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Abstract
In this paper, we introduce the notions of connexive and bi-intuitionistic multilattices
and develop on their base the algebraic semantics forKamide, Shramko, andWansing’s
connexive and bi-intuitionistic multilattice logics which were previously known in the
form of sequent calculi and Kripke semantics. We prove that these logics are sound
and complete with respect to the presented algebraic structures.

Keywords Connexive logic · Bi-intuitionistic logic · Multilattice logic · Algebraic
logic · Sequent calculi

1 Introduction

Shramko introduced multilattice logicMLn as a generalization of logics based on lat-
tices. In particular,MLn is a generalization of a class of many-valued logics based on
four-valued Belnap-Dunn’s logic of first degree entailment (Belnap, 1977a, b; Dunn,
1976) and its algebraic framework, De Morgan lattices. This class contains Arieli and
Avron’s four-valued bilattice logic (Arieli & Avron, 1996), Shramko and Wansing’s
sixteen-valued trilattice logic (Shramko&Wansing, 2005), and Zaitsev’s eight-valued
tetralattice logic (Zaitsev, 2009). Multilattice logic is based on the notion of n-lattice
(multilattice), i.e., a lattice with n orders and some required relations between them.
The algebraic completeness theorem forMLn was only formulated in Shramko (2016),
the proof was found later in Grigoriev and Petrukhin (2019b). The family of multi-
lattice logics contains not only MLn , but its several modifications: bi-intuitionistic
multilattice logic BMLn and its connexive versionCMLn (Kamide et al., 2017), first-
order multilattice logic FMLn (Kamide & Shramko, 2017b), modal multilattice logic
MMLn (Kamide & Shramko, 2017a) and its modificationsMMLMNT4

n ,MMLS4
n , and

MMLS5
n (Grigoriev & Petrukhin, 2021, 2019a) as well as congruent and monotonic
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modal multilattice logics (Grigoriev & Petrukhin, 2022), a fragment of MLn , called
MLLn , determined by logical multilattices (MLn itself is determined by ultralogi-
cal multilattices) (Grigoriev & Petrukhin, 2022), linear multilattice logics EMLn and
LMLn (Kamide, 2019), and alternative multilattice logics SMn and IMn (Kamide,
2021). The algebraic completeness theorem has been established forMLn andMMLn

in Grigoriev and Petrukhin (2019b), for MMLMNT4
n , MMLS4

n , and MMLS5
n in Grig-

oriev and Petrukhin (2021), for congruent and monotonic modal multilattice logics
and MLLn in Grigoriev and Petrukhin (2022), for SMn and IMn in Kamide (2021).

However, for a few members of the multilattice family of logics, the algebraic
completeness theorem has not been established yet. Among such logics are connexive
multilattice logic CMLn and bi-intuitionistic multilattice logic BMLn . These two
logics are considered a pair since CMLn is a connexive version of BMLn . BMLn

is a multilattice version of bi-intuitionistic logic BiInt introduced by Rauszer (1974,
1977, 1980);CMLn is a multilattice version of bi-intuitionistic connexive logic BCL
introduced by Wansing (2008) as one of sixteen variants of bi-intuitionistic logic and
separately studied later by Kamide and Wansing (2016).

Kamide et al. (2017) formulated BMLn and CMLn in the form of sequent calculi
(based on sequent calculi for BiInt and BCL offered in Kamide and Wansing (2016))
and Kripke-style semantics (based on Rauszer’s semantics for BiInt (Rauszer, 1977,
1980)), but algebraic semantics has not been developed. Moreover, the notions of bi-
intuitionistic and connexivemultilattices have not been introduced. This paper fills this
gap: we introduce such notions and prove that sequent calculi for BMLn and CMLn

are sound and complete with respect to bi-intuitionistic and connexive multilattices.
Additionally, we show how the notions of bi-intuitionistic and connexive multilattices
can be modified to get an alternative algebraic semantics for MLn and MLLn .

The structure of the paper is as follows. The next section is devoted to the prelimi-
naries regarding algebraic aspects of our topic. Section3 describes Kamide, Shramko,
and Wansing’s sequent calculi for the logics in question. In Sect. 4, we introduce the
notions of connexive and bi-intuitionistic multilattices. Section5 contains a proof of
the algebraic completeness theorem. Section6 consists of concluding remarks.

2 Preliminaries

We begin with some preliminaries about lattices, following their presentation in Dunn
and Restall (2002).

Definition 2.1 (Lattice) A lattice is a structure 〈L,∩,∪〉, where L is a non-empty set
and ∩ and ∪ are binary operations on L , with the relation a � b defined as a ∩ b = a.
Postulates characterising the operations are as follows, for each a, b ∈ L:

• Idempotence: a ∩ a = a, a ∪ a = a
• Commutativity: a ∩ b = b ∩ a, a ∪ b = b ∪ a
• Associativity: a ∩ (b ∩ c) = (a ∩ b) ∩ c, a ∪ (b ∪ c) = (a ∪ b) ∪ c
• Absorption: a ∩ (a ∪ b) = a, a ∪ (a ∩ b) = a.

Definition 2.2 (Distributive lattice) 〈L,∩,∪〉 is a distributive lattice iff it is a lattice
satisfying the following postulate, for any a, b, c ∈ L: a ∩ (b ∪ c) � (a ∩ b) ∪ c.
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Multilattices generalize the notion of lattice.We are ready now to present the notion
of a multilattice and some other important related notions.

Definition 2.3 (Multilattice) (p. 204, Definition 4.1, Shramko 2016)

1. A multilattice (or n-lattice, or n-dimensional multilattice) is a structure Mn =
〈S,�1, . . . ,�n〉, where n > 1, S �= ∅, �1, . . . ,�n are partial orderings such that
〈S,�1〉, . . . , 〈S,�n〉 are lattices with the corresponding pairs of meet and join
operations 〈∩1,∪1〉, . . . , 〈∩n,∪n〉.

2. A multilattice is called complete iff all meets and joins exist, with respect to all n
orderings.

3. A multilattice is called interlaced iff each of the operations ∩1,∪1, . . . ,∩n,∪n is
monotone with respect to all n orderings.

4. A multilattice is called distributive iff all 2(2n2−n) distributive laws are satisfied,
i.e.a⊗(b⊕c) = (a⊗b)⊕(a⊗c),wherea, b, c ∈ S,⊗,⊕ ∈ {∪1,∩1, . . . ,∪n,∩n},
and ⊗ �= ⊕.

Remark 2.4 In what follows, we are going to deal with complete, interlaced, and dis-
trubutive multilattices exclusively in our research.

