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Abstract We propose a novel skeleton-based approach to
gait recognition using our Skeleton Variance Image. The core
of our approach consists of employing the screened Poisson
equation to construct a family of smooth distance functions
associated with a given shape. The screened Poisson distance
function approximation nicely absorbs and is relatively stable
to shape boundary perturbations which allows us to define
a rough shape skeleton. We demonstrate how our Skeleton
Variance Image is a powerful gait cycle descriptor leading to
a significant improvement over the existing state of the art
gait recognition rate.

Keywords Smoothed distance function · Rough skeletons ·
Gait recognition · Skeleton Variance Image

1 Introduction

Defining and extracting proper object features is a key com-
ponent of any object recognition pipeline. In this paper, we
deal with the problem of gait recognition and propose util-
isation of dynamic properties of rough shape skeletons as a
gait cycle descriptor. Our contribution is threefold.

• We introduce the concept of the Skeleton Variance Image
and demonstrate that it stores important information about

T. Whytock (B) · A. Belyaev · N. M. Robertson
Institute of Sensors, Signals and Systems, School of Engineering
and Physical Sciences, Heriot-Watt University, Edinburgh,
EH14 4AS, Scotland, UK
e-mail: tpw3@hw.ac.uk

A. Belyaev
e-mail: a.belyaev@hw.ac.uk

N. M. Robertson
e-mail: n.m.robertson@hw.ac.uk

moving human silhouette figures. We show that the Skele-
ton Variance Image is a powerful gait cycle descriptor
which leads us to a significant improvement over the exist-
ing state of the art gait recognition rate.

• We demonstrate that smooth distance fields yield robust
extraction of rough skeletal structures which promote sta-
bility with respect to shape boundary perturbations.

• In particular, we demonstrate that solving the so-called
screened Poisson equation yields a computationally effi-
cient way to define a family of smooth distance functions
with simple and efficient control over their smoothness
yielding a skeleton which is significantly more robust com-
pared to the exact distance function.

1.1 Gait Recognition

Gait recognition seeks to identify a person by their walking
manner and posture [45]. With applications including sur-
veillance and access control, gait as a behavioural biometric
is advantageous over physical biometrics, e.g. fingerprint,
given capture without consent or cooperation, unobtrusively,
at low resolution and at distance. Early studies in medical
[48] and psychophysics [15] demonstrate the uniqueness of
gait, and gait recognition has developed significantly since
the first computer-based approach by Niyogi and Adelson
[49] in 1994. In practical terms, we require robustness to real
world covariate factors capable of altering gait appearance
and motion which are detrimental to performance, e.g. cloth-
ing, bags, shoe type and even elapsed time between capture.

Approaches are split into model-based, model-free and
multi-information fusion. Model-based approaches [41,72]
construct gait signatures by modelling or tracking human
body segments via anthropometrics [17,19], model-free
approaches [27,28] disregard human body structure in favour
of silhouette-based representations, while multi-information
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fusion approaches replicate human vision perception by
utilising multiple features [40,69] or biometrics e.g. face
[32,35]. We currently consider single feature and biometric
gait recognition, however this is not to say the performance
of our proposed approach could be boosted with such efforts;
we also find the benefits of low computational cost and image
quality insensitivity associated with model-free approaches
outweigh the benefits of view and scale invariance associated
with model-based approaches.

Considering model-free approaches more in detail, silhou-
ettes commonly serve as the foundation and can be extracted
easily from sources such as time of flight, Microsoft Kinect
and Lidar; colour and texture are rejected thus ensuring
no bias to appearance occurs during gait recognition given
motion is more consistent over time.

Skeleton, compared to silhouette, gait representations are
few and far between—especially those founded on distance
functions. Lack of implementation is linked to boundary per-
turbation sensitivity from imperfectly extracted silhouettes
and the natural self occluding nature of gait. For example, an
oversimplified skeleton can be constructed by connecting the
silhouette figure centroid to its head and limbs [13], whereas
anthropometrics enable a more realistic six joint skeleton
[72]. Both examples utilise a gait cycles worth of skeletons
which is uneconomical with respect to memory and compu-
tational costs; the alternative is to perform the increasingly
popular space- and time-normalisation techniques to yield a
single, compact 2D gait representation [6,27,33,68,71,74].

