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Abstract
N. Kamide introduced a pair of classical and constructive logics, each with a peculiar
type of negation: its double negation behaves as classical and intuitionistic negation,
respectively.A consequence of this is that the systems prove contradictions but are non-
trivial. The present paper aims at giving insights into this phenomenon by investigating
subsystems of Kamide’s logics, with a focus on a system in which the double negation
behaves as the negation of minimal logic. We establish the negation inconsistency of
the system and embeddability of contradictions from other systems. In addition, we
attempt at an informational interpretation of the negation using the dimathematical
framework of H. Wansing.

Keywords Contradiction · Double negation · Dimathematism · Minimal logic ·
Negation inconsistency · Strong negation

1 Introduction

In Kamide (2017) introduced the systems IP and CP, which are variants of the intu-
itionistic system of constructible falsity N4 (Almukdad & Nelson, 1984) and its
classical extension B→

4 (Odintsov, 2005). The difference between these systems is
that a doubly negated formula ∼∼A in IP and CP corresponds to the intuitionis-
tic/classically negated formula¬A, instead of A. In this sense, the negation∼ is closely
related to a type of connective called demi-negation, introduced by Humberstone
(1995). The negation is also studied algebraically by Paoli (2019), who introduced
another system with ∼ in a different language. Later, it was pointed out by Omori and
Wansing (2018, 2022) that these systems prove a formula A as well as its negation
∼A. That is to say, IP and CP contain provable contradictions. Consequently, they
are negation inconsistent but non-trivial systems. Their paper also offers a defence of
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reading ∼ as negation, by referring to A. Avron’s view (Avron, 2005) that a negation
represents the falsehood in the sense that a negated formula is true iff its negand is false.
In addition, Omori and Wansing suggest that the double negation can be understood
as representing the phenomenon of negative concord in natural languages.

Given this kind of view, Kamide’s systems appear to be of interest from both formal
and philosophical perspectives. When it comes to the former aspect, one essential
task is to identify the source of negation inconsistency of the systems. One natural
methodology for this would be to look into subsystems of IP in which the negation
has more restricted properties.

In this paper, we shall first observe that the negation inconsistency still holds when
the double negation is made to correspond to the negation of minimal logic (Johans-
son, 1937), with a system we shall call MP. In addition, we shall see that provable
contradictions in CP can be embedded to provable contradictions in the weak sys-
tem. We then investigate further the method of obtaining provable contradictions via
translation, by turning our attention into P. Ruet’s quarter turn operation (Ruet, 1996).

This is followed by the observation concerning some subsystems of MP. We will
observe the effects of restricting axiom schemata into rules on negation inconsistency.

Finally, we shall attempt at giving an interpretation of the negation in MP which
complements the interpretation in Omori and Wansing (2018) for IP and CP. One
characteristic of minimal negation is that it behaves like an implication to a proposi-
tional variable that does not have to exhibit a ‘negative’ property such as never being
forced in a world of a Kripke model. This lack of a ‘negative’ flavour gives a more
philosophical motivation to consider a negation whose double negation behaves as
a minimal negation. It allows an interpretation of the double negation that is more
‘positive’, and so closer to usual kinds of negations which are better understood. We
shall in particular attempt to understand MP from a more constructive and informa-
tional point of view, by employing the dimathematic perspective ofWansing (Wansing,
2022). For this purpose, we shall give a ‘positive’ interpretation of the double negation,
according to which the support of falsity of ∼A is equated with the regularity that the
support of truth of A must be a strong one. We shall also discuss a modification to the
semantic clause motivated by this interpretation, and how it fares with the negation
inconsistency.

2 Minimal Variant of IP

Let PROP = {pi : i ∈ N} be a set of propositional variables, and ()
′
be a mapping

which assigns for each pi another propositional variable (pi )′ in such a way that
PROP′ := {(pi )′ : i ∈ N} is a set distinct from PROP. We shall use p, q, r , . . . and
p′, q ′, r ′, . . . as themetavariables of the elements of PROP and PROP′. In what follows,
we shall use the next three propositional languages.

(L∼) A ::= p | A ∧ A | A ∨ A | A → A | ∼A.

