angular difference between any two projections as the
length of the shortest path between these projections in the
graph G.

The steps of the angular difference estimation are summa-
rized in Algorithm 1 (Sect. 3.4).

In the following section, we explain how to select the
projection pairs that are linked by an edge in the graph G.

3.2 Projection Neighbors (Edges of the Graph G)

The aimof this section is amethod for selecting the neighbors
of a given projection from the projection set Π . As the pro-
jectionmoment is a trigonometric polynomial function of the
angle (Property 1), two close angles yield two closemoments
for any order due to the continuity of the moment w.r.t. the
angle. However, the converse is false since the moment is
non-monotonic as a function of the angle. Thus, the neigh-
bors of each projection should be found by comparing their
dth-order moments for several values of d.

For each used order d and each moment μd(θ) of a
given projectionP(θ), an interval of size 2εd(θ), centered on
|μd(θ)|, is set for finding at least one moment corresponding
to a neighbor of the given projection P(θ). The calculation
of the threshold εd(θ) is shown in Proposition 2. The reader
will find its proof in “Proof of Proposition 2.”

Proposition 2 Let f : R2 → [0, 1] be a 2D object and let
p ∈ [0, 1]. Assuming that the projection directions are uni-
formly distributed on [−π/2, π/2), for each moment μd(θ)

of order d, there exists an interval centered on |μd(θ)| and
of size 2εd(θ) in which can be found, with probability p, at
least one moment μd(θ

′) with θ ′ �= θ and θ ′ neighboring θ

in Θ . The half-width εd(θ) is such that

εd = π

2

(
1 − (1 − p)

1
n−1

) × d max
θ∈R

(|μd(θ)|) . (7)

Remark 1 When the probability distribution function of the
angles is known—let us denote it by λ—the reader can check
that the proof of Proposition 2 can easily be modified and,
instead of Eq. (7), leads to

εd = πk × d max
θ∈R

(|μd(θ)|) ,

where k ∈ �−1
( 1
2 (1 − p)

1
n−1

)
with � the non-decreasing

function δ �→ ∫ 1−δ

δ
λ 
 (λ ◦ (−id))(t) dt , id the identity and


 the convolution.

The issue with Eq. (7) is that the exact value of
max
θ∈R

(|μd(θ)|) is not known. It can only be estimated from

the finite set of projections Π by max{|μd(θ)| | θ ∈ Θ}.
However, as it will be shown in Proposition 3, the error due
to this estimation is quadratically convergent toward 0 as the
number of projections increases. Then these errors induce a
negligible error on the half-width εd(θ).

In conclusion, given a projection Pi , Eq. (7) allows us
to find the sets Jid of the projection neighbors for distinct
moment orders. The final result Ji is obtained by intersecting
the sets Jid . Then, an edge is added in the graph G between
Pi and each projection in Ji .

3.3 Angular Difference Formulae

Hereafter, we present in Definition 3 the weights that we put
on the edges of the graph. These weights are derived from
Eq. (6) byfiniteTaylor series expansions. InProposition4,we
give bounds on the error due not only to the finite expansion
but also to the unknown extremum moments that intervene
in Eq. (6). The first result of this section is Proposition 3 that
gives an upper bound on the difference between the theoret-
ical extremum moments μmax

2 , μmin
2 and the empirical ones

μ̃max
2 , μ̃min

2 .
In the sequel of the Sect. 3.3, we use the following nota-

tions and assumptions (in order to make the statements of
the section less cumbersome, these hypotheses will not be
systematically recalled).

Notations and assumptions of Sect. 3.3

– Θ = {θ1, . . . , θn} ⊂ [−π
2 , π

2 ): a set of directions such
that θ1 < . . . < θn . We set θ0 = θn − π (thus, θ0 < θ1).

– Δ(Θ) = max
1≤i≤n

(θi − θi−1).

– M = {μ2(θi ) | θi ∈ Θ},
– μ̃max

2 = max(M) and μ̃min
2 = min(M).

– θ̃max = argmax(M) and θ̃min = argmin(M).
– Δ(M) = max

μ∈M min
μ′ �=μ

|μ − μ′|: maximum difference

between a moment and its nearest neighbor.
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The following proposition provides upper bounds on the
difference between empirical extremal moments and theo-
retical ones. It is valid in 2D as in 3D.

Proposition 3 Let d ≥ 2. The errors on μmax
d and μmin

d due
to the use of the empirical extremums μ̃max

d , μ̃min
d are less

than 1
4d

2Δ(Θ)2(μmax
d − μmin

d ).

Proof Let θmax
d ∈ [−π/2, π/2), resp. θ̃max

d ∈ Θ , such that

μd(θ̃
max
d ) = max

θi∈Θ
{μd(θi )} ,

μd(θ
max
d ) = max

θ∈[−π/2,π/2)
{μd(θ)} .

Then, θmax
d ∈ [θi , θi+1] for some i such that 0 ≤ i < n.

Put μmax
d = μd(θ

max
d ), resp. μ̃max

d = μd(θ̃
max
d ).

Then, μmax
d − μ̃max

d ≤ μd(θ
max
d ) − μd(θi ). The finite

Taylor series with the Lagrange remainder term is developed
for μd at θ = θmax

d where its derivative is null. We derive

μmax
d − μ̃max

d ≤ μd(θ
max
d ) − μd(θi )

≤ 1

2
(θmax

d − θi )
2 max

θ∈R

∣
∣
∣
∣
d2μd

dθ2

∣
∣
∣
∣ . (8)

Then, as θmax
d ∈ [θi , θi+1], we have

μmax
d − μ̃max

d ≤ 1

2
Δ(Θ)2 max

θ∈R

∣
∣
∣
∣
d2μd

dθ2

∣
∣
∣
∣ .

As μd is a trigonometric polynomial of degree d, we derive
from Bernstein’s inequality that

μmax
d − μ̃max

d ≤ 1

4
d2 Δ(Θ)2 (μmax

d − μmin
d ) .

Similarly, we get

μ̃min
d − μmin

d ≤ 1

4
d2 Δ(Θ)2 (μmax

d − μmin
d ) .

We have seen that the errors on the extremum moments
are asymptotically negligible as the number of projections
grows. So, we can consider building the weights of the graph
G from the Taylor expansions of Eq. (6). We distinguish two
kinds of edges in G: the edges between projections whose
second-order moment is less than a threshold a(M) (resp.
greater than a threshold b(M)) and the edges between the
projections whose second-order moments lie between a(M)

and b(M). The relative positions of μmin
2 , μmax

2 , μ̃min
2 , μ̃max

2 ,
a(M) and b(M) are shown in Fig. 1. The values of a(M)

and b(M) have to be set according to Proposition 4 in order
to ensure the convergence of the edge weights toward the
angular difference.

Fig. 1 Relative positions of μmin
2 , μmax

2 , μ̃min
2 , μ̃max

2 , a(M) and b(M)

in the noiseless case

Definition 3 (Local angular difference weight) For two
neighboring directions θi , θ j , the weight wi, j between the
two corresponding projectionsP(θi ),P(θ j ) is set as follows.