1.2 Generalised Distance Fields and Distance-Based Shape
Features

A generalised distance field is a scalar (vector) field approxi-
mating the minimum distance (minimum distance and direc-
tion) to a shape with respect to a certain metric. Generalised
distance fields and distance-related shape features such as
skeletons [9] are widely used in pure mathematics in rela-
tion to analysis of Hamilton–Jacobi equations and curvature-
driven manifold evolutions [1,43], computational mathemat-
ics [50] in connection to level set methods, computer vision,
pattern recognition, and image processing [23–25,54,76],
shape matching [51], computer graphics and geometric mod-
eling [11,14,34,52,53], computational mechanics [21], CFD
and turbulence modelling [66] (the so-called wall distance,
the minimum distance to a solid wall is a key parameter in sev-
eral turbulence models), medical image processing, analysis,
and visualisation [36], and many other areas.

Our gait recognition approach deals with smooth distance
fields approximated by solutions to the Poisson equation
alongside its normalised and screened Poisson equations;
results suggest our approach yields an efficient manner of
extracting rough shape skeletons associated with the smooth
distance fields. Given a sequence of silhouettes representing

a gait cycle, the pixel-wise variance of their corresponding
skeletons reflect dynamic gait patterns which turns out to be
a powerful gait descriptor.

1.3 Validation

Validation of our proposed approach is performed on the
largest, latest and most covariate factor rich, standardised
publicly available database: TUM Gait from Audio, Image
and Depth (GAID). Overall, our representation significantly
boosts robustness as we focus on gait motion which is more
consistent over time than gait appearance.

2 Smooth Distance Functions

It is well known that the true Euclidean distance function and
its corresponding skeleton (medial axis) are very sensitive to
small boundary perturbations. In our study, imperfect silhou-
ette segmentation leads to an abundance of boundary noise.
As a possible remedy, one can hope that a properly defined
smoothed distance function and its corresponding skeleton
are less sensitive to segmentation inaccuracies and silhou-
ette boundary noise. Below we exploit a partial differential
equation (PDE) approach and consider several PDE-based
schemes to generating smooth distance functions.

To the best of our knowledge, the idea of using diffusion-
type PDEs for skeleton extraction purposes was first pro-
posed in [64] where the so-called screened Poisson equa-
tions were used. While we consider some other PDE-driven
schemes for the distance function approximation and skele-
ton extraction, the screened Poisson equations serve as our
main working horse.

2.1 Screened Poisson Distance Function

Our first approach to constructing a family of smooth distance
functions explores an asymptotic relationship between the
distance function and solutions to screened Poisson equations
[67, Theorem 2.3].

Consider a Dirichlet boundary value problem for a
screened Poisson equation in a bounded domain Ω .

v − t�v = 0 in Ω, v = 1 on ∂Ω, (1)

where t is a small, positive parameter. Then, as shown in [67],

lim
t→0

−√
t ln[v(x)] = d(x, ∂Ω), (2)

where d(x, ∂Ω) is the distance from x ∈ Ω to ∂Ω . In other
words, d(x, ∂Ω) is approximated by

u(x) = −√
t ln v(x), (3)
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Fig. 1 Graphs of smoothed distance fields (3) for an L-shaped domain, t = 0.5 (left), t = 5 (middle), and t = 50 (right)

which defines a smooth distance field and parameter t con-
trols the smoothing properties of u(x).

Distance function approximation (3) has been previously
employed to extract skeletal structures from grayscale images
[64]. An inhomogeneous version of the screened Poisson
equation in (1) has been employed [26,56] to estimate the
distance function from a point set. An anisotropic version
of (1) was used very recently [14] for tracing geodesics on
triangulated surfaces.

It is interesting that the energy corresponding to (1) is a
part of the Ambrosio-Tortorelli elliptic regularisation [2] of
the Mumford-Shah functional [47]. See also, for example,
[57] and [5, Sect. 4.2].

An intuitive explanation of (2) is given in [26] and uses a
variant of the so-called Hopf-Cole transformation [20]. Sub-
stituting

v(x) = exp
{
−u(x)/

√
t
}

(4)

in (1) yields

∂v

∂xi
= − v√

t

∂u

∂xi
,

∂2v

∂x2
i

= v

t

∣∣∣∣
∂u

∂xi

∣∣∣∣
2

− v√
t

∂2u

∂x2
i

.