(L¬) A ::= p | p′ | A ∧ A | A ∨ A | A → A | ¬A.

(L�) A ::= p | A ∧ A | A ∨ A | A → A | �A.
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We shall use≡ for the literal identity of formulas. The first languageL∼ is the main
language we shall consider. L¬ is a language with intuitionistic/minimal negation as
well as duplicate propositional variables, which will be used for some arguments via
translation. L� will be used for systems with the quarter turn operator. In each of the
languages, we will use the abbreviations A ↔ B for (A → B) ∧ (B → A), ◦i+1A
for ◦(◦i A) and ◦0A for A where ◦ ∈ {∼,¬,�}. The complexity |A| of formulas is
inductively defined as follows:

|p| = |p′| = 0.

|∼p| = |�p| = 0.

|A ◦ B| = |A| + |B| + 1.

|∼(A ◦ B)| = |A| + |B| + 2.

|�(A ◦ B)| = |A| + |B| + 2.

|∼∼A| = |∼A| + 1.

|��A| = |�A| + 1.

|¬A| = |A| + 1.
where ◦ ∈ {∧,∨,→}.

2.1 Sequent Calculi

The systems CP and IP are introduced in Kamide (2017) as sequent calculi. We
introduce our system MP following the paradigm of these systems. One point to
notice in these calculi is that �,�, . . . will denote finite sets of formulas, rather than
finite multisets as is often the case with sequent calculi.

Definition 1 (MP) The system MP in L∼ is defined by the following rules.

p ⇒ p (Ax) ∼p ⇒ ∼p (Ax∼)

� ⇒ A A, � ⇒ C
(Cut)

�,� ⇒ C
� ⇒ C (LW)

A, � ⇒ C

Ai , � ⇒ C
(L∧)

A1 ∧ A2, � ⇒ C
� ⇒ A � ⇒ B (R∧)

� ⇒ A ∧ B

A, � ⇒ C B, � ⇒ C
(L∨)

A ∨ B, � ⇒ C
� ⇒ Ci (R∨)

� ⇒ C1 ∨ C2

� ⇒ A B, � ⇒ C
(L→)

A → B, �,� ⇒ C
A, � ⇒ C

(R→)
� ⇒ A → C

∼A, � ⇒ C ∼B, � ⇒ C
(L∼∧)∼(A ∧ B), � ⇒ C

� ⇒ ∼Ci (R∼∧)
� ⇒ ∼(C1 ∧ C2)

∼Ai , � ⇒ C
(L∼∨)∼(A1 ∨ A2), � ⇒ C

� ⇒ ∼A � ⇒ ∼B (R∼∨)
� ⇒ ∼(A ∨ B)

A, � ⇒ C
(L∼→1)∼(A → B), � ⇒ C

∼B, � ⇒ C
(L∼→2)∼(A → B), � ⇒ C
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� ⇒ A � ⇒ ∼B (R∼→)
� ⇒ ∼(A → B)

A, � ⇒ B
(∼∼1)∼∼B, � ⇒ ∼∼A

A, � ⇒ ∼∼A
(∼∼2)

� ⇒ ∼∼A

where i ∈ {1, 2}.
We shall write MP � � ⇒ C when a sequent � ⇒ C is derivable following

the rules of MP. In particular, we shall write MP � ⇒ C when � = ∅. Similar
conventions apply for other systems in the paper.

For a system L and a rule (R), L-(R) will denote the system obtained by eliminating
(R) from the rules of L . We say a rule is admissible in L , if the derivability of the
premises in L implies that of the conclusion. In particular, a rule is derivable if a
derivation of the conclusion is obtainable by continuing from any derivations of the
premises.

We can readily check that MP-(Cut) � A, � ⇒ A. Also, the system IP is defined
in the following way.

Definition 2 (IP) The system IP is definable from MP by (i) replacing (∼∼1) and
(∼∼2) with (L∼∼), (R∼∼) below; (ii) adding the next structural rule (RW).

� ⇒ C (L∼∼)∼∼C, � ⇒
A, � ⇒

(R∼∼)
� ⇒ ∼∼A

� ⇒ (RW)
� ⇒ A

Proposition 1 IfMP � � ⇒ C then IP � � ⇒ C.