– if μ2(θi ) < a(M) and μ2(θ j ) < a(M),

wi, j =
|
√

μ2(θi ) − μ̃min
2 −

√
μ2(θ j ) − μ̃min

2 |
√

μ̃max
2 − μ̃min

2

; (9)

– if μ2(θi ) > b(M) and μ2(θ j ) > b(M),

wi, j = |√μ̃max
2 − μ2(θi ) − √

μ̃max
2 − μ2(θ j )|

√
μ̃max
2 − μ̃min

2

; (10)

– else,

wi, j = |μ2(θ j ) − μ2(θi )|
√

(μ̃max
2 − μ2(θξ ))(μ2(θξ ) − μ̃min

2 )

, (11)

where ξ ∈ {i, j} and |μ2(θξ ) − μ̃max
2 +μ̃min

2
2 | is minimal.

Proposition 4 gives conditions on a(M) and b(M) to have
the computed weightwi, j converging toward the angular dif-
ference as Δ(Θ) tends to 0.

Proposition 4 If the thresholds a(M) and b(M) are such
that a(M) − μ̃min

2 and μ̃max
2 − b(M) are asymptotically

bounded both from above and below by Δ(M)α for some
α ∈ (0, 2/3), then, for any 0 ≤ i, j < n such that
|θi − θ j | ∈ O(Δ(Θ)),

– if μ2(θi ) ∈ [a(M), b(M)] or μ2(θ j ) ∈ [a(M), b(M)],

wi, j = dang
(P(θi ),P(θ j )

) + o
(
Δ(Θ)

) ;

– else,

wi, j = dang
(P(θi ),P(θ j )

) + O
(
Δ(Θ)

)
.

The proof of Proposition 4 is given in “Proof of Proposition
4.”

The estimation errors when using only one of the three
formulae of the weight wi, j in Definition 3 are shown in
Figure 2 in which the estimation error is calculated by
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Fig. 2 Angular difference estimation errors caused by the three for-
mulae given in Definition 3

|wi, j − dang
(P(θi ),P(θ j )

)| / dang
(P(θi ),P(θ j )

)
.

We see that Formula (9) gives a better result than the others
for the projection pairs lying close toμmin

2 and similarly with
Formula (10) for the projection pairs lying close toμmax

2 and
Formula (11) for the projection pairs that are far enough
from μmin

2 and μmax
2 . Therefore, the combination of these

three formulae gives us a good estimation result. The setting
of the two thresholds a(M) and b(M) for separating these
three formulae is given in the next section.

3.4 Angular Difference Estimation Algorithm

We propose an algorithm for the estimation of the angular
difference between any two projections from the projection
set Π . We first calculate the dth-order moments of the pro-
jections in Π for d ∈ {2, 3, 4, 5}. Then, the neighbors of
each projection P(θ) are found thanks to the moment inter-
vals |μd(θ)| ± εd(θ) described in Sect. 3.2. The threshold
εd(θ) is calculated using Formula (7) in Proposition 2 by
setting the probability p to 0.95. Note that there are differ-
ent sets of neighboring projections found according to the
different orders of moment. The final result of the neighbor
search is then obtained by intersecting these sets of neigh-
boring projections. Here, the order d is set to 2, 3, 4 and 5
since the higher-order moments are sensitive to noise and do
not improve the search result.

Next, the angular differences between the neighboring
projections are estimated through the three formulae given
in Definition 3. In order to separate the use of these three
formulae, a(M) is set to μ̃min

2 +Δ(M)1/2 and b(M) is set to
μ̃max
2 −Δ(M)1/2 according to the conditions in Proposition 4.
Then, we build a neighborhood graph whose vertices are

the projections and whose edges connect the neighboring
projections and are weighted by the estimated angular differ-
ences. Eventually, the angular difference between any two
projections on the graph is estimated by using a shortest
path algorithm such as Dijkstra’s algorithm. The estimation
process is summarized in Algorithm 1.

Algorithm 1: 2D Angular difference estimation
Data: Π = {P(θi ) | 1 ≤ i ≤ n}.
Result: estimation of dang(P(θi ),P(θ j )), 1 ≤ i, j ≤ n, i �= j .

1. G ← ∅, D ← {2, . . . , 5}.
2. Calculate {μd (θi )}i=1...n then {εd (θi )}i=1...n ,

for any d ∈ D.
3. For each index i ,

3.1 Jid ← { j | |μd (θi )| − εd (θi ) ≤ |μd (θ j )| ≤
|μd (θi )| + εd (θi )}, ∀d ∈ D.

3.2 Ji ← ⋂
Jid .

3.3 For each j ∈ Ji , G ← G ∪ {(i, j, wi, j )}.
4. Shortest_Path_Algorithm(G).

3.5 Dealing with Noise

This section addresses the problem of noise that usually
contaminates the projections during the acquisition process.
Assuming that the noise is modeled as a white-centered
Gaussian noise, we first denoise the projection set using a
method developed byWu and Singer [22]. Even if the whole
step of this method is not applied, it is nevertheless called
here theWu–Singer denoising method. The main idea of this
method is to analyze the projection set using a PCA decom-
position [13] combined with an optimized Wiener filter and
a graph denoising technique [28].

Noise also propagates to the projectionmoments and leads
to computational errors not only in the searching formula
exhibited in Proposition 2 but also in the estimation formulae
given in Definition 3. Assuming noisy projections P̂(θ) =
P(θ) + E(θ), where E(θ) ∼ N (0, σ 2) is a Gaussian noise
vector with zero mean and variance σ 2 on each coordinate,
we can easily prove that the dth-order moment μ̂d(θ) of a
noisy projection follows the Gaussian distribution with mean
μd(θ) and variance Σ2, where

Σ =
⎛

⎝
1∫

−1

x2d σ 2 dx

⎞

⎠

1
2

= σ√
d + 1/2

.

As the noise can increase the gap between the theoretical
extremal moments and the empirical ones, it is necessary
to estimate the former. Under the assumption of a uniform
angle distribution, we derive from (6) the probability density
function of μ2 as follows:

P(μ2) = 1

π
× 1

2
√

(μmax
2 − μ2)(μ2 − μmin

2 )

. (12)

When the angle distribution is not uniform, one has to
replace 1/π in the above formula by

f

(

arcsin
( √

(μ2 − μmin
2 )/(μmax

2 − μmin
2 )

)
)

,
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Fig. 3 Probability density of the second-order noisy moment without
noise and with different variances of noise

Fig. 4 Relative positions of μmin
2 , μmax

2 , μ̃min
2 , μ̃max

2 , a(M) and b(M)

in case of noise

where f is the p.d.f. of the angles. Then, the probability
density function of μ̂2 is obtained by the convolution between
P and the probability density function of the Gaussian noise
with zero mean and variance Σ2.

P̂(μ̂2) =
μmax
2∫

μmin
2

P(μ2)
1√
2πΣ

exp

(−(μ̂2 − μ2)
2

2Σ2

)

dμ2 .