Thus (1) can be rewritten as

0 = v − t�v = v
[(

1 − |∇u|2
)

+ √
t�u

]
. (5)

This gives a regularised eikonal equation for u(x)

(
1 − |∇u|2

)
+ √

t �u = 0 in Ω, u = 0 on ∂Ω. (6)

Thus it is natural to expect that u(x), the solution to (6),
approximates the true distance function d(x, ∂Ω) which
satisfies the eikonal equation

|∇d|2 = 1 in Ω, d = 0 on ∂Ω. (7)

Note that (1) is linear and can therefore be easily and effi-
ciently solved numerically by using a sparse system of lin-
ear equations. Figure 1 shows the graphs of smooth distance
functions (3) for various values of smoothing parameter t .

2.2 Screened Poisson Distance and Mean Curvature Flow

In the two-dimensional case an interesting relationship
between v(x), the solution to (1), and its level set curva-
ture was derived in [64] and utilised for grayscale image
skeletonisation purposes. Below we informally extend the
relationship to the multidimensional case.

Let ∂Ω be oriented by its inner normal n. It is not difficult
to show [22, Appendix B] that the minus Laplacian of the
distance function d(x, ∂Ω) yields the mean curvature H(x)
of the distance function level set passing through x

�d = −H,

where we assume that the level set of H(x) is smooth at x .
Since u(x) tends to d(x, ∂Ω), as t → ∞, it is natural to

expect that �u is close to �d for small t values. Thus (5)
implies that

|∇u|2 ≈ 1 − H
√

t , as t → 0.

Now taking into account that t |∇v|2 = v2|∇u|2, we arrive
at
∣∣∣∣
∂v

∂n

∣∣∣∣
2

≈ 1

t

(
1 − H

√
t
)
v2, as t → 0.

Therefore, since v(x) is decreasing in the direction of n, we
have

v(x) ≈ −√
t
(

1 + H
√

t/2
) ∂v
∂n

, as t → 0. (8)
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Fig. 2 From left to right Poisson distance function (9), normalised Poisson distance function (9), (10) and screened Poisson distance
function (1), (3)

In the two-dimensional case, a much more accurate
asymptotic relation was derived in [47, Appendix 3, The-
orem B]

Similar to [64, Section 2], (8) can be linked to a surface
evolution with the normal speed component equal to

2/
√

t + H.

While (8) is not directly related to our study of gait recogni-
tion problems, it supports works on multidimensional shape
symmetries [63] and may be also useful for investing prop-
erties of more general diffuse distance fields [62].

2.3 Poisson and Normalised Poisson Distance Functions

Now let us consider a simpler approach to smooth distance
function generation. The approach is based on solving a
Dirichlet boundary value problem for a Poisson equation

�ϕ = −1 in Ω, ϕ = 0 on ∂Ω. (9)

This problem serves as a basic mathematical model describ-
ing Brownian motion of particles which are born at a con-
stant rate inside Ω and die on ∂Ω . The solution to (9), the
so-called Poisson distance function, is proportional to the
particle density and therefore can be considered as a smooth
approximation of the true distance function d(x, ∂Ω) from
∂Ω .

Poisson distance functions have been employed for action
recognition [24,25], skeleton extraction [4], turbulence mod-
elling applications [65], and geometric de-featuring purposes
[70].

Although the Poisson distance function ϕ(x) does not
deliver an accurate approximation of the distance function
d(x, ∂Ω), a simple normalisation procedure applied to ϕ(x)
can significantly improve the approximation of d(x, ∂Ω)
near ∂Ω . Namely, following [61,65] let us introduce

ψ(x) = −|∇ϕ| +
√

|∇ϕ|2 + 2ϕ. (10)

Normalisation procedure (10) is inspired by the fact that in the
one-dimensional case (9) and (10) reconstruct the distance
function precisely [65]. It is straightforward to rewrite (10)
as

ψ(x) = 2ϕ√|∇ϕ|2 + 2ϕ + |∇ϕ| ,

and check that

ψ = 0 and ∂ψ/∂n = 1 on ∂Ω, (11)

where n is the outer unit normal to ∂Ω . Thus ψ(x) approx-
imates d(x, ∂Ω) very accurately near ∂Ω . It seems that the
second normalisation condition in (11) has not been noticed
before.

Of course there are many other possibilities to achieve a
similar effect. For example, one can apply the normalisation
procedure considered during geometric modelling purposes
[55,58]

ϕ(x)√|∇ϕ(x)|2 + ϕ(x)2
.

While this and similar normalisation schemes lead to accurate
approximations of the distance function near the boundary,
they fail to achieve a satisfactory behavior far from the bound-
ary. In contrast, as demonstrated by Fig. 2, (9) combined with
(10) generates a good approximation of the distance function.