Definition 2.5 (Multilattice with inversions) (p. 204, Definition 4.2, Shramko 2016)
LetMn = 〈S,�1, . . . ,�n〉 be a multilattice. Then for any j � n an unary operation
− j on S is said to be a (pure) j-inversion iff for any k � n, k �= j the following
conditions are satisfied, where a, b ∈ S:

a � j b implies − j b � j − j a; (anti)

a �k b implies − j a �k − j b; (iso)

− j− j a = a. (per2)

Definition 2.6 (Multifilter) (p. 207, Definition 5.1, Shramko 2016) LetMn = 〈S,�1
, . . . ,�n〉 be a multilattice, with pairs of meet and join operations 〈∩1,∪1〉, . . . ,
〈∩n,∪n〉. Fn ⊂ S is a multifilter on Mn iff the following condition holds, for each
j, k � n, j �= k, and a, b ∈ S:

a ∩ j b ∈ Fn iff a ∈ Fn and b ∈ Fn; (filter)

A multifilter Fn is a prime multifilter onMn iff the following condition holds, for
each j, k � n, j �= k, and a, b ∈ S:

a ∪ j b ∈ Fn iff a ∈ Fn or b ∈ Fn . (prime)

Definition 2.7 (Logical multilattice) (p. 207, Definition 5.1, Shramko 2016) A pair
〈Mn,Fn〉 is a logical multilattice iffMn = 〈S,�1, . . . ,�n〉 is a multilattice and Fn

is a prime multifilter.
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Definition 2.8 (Ultramultifilter, ultralogical multilattice) (p. 207–208, Definition 5.2,
Shramko 2016) Let Mn = 〈S,�1, . . . ,�n〉 be a multilattice, with j-inversions
defined with respect to every � j ( j � n). Then Fn is an n-ultrafilter (ultramulti-
filter) on Mn iff it is a prime multifilter, such that for every j, k � n, j �= k, and
a ∈ S:

a ∈ Un iff −k− j a /∈ Un . (ultra)

A pair 〈Mn,Un〉 is an ultralogical multilattice iff Mn is a multilattice and Un is
an ultramultifilter.

Definition 2.9 (Language)The formulas ofMLn ,BMLn , andCMLn are built from the
set P = {pn | n ∈ N} of propositional variables, negations ¬1, . . . ,¬n , conjunctions
∧1, . . . ,∧n , disjunctions∨1, . . . ,∨n , implications→1, . . . ,→n , and co-implications
←1, . . . ,←n . The notion of a formula is defined in a standard inductive way.

Definition 2.10 (Valuation in MLn) Let Mn = 〈S,�1, . . . ,�n〉 be a multilattice. A
valuation v is defined as amapping fromP to S. It is extended into complex formulas as
follows: v(¬ j A) = − jv(A), v(A∧ j B) = v(A)∩ j v(B), v(A∨ j B) = v(A)∪ j v(B),
v(A → j B) = −k− jv(A) ∪ j v(B), and v(A ← j B) = v(A) ∩ j −k− jv(B).

Remark 2.11 This definition of the valuation for implications and co-implications is
applicable only to the case of ultralogical multilattices andMLn (as well as its modal
extensions studied in Grigoriev and Petrukhin (2019b, 2021, 2022)). We will need
another definition for these connectives for the case of BMLn and CMLn .

Definition 2.12 (Entailment in MLn) The entailment relation in MLn is defined as
follows:
� |�MLn � iff for each ultralogical multilattice 〈Mn,Un〉 and each valuation v, it
holds that if v(C) ∈ Un , for each C ∈ �, then v(D) ∈ Un , for some D ∈ �.

Definition 2.13 (Entailment inMLLn) The entailment relation inMLLn is defined as
follows:
� |�MLLn � iff for each logical multilattice 〈Mn,Un〉 and each valuation v, it holds
that if v(C) ∈ Un , for each C ∈ �, then v(D) ∈ Un , for some D ∈ �.

Remark 2.14 In MLn if j, k � n and j �= k, then ¬k¬ j A is equivalent to ¬ j¬k A;
¬k¬ j behaves as Boolean negation. In BMLn and CMLn , if j, k � n, j �= k, and
j < k, then ¬ j¬k A behaves as intuitionistic negation and ¬k¬ j A behaves as dual
intuitionistic negation. In all the logics in question A is equivalent to ¬ j¬ j A and ¬ j

behaves as De Morgan negation.

3 Sequent Calculi

Let us describeKamide, Shramko, andWansing’s sequent calculus for the logicCMLn

Kamide et al. (2017). A sequent is understood as an ordered pair written as � ⇒ �,
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where � and � are finite sets of formulas. The axioms, for any propositional variable
P:

(Ax)P ⇒ P (Ax¬)¬ j P ⇒ ¬ j P

The structural rules:

(Cut)
� ⇒ �, A A,� ⇒ �

�,� ⇒ �,�
(W ⇒)

� ⇒ �

A, � ⇒ �
(⇒ W )

� ⇒ �

� ⇒ �, A

The non-negated logical rules:

(∧ j ⇒)
A, B, � ⇒ �

A ∧ j B, � ⇒ �
(⇒ ∧ j )

� ⇒ �, A � ⇒ �, B

� ⇒ �, A ∧ j B

(∨ j ⇒)
A, � ⇒ � B, � ⇒ �

A ∨ j B, � ⇒ �
(⇒ ∨ j )

� ⇒ �, A, B

� ⇒ �, A ∨ j B

(→ j ⇒)
� ⇒ �, A B,� ⇒ �

A → j B, �,� ⇒ �,�
(⇒ → j )

A, � ⇒ B

� ⇒ A → j B

(← j ⇒)
A ⇒ �, B

A ← j B ⇒ �
(⇒ ← j )

� ⇒ �, A B,� ⇒ �

�,� ⇒ �,�, A ← j B

The j j-negated logical rules:

(¬ j∧ j ⇒)
¬ j A, � ⇒ � ¬ j B, � ⇒ �

¬ j (A ∧ j B), � ⇒ �
(⇒ ¬ j∧ j )

� ⇒ �,¬ j A,¬ j B

� ⇒ �,¬ j (A ∧ j B)

(¬ j∨ j ⇒)
¬ j A,¬ j B, � ⇒ �

¬ j (A ∨ j B), � ⇒ �
(⇒ ¬ j∨ j )

� ⇒ �,¬ j A � ⇒ �,¬ j B

� ⇒ �,¬ j (A ∨ j B)

(¬ j→c
j ⇒)

� ⇒ �, A ¬ j B,� ⇒ �

¬ j (A → j B), �,� ⇒ �,�
(⇒ ¬ j→c

j )
A, � ⇒ ¬ j B

� ⇒ ¬ j (A → j B)

(¬ j←c
j ⇒)

¬ j A ⇒ �, B

¬ j (A ← j B) ⇒ �
(⇒ ¬ j←c

j )
� ⇒ �,¬ j A B,� ⇒ �

�,� ⇒ �,�,¬ j (A ← j B)

(¬ j¬ j ⇒)
A, � ⇒ �

¬ j¬ j A, � ⇒ �
(⇒ ¬ j¬ j )