Proof It suffices to check that (∼∼1) and (∼∼2) are derivable in IP. The former case
is immediate, and for the latter case, if IP � A, � ⇒ ∼∼A then by applying (L∼∼),
(R∼∼) to A, (L∼∼) and finally (R∼∼) to ∼4A, we obtain IP � � ⇒ ∼6A. Also,
IP � ∼6A ⇒ ∼∼A by a similar argument. Thus by (Cut) IP � � ⇒ ∼∼A. ��

In order to establish some results later, we need to look into minimal logic as well.
For the sequent calculus formalisation of minimal logic, we shall use the following
system, based on Bílková and Colacito (2020) and Colacito et al. (2017, Proposition
2) but again using finite sets rather than finite multisets.

Definition 3 (LM) The system LM in L¬ is defined by (Ax),1 (Cut)–(R→) and the
following rules.

A, � ⇒ B
(¬1)¬B, � ⇒ ¬A

A, � ⇒ ¬A
(¬2)

� ⇒ ¬A

1 We let (Ax) to include the cases of the additional propositional variables p′, q ′ etc.
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Theorem 2 (Cut) is admissible in IP-(Cut) and LM-(Cut).

Proof Respectively see Kamide (2017, Theorem 11) and Colacito (2020, Theorem
4.1). In the latter case, it is not difficult to check that the difference in the presentation,
namely that the antecedent of sequents is a finite set rather than a finite multiset, does
not affect the structure of the argument. ��

Then the admissibility of (Cut) for MP-(Cut) can be obtained similarly to that of
IP-(Cut), using an argument via translation.

Definition 4 We define a translation f of formulas in L∼ into those of L¬ by the
following clauses:

f (p) = p.

f (A ◦ B) = f (A) ◦ f (B).

f (∼p) = p′.

f (∼(A ∧ B)) = f (∼A) ∨ f (∼B).

f (∼(A ∨ B)) = f (∼A) ∧ f (∼B).

f (∼(A → B)) = f (A) ∧ f (∼B).

f (∼∼A) = ¬ f (A).
where ◦ ∈ {∧,∨,→}.

This translation justifies the view that a double negation inMP represents minimal
negation. In what follows, given a finite set � we shall use the notation f (�) for the
set { f (A) : A ∈ �}: similar conventions apply for later translations as well.

Theorem 3 The following statements hold.

1. MP � � ⇒ A if and only if LM � f (�) ⇒ f (A).
2. MP-(Cut)� � ⇒ A if and only if LM-(Cut) � f (�) ⇒ f (A).
3. (Cut) is admissible in MP-(Cut).

Proof Analogous to Kamide (2017, Theorem 1–3). ��

One corollary of this theorem is the disjunction property, which indicates the con-
structivity of the system.

Corollary 4 IfMP � ⇒ A ∨ B then either MP � ⇒ A or MP � ⇒ B.

Proof Consider a proof of ⇒ A ∨ B inMP-(Cut). Then the last rule applied must be
(R∨), whose premise has either the form ⇒ A or ⇒ B. ��

2.2 Hilbert-Style System and Semantics

We next introduce a Hilbert-style system for MP, which is obtained simply by com-
bining the ones for IP (Omori & Wansing, 2018) and minimal logic.

Definition 5 (H-MP) The following axiomatisation defines the calculus H-MP.
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(A→(B→C)) → ((A→B)→(A→C))

A → (B → A)

A → (B → (A ∧ B))

A1 ∧ A2 → Ai

Ai → A1 ∨ A2

(A→C) → ((B→C)→(A∨B→C))

∼(A ∧ B) ↔ (∼A ∨ ∼B)

∼(A ∨ B) ↔ (∼A ∧ ∼B)

∼(A → B) ↔ (A ∧ ∼B)

(A → B) → (∼∼B → ∼∼A)

(A → ∼∼A) → ∼∼A

A A → B (MP)
B

where i ∈ {1, 2}. A derivation of A from a set of formulas � is a finite sequence
B1, . . . , Bn ≡ A, where each Bi is either an element of �, an instance of one of the
axiom schemata, or obtained from the preceding entries by a rule (in this case, (MP)).
The derivability of A from � in H-MP is denoted by � �h A. Then by straightfor-
wardly modifying (Omori &Wansing, 2018, Proposition 3.11, 3.12), we can show the
following.