Both the Poisson and normalised Poisson distance func-
tions have lower computational costs compared to the
screened Poisson distance functions (1, 3). On the other hand,
the latter provides us with an ability to control the amount
of smoothing by tuning parameter t in (1). For example, as
shown in the right of Fig. 2, for a sufficiently small t , the
screened Poisson distance function delivers a better approx-
imation of true distance d(x, ∂Ω) than the normalised Pois-
son and Poisson distance functions.

Figure 3 demonstrates a comparison of the Poisson,
normalised Poisson, and screened Poisson distance func-
tions. While all the smoothed distance functions demonstrate
excellent properties in absorbing boundary perturbations, as
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Fig. 3 Distance functions for a
silhouette: a true distance
function; b Poisson distance
function (9); c normalised
Poisson distance function (9),
(10); d, e, and f screened
Poisson distance function (1),
(3) with t = 0.5, 5, and 50,
respectively

shown later in this paper, the possibility to control smooth-
ing properties of distance function approximations is vital
for significant improvements in gait recognition.

2.4 p-Laplacian Distance Functions and L p Distance Fields

One more approach to approximate the distance function
uses a quasi-linear generalisation of the Poisson equation.
Namely, let us consider a Dirichlet boundary value problem
for the p-Laplacian

div
(∣∣∇ϕp

∣∣p−2 ∇ϕp

)
= −1 in Ω, ϕ = 0 on ∂Ω, (12)

with 1 ≤ p < ∞. Then it can be shown [8,37] that

ϕp(x) → d(x, ∂Ω) as p → ∞.

Moreover, as demonstrated in [8], for arbitrary m > 1, this
convergence is strong in the Sobolev space W 1,m(Ω).

While ϕp for sufficiently large p delivers an accurate
approximation of the distance function (see Fig. 4 for a sim-
ple example), achieving an accurate numerical approxima-
tion of the solution to (12) is a complex task compared with
the linear PDE problems considered before.

It is also worth mentioning that the so-called L p-distance
fields introduced recently in [7] also allow the user to con-
trol an amount of smoothing added to the true distance

Fig. 4 p-Laplacian distance function (12) for a square. Note how well
the creases of the true distance function are approximated by ϕp(x)

function. However, according to our numerical experiments,
the screened Poisson distance functions tend to distribute
smoothing uniformly over the domain, while the L p-distance
fields apply less smoothing near the boundary and more
smoothing far from the boundary.

3 Rough Skeletons

After the pioneering work of Blum [9], skeleton-based shape
representations have been widely utilised for the analysis
and processing of static and dynamic 2D and 3D shapes
[59]. Strong correlations between medial shape structures
and perceptual shape organisation [38,39] remain a subject
of intensive research [3].

While the classical medial axis [9] reflects shape organ-
isation, its main drawback is high sensitivity to small-scale
boundary perturbations. As the medial axis of an object is
closely connected to the distance function from the boundary
of the object (the medial axis can be defined as the set of sin-
gularities of the distance function), it is natural to expect that
a smooth distance function may lead to a more robust shape
skeletonisation scheme. Indeed attempts of using smooth dis-
tance functions for better (less sensitive) skeletonisation have
been made, for example in [4,18,25,64].

Our approach to shape skeletonisation is conceptually
similar to those developed in [4,25,64], but instead of using
second-order derivative operators (e.g. laplacian, curvature,
or a curvature-based operators) as employed in these papers,
we compute the squared gradient |∇u|2 of a smooth distance
function u(x). We choose the gradient due to the following
observation. Assume that the boundary C0 = ∂Ω of Ω is
oriented by its inner normal n and consider offset curves Cρ
obtained from C0 by shifting each point of C0 in the direction
of n onto distance ρ. Then the skeleton S ofΩ is formed by
the first self-intersections of Cρ , as ρ increases. One can eas-
ily see that these self-intersections move along S faster than
the offset curves Cρ move along their normals. Namely, if
curve Cρ moves with the unit speed, then its self-intersection
point moves along S with speed equal to 1/ sin θ , where θ
is the angle between Cρ and S. This means that the rate of
change of the distance function d(x, ∂Ω) at that offset self-
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Fig. 5 Left Illustrating
relationship between skeleton S
and offset Cρ . Middle and Right
Examples of computer
generated offsets and the
skeleton of a given closed curve

Fig. 6 Silhouette (a) and its smooth distance function (b), fuzzy skele-
tons defined using gradient (c), curvature (d), and Laplacian (e)

Fig. 7 Cooler colours correspond to fuzzy skeletons where Sobel ker-
nels are convolved with the smoothed distance function (a) t = 0.5,
(b) t = 5, (c) t = 50 (Color figure online)

intersection point x ∈ S is given by sin θ . Further, if θ is
small at x ∈ S (and therefore sin θ is small as well), then
the orientation normals at the boundary points correspond-
ing to x have almost opposite directions and a part of S near
x reflects important bilateral symmetry properties of ∂Ω .
Figure 5 illustrates these simple ideas.