� ⇒ �, A

� ⇒ �,¬ j¬ j A

The kj -negated logical rules (we presuppose that j < k in the case of the rules for
¬ j¬k and ¬k¬ j ):

(¬k∧ j ⇒)
¬k A,¬k B, � ⇒ �

¬k(A ∧ j B), � ⇒ �
(⇒ ¬k∧ j )

� ⇒ �,¬k A � ⇒ �,¬k B

� ⇒ �,¬k(A ∧ j B)

(¬k∨ j ⇒)
¬k A, � ⇒ � ¬k B, � ⇒ �

¬k(A ∨ j B), � ⇒ �
(⇒ ¬k∨ j )

� ⇒ �,¬k A,¬k B

� ⇒ �,¬k(A ∨ j B)

(¬k→ j ⇒)
� ⇒ �,¬k A ¬k B,� ⇒ �

¬k(A → j B), �,� ⇒ �,�
(⇒ ¬k→ j )

¬k A, � ⇒ ¬k B

� ⇒ ¬k(A → j B)
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(¬k← j ⇒)
¬k A ⇒ �,¬k B

¬k(A ← j B),⇒ �
(¬k← j ⇒)

� ⇒ �,¬k A ¬k B,� ⇒ �

�,� ⇒ �,�,¬k(A ← j B)

(¬ j¬k ⇒)
� ⇒ A

¬ j¬k A, � ⇒ (⇒ ¬ j¬k)
A, � ⇒

� ⇒ ¬ j¬k A

(¬k¬ j ⇒)
⇒ �, A

¬k¬ j A ⇒ �
(⇒ ¬k¬ j )

A ⇒ �

⇒ �,¬k¬ j A

Kamide, Shramko, andWansing’s sequent calculus forBMLn Kamide et al. (2017)
is obtained from the sequent calculus for CMLn by the replacement of the rules
(¬ j→c

j ⇒), (⇒ ¬ j→c
j ), (¬ j←c

j ⇒), and (⇒ ¬ j←c
j ) with the following ones:

(¬ j→b
j ⇒)

¬ j B ⇒ �,¬ j A

¬ j (A → j B) ⇒ �
(⇒ ¬ j→b

j )
� ⇒ �,¬ j B ¬ j A,� ⇒ �

�,� ⇒ �,�,¬ j (A → j B)

(¬ j←b
j ⇒)

� ⇒ �,¬ j B ¬ j A,� ⇒ �

¬ j (A ← j B), �,� ⇒ �,�
(⇒ ¬ j←b

j )
¬ j B, � ⇒ ¬ j A

� ⇒ ¬ j (A ← j B)

Let L ∈ {CMLn,BMLn}. We write �L � ⇒ � iff there is a proof of the sequent
� ⇒ � in the sequent calculus for the logic L. The notion of the proof is defined in a
standard manner for sequent calculi.

These calculi are multilattice versions of a sequent calculus BL for bi-intuitionistic
logic and a sequent calculus BCL for bi-intuitionistic connexive logic, respectively,
developed by Kamide and Wansing (2016). As mentioned in Kamide et al. (2017),
since the cut-elimination theorem does not hold for BCL andBL (Kamide&Wansing,
2016), the cut-elimination theorem also does not hold for CMLn and BMLn .

To obtainKamide and Shramko (2017b) sequent calculus forMLn from the sequent
calculus for BMLn one needs to change the rules of which have only one formula in
ancedent or consequent of a sequent: this restriction should be rejected; the rules for
¬ j¬k and ¬k¬ j will coincide, the condition that in their formulation j < k, should
be omitted. The sequent calculus for MLn is cut-free (Kamide & Shramko, 2017b).

To obtain the sequent calculus for the logic MLLn from (Grigoriev & Petrukhin,
2022) from the sequent calculus for MLn one needs to delete the rules for ¬ j¬k

(¬k¬ j ) as well as all the rules for implications, coimplications, and their negations.
The sequent calculus forMLLn is cut-free (Grigoriev & Petrukhin, 2022).

4 Connexive and Bi-Intuitionistic Multilattices

Definition 4.1 (De Morgan multifilter) Let Mn = 〈S,�1, . . . ,�n〉 be a multilattice
(cf. Definition 2.3) and Fn be a prime multifilter onMn (cf. Definition 2.6). Then for
any j � n an unary operation − j on S is said to be a j-pseudo-inversion and Fn is
called De Morgan multifilter iff for any k � n, k �= j the following conditions are
satisfied, where a, b ∈ S:

− j (a ∩ j b) ∈ F iff − j a ∪ j − j b ∈ F; (DM1)
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− j (a ∪ j b) ∈ F iff − j a ∩ j − j b ∈ F; (DM2)

−k (a ∩ j b) ∈ F iff −k a ∩ j −kb ∈ F; (DM3)

−k (a ∪ j b) ∈ F iff −k a ∪ j −kb ∈ F; (DM4)

− j− j a ∈ F iff a ∈ F . (per2)

A De Morgan multifilter Fn is called De Morgan ultramultifilter iff it satisifes
the condition (ultra). A pair 〈Mn,Fn〉 is called De Morgan logical (resp. ultralog-
ical) multilattice iff Mn is a multilattice and Fn is a De Morgan multifilter (resp.
ultramultifilter).

Definition 4.2 (Connexive multilattice and connexive multifilter) Let Mn = 〈S,�1,

. . . ,�n〉 be a multilattice with the j-pseudo-inversion operations −1, . . . ,−n and Fn

be a De Morgan multifilter. Then for any j, k � n such that j �= k the corresponding
pairs 〈⊃1,⊂1〉, . . . , 〈⊃n,⊂n〉 of binary operations called relative pseudo-complement
and relative pseudo-difference operations are defined as follows, where a, b, c ∈ S
and j < k in the conditions (− j−k) and (−k− j ):

c ∈ Fn implies a ⊃ j b ∈ Fn iff a ∩ j c ∈ Fn implies b ∈ Fn; (⊃ j )

a ⊂ j b ∈ Fn implies c ∈ Fn iff a ∈ Fn implies b ∪ j c ∈ Fn; (⊂ j )

c ∈ Fn implies − j (a ⊃ j b) ∈ Fn iff a ∩ j c ∈ Fn implies − j b ∈ Fn; (− j⊃c
j )

− j (a ⊂ j b) ∈ Fn implies c ∈ Fn iff − j a ∈ Fn implies b ∪ j c ∈ Fn; (− j⊂c
j )

c ∈ Fn implies −k (a ⊃ j b) ∈ Fn iff −k a ∩ j c ∈ Fn implies −k b ∈ Fn;
(−k⊃ j )

−k(a ⊂ j b) ∈ Fn implies c ∈ Fn iff −k a ∈ Fn implies −k b ∪ j c ∈ Fn;
(−k⊂ j )

− j−ka ∈ Fn iff a ⊃k (a ⊂k a) ∈ Fn; (− j−k)

−k− j a ∈ Fn iff (a ⊃k a) ⊂k a ∈ Fn . (−k− j )

A multilattice Mn is called connexive iff Mn is a multilattice with the j-pseudo-
inversion operations −1, . . . ,−n and the pairs 〈⊃1,⊂1〉, . . . , 〈⊃n,⊂n〉 of relative
pseudo-complement and relative pseudo-difference operations (where j, k � n and
j �= k). A De Morgan multifilter Fn is called a connexive multifilter iff it satisfies the
above presented conditions. A pair 〈Mn,Fn〉 is called connexive logical multilattice
iffMn is a connexive multilattice and Fn is a connexive multifilter.