(13)

Figure 3 shows the shapes of P and P̂ at different levels of
noise. Note that the relative positions of μmin

2 , μmax
2 , μ̃min

2 ,
μ̃max
2 , a(M) and b(M) in case of even moderate noise will

likely be changed as in Fig. 4 (compare with Fig. 1).
The two extremal moments μmin

2 and μmax
2 can be esti-

mated using the maximum likelihood by

(μ̂min
2 , μ̂max

2 ) = argmax
∏

m∈M̂
P̂(m | min M̂,max M̂) , (14)

where M̂ = {μ̂2(θi ) | 1 ≤ i ≤ n}.
We did not find an analytical solution for Eq. (14). It is there-
fore solved using the numerical approach.

The efficiency of the Wu–Singer denoising method and
the extremum estimation is shown in Sect. 5.

4 Estimation of Angular Difference in 3D

We now consider the 3D case. Let f be a 3D object whose
centroid is at the origin, n be a positive integer and Θ =
{(ϕi , θi , ψi ) | 1 ≤ i ≤ n} be a set of unknown directions
included in [−π/2, π/2)3. We set Π = {P(ϕi , θi , ψi ) | 1 ≤
i ≤ n}, the set of projections associated with Θ , and

V = {vP (ϕi , θi ) | 1 ≤ i ≤ n}, the set of direction vectors
of Π . Our goal is to estimate the absolute angular differ-
ence between two projections from the set of projections Π .
Since we cannot distinguish a projection direction from its
antipodal direction, the computed angular difference will lie
in R/πZ identified with (−π/2, π/2] and its absolute value
given in [0, π/2].

The estimation procedure is almost identical to the 2D
case. We first show the estimation formula of the angular
difference between the neighboring projections. The angular
difference between two projections P and P ′

in 3D can be
calculated by the inner product between the two direction
vectors vP and vP ′ :

dang(P,P ′
) = arccos

(|vP . vP ′ |) . (15)

We take from [20] the direction vector expression,

vP (ϕ, θ) =
(
v1P , v2P , v3P

)T
, (16)

where (omitting the argument (ϕ, θ, ψ) in μ2,0 and μ0,2):

viP = ±
(

(μi − μ2,0) (μi − μ0,2)

(μi − μ j )(μi − μk)

)1/2

, (17)

with

– {i, j, k} = {1, 2, 3},
– (μ1, μ2, μ3) = (μmax, μmed, μmin), where

μmax = max
(ϕ,θ,ψ)∈R

max(μ2,0, μ0,2) ,

μmed = max
(ϕ,θ,ψ)∈R

min(μ2,0, μ0,2) ,

= min
(ϕ,θ,ψ)∈R

max(μ2,0, μ0,2) ,

μmin = min
(ϕ,θ,ψ)∈R

min(μ2,0, μ0,2) .

There are four possible solutions for Eq. (15) due to the
unknown signs in Eq. (17). This corresponds to the direction
vectors lying on four different octants of the coordinate sys-
tem. The solution of Eq. (15) can be unique by making the
assumption that both of the neighboring projections are in
the same octant. This assumption leads to very few, and very
small, errors if the number of projections is large enough.
Then, under this assumption, Eq. (15) comes down to

dang(P,P ′
) = arccos

(
3∑

i=1

|viP viP ′ |
)

. (18)

We now deal with the problem of searching the neigh-
boring projections. As shown in 2D (Sect. 3), the search
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of projection neighbors is based on the calculation of pro-
jection moment intervals for different moment orders. This
approach cannot be applied directly to 3D, because the pro-
jection moments depend on the projection rotation (by the
angleψ) which is unknown. Thus, the moment values of two
neighboring projections may be very different according to
the projection rotation. Therefore, instead of using the stan-
dard moments, we employ the seven Hu moments defined
in [12] which are invariant by rotation. These moments are
linear combinations of standard moments. Knowing that the
standard moments are trigonometric polynomials (Proposi-
tion 1) and the set of trigonometric polynomials is a ring,
we derive that Hu moments are also trigonometric polyno-
mials. LetMh(ϕ, θ) be the hth Hu moment of the projection
P(ϕ, θ, ψ), h = 1 . . . 7. The value ofMh(ϕ, θ) is calculated
as follows (omitting the argument (ϕ, θ, ψ)):

M1 = μ2,0 + μ0,2 ,

M2 = (μ2,0 − μ0,2)
2 + 4μ2

1,1 ,

M3 = (μ3,0 − 3μ1,2)
2 + (3μ2,1 − μ0,3)

2 ,

M4 = (μ3,0 + μ1,2)
2 + (μ2,1 + μ0,3)

2 ,

M5 = (μ3,0 − 3μ1,2)(μ3,0 + μ1,2)((μ3,0 + μ1,2)
2

− 3(μ2,1 + μ0,3)
2) + (3μ2,1 − μ0,3)(μ2,1 + μ0,3)

(3(μ3,0 + μ1,2)
2 − (μ2,1 + μ0,3)

2) ,

M6 = (μ2,0 − μ0,2)((μ3,0 + μ1,2)
2 − (μ2,1 + μ0,3)

2)

+ 4μ1,1(μ3,0 + μ1,2)(μ2,1 + μ0,3) ,

M7 = (3μ2,1 − μ0,3)(μ3,0 + μ1,2)((μ3,0 + μ1,2)
2

− 3(μ2,1 + μ0,3)
2) − (μ3,0 − 3μ1,2)(μ2,1 + μ0,3)

(3(μ3,0 + μ1,2)
2 − (μ2,1 + μ0,3)

2) .

Note that the order ofMh is the degree of the trigonometric
polynomial. In order to select the pairs of neighboring projec-
tions, for eachmomentMh(ϕ, θ) of a projectionP(ϕ, θ, ψ),
an interval Mh(ϕ, θ) ± εMh (ϕ, θ) is calculated for finding
at least one other Hu momentMh(ϕ′, θ ′) corresponding to a
neighbor ofP(ϕ, θ, ψ). The value of εMh (ϕ, θ) is calculated
as follows.

Proposition 5 Let f : R
3 → [0, 1] be a 3D object and

let p ∈ [0, 1]. Assuming that the projection directions are
uniformly distributed on the hemisphere, then for each Hu
moment Mh

i of a projection Pi taken at the direction vPi ,
h = 1 . . . 7, there exists an interval bounded by Mh

i ± εMh

in which can be found, with probability p, at least one Hu
moment Mh

j of a projection P j taken at the direction vP j ,

Mh
i �= Mh

j and vP j is close to vPi . The half-width εMh is
such that

εMh = π
(
1 − (1 − p)

1
n−1

) 1
3 ξh , (19)

where ξh = k max
1≤ j≤n

(|Mh(ϕ j , θ j )|, k = 2, 4, 6, 6, 12, 8, 12

being the order of Mh for h = 1 . . . 7, respectively.

The proof of Proposition 5 is given in “Proof of Proposition
5.”