Figure 6 demonstrates the advantage of the smoothed dis-
tance function gradient for extracting a fuzzy skeleton of a
given shape. In practice we use the standard 3 × 3 Sobel
kernels to estimate the gradient. Figure 7 demonstrates how
the squared gradient map |∇u(x)|2 depends on smoothing
parameter t in (1) and (3).

A rough skeleton is obtained from the fuzzy skeleton by
thresholding. In practice, as seen in the left image of Fig. 8,
it also detects the silhouette boundary which is subsequently
removed by rejecting a small number of u(x) boundary lay-
ers. The resulting skeleton is considerably less sensitive to
boundary noise than the true medial axis.

Fig. 8 Low gradient magnitude values correspond to skeleton and
silhouette boundary (left)—shedding a small number of boundary lay-
ers yields the desired skeleton (right)

Note that in contrast to the classical medial axis, our rough
skeleton is not a deformation retract of the original shape.
For example, the rough skeleton shown in Fig. 8 contains
gaps while the silhouette is a simple connected 2D shape.
If necessary, Canny’s hysteresis thresholding procedure [12]
can be utilised to remove such gaps.

4 Skeleton Variance Image

Over a complete gait cycle, skeleton motion can be extracted
by considering how pixel intensity values vary during the
skeleton sequence; this prompts our primary contribution—
Skeleton Variance Image (SVIM) gait representation.

While in silhouette form, we perform (1) size normalisa-
tion to ensure constant height silhouettes and (2) horizontal
alignment to centre silhouettes with the centroid of top 10 %
figure height as a reference. We perform time-normalisation
post skeleton construction to condense the skeleton sequence
into a single, compact 2D gait representation by computing
the pixel-wise variance. The resulting representation, seen in
the rightmost column of Fig. 9, enables visualisation of high
and low pixel intensity values corresponding to higher and
lower degrees of body motion respectively.

5 Experimental Procedure

5.1 Validation

The TUM GAID database [28,30], seen in Fig. 10, is one
of the latest, largest and covariate factor rich databases and
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Fig. 9 Representation comparison: Gait Energy Image (GEI—
baseline), Skeleton Energy Image (SEIM), Gait Variance Image (GVI)
and Skeleton Variance Image (SVIM) for training (top), and test
sequences: carrying a bag (middle), shoes (bottom)—t = 5 where
applicable

Fig. 10 TUM GAID database exemplar frames top left to right:
normal (N ), carrying a bag (B), shoes (S); bottom left to right: time +
normal (T N ), time + carrying a bag (T B), time + shoes (T S)

the first to utilise depth images extracted with the Microsoft
Kinect—the database freely provides depth images which

have been converted into silhouettes thus enabling research
to concentrate on the gait recognition problem as opposed
to data preprocessing problems such as silhouette segmen-
tation. Training sequences are based on 155 persons and
contain four normal i.e. covariate factor free sequences; test
sequences contain two sequences each for: normal (N), car-
rying a bag (B—consistent across database) and shoes i.e.
wearing over shoe covers (S)—see Fig. 10. Time-based test
sequences are also captured three months later and contain
16 persons in two sequences each for: time and normal (TN),
time and carrying a bag (TB) and time and shoes (TS); con-
versely these sequences contain coupled covariate factors i.e.
time and clothing given the change in weather season. Depth,
compared to RGB-based, silhouettes [30] are chosen given
their cleaner appearance due to ease of extraction. We focus
on persons captured from side views given their greater vis-
ibility of dynamic limb motion associated with a higher dis-
criminative nature and greater robustness [44]—this is com-
monplace in gait recognition. Viewpoint as a covariate factor
is another commonly, but often separately addressed, covari-
ate factor however the TUM GAID database considers side
views only (see Fig. 10).