Definition 4.3 (Bi-intuitionistic multilattice and bi-intuitionistic multifilter)
Bi-intuitionisticmultilattice, multiliter, logical multilattice satisfy all those conditions
which hold for their connexive counterparts, except (− j⊃c

j ) and (− j⊂c
j ), as well as

satisfy the following ones, for each j, k � n, j �= k, and a, b, c ∈ S:
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− j (a ⊃ j b) ∈ Fn implies c ∈ Fn iff − j b ∈ Fn implies − j a ∪ j c ∈ Fn;
(− j⊃b

j )

c ∈ Fn implies − j (a ⊂ j b) ∈ Fn iff − j b ∩ j c ∈ Fn implies − j a ∈ Fn .

(− j⊂b
j )

Definition 4.4 (Valuation in CMLn and BMLn) Let Mn = 〈S,�1, . . . ,�n〉 be a
connexive (resp. bi-intuitionistic) multilattice. A valuation v is defined as a mapping
from P to S. It is extended into complex formulas as follows: v(¬ j A) = − jv(A),
v(A ∧ j B) = v(A) ∩ j v(B), v(A ∨ j B) = v(A) ∪ j v(B), v(A → j B) = v(A) ⊃ j

v(B), and v(A ← j B) = v(A) ⊂ j v(B).

Definition 4.5 (Entailment in CMLn and BMLn) The entailment relation in CMLn

and BMLn is be defined as follows, for any finite sets of formulas � and �:

• � |�CMLn � iff for each logical connexive multilattice 〈Mn,Fn〉 and each val-
uation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �.

• � |�BMLn � iff for each logical bi-intuitionistic multilattice 〈Mn,Fn〉 and each
valuation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �.

For any finite sets of formulas � and �, we write
∧

j � for the j-conjunction of all
formulas from � and

∨
j � for the j-disjunction of all formulas from�. If

∧
j � = ∅,

then
∧

j � = p ⊂ j p. If
∨

j � = ∅, then ∨
j � = p ⊃ j p.

Definition 4.6 (Validity of sequents. The case ofCMLn andBMLn)A sequent� ⇒ �

is valid in the logic L ∈ {CMLn,BMLn} (symbolically, |�L � ⇒ �) iff � |�L �.

In a similar fashion, modifying the above presented algebraic semantics forCMLn

and BMLn , we can propose an alternative algebraic semantics for the sequent calculi
forMLn and MLLn .

Definition 4.7 (Classical multilattice and classical multifilter) Let Mn = 〈S,�1,

. . . ,�n〉 be a multilattice with the j-pseudo-inversion operations −1, . . . ,−n and Fn

be a De Morgan ultramultifilter. Then for any j, k � n such that j �= k the pairs
〈⊃1,⊂1〉, . . . , 〈⊃n,⊂n〉 of binary operations called pseudo-complement and pseudo-
difference operations are defined as follows, where a, b, c ∈ S:

a ⊃ j b ∈ Fn iff −k− j a ∪ j b ∈ Fn; (⊃′
j )

a ⊂ j b ∈ Fn iff a ∩ j −k− j b ∈ Fn; (⊂′
j )

− j (a ⊃ j b) ∈ Fn iff − j b ⊂ j − j a ∈ Fn; (− j⊃′
j )

− j (a ⊂ j b) ∈ Fn iff − j b ⊃ j − j a ∈ Fn; (− j⊂′
j )

−k(a ⊃ j b) ∈ Fn iff −k a ⊃ j −kb ∈ Fn; (−k⊃ j
′)
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−k(a ⊂ j b) ∈ Fn iff −k a ⊂ j −kb ∈ Fn . (−k⊂ j
′)

A multilattice Mn is called classical iff Mn is a multilattice with the j-pseudo-
inversion operations −1, . . . ,−n and the pairs 〈⊃1,⊂1〉, . . . , 〈⊃n,⊂n〉 of pseudo-
complement and pseudo-difference operations (where j, k � n and j �= k). A De
Morgan ultramultifilter Fn is called a classical ultramultifilter iff it satisfies the above
presented conditions. A pair 〈Mn,Fn〉 is called classical ultralogical multilattice iff
Mn is a classical multilattice and Fn is a classical ultramultifilter.

Definition 4.8 (Entailment in MLn and MLLn) The entailment relation in MLn and
MLLn can be defined as follows, for any finite sets of formulas � and �1:

• � |�A
MLn

� iff for each ultralogical classical multilattice 〈Mn,Fn〉 and each
valuation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �.

• � |�A
MLLn

� iff for each logical De Morgan multilattice 〈Mn,Fn〉 and each
valuation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �.

Definition 4.9 (Validity of sequents. The case ofMLn andMLLn) A sequent � ⇒ �

is valid in the logic L ∈ {MLn,MLLn} (symbolically, |�L � ⇒ �) iff � |�A
L �.

5 Soundness and Completeness Proofs

Lemma 5.1 All the rules of the sequent calculus for CMLn are sound with respect to
logical connexive multilattices.

Proof Consider the rule (⇒ ¬ j∧ j ). Suppose |�CMLn � ⇒ �,¬ j A,¬ j B. Thus,
for each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it holds that if
v(C) ∈ Fn , for eachC ∈ �, then v(D) ∈ Fn , for some D ∈ �∪{¬ j A,¬ j B}. Assume
that v(C) ∈ Fn , for each C ∈ �. Thus, v(D) ∈ Fn , for some D ∈ � ∪ {¬ j A,¬ j B}.
If v(D) ∈ Fn , for some D ∈ �, then |�CMLn � ⇒ �,¬ j (A ∧ j B). If v(D) ∈ Fn ,
for some D ∈ {¬ j A,¬ j B}, that is v(¬ j A) ∈ Fn or v(¬ j B) ∈ Fn , then, since Fn is
prime, v(¬ j A) ∪ j v(¬ j B) ∈ Fn . By Definition 4.4, − jv(A) ∪ j − jv(B) ∈ Fn . By
(DM1),− j (v(A)∩ j v(B)) ∈ Fn . By Definition 4.4, v(¬ j (A∧ j B)) ∈ Fn . Therefore,
|�CMLn � ⇒ �,¬ j (A ∧ j B).