Remark 2 As in2D, theproof ofProposition5 canbe adapted
in order to drop the angle uniform distribution assumption.
Let λ1, λ2 be the p.d.f. of the angles ϕ and θ . Then, in

Eq. (19), the term
(
1 − (1 − p)

1
n−1

) 1
3 should be replaced

by α ∈ �−1
(
1
4

(
1 − (1 − p)

1
n−1

))
where � is the non-

decreasing function

δ �→
∫ δ

0

(
(λ1 
 λ̃1) � t ≥ 0 
 (λ2 
 λ̃2) � t ≥ 0

)
(t) dt ,

with λ̃1 = λ1 ◦ (−id) (resp. λ̃2 = λ2 ◦ (−id)) and 
 is the
convolution.

After finding the neighbors, we build a neighborhood
graph whose vertices are the projections and whose edges
connect the neighboring projections and are weighted by
the angular differences estimated from Eq. (18). Finally,
the angular difference between any two projections on the
neighborhood graph can be calculated using a shortest path
algorithm.

Recall that our method in 2D linearizes the Salzman’s for-
mula (6) in order to reduce the noise effect. However, since
the linearization of the corresponding 3D Eq. (18) is not as
simple as in 2D, this step is skipped. As in the 2D case, the
value of μmax, μmed and μmin used in (18) and (19) can only
be estimated from the finite set of projections. Nevertheless,
thanks to Proposition 3, which is still valid in 3D, we can
neglect the errors on μmax, μmed and μmin. With noisy pro-
jections, theWu–Singer denoising method is used to denoise
the projection set, but the maximum likelihood estimation
of μmax, μmed and μmin is also skipped due to the high
computational complexity. However, even if the lineariza-
tion of Salzman’s Formula and the extremum estimation are
not applied in 3D, the experimental results (Sect. 5) show
that our method outperforms the Euclidean distance for the
angular difference estimation.

The proposed method for estimating the angular differ-
ences between tomographic projections in 2D and 3D is
now called Moment-based Angular Difference Estimation
(MADE) method. All steps of the MADE method are sum-
marized below.

Step 1: Denoising of the projection set using the Wu–
Singer denoising method [22].

Step 2: Computation of the projection moments from the
projection set. In 2D, the moments μd , 2 ≤ d ≤ 5,
are calculated by Eq. (1). In 3D, the momentsμc,d ,
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Fig. 5 Examples of 2D phantoms with different resolutions
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Fig. 6 Examples of 1D projections at different levels of noise

0 ≤ c, d ≤ 3, are calculated by Eq. (5). Then the
seven Hu momentsMh , 1 ≤ h ≤ 7, are calculated
from μc,d .

Step 3: Estimation of the extremum moments: This step
is only available in 2D where μmin

2 and μmax
2 are

estimated as shown in Sect. 3.5.
Step 4: Selection of the neighbors of each projection by

thresholding. In 2D, the threshold εd is calculated
by Eq. 7. In 3D, the threshold εMh

i
is calculated by

Eq. 19.
Step 5: Computation of the angular differences between

the neighboring projections. In 2D, the formulae
in Definition 3 are used. In 3D, Formula (18) is
used.

Step 6: Construction of the neighborhood graphwhose ver-
tices are the projections and whose edges link the
neighboring projections found in Step 4 and are
weighted by the angular differences calculated in
Step 5.

Step 7: Computation of the angular difference between any
two projections using a shortest path algorithm on
the neighborhood graph.

5 Experimental Results

5.1 Experiments in 2D

Our method is tested on a set of fifty 2D phantom images at
resolutions 322, 642, 1282 and 2562 pixels. The phantoms
are generated automatically using our program. Examples of

the phantoms are shown in Fig. 5, and their 1D projections
at different levels of noise are shown in Fig. 6.

5.1.1 Noiseless Case

Afirst experiment aims at testing the robustness of theMADE
estimation formulae given in Definition 3, in case the angular
difference between two projections is small (e.g., neighbor-
ing projections). In this first experiment, 200 pairs of angular
values (θ,Δθ) are randomly generated for each phantom,
where θ ∈ [−90◦, 90◦) and Δθ ∈ [1◦, 2◦]. The projections
P(θ) andP(θ+Δθ) are computed for each pair (θ,Δθ). The
angular difference betweenP(θ) andP(θ +Δθ) is then esti-
mated using the MADE estimation formulae. Note that the
two extreme projection moments μmax

2 and μmin
2 are calcu-

lated from the set ofmoment values provided by the 200 pairs
(μ2(θ), μ2(θ + Δθ). We also apply the Salzman’s Method
(SM) presented in Sect. 3.1 to estimate the angular differ-
ence between each projection pair (P(θ),P(θ + Δθ)). The
Euclidean distance (ED) betweenP(θ) andP(θ+Δθ) is also
computed. The purpose of this experiment is to measure the
dispersion of the estimated angular difference using MADE
(resp. SM) and ED w.r.t the ground truth of the angular dif-
ference dang(P(θ), P(θ + Δθ)) = Δθ . We used in [18] the
variance-to-mean ratio to measure the variation, but here we
prefer to employ the root-mean-squared deviation (RMSD)
since the result obtained from the RMSD is more accurate.
The RMSD is defined as follows

RMSD(X̂) = 100

X̂max − X̂min

√∑n
i=1(Xi − X̂i )

2

n
(in %),
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Fig. 7 First experiment (local case): dispersion of ED (a), SM (b) and
MADE (c) between two neighboring projections in 2D for phantom of
1282 pixels

where X̂ is the estimator of X , X̂max = max1≤i≤n(X̂i ),
X̂min = min1≤i≤n(X̂i ). Lower values of the RMSD indicate
less residual variance of X̂ . The results of this first experi-
ment are shown in Fig. 7. It is clear that the dispersion of
ED (a) is much higher than that of SM (b) and MADE (c).
Moreover, the dispersion of SM is slightly lower than that of
MADE. This is understandable since our method MADE is
the linearization of the SM formula.

More quantitative results w.r.t the phantom resolutions are
shown in Table 1a (local case). We see that the RMSDs of
MADE and SM are less than 5.2% at all resolutions.

In the second experiment, the angular difference estima-
tion between any two projections is calculated. For this, 200
angles θ ∈ [−90◦, 90◦) are randomly generated for each
phantom. The corresponding projectionsP(θ) are then com-
puted. The angular differences between any two projections
are estimated byMADEwith all the steps described in Algo-
rithm 1. ED and SM are also applied and compared with
MADE. As shown in Fig. 8, the dispersion of ED (a) is again
much higher than that of SM (b) and MADE (c). The disper-
sions of SMandMADEare not very different. The estimation
results w.r.t the phantom resolutions are shown in Table 1b

Table 1 RMSD(%)ofSalzman’sMethod (SM)andourmethodMADE
in 2D w.r.t the phantom resolutions (in pixels) for the noiseless case