5.2 Baseline and Comparable Representations

The Gait Energy Image (GEI) [27], seen in the leftmost col-
umn of Fig. 9, is our baseline and applies the same procedures
outlined in Sect. 4 however using the pixel-wise mean and
silhouettes in place of the pixel-wise variance and skeletons
respectively. This appearance-based representation permits
visualisation of static and dynamic information correspond-
ing to high and low pixel intensity values respectively. We
also present two new related representations for enhanced
comparison: Skeleton Energy Image (SEIM) and Gait Vari-
ance Image (GVI) seen in the middle left and middle right
columns of Fig. 9 respectively. The SEIM and GVI are anal-
ogous to SVIM and GEI respectively where the pixel-wise
mean replaces the pixel-wise variance and vice versa respec-
tively. These representations permits equal comparison of
appearance-based (GEI and SEIM) vs. motion-based (GVI
and SVIM) representations as well as silhouette (GEI and
GVI) vs. skeleton (SEIM and SVIM) representations.

5.3 Distance Function

We compare the behaviour of distance functions extracted via
the Poisson and screened and normalised Poisson equations.

5.4 Smoothing Parameter

Given smoothing parameter t dictates the skeleton thickness
produced by the screened Poisson distance function, demon-
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strated in Fig. 7, we therefore choose a broad range of values
to evaluate its effect on gait recognition: small values {t =
0.1, 0.5, 5} correspond to a thinner, more traditional look-
ing skeleton compared to large values {t = 10–90 in steps of
10} which correspond to a thicker skeleton tending towards
a silhouette appearance.

5.5 Dimensionality Reduction and Classification

The GEI, GVI, SEIM and SVIM serve as a means to rep-
resent gait (128 × 178—typical for the TUM GAID data-
base [31]) and describe gait when reshaped to a 1D feature
vector (22784D). Dimensionality reduction transforms the
feature vector into lower dimensional space (154D) by max-
imising variance and class separability with Principle Com-
ponent Analysis (PCA) and Linear Discriminant Analysis
(LDA) respectively [42]. Nearest Neighbour classification
utilises the cosine distance measure [31] where rank 1 and

rank 5 results are presented demonstrating the correct iden-
tity occurring first or in the top five matches respectively.
This dimensionality reduction and classification combina-
tion is commonly employed by approaches utilising single,
compact 2D gait representations like our baseline [27], and
is advantageous in situations where training sequences are
few.

6 Results and Discussion

6.1 Smoothing Parameter t Behaviour

We first consider at how t affects the performance of the
SEIM and SVIM representations seen in Fig. 11. Across
covariate factors we can see only the normal (N) and
shoe (S) sequences behave consistently across t which
may be attributed to their similarity to training sequences;
remaining sequences (B, TN, TB, TS) contain significant

Fig. 11 TUM GAID database
rank 1 performance with respect
to t for SEIM and SVIM
representations and sequences:
normal (N), carrying a bag (B),
shoes (S), time and normal
(TN), time and carrying a bag
(TB), time and shoes (TS),
weighted average
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Table 1 TUM GAID database rank 1 and rank 5 performance for repre-
sentations: GEI (baseline), and SEIM, GVI and SVIM, and sequences:
normal (N), carrying a bag (B), shoes (S), time and normal (TN), time

and carrying a bag (TB), time and shoes (TS), weighted average; dis-
tance functions are based on: Poisson, normalised Poisson and screened
Poisson schemes