Consider the rule (⇒ ¬k∧ j ). Suppose that |�CMLn � ⇒ �,¬k A and |�CMLn

� ⇒ �,¬k B. Then for each logical connexive multilattice 〈Mn,Fn〉 and each val-
uation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �∪{¬k A} as well as for each logical connexive multilattice 〈Mn,Fn〉 and each
valuation v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some
D ∈ �∪{¬k B}. Assume that v(C) ∈ Fn , for eachC ∈ �. Thus, v(D) ∈ Fn , for some
D ∈ � ∪ {¬k A} as well as v(D) ∈ Fn , for some D ∈ � ∪ {¬k B}. If v(D) ∈ Fn , for
some D ∈ �, then |�CMLn � ⇒ �,¬k(A∧ j B). If v(¬k A) ∈ Fn and v(¬k B) ∈ Fn ,

1 (A in |�A emphasize the fact that we deal with an alternative algebraic semantics in order not to confuse
it with the original one, cf. Definitions 2.12 and 2.13)
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then, since Fn is a filter, v(¬k A) ∩ j v(¬k B) ∈ Fn . By Definition 4.4 and (DM3),
¬kv(A ∧ j B) ∈ Fn . Thus, |�CMLn � ⇒ �,¬k(A ∧ j B).

The cases of the other rules for ∨ j , ∧ j , ¬ j∨ j , ¬ j∧ j , ¬k∨ j , and ¬k∧ j are consid-
ered similarly with the help of the fact that ∪ j and ∩ j are lattice operations and with
the use of (DM1)–(DM4). The rules for ¬ j¬ j are easily checked due to (per2).

Consider the rule (⇒→ j ). Suppose that |�CMLn A, � ⇒ B. Then for each logical
connexive multilattice 〈Mn,Fn〉 and each valuation v, it holds that if v(C) ∈ Fn ,
for each C ∈ � ∪ {A}, then v(B) ∈ Fn . Since Fn is a multifilter, we conclude that
for each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it holds that
if v(A ∧ j

∧
j �) ∈ Fn , then v(B) ∈ Fn . Using Definition 4.4 and (⊃ j ), we infer that

for each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it holds that
if v(

∧
j �) ∈ Fn , then v(A → j B) ∈ Fn . Hence, |�CMLn � ⇒ A → j B.

Consider the rule (→ j⇒). Suppose that |�CMLn � ⇒ �, A and |�CMLn B,� ⇒
�. Then, for each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it
holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some D ∈ � ∪ {A};
as well as for each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it
holds that if v(C) ∈ Fn , for each C ∈ � ∪ {B}, then v(D) ∈ Fn , for some D ∈ �.
SinceFn is a primemultifilter, we have that for any valuation v, if v(

∧
j �) ∈ Fn , then

v(
∨

j �) ∈ Fn or v(A) ∈ Fn ; if v(B) ∈ Fn and v(
∧

j �) ∈ Fn , then v(
∨

j �) ∈ Fn .
Assume that v(A → j B), v(

∧
j �), v(

∧
j �) ∈ Fn . Therefore, v(

∨
j �) ∈ Fn or

v(A) ∈ Fn . If v(
∨

j �) ∈ Fn , then |�CMLn A → j B, �,� ⇒ �,�. If v(A) ∈ Fn ,
then v(B) ∈ Fn , since v(A → j B) ∈ Fn (this is a consequence of (⊃ j )). Since v(B) ∈
Fn and v(

∧
j �) ∈ Fn , then v(

∨
j �) ∈ Fn . Thus, |�CMLn A → j B, �,� ⇒ �,�.

Consider the rule (¬ j←c
j ⇒). Suppose that |�CMLn ¬ j A ⇒ �, B. Then, for

each logical connexive multilattice 〈Mn,Fn〉 and each valuation v, it holds that if
v(¬ j A) ∈ Fn , then v(D) ∈ Fn , for some D ∈ �∪{B}. SinceFn is a primemultifilter,
v(¬ j A) ∈ Fn implies v(

∨
j �) ∪ j v(B) ∈ Fn . By Definition 4.4 and (− j⊂c

j ),
v(¬ j (A ← j B)) ∈ Fn implies v(

∨
j �) ∈ Fn . Hence, ¬ j (A ← j B) |�CMLn �.

Consider the rule (⇒ ¬ j←c
j ). Suppose that |�CMLn � ⇒ �,¬ j A and |�CMLn

B,� ⇒ �. Then, for each logical connexivemultilattice 〈Mn,Fn〉 and each valuation
v, it holds that if v(C) ∈ Fn , for each C ∈ �, then v(D) ∈ Fn , for some D ∈
� ∪ {¬ j A}; as well as for each logical connexive multilattice 〈Mn,Fn〉 and each
valuation v, it holds that if v(C) ∈ Fn , for each C ∈ � ∪ {B}, then v(D) ∈ Fn ,
for some D ∈ �. Suppose that v(

∧
j �), v(

∧
j �) ∈ Fn . Then v(

∨
j �) ∈ Fn or

v(¬ j A) ∈ Fn . If v(
∨

j �) ∈ Fn , then |�CMLn �,� ⇒ �,�,¬ j (A ← j B). If
v(¬ j A) ∈ Fn , then v(¬ j (A ← j B)) ∈ Fn or v(B) ∈ Fn (this is a consequence
of (− j⊃c

j )). If v(¬ j (A ← j B)) ∈ Fn , then |�CMLn �,� ⇒ �,�,¬ j (A ← j B).
If v(B) ∈ Fn , then v(

∨
j �) ∈ Fn , since v(

∧
j �) ∈ Fn ; v(

∨
j �) ∈ Fn implies

|�CMLn �,� ⇒ �,�,¬ j (A ← j B).
The rules for← j ,¬ j→ j ,¬k→k ,¬k←k ,¬ j¬k , and¬k¬ j are considered similarly,

use the conditions (⊂ j ), (− j⊃c
j ), (−k⊃ j ), (−k⊂ j ), (− j−k), and (−k− j ), respectively.

��
Lemma 5.2 All the rules of the sequent calculus for BMLn are sound with respect to
logical bi-intuitionistic multilattices.
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Proof For most of the rules the proof is the same as in Lemma 5.1, for the rules for
¬ j→ j and ¬ j← j use the conditions (− j⊃b

j ) and (− j⊂b
j ). ��

Theorem 5.3 (Soundness) Let L ∈ {BMLn,CMLn}. For every pair of finite sets of
formulas � and �, it holds that if L � � ⇒ �, then � |�L �.