322 642 1282 2562

a) Local

SM 5.2 ± 2.8 4.1 ± 1.5 4.0 ± 1.6 3.9 ± 1.5

MADE 5.2 ± 2.5 5.1 ± 2.0 5.0 ± 1.6 4.5 ± 1.3

b) Global

SM 0.5 ± 0.5 0.4 ± 0.3 0.7 ± 1.8 0.3 ± 0.3

MADE 0.7 ± 0.4 0.6 ± 0.2 0.9 ± 1.7 0.5 ± 0.2

The local case (a) is for two neighboring projections and the global case
(b) is for any two projections
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Fig. 8 Second experiment (global case): dispersion of ED (a), SM (b)
and MADE (c) between any two projections in 2D for phantom of 1282

pixels

(global case). The RMSD of SM and MADE is very low
(<1%) for all resolutions. Also note that the RMSD of the
global case decreases significantly compared to the local one.
This can be explained by the fact that in 2D the shortest path
algorithm allows to reduce the global error compared to the
sum of the local errors. In addition, the RMSD is averaged
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Fig. 9 Third experiment.
RMSD (%) of ED, SM,
MADES, MADE w.r.t. the SNR
in 2D. Test with phantoms of
1282 pixels, without (a) and
with (b) maximum likelihood
estimation of the extremum
moments μ̂min

2 and μ̂max
2 (a)
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(b) with estimation of µmin
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over the angle interval which is very small in the local case
(∼ [0◦, 2◦]) compared to the global one (∼ [0◦, 90◦]).

The first two experiments show that the methods MADE
and SM give a good angular difference estimation between
projections, with small dispersions compared to those of ED.
In addition, since MADE is obtained as an approximation of
SM, the result of SM is better than the result of MADE for
the noiseless case.

5.1.2 Noisy Case

The noise robustness of SM and MADE is now tested in
the third experiment without using the denoising method
described in Step 1 of Sect. 4.White noise is added to projec-
tions with different values of the signal-to-noise ratio (SNR).
The SNR is defined by

SNR = 10 log10

(
Var(S)

Var(N )

)

,

where Var(S) is the signal variance and Var(N ) is the noise
variance. Then, a similar procedure to that used in the sec-
ond experiment is applied. Moreover, we also test in this
experiment a variation of MADE in which the edges of the
graph G are weighted by Salzman’s Formula (6) rather by
its linearization. This new version is named MADES to dis-
tinguish it from the original one. The extremum moment
estimations μ̂min

2 and μ̂max
2 are obtained using maximum

likelihood (see Section 3.5 for details). For that, we set
μ̂min
2 ∈ [min M̂,med M̂] and μ̂max

2 ∈ (med M̂,max M̂]
thanks to the observation shown in Fig. 4, where M̂ is the set
of noisy moments. Then, the candidates for μ̂min

2 and μ̂max
2

are selected based on Eq. (14). Also note that, the integral
in Eq. (13) is approximated using the function integral() in
MATLAB.

Figure 9 shows the RMSD of SM, MADES and MADE
for SNR varying from 40 dB to 5 dB without (a) and with (b)
maximum likelihood estimation of the extremum moments.
Lower values of SNR will be tested in the next experiment.

In Fig. 9a, that is without maximum likelihood estimation
of the extremum moments, we see that the dispersion of SM

Table 2 Third experiment: RMSD (%) of SM, MADES, MADE in 2D
w.r.t. the phantom resolutions (in pixels) in 2D

322 642 1282 2562

SM 14.1 ± 5.6 10.2 ± 4.7 8.3 ± 3.0 7.5 ± 4.7

MADES 6.7 ± 1.2 6.1 ± 1.9 6.0 ± 1.7 4.9 ± 1.6

MADE 6.4 ± 1.1 5.8 ± 1.8 5.6 ± 1.6 4.6 ± 1.5

Test at SNR = 25 dB, the extreme moments μmin
2 and μmax

2 are esti-
mated by maximum likelihood

is higher than the ones of MADES and MADE. In particu-
lar, the RMSD of SM is much higher than the others when
the SNR is lower than 25 dB. Also note that the RMSD of
MADE is smaller than the RMSD of MADES. This shows
that the linearization of Salzman formula gives us a better
result when the projections are corrupted by noise. Then, in
Fig. 9b, that is with maximum likelihood estimation of the
extremummoments, theRMSDof allmethods, SM,MADES
and MADE is smaller than without the estimation (∼2%),
but the dispersion of SM is still higher than the ones ofMADE
andMADES.Again,MADE is better thanMADESwhen the
noise is high. In Table 2, the RMSD of all methods w.r.t the
phantom resolutions is given at a SNR of 25dB. The RMSD
of MADE at all the resolutions is the smallest. The compar-
ison of MADE with MADES shows that the SM formula
linearization slightly improves the estimation results.

We have shown the performance of MADE in 2D com-
pared to SM. The angular difference can also be obtained by
means of the projection direction estimation. TheWu–Singer
method developed in [22] is known as a good method for the
estimation of projection directions. A comparison between
our method MADE and the Wu–Singer method is shown in
Fig. 10. Note that all the steps of MADE described in Sect. 4
are now fully applied. We see that globally MADE performs
better than Wu–Singer, especially when the number of pro-
jections is small. For a large number of projection (≥1000),
the Wu–Singer method is a bit more robust to noise than
MADE when the SNR is higher than 5dB. But, when the
noise level increases, the RMSD of the Wu–Singer method
grows up more rapidly than the RMSD of MADE.
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Fig. 10 Third experiment:
RMSD (%) of MADE (a) and
the angular difference derived
from [22] (b) in 2D w.r.t. the
SNR and the numbers of
projections for images of 2562

pixels
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Fig. 11 Examples of 3D phantoms with different resolutions
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Fig. 12 Examples of 2D projections at different levels of noise

In conclusion, the experiments in 2D show that ourmethod
MADE performs better than SM in case of noise and than
the Wu–Singer method when the number of projections, or
the SNR, is small. The linearization of Salzman formula (6)
combined with the extremum moments estimation is useful
in case of noise. The preprocessing step allows our method
to obtain good results for SNR greater than 0dB.

5.2 Experiments in 3D

The method MADE is now tested in 3D. A set of fifty 3D
phantom images at different resolutions—323, 643, 1283 and
2563 voxels—is generated by our program. Examples of the
3D phantoms and their 2D projections with different levels
of noise are shown in Figs. 11 and 12.

5.2.1 Noiseless Case

In this fourth experiment, a set of 1000 triples (ϕ, θ, ψ) are
generated uniformly and randomly on the hemisphere for
each phantom, where ϕ, θ, ψ ∈ [−90◦, 90◦). A set of cor-
responding projections P(ϕ, θ, ψ) and projection moments
μc,d(ϕ, θ, ψ) are then calculated. The extreme values of
μc,d(ϕ, θ, ψ) are taken from the set of projection moments
μc,d(ϕ, θ, ψ). The neighbors of each projection are found
using the Hu moment thresholds defined in Eq. (19). The
angular differences between these neighboring projections
are then estimated using Formula (18). Finally, the angular
differences between any two projections are calculated using
a shortest path algorithm on the neighborhood graph. ED is
also computed and compared with MADE regarding the dis-
persion.
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Fig. 13 Fourth experiment. Dispersion of the angular differences
between neighboring projections (local case) in 3D for an phantom
of 1283 voxels. a ED, b MADE

The results are illustrated in Fig. 13 for two neighboring
projections (local case) and in Fig. 14 for any two projec-
tions (global case). The reader can see that ED (a) varies
much more than MADE (b) in both cases. Moreover, the
estimation errors of MADE displayed in Fig. 13b are the
results of projections lying in different octants of the hemi-
sphere. The number of error cases is small w.r.t the total
number of estimated cases and does not affect the esti-
mation results as shown in Table 3, where the RMSD of
MADE is lower than 5.5% for the local case and lower
than 6.9% for the global case. Also note that the RMSD
of the global case does not decrease compared with the
local one as in 2D due to two reasons : First the short-
est path algorithm does not run well in 3D, and second
the angle interval in local case is not small as in 2D (∼
[0◦, 15◦]) and yields more significant errors than in 2D
(including the errors from different octants). Thus the behav-
ior of the global error in 3D is more complicated than in
2D.