Approach (Rank 1 %) N B S TN TB TS Weighted average

Appearance GEI (baseline) 99.7 19.0 96.5 34.4 0.0 43.8 67.4

SEIM (Poisson) 97.4 8.1 89.7 40.6 3.1 28.1 61.2

SEIM (normalised Poisson) 99.0 18.4 96.1 15.6 3.1 28.1 66.0

SEIM (screened Poisson - t = 0.5) 96.1 8.7 84.8 21.9 0.0 18.8 58.6

SEIM (screened Poisson - t = 5) 98.4 14.8 88.7 28.1 0.0 34.4 63.0

SEIM (screened Poisson - t = 50) 99.0 17.7 93.9 28.1 0.0 28.1 65.4

Motion GVI 99.0 47.7 94.5 62.5 15.6 62.5 77.3

SVIM (Poisson) 97.4 53.6 88.1 65.6 21.9 53.1 76.6

SVIM (normalised Poisson) 98.4 54.2 92.9 50.0 28.1 37.5 77.8

SVIM (screened Poisson - t = 0.5) 98.1 63.9 86.8 62.5 34.4 50.0 79.7

SVIM (screened Poisson - t = 5) 98.4 64.2 91.6 65.6 31.3 50.0 81.4

SVIM (screened Poisson - t = 50) 97.7 51.9 93.9 59.4 37.5 53.1 78.3

Approach (Rank 5 %) N B S TN TB TS Weighted average

Appearance GEI (baseline) 99.7 33.5 97.7 46.9 9.4 50.0 73.1

SEIM (Poisson) 99.4 15.8 93.6 46.9 6.3 46.9 66.2

SEIM (normalised Poisson) 99.7 32.6 98.7 34.4 6.3 37.5 72.2

SEIM (screened Poisson - t = 0.5) 98.1 16.5 91.6 31.3 0.0 34.4 64.3

SEIM (screened Poisson - t = 5) 99.7 26.1 93.2 37.5 6.3 50.0 69.1

SEIM (screened Poisson - t = 50) 99.7 35.2 96.8 37.5 12.5 43.8 72.9

Motion GVI 99.0 63.9 95.8 75.0 31.3 75.0 83.8

SVIM (Poisson) 98.1 72.6 92.6 75.0 37.5 78.1 85.5

SVIM (normalised Poisson) 99.0 73.6 95.5 71.9 43.8 71.9 86.8

SVIM (screened Poisson - t = 0.5) 99.4 82.6 94.8 75.0 46.9 71.9 89.7

SVIM (screened Poisson - t = 5) 99.4 79.4 94.8 75.0 53.1 65.6 88.7

SVIM (screened Poisson - t = 50) 98.1 70.0 94.5 78.1 50.0 68.8 85.5

silhouette-based appearance differences compared to train-
ing sequences and the resulting skeleton variations cause
covariate factors to prefer varying t . Given how differently
covariate factors effect silhouettes and therefore our skele-
tons, inconsistency with preferred t can be seen as advanta-
geous as we could more effectively target covariate factors—
especially should covariate factor detection be applied as a
future pre-processing stage.

We are currently interested in the weighted average perfor-
mance as we desire t which is most effective over a varying
range of covariate factors. First to notice is the significant per-
formance jump, regardless of covariate factor, from t = 0.1
to t = 0.5 which is attributed to t = 0.1 producing an overly
thin skeleton risking considerable segmentation at branch
points especially. Weighted average performance wise, we
can see a subtle performance trend where the SVIM and
SEIM decrease and increase respectively with larger t val-
ues; this is linked to the SVIM and SEIM preferring a thin-
ner, more traditional looking skeleton compared to a thicker

skeleton tending towards a skeleton appearance respectively.
We therefore suggest small (t = 5) value for the SVIM, how-
ever as pointed to us by one of the reviewers of the paper,
scaling the image Ω by a factor s (while keeping its resolu-
tion fixed) and assuming that the solution v(x) to (1) remains
invariant leads to scaling the smoothing parameter t by s2.
This means that in our current model no optimal t exists if
the image size and resolution are not specified—note that t
may also be database dependent.

6.2 Comparison to GEI Baseline

Table 1 compares rank 1 and rank 5 SVIM, SEIM, GVI and
GEI performances across covariate factors with respect to
Poisson, screened Poisson and normalised Poisson distance
functions. For this table we choose the screened Poisson dis-
tance function yielding the best weighted average perfor-
mance with respect to smoothing parameter t .

123



J Math Imaging Vis (2014) 50:314–326 323

Table 2 Existing versus proposed TUM GAID database performances: normal (N), carrying a bag (B), shoes (S), time and normal (TN), time and
carrying a bag (TB), time and shoes (TS), weighted average

Approach (Rank 1 %) N B S TN TB TS Weighted average

GEV [31] 94.2 13.9 87.7 41.0 0.0 31.0 61.4

DGHEI [31] 99.0 40.3 96.1 50.0 0.0 44.0 74.1

SVIM (proposed) 98.4 64.2 91.6 65.6 31.3 50.0 81.4

6.3 Covariate Factor Performance Trends

Normal (N) and shoe (S) sequences perform highly given
their appearance similarities to training sequences. Note the
shoe sequences cause little gait appearance and motion alter-
ations, whereas shoe types such as heels and flip flops may
cause greater alterations and subsequently cause increased
misclassification [10]. Bag carrying (B) sequences show
poorer performances given the significant appearance alter-
ations caused; bags appear as a mass of pixels around the
back or a bend in silhouettes and skeletons respectively, see
Fig. 9—note that bags also cause the body to lean due to
compensation for a shifted centre of gravity. Time-based
sequences (TN, TB, TS) cause significant issues performance
wise, halving performance in some cases; see [46] for further
information regarding time as a covariate factor during gait
recognition. The primary cause of misclassification is due to
appearance alterations caused by clothing which is a hidden
covariate factor given the time (months) between capture.
Clothing as a covariate factor is often addressed separately
e.g. in the CASIA B database [73,75]. Overall, these trends
apply to both appearance-based and motion-based, and sil-
houette and skeleton approaches.