Proof By the fact that both axioms of L are valid, and the induction on the length of
derivation with the help of Lemmas 5.1 and 5.2. ��
Definition 5.4 (Class of equivalence) The class of equivalence [A] of a formula A is the
set of formulas {B | L � A ⇒ B and L � B ⇒ A and L � ¬ j A ⇒ ¬ j B and L �
¬ j B ⇒ ¬ j A}, for any j � n, where L ∈ {BMLn,CMLn}. The class of equivalence
[�] of a set of formulas � is the set {[C] | C ∈ �}.
Definition 5.5 (Lindenbaum-Tarski algebra) A Lindenbaum-Tarski algebra
(LT-algebra) is a structure ML

n = 〈[F ],�1, . . . ,�n〉, where L ∈ {BMLn,CMLn}
and F is the set of all formulas, which satisfies the following conditions, for any
formulas A, B ∈ F :

[A] � j [B] iff [A] = [A ∧ j B];
− j [A] = [¬ j A];

[A] ∩ j [B] = [A ∧ j B];
[A] ∪ j [B] = [A ∨ j B];
[A] ⊃ j [B] = [A → j B];
[A] ⊂ j [B] = [A ← j B].

Fact 5.6 Let L ∈ {BMLn,CMLn}. For any formulas A and B, any j � n, it holds
that

• L � A ⇒ B, L � B ⇒ A, L � ¬ j A ⇒ ¬ j B, and L � ¬ j B ⇒ ¬ j A iff
[A] = [B];

• L � A ⇒ B and L � ¬ j B ⇒ ¬ j A iff [A] � j [B].
Lemma 5.7 The following sequents are provable in L ∈ {CMLn,BMLn}, where
j, k � n and in (10) and (11) we suppose that j < k:

(1) A ∧ j A ⇒ A; A ⇒ A ∧ j A; ¬k(A ∧ j A) ⇒ ¬k A; ¬k A ⇒ ¬k(A ∧ j A);
(2) A ∨ j A ⇒ A; A ⇒ A ∨ j A; ¬k(A ∨ j A) ⇒ ¬k A; ¬k A ⇒ ¬k(A ∨ j A);
(3) A ∧ j B ⇒ B ∧ j A; B ∧ j A ⇒ A ∧ j B; ¬k(A ∧ j B) ⇒ ¬k(B ∧ j A);

¬k(B ∧ j A) ⇒ ¬k(A ∧ j B);
(4) A ∨ j B ⇒ B ∨ j A; B ∨ j A ⇒ A ∨ j B; ¬k(A ∨ j B) ⇒ ¬k(B ∨ j A);

¬k(B ∨ j A) ⇒ ¬k(A ∨ j B);
(5) A∧ j (B ∧ j C) ⇒ (A∧ j B)∧ j C; (A∧ j B)∧ j C ⇒ A∧ j (B ∧ j C); ¬k(A∧ j

(B∧ j C)) ⇒ ¬k((A∧ j B)∧ j C); ¬k((A∧ j B)∧ j C) ⇒ ¬k(A∧ j (B∧ j C));
(6) A∨ j (B ∨ j C) ⇒ (A∨ j B)∨ j C; (A∨ j B)∨ j C ⇒ A∨ j (B ∨ j C); ¬k(A∨ j

(B∨ j C)) ⇒ ¬k((A∨ j B)∨ j C); ¬k((A∨ j B)∨ j C) ⇒ ¬k(A∨ j (B∨ j C));
(7) A∧ j (A∨ j B) ⇒ A; A ⇒ A∧ j (A∨ j B); ¬k(A∧ j (A∨ j B)) ⇒ ¬k A; ¬k A ⇒

¬k(A ∧ j (A ∨ j B));
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(8) A∨ j (A∧ j B) ⇒ A; A ⇒ A∨ j (A∧ j B); ¬k(A∨ j (A∧ j B)) ⇒ ¬k A; ¬k A ⇒
¬k(A ∨ j (A ∧ j B));

(9) A⊗(B⊕C) ⇒ (A⊗B)⊕(A⊗C); (A⊗B)⊕(A⊗C) ⇒ A⊗(B⊕C); ¬k(A⊗
(B⊕C)) ⇒ ¬k((A⊗B)⊕(A⊗C)); ¬k((A⊗B)⊕(A⊗C)) ⇒ ¬k(A⊗(B⊕C)),
where ⊗,⊕ ∈ {∧1,∨1, . . . ,∧n,∨n} and ⊗ �= ⊕;

(10) ¬ j¬k A ⇒ A →k (A ←k A); A →k (A ←k A) ⇒ ¬ j¬k A;
(11) ¬k¬ j A ⇒ (A →k A) ←k A; (A →k A) ←k A ⇒ ¬k¬ j A.

Proof We prove the case (10).

A ⇒ A
A ⇒ A

(←k⇒)
A ←k A ⇒

(→k⇒)
A, A →k (A ←k A) ⇒

(⇒¬ j¬k)
A →k (A ←k A) ⇒ ¬ j¬k A

A ⇒ A
A ⇒ A (¬ j¬k⇒)¬ j¬k A, A ⇒

(⇒←k)¬ j¬k A, A ⇒ A ←k A
(⇒→k)¬ j¬k A ⇒ A →k (A ←k A)

We prove the case (11).
A ⇒ A A ⇒ A

(→k⇒)
A, A →k A ⇒ A

(←k⇒)
A, (A →k A) ←k A ⇒

(⇒¬k¬ j )
(A →k A) ←k A ⇒ ¬k¬ j A

A ⇒ A
(⇒→k) ⇒ A →k A A ⇒ A
(⇒←k) ⇒ (A →k A) ←k A, A

(¬k¬ j ⇒) ¬k¬ j A ⇒ (A →k A) ←k A

The other cases are proved similarly. ��
Lemma 5.8 Let ṽ be a valuation introduced in Definition 4.4 such that ṽ(P) = [P],
for all P ∈ P (such a valuation is said to be a canonic one). Then ṽ(A) = [A], for
any formula A.

Proof By a structural induction on a formula A. Use Definition 5.5. ��
Lemma 5.9 (Lindenbaum lemma for CMLn) Let L be CMLn. For every pair of finite
sets of formulas � and �, it holds that �L � ⇒ � implies that there is a connexive
multifilter FL

n on the Lindenbaum-Tarski algebraML
n and [C] ∈ FL

n , for eachC ∈ �,
while [D] /∈ FL

n , for each D ∈ �.

Proof We follow the standard strategy of the proof of the Lindenbaum lemma which
was adopted for the case of multilattice logic MLn in (Lemma 4.12, Grigoriev and
Petrukhin 2019b).

Suppose that �L � ⇒ �. Let F1, . . . , Fm, . . . be an enumeration of the set of all
formulas. We postulate the following identities:

�1 = �

�i+1 =
{

�i ∪ {Fi+1}, if �L �i , Fi+1 ⇒;
�i otherwise;

� =
∞⋃

i=1

�i .

By Definition 5.4, we have [�] = {[B] | B ∈ �}. We need to show that [�] is the
required connexive multifilter on ML

n .
By the induction on i , one may easily prove that (�) for each i , it holds that

�L �i ⇒ �. Moreover, �L �i ⇒, otherwise, by (⇒W), �L �i ⇒ �. It is easy to
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justify that [�] ⊆ [�], i.e. [C] ∈ [�] (for each C ∈ �), and [D] /∈ [�] (for each
D ∈ �).