This fourth experiment shows that ED in 3D has a high
dispersion w.r.t the angular differences between projections,
whereasMADE is good for estimating the angular difference
with a smaller dispersion.

0 20 40 60 80
0

50

100

150

Ground truth (degree)

E
D

(a)

0 20 40 60 80
0

50

100

150

Ground truth (degree)
M

A
D

E
(b)

Fig. 14 Fourth experiment. Dispersion of the angular differences
between any two projections (global case) in 3D for an phantom of
1283 voxels. a ED, b MADE

Table 3 RMSD (%) of MADE in 3D w.r.t the phantom resolutions (in
voxels) for the noiseless case

323 643 1283 2563

Local 5.4 ± 2.2 4.7 ± 1.2 4.2 ± 1.3 4.0 ± 1.2

Global 6.8 ± 2.3 6.4 ± 1.5 6.1 ± 1.7 6.1 ± 1.6

The local case is for two neighboring projections and the global case is
for any two projections

5.2.2 Noisy Case

The noise robustness of MADE in 3D is then evaluated in
the fifth experiment. White noise with a given SNR is added
to projections. Again, the Wu–Singer denoising method is
applied to denoise projections. The estimation results for the
different number of projections and at the different levels of
noise are shown in Fig. 15 for phantoms of 1283 voxels. Good
results are obtained with a RMSD less than 10% at SNR
≥10 dB for the number of projections equal to 1000 and at
SNR≥ 0 dB for the number of projections equal to 10000.As
in 2D, the angular difference in 3D can also be calculated by
means of the projection direction estimation. In particular, the
method proposed in [23] gives good estimation results at very
low SNR (smaller than −10 dB) and clearly outperforms the
results ofMADE. Nevertheless, the advantage of our method
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Fig. 15 Fifth experiment: The RMSD (%) of MADE in 3D at differ-
ent levels of noise and with different numbers of projections. The test
is performed with images of 1283 voxels. The Wu–Singer method is
applied to denoise projections

is that it can be used with a small number of projections,
whereas the method in [23] needs a sufficiently large number
of projections (≥ 10000) in order to obtain a good result.

Another family of direction estimation methods uses the
common line technique [8,15,17,27]. The common-line-
based method proposed more recently in [21] is robust to
noise and can be used in case of a small number of pro-
jections. The method is combined with several denoising
methods that allow to improve significantly the estimation
result. The preprocessing steps are a weak point of our
method and need to be more investigated in our further work.
However, one of the drawbacks of these common-line- based
methods are the runtime complexity. Indeed, the runtime
of the method in [21] is a O(p3 n2 + n3) where p is the
dimension of the projection space and n is the number of
projections. On the other hand, the runtime of our method is
faster with a time complexity in O(p2 n + n2).

All the experiments in this section were performed on a
Linux machine with Xeon 3.20 GHz and 16 GB of RAM.
All steps of our method were executed only with one core
and were not parallelized. The running time for testing our
method on each phantom varies from several seconds to sev-
eral minutes, depending on the number of projections and
the projection dimension.

6 Conclusion

This article addresses the angular difference estimation
between tomographic projections.

We propose a new method, MADE, based on the projec-
tion moments. The first stage of MADE is to identify the
projections that are close, not with respect to the Euclidean
distance, but relative to their projection directions. Then, the
angular differences between the neighboring projections are
evaluated. The process of these two steps involves the cal-
culation of the projection moments with several orders and
the estimation of the extreme moments, which intervene in

the angle computation. The experimental results on a sim-
ulated database with different resolutions show that MADE
performs better the selection of the neighboring projections
than theEuclidean distance.Regarding the angular difference
estimation, the accuracy and the noise robustness of MADE
are also better than the other tested methods up to −5 dB.
Our method can be considered as a potential measure for
the projection refinement or the projection classification in
the tomographic reconstruction process. As a perspective,
we plan to test the method on a real database—especially in
the case where the distribution of the projection directions is
not uniform—to improve the noise robustness in the 3D case
by incorporating more preprocessing steps and to combine
MADE with another technique such as the common line.
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Appendix 1: Proofs in 2D

Recall of Bernstein’s Inequality

Theorem 1 (Bernstein’s inequality [19]) Let f (x) =∑n
i=0 ai cos(i x)+ bi sin(i x), a trigonometric polynomial of

degree n. We have

max
x∈R

{∣
∣
∣
∣
d f

dx

∣
∣
∣
∣

}

≤ n max
x∈R

{| f (x)|} . (20)

Proof of Proposition 2

Proposition 2 relies on Lemma 1which gives, at a given level
of confidence, the maximum distance between two succes-
sive angles from a set of realizations of an equidistributed
random variable on the circle R/πZ.

Lemma 1 Let θ1, . . . , θi , . . . , θn be independent and uni-
formly distributed random variables in [−π/2, π/2). Let1

Zi, j = min
(|θi − θ j |, π − |θi − θ j |

)
. Then, for any i ∈

[1, n],

Prob

(

min
j �=i

Zi, j ≤ δ

)

> p ⇐⇒ δ ≥ π
2

(
1 − (1 − p)

1
n−1

)
.

Proof Let (Xi )
n
i=1 be independent random variables, uni-

formly distributed in [0, 1]. We set Yi, j = |Xi − X j | for any

1 The variable Zi, j is the distance between the variables θi and θ j on
the circle R/πZ.
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pair (i, j), i �= j . Let p ∈ (0, 1). We want to find a posi-
tive real δ as small as possible such that, for each i ∈ [1, n],
∃ j �= i,min

(
Yi, j , 1 − Yi, j

) ≤ δ with a probability greater
than or equal to p.

Note that for a given fixed i ∈ [1, n], the random vari-
ables Yi, j , 1 ≤ j ≤ n, j �= i , are independent. Furthermore,
recall that the absolute difference between two standard uni-
form variables has a triangular distribution with a cumulative
distribution function x �→ 1 − (1 − x)2, for x ∈ [0, 1].