6.4 Appearance- vs. Motion-Based Representations

We can see significant performance differences between
appearance-based and motion-based representations across
the database. Especially during time-based sequences,
motion-based representations often double that achieved
with appearance-based representations—this occurs given
gait motion is considerably more consistent over time com-
pared to gait appearance. This observation leads us to rec-
ommend motion-based representations given their ability to
overcome the majority and especially more complex real
world covariate factors presented by the database.

6.5 Silhouette vs. Skeleton Representations

A pattern exists where combining silhouette and appearance-
based representations (GEI) is favourable while skeleton and
motion-based representations (SVIM) is superior overall,
therefore this is what we recommend for gait recognition.

The SVIM is successful as it places emphasis on body motion
as opposed to covariate factor motion; for example, a ruck-
sack undergoes motion due to natural gait motion (visible
especially in the GVI in Fig. 9), where the skeleton repre-
sents the rucksack as a mere bend in the skeleton compared
to a mass of static and dynamic pixel values for silhouette
representations.

6.6 Distance Function Behaviour

While the distance function constructed from the normalised
Poisson provides performance increases over the Poisson, we
find the screened Poisson superior and is advantageous given
the tunable smoothing parameter t which provides a perfor-
mance boost. With respect to time, the Poisson distance func-
tion is the fastest and the normalised and screened Poisson
are successively slower to implement. However given our
gait recognition approach is not geared towards real-time
processing, we favour the screened Poisson for its superior
person discrimination.

6.7 General Recommendations

We have demonstrated the variance aspect of our SVIM to be
a useful tool during gait recognition given gait motion is more
consistent over time compared to gait appearance. The SVIM
paired with the screened Poisson distance function offers sig-
nificant flexibility due to the tunable smoothing parameter t .
Note that we only suggest a general recommendation for
smoothing parameter t instead of promoting an optimised
parameter explicitly due to how performance changes with
(a) silhouette quality e.g. missing head or limbs due to imper-
fect extraction, (b) silhouette creation i.e. RGB versus depth
images, (c) image size, (d) databases and even (e) appli-
cations. While this means we could achieve greater perfor-
mance with alternative smoothing parameters t , we have none
the less demonstrated the effectiveness of the SVIM with the
screened Poisson distance function.

7 Comparison to State of the Art

Table 2 compares our SVIM to state of the art approaches
including the Gait Energy Volume (GEV) [60] and Depth

123



324 J Math Imaging Vis (2014) 50:314–326

Gradient Histogram Energy Image (DGHEI) [29]. The GEV
is analogous to the GEI where 3D binary voxels are aver-
aged in place of 2D silhouettes, while the DGHEI aver-
ages Histograms of Oriented Gradients (HOG) [16] descrip-
tors captured during an image sequence. While the DGHEI
outranks the GEV due covariate factor generalisation, the
SVIM is superior overall, especially during time-based
sequences, primarily given gait motion is more consistent
over time compared to appearance; a 9.9% weighted aver-
age performance increase over the DGHEI exists due to
the combined efforts of skeleton and motion-based repre-
sentations achieving superior covariate factor handling and
generalisation.

8 Conclusion and Future Work

We have demonstrated an efficient approach to extract skele-
tons via the screened Poisson equation with tunable smooth-
ing parameter t . This combined with skeleton and motion-
based representations yields our proposed SVIM which is
capable of superior covariate factor generalisation despite the
tough time-based covariate factors posed by the TUM GAID
database. The SVIM owes its success due to (a) utilising gait
motion which is more consistent over time than gait appear-
ance and (b) skeletons which place emphasis on gait motion
as opposed to covariate factor motion for greater covariate
factor handling compared to silhouettes-based representa-
tions. Future work considers extension to action recognition
combined with more advanced learning and classification
tools (e.g. SVM).
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