Let us show that [�] satisfies condition (filter). Suppose that [A], [B] ∈ [�]. Then
A, B ∈ � and there are l andm such that �L �l ⇒ A and �L �m ⇒ B. Assume that
[A]∩ j [B] /∈ [�]. Then, by Definition 5.5, [A∧ j B] /∈ [�]which yields A∧ j B /∈ �.
Then there is i such that A ∧ j B = Fi+1 and �L �i , Fi+1 ⇒. We have (double lines
indicate multiple applications of a rule):

�l ⇒ A
(W⇒)

�l ,�m ⇒ A

�m ⇒ B
(W⇒)

�l ,�m ⇒ B
(⇒ ∧ j )

�l ,�m ⇒ A ∧ j B �i , A ∧ j B ⇒
(Cut)

�l ,�m,�i ⇒
It contradicts the fact (�). Thus, [A] ∩ j [B] ∈ [�].
Suppose that [A]∩ j [B] ∈ [�], but [A] /∈ [�] or [B] /∈ [�]. Then�L �l ⇒ A∧ j B,

for some l. Assume that [A] /∈ [�]. Then A = Fi+1 and �i , Fi+1 ⇒, for some i . We
have:

�l ⇒ A ∧ j B

�i , A ⇒
(W⇒)

�i , A, B ⇒
(⇒ ∧ j )

�i , A ∧ j B ⇒
(Cut)

�l ,�i ⇒
It contradicts the fact (�). Hence, [A] ∈ [�]. The case [B] /∈ [�] is treated

similarly. Therefore, [�] is a multifilter.
Let us show that [�] satisfies condition (prime). Assume that [A] ∪ j [B] ∈ [�]

while [A], [B] /∈ [�]. We have �L �i ⇒ A ∨ j B as well as �L �l , A ⇒ and
�L �m, B ⇒, for some i , l, and m. Thus,

�i ⇒ A ∨ j B

�l , A ⇒
(W⇒)

�l ,�m, A ⇒
�m, B ⇒

(W⇒)
�l ,�m, B ⇒

(⇒ ∨ j )
�l ,�m, A ∨ j B ⇒

(Cut)
�i ,�l ,�m,⇒

It contradicts the fact (�). Hence, [A] ∈ [�] or [B] ∈ [�].
Suppose that [A] ∈ [�] while [A] ∪ j [B] /∈ [�]. Then we have:

�i ⇒ A
(⇒ W)

�i ⇒ A, B
(⇒ ∨ j )

�i ⇒ A ∨ j B �l , A ∨ j B ⇒
(Cut)

�i ,�l ⇒
It contradicts the fact (�). The case when [B] ∈ [�] is treated similarly. Therefore,

[�] is a prime multifilter.
Let us show that [�] satisfies condition (DM1). Assume that− j ([A]∩ j [B]) ∈ [�],

while − j [A] ∪ j − j [B] /∈ [�]. Since we already know that [�] is a prime multifilter,
− j [A] /∈ [�] and − j [B] /∈ [�]. We have �L �i ⇒ ¬ j (A ∧ j B) as well as �L
�l ,¬ j A ⇒ and �L �m,¬ j B ⇒, for some i , l, and m. Thus,
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�i ⇒ ¬ j (A ∧ j B)

�l , ¬ j A ⇒
(W⇒)

�l , �m, ¬ j A ⇒
�m, ¬ j B ⇒

(W⇒)
�l , �m, ¬ j B ⇒

(¬ j∧ j ⇒)
�l , �m, ¬ j (A ∧ j B) ⇒

(Cut)
�i , �l , �m, ⇒

It contradicts the fact (�). Hence, − j [A] ∈ [�] or − j [B] ∈ [�].
Assume that − j [A] ∪ j − j [B] ∈ [�], while − j ([A] ∩ j [B]) /∈ [�]. Since [�] is

a prime multifilter, − j [A] ∈ [�] or − j [B] ∈ [�]. Hence, �L ¬ j (A ∧ j B),�i ⇒
as well as �L �l ⇒ ¬ j A or �L �m ⇒ ¬ j B, for some i , l, and m. Suppose that
�L �l ⇒ ¬ j A. Thus,

�l ⇒ ¬ j A
(⇒ W)

�l ⇒ ¬ j A,¬ j B
(⇒ ¬ j∧ j )

�l ⇒ ¬ j (A ∧ j B) �i ,¬ j (A ∧ j B) ⇒
(Cut)

�i ,�l ⇒
It contradicts the fact (�). The case when − j [B] ∈ [�] is treated similarly. There-

fore, [�] satisfies condition (DM1).
By a similar reasoning, one can show that [�] satisfies conditions (DM2)–(DM4)

as well.
Let us show that [�] satisfies condition (per2). Assume that − j − j [A] ∈ [�],

while [A] /∈ [�]. We have �L �i ⇒ ¬ j¬ j A as well as �L �l , A ⇒, for some i and
l. Thus,

�i ⇒ ¬ j¬ j A
�l , A ⇒

(¬ j¬ j ⇒)
�l ,¬ j¬ j A ⇒

(Cut)
�i ,�l ,⇒

It contradicts the fact (�). Hence, [A] ∈ [�].
Assume that [A] ∈ [�], while − j − j [A] /∈ [�]. Hence, �L ¬ j¬ j A,�i ⇒ as

well as �L �l ⇒ A, for some i and l. Thus,

�l ⇒ A
(⇒ ¬ j¬ j )

�l ⇒ ¬ j¬ j A �i ,¬ j¬ j A ⇒
(Cut)

�i ,�l ⇒
It contradicts the fact (�). Hence, − j− j [A] ∈ [�]. Thus, [�] satisfies condition

(per2).
Let us show that [�] satisfies condition (− j−k). Assume that − j −k [A] ∈ [�],

while [A] ⊃k ([A] ⊂k [A]) /∈ [�]. We have �L �i ⇒ ¬ j¬k A as well as �L
�l , A →k (A ←k A) ⇒, for some i and l. Recall that, by Lemma 5.7, �L ¬ j¬k A ⇒
A →k (A ←k A). Thus,

�i ⇒ ¬ j¬k A ¬ j¬k A ⇒ A →k (A ←k A)
(Cut)

�i ⇒ A →k (A ←k A) �l , A →k (A ←k A) ⇒
(Cut)

�i , �l , ⇒
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It contradicts the fact (�). Hence, [A] ⊃k ([A] ⊂k [A]) ∈ [�].
Assume that [A] ⊃k ([A] ⊂k [A]) ∈ [�], while − j −k [A] /∈ [�]. Hence,

�L ¬ j¬k A,�i ⇒ as well as �L �l ⇒ A →k (A ←k A), for some i and l. Recall
that, by Lemma 5.7, �L A →k (A ←k A) ⇒ ¬ j¬k A. Thus,

�l ⇒ A →k (A ←k A) A →k (A ←k A) ⇒ ¬ j¬k A
(Cut)