For each i ∈ [1, n], one has

Prob

(

min
j �=i

(
min

(
Yi, j , 1 − Yi, j

)) ≤ δ

)

> p

⇐⇒
∏

j �=i

Prob
(
min(

(
Yi, j , 1 − Yi, j

)
> δ

) ≤ 1 − p

⇐⇒
∏

j �=i

Prob
(
δ < Yi, j < 1 − δ

) ≤ 1 − p

⇐⇒ (1 − δ)2 − δ2 ≤ (1 − p)
1

n−1

⇐⇒ δ ≥ 1
2

(
1 − (1 − p)

1
n−1

)
.

We conclude straightforwardly, setting Xi = 1/π(θi +π/2).

Proof of Proposition 2 From the mean value theorem and
the Bernstein’s inequality, we have for any θ , θ ′ :

∣
∣
∣
∣
|μd(θ)| − |μd(θ

′)|
θ − θ ′

∣
∣
∣
∣ ≤ max

θ∈R

{∣
∣
∣
∣
dμd

dθ

∣
∣
∣
∣

}

≤ d max
θ∈R

{|μd(θ)|}.
(21)

Hence, we derive from Lemma 1 and Eq. (21) that setting

εd = π
2

(
1 − (1 − p)

1
n−1

)
× d max

θ∈R
{|μd(θ)|}

ensures that, for any angle θ , we will find with a probability
greater than p at least one moment |μd(θ

′)|, θ ′ �= θ , in the
band |μd(θ)| ± εd .

Proof of Proposition 4

Proof Let us define Π = {θ1, . . . , θn} where θ1 < θ2 <

· · · < θn .
We set M = {μ2(θ) | θ ∈ Π} and we put

Δ1,n = max
μ∈M min

μ′ �=μ
|μ − μ′| ,

Δ2,n = max{μmax
2 − μ̃max

2 , μ̃min
2 − μmin

2 } and

Δ3,n = max{θi+1 − θi | 0 ≤ i < n} where θ0 = θn .

Note that

Δ1,n ≤ Δ3,n max
θ∈R

∣
∣
∣
∣
dμ2

dθ

∣
∣
∣
∣ .

(i.e., Δ1,n = O(Δ3,n)). Indeed,

Δ1,n = min
μ′∈M and μ′ �=μ2(θk )

|μ2(θk) − μ′|
= |μ2(θk) − μ2(θl)|

for some θk, θl ∈ Π .
Thus, there are two cases:

• k < l (actually we can assume that μ2(θk) �= μ2(θk+1)

because if μ2(θk) = μ2(θk+1), thenwe take k+1 instead
k and so on), then

|μ2(θk) − μ2(θl)| ≤ |μ2(θk) − μ2(θk+1)|
< (θk+1 − θk)max

θ∈R

∣
∣
∣
∣
dμ2

dθ

∣
∣
∣
∣ .

• the case where l < k is proved in a symmetrical way

Thus, in the all cases we have Δ1,n ≤ Δ3,n maxθ∈R
∣
∣
∣
∣
dμ2

dθ

∣
∣
∣
∣.

Furthermore, from Proposition 3, Δ2,n = O(Δ3,n
2).

We also have from the hypothesis,

CΔ1,n
α ≤ μ̃max

2 − b(M), a(M) − μ̃min
2 ≤ DΔ1,n

α ,

for some C, D > 0 and 0 < α < 2/3.
Then, since μmax

2 − μmin
2 = (μmax

2 − μ̃max
2 ) + (μ̃max

2 −
b(M)) + b(M) − a(M) + (a(M) − μ̃min

2 ) + (μ̃min
2 − μmin

2 ),
we derive that

b(M) − a(M) ≥ μmax
2 − μmin

2 − 2Δ2,n − 2DΔ1,n
α

≥ μmax
2 − μmin

2 − O
(
Δ3,n

2) − O
(
Δ3,n

α
)

.

So, assuming Δ3,n → 0 as n → 0 and n large enough, we
can assert that b(M) − a(M) is lower bounded by a positive
constant.

The following calculation assumes that Δ1,n , Δ2,n , Δ3,n

are small (less than 1). For this, simply take n large enough.
Let θi , θ j in Θ such that |θi − θ j | = O(Δ3,n). Firstly, we

consider the case in which θi or θ j lies between a(M) and
b(M).

We define ξ ∈ {i, j} such that |μ2(θξ ) − μ̃max
2 +μ̃min

2
2 | is

minimal (thereby, θξ ∈ [a(M), b(M]).
From the finite Taylor series of μ2 at θξ , we get

θi − θ j =
(
μ2(θi )−μ2(θ j )+O(|θi − θ j |2

)( dμ2

dθ
(θξ )

)−1
.

(22)
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From (6), we derive

∣
∣
∣
∣
dμ2

dθ
(θξ )

∣
∣
∣
∣ = 2(μmax

2 − μmin
2 )|sin(θξ )| cos(θξ )

= 2
√

f (μ2(θξ )),

where f (x) = (μmax
2 − x)(x − μmin

2 ). We also set f̃ (x) =
(μ̃max

2 − x)(x − μ̃min
2 ). We have

f (μ2(θξ )) = f̃ (μ2(θξ )) + O(Δ2,n)

and, since θξ ∈ [a(M), b(M)],

f̃ (μ2(θξ )) ≥ min( f̃ (a(M)), f̃ (b(M))

≥ k(b(M) − a(M))Δ1,n
α.

We derive that

∣
∣
∣
∣
dμ2

dθ

∣
∣
∣
∣

−1

= 1

2

(
f̃ (μ2(θξ ))

)−1/2+O(Δ2,n Δ1,n
−3α/2), (23)

where the constant in the Big O depends on f and k.
We obtain from (22), (23)

|μ2(θi ) − μ2(θ j )|
2
√

f̃ (μ2(θξ ))

= |θi − θ j | + O(Δ2,n Δ1,n
−3α/2) + O(Δ3,n

2 Δ1,n
−α/2)

= |θi − θ j | + O(Δ3,n
2 Δ1,n

−3α/2)

= |θi − θ j | + O(Δ3,n
2−3α/2) .

We recall that α < 2/3, so 2 − 3α/2 > 1 and we are done.
Next, we develop the estimation formula of |θ | in the

case of μ2(θ) > b(M) (the case μ2(θ) < a(M) is simi-
lar). From (6), we have

√
μmax
2 − μ2(θ)

μmax
2 − μmin

2

= |sin(θ)| .

Thus,

∣
∣
∣
∣
∣

√
μmax
2 − μ2(θi )

μmax
2 − μmin

2

−
√

μmax
2 − μ2(θ j )

μmax
2 − μmin

2

∣
∣
∣
∣
∣

= ∣
∣|sin(θi )| − |sin(θ j )|

∣
∣ . (24)

Since
∣
∣|a| − |b|∣∣ ≤ |a − b| in any case, we derive from (24)

that

∣
∣
∣
∣
∣

√
μmax
2 − μ2(θi )

μmax
2 − μmin

2

−
√

μmax
2 − μ2(θ j )

μmax
2 − μmin

2

∣
∣
∣
∣
∣

≤ |sin(θi ) − sin(θ j )| ≤ ∣
∣2 sin

θi − θ j

2

∣
∣ ≤ |θi − θ j | .

As we assume |θi − θ j | ∈ O(Δ3,n), the result holds.

Appendix 2: Proofs in 3D

Proof of Proposition 1

Proof Let us recall the formula of projectionmoments in 3D:

μc,d(ϕ, θ, ψ) =
∫

R

∫

R

xc ydP f (ϕ, θ, ψ)(x, y) dx dy .

(25)

Setting R(ϕ,θ,ψ) = (
r ji

)
1≤i, j≤3, it can be rewritten as

μc,d(ϕ, θ, ψ) =
∫

R

∫

R

∫

R

α1
c α2

d g(α1, α2, α3) dα1 dα2 dα3,

where g(α1, α2, α3) = f

(
3∑

j=1
r1 j α j ,

3∑

j=1
r2 j α j ,

3∑

j=1
r3 j α j

)

. By changing the variables

βi =
3∑

j=1

ri j α j (1 ≤ i ≤ 3) , (26)

then reversing (26) as

α j =
3∑

i=1

ri j βi (1 ≤ j ≤ 3) ,

we obtain

μc,d(ϕ, θ, ψ) =
∫

R

∫

R

∫

R

(
3∑

i=1

ri1 βi

)c (
3∑

i=1

ri2 βi

)d

f

(β1, β2, β2) dβ1dβ2dβ3. (27)

By using the trinomial expansion and the multi-index nota-
tion with r j = (r1 j , r2 j , r3 j ) and β = (β1, β2, β3), we have
for j ∈ {1, 2} and any integer n:

(
3∑

i=1

ri j βi

)n

=
∑

|k|=n

(
n

k

)

rkj βn−k .
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Eq. (27) is then rewritten as

μc,d(ϕ, θ, ψ)

=
∫

R

∫

R

∫

R

∑

|k|=c

∑

|l|=d

(
c

k

) (
d

l

)

rk1 r
l
2 βn−(k+l) f (β) dβ

=
∑

|k|=c

∑

|l|=d

(
c

k

) (
d

l

)

rk1 r
l
2 μ f,n−(k+l) , (28)

where μ f,n−(k+l) is the moment of f with order n − (k + l).
Since the coefficients ri j are trigonometric polynomials,

we are done.

Proof of Proposition 5

Proof Assuming that the distribution of the projection direc-
tions is uniform on the sphere, we first find the distribution
of ϕ and θ ∈ [−π/2, π/2). The area element of the sphere is

dS = dθ cos θ dϕ . (29)

It should be constant in order to obtain the uniform distribu-
tion on the sphere. However, dS in (29) is a function of cos θ

and is not constant if ϕ and θ are uniformly distributed in
[−π/2, π/2). Instead, ϕ and θ can be generated as follows:

ϕ = π u − π/2 , θ = arcsin(2v − 1) ,

where u, v is uniformly distributed in [0, 1). Then, dS is uni-
form:

dS = d(sin θ) dϕ = 2π dv du .

Now, for simplicity, we write M instead of Mh , where
h ∈ {1, . . . , 7}, since the following steps are similar for
any Hu moment. Let us consider a closed subinterval K of
[−π/2, π/2)2 and twoHumomentsM(ϕ, θ) andM(ϕ′, θ ′)
where (ϕ, θ) and (ϕ′, θ ′) lie in K . We have

|M(ϕ′, θ ′) − M(ϕ, θ)| ≤
max

(ϕ,θ)∈K

(

max

(∣
∣
∣
∣
dM
dϕ

∣
∣
∣
∣ ,

∣
∣
∣
∣
dM
dθ

∣
∣
∣
∣

))
(|δϕ | + |δθ |

)
,

where δϕ = ϕ′ − ϕ and δθ = θ ′ − θ .
Let u, v be such that ϕ = π u − π/2, θ = arcsin(2v − 1)

and δu , δv be such that ϕ + δϕ = π (u+ δu)−π/2, θ + δθ =
arcsin(2(v + δv) − 1).

Then, |δϕ | = π |δu | and, observing the slope of the sine
curve,

|δv| = 1

2

∣
∣ sin(θ + δθ ) − sin(θ)

∣
∣ ≥

1

2
(sin(−π/2 + δθ ) − sin(−π/2)) = sin2(δθ /2) ≥ 1

π2 |δθ |2.

We derive that

|M(ϕ′, θ ′) − M(ϕ, θ)| ≤
π max

(ϕ,θ)∈K

(

max

(∣
∣
∣
∣
dM
dϕ

∣
∣
∣
∣ ,

∣
∣
∣
∣
dM
dθ

∣
∣
∣
∣

)) (
|δu | + √|δv|

)
.

Thus,

Prob
(|M(ϕ′, θ ′) − M(ϕ, θ)| < ε

)

≥ Prob (|δu | + h(|δv|) < δ) ,

where h(x) = √
x and δ = ε/

(

π max
(ϕ,θ)∈K

(
max

(∣
∣
∣dMdϕ

∣
∣
∣ ,

∣
∣
∣dMdθ

∣
∣
∣
)))

.

Now, given 2n independent random variables (Ui , Vi )ni=1,
uniformly distributed in [0, 1] and a real p ∈ (0, 1), let us
find a positive real δ as small as possible such that, for each
i ∈ [1, n], ∃ j �= i, |Ui −Uj | + h(|Vi − Vj |) ≤ δ with a
probability greater than or equal to p (recall that the absolute
difference between two standard uniform variables has a tri-
angular distribution with a probability distribution function
g : x �→ 2(1 − x), for x ∈ [0, 1]).

Prob

(

min
j �=i

(|Ui −Uj | + h(|Vi − Vj |)
) ≤ δ

)

≥ p

⇐⇒
∏

j �=i

Prob
(|Ui −Uj | + h(|Vi − Vj |) > δ

)
< 1 − p

⇐⇒
∫ δ

0

(
g ∗ (

(g/h′) ◦ h−1))(t) dt ≥ 1 − (1 − p)
1

n−1

⇐⇒ 4

3
δ3

(
1 − δ

20
(5 + 6δ − δ2)

) ≥ 1 − (1 − p)
1

n−1

⇐� δ3 ≥ 1 − (1 − p)
1

n−1 assuming δ < 1/2

⇐� δ ≥
(
1 − (1 − p)

1
n−1

) 1
3

.

Eventually, we have to get a bound for

max
(ϕ,θ)

(

max

(∣
∣
∣
∣
dM
dϕ

∣
∣
∣
∣ ,

∣
∣
∣
∣
dM
dθ

∣
∣
∣
∣

))

.

Bernstein’s inequality is now applied to derive upper
bounds for | dM/ dϕ| and | dM/ dθ |:

max

(∣
∣
∣
∣
dM
dϕ

∣
∣
∣
∣ ,

∣
∣
∣
∣
dM
dθ

∣
∣
∣
∣

)

≤ k max
(ϕ,θ)∈R

|M(ϕ, θ)| , (30)

where k is the order of M. Thereafter, we set

εM(ϕ, θ) = kπ max
1≤i≤n

(|M(ϕi , θi )|)
(
1 − (1 − p)

1
n−1

) 1
3 .
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