�l ⇒ ¬ j¬k A �i , ¬ j¬k A ⇒
(Cut)

�i , �l ⇒
It contradicts the fact (�). Hence, − j−k[A] ∈ [�]. Thus, [�] satisfies condition

(− j−k).
Similarly, one can show that [�] satisfies condition (−k− j ).
Let us show that [�] satisfies condition (⊃ j ). Assume that C /∈ [�] or [A] ⊃ j

[B] ∈ [�]. Suppose that [A] ∩ j [C] ∈ [�], while [B] /∈ [�]. Since we already know
that [�] is a multifilter, [A] ∈ [�] and [C] ∈ [�]. We have �L �i , B ⇒ as well as
�L �l ⇒ A and �L �m ⇒ C , for some i , l, and m. Suppose that C /∈ [�]. Then
�L �o,C ⇒, for some o. Thus,

�m ⇒ C �o,C ⇒
(Cut)

�m,�o ⇒
It contradicts the fact (�). Assume that [A] ⊃ j [B] ∈ [�]. Then �L �t ⇒ A → j

B, for some t . Thus,

�t ⇒ A → j B
�l ,⇒ A �i , B ⇒

(⇒→ j )
�l ,�i , A → j B ⇒

(Cut)
�t ,�l ,�i ,⇒

It contradicts the fact (�). Hence, [B] ∈ [�]. Consequently, [A] ∩ j [C] ∈ [�]
implies [B] ∈ [�]. Therefore, ifC /∈ [�] or [A] ⊃ j [B] ∈ [�], then [A]∩ j [C] ∈ [�]
implies [B] ∈ [�].

Assume that [A]∩ j [C] /∈ [�] or [B] ∈ [�]. Since [�] is a multifilter, [A] /∈ [�] or
[C] /∈ [�]. Suppose that [C] ∈ [�], while [A] ⊃ j [B] /∈ [�]. We have �L �l ⇒ C
and �L �m, A → j B ⇒, for some l, and m. Suppose that [A] /∈ [�]. Then �L
�i , A ⇒, for some i . Thus,

�i , A ⇒
(⇒ W)

�i , A ⇒ B
(⇒→ j )

�i ⇒ A → j B �m, A → j B ⇒
(Cut)

�i ,�m ⇒
It contradicts the fact (�). Suppose that [C] /∈ [�]. Then �L �t ,C ⇒, for some t .

Thus,

�l ⇒ C �t ,C ⇒
(Cut)

�l ,�t ⇒
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Consequently, [A] ⊃ j [B] ∈ [�]. Hence, if [A] ∩ j [C] /∈ [�] or [B] ∈ [�], then
[C] ∈ [�] implies [A] ⊃ j [B] ∈ [�]. Therefore, [�] satisfies condition (⊃ j ).

The cases regarding conditions (⊂ j ), (−k⊃ j ), (−k⊂ j ), (− j⊃c
j ), and (− j⊂c

j ) are
considered similarly. Therefore, [�] is a connexive multifilter. ��
Lemma 5.10 (Lindenbaum lemma for BMLn) Let L be BMLn. For every pair of
finite sets of formulas � and �, it holds that �L � ⇒ � implies that there is a bi-
intuitionistic multifilter FL

n on the Lindenbaum-Tarski algebra ML
n and [C] ∈ FL

n ,
for each C ∈ �, while [D] /∈ FL

n , for each D ∈ �.

Proof Similarly to Lemma 5.9. ��
Lemma 5.11 〈MCML

n ,FCML
n 〉, where FCML

n is a connexive multifilter constructed in
Lemma 5.9, is a connexive logical multilattice.

Proof Due to Lemmas 5.7 and 5.9 operations − j , ∩ j , ∪ j , ⊃ j , and ⊂ j on [F ] satisfy
the conditions listed in Definition 4.2. To be more exact, the correspondence between
the properties required by the definition and the provable sequents from the lemmas is
as follows: the condition that 〈∩1,∪1〉, . . . , 〈∩n,∪n〉 are pairs of lattice meet and join
operations satisfying distributivity is justified by the provability of (1)–(9) (Lemma
5.7). The conditions regarding both the behaviour of the connective and the properties
of a multifilter (that is (filter), (prime), (DM1)–(DM4), (per2), (⊃ j ), (⊂ j ), (−k⊃ j ),
(−k⊂ j ), (− j−k), (−k− j ), (− j⊃c

j ), and (− j⊂c
j )) are justified by Lemma 5.9 and in

the case of (− j−k) and (−k− j ) by Lemma 5.7 as well. ��
Lemma 5.12 〈MBML

n ,FBML
n 〉, where FBML

n is a bi-intuitionistic multifilter con-
structed in Lemma 5.10, is a bi-intuitionistic logical multilattice.

Proof Follows from Lemmas 5.7 and 5.10. ��
Theorem 5.13 (Soundness and completeness) Let L ∈ {BMLn,CMLn}. For every
pair of finite sets of formulas � and �, it holds that � |�L � iff |�L � ⇒ � iff
�L � ⇒ �.

Proof The equivalence � |�L � iff |�L � ⇒ � holds due to Definition 4.6. As for
the equivalence |�L � ⇒ � iff �L � ⇒ �, its soundness part is justified by Theorem
5.3. As for the completeness part, assume that L �L � ⇒ �. By Lemma 5.9, there is
a connexive (resp. bi-intuitionistic) multifilter Fn on ML

n such that [C] ∈ Fn , for all
C ∈ �, and [D] /∈ Fn , for all D ∈ �. By Lemma 5.11, ifL = CMLn , then 〈ML

n ,FL
n 〉

is a connexive logical multilattice. By Lemma 5.12, if L = BMLn , then 〈ML
n ,FL

n 〉
is a bi-intuitionistic logical multilattice. By Lemma 5.8, there is a canonic valuation ṽ

such that ṽ(C) ∈ Fn , for all C ∈ �, and ṽ(D) /∈ Fn , for all D ∈ �, i.e. L �|� � ⇒ �.
��

Theorem 5.14 (Soundness and completeness) Let L ∈ {MLn,MLLn}. For every pair
of finite sets of formulas � and�, it holds that � |�A

L � iff |�L � ⇒ � iff�L � ⇒ �.

Proof Similarly to Theorem 5.13. ��
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6 Conclusion

We offered the algebraic semantics for connexive and bi-intuitionistic multilattice
logics previously being formulated only with the help of sequent calculi and Kripke
semantics. As for topics for future research, we leave an investigation of modal exten-
sions of CMLn and BMLn by Tarski, Kuratowski, and Halmos closure and interior
operators (see (Grigoriev & Petrukhin, 2021) for a systematic study of the extensions
ofMLn by these operators). Yet another topic is the study of congruent and monotonic
modal multilattice logics on the basis of CMLn and BMLn (such modal logics on the
basis of MLn and MLLn were explored in Grigoriev and Petrukhin (2022)).
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