Theorem 5 Let � be a finite set. Then � �h A if and only if MP � � ⇒ A.

For semantics, a Kripke semantics for MP is obtained from those of IP (Kamide,
2017; Omori & Wansing, 2018) and minimal logic by Segerberg (1968).

Definition 6 (Kripke semantics for MP) We define a frame to be a triple (W ,≤, Q)

where W is a non-empty set, ≤ is a partial ordering on W , and Q ⊆ W is an upward
closed set, i.e. w ∈ Q and w′ ≥ w implies w′ ∈ Q.

A model then is a pair (F ,V) where F is a frame and V assigns a pair of upward
closed sets V+(p) and V−(p) to each propositional variable p. V is extended to
forcings (�+,�−) of all formulas by the next clauses.

w�+ p iff w ∈ V+(p).

w�+A∧B iff w�+A and w�+B.

w�+A∨B iff w�+A or w�+B.

w�+A→B iff ∀w′≥w(w′�+A⇒w′�+B).

w �+ ∼A iff w �− A.

w�− p iff w ∈ V−(p).

w�−A∧B iff w�−A or w�−B.

w�−A∨B iff w�−A and w�−B.

w�−A→B iff w�+A and w�−B.

w�−∼A iff ∀w′≥w(w′�+A ⇒ w′∈Q).

We write � � A if for any model and w ∈ W , w �+ B for all B ∈ � implies
w �+ A.

The last equivalence might appear mysterious; in fact, the right hand side just
mirrors the condition for negation inminimal logic. Later in section 7, we shall discuss
how the use of Q inMP enables an informal interpretation of the negation that is not
available in IP.

Lemma 6 (upward closure) For ∗ ∈ {+,−}, if w �∗ A and w′ ≥ w then w′ �∗ A.

Proof By induction on the complexity of A. In particular, if A is ∼B and w′ ≥ w,
then w �− ∼B implies x �+ B ⇒ x ∈ Q for all x ≥ w and a fortiori for all x ≥ w′.
Thus w′ �− ∼B. ��
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Then the relationship between the Hilbert-style system and the semantics can be
established in a standard manner.

Theorem 7 (completeness) � �h A if and only if � � A.

Proof The left-to-right direction is shown by induction on the depth of derivations.
For the converse direction, the outline is as in the case for IP (Omori & Wansing,
2018, Theorem 3.9).2 We can likewise construct a canonical model ((W ,≤, Q),V),
where:

• (W ,≤) is a set of collections of formulas ordered by ≤:= {(�,�) ∈ W × W :
� ⊆ �}, and each � ∈ W satisfies:

– there is A such that A /∈ �

– if � �h A then A ∈ �.
– if A ∨ B ∈ � then A ∈ � or B ∈ �.

• Q = {� : ∼2A,∼4A ∈ � for some A.}.
• � ∈ V+(p) iff p ∈ �.
• � ∈ V−(p) iff ∼p ∈ �.

It is immediate that Q is upward closed. We also have to check that:

� �+ A if and only if A ∈ �.

� �− A if and only if ∼A ∈ �.

Here we consider the latter equivalence for the case A is∼B. By I.H.� �− ∼B if and
only if ∀� ≥ �(B ∈ � ⇒ ∃C(∼2C,∼4C ∈ �)). We need to check this is equivalent
to ∼∼B ∈ �. For the forward direction, we show the contrapositive. If ∼∼B /∈ �,
then B → ∼∼B /∈ �. Now we can argue along (Omori & Wansing, 2018, Lemma
3.8) to conclude that there is � ∈ W s.t. � ⊇ �, B ∈ � and ∼∼B /∈ �. But then,
using the fact that �h (D ∧ ∼2D) → ∼2E follows from �h D → (E → D) and
�h (E → D) → (∼2D → ∼2E), we see ∼2C,∼4C ∈ � implies ∼2B ∈ �, a
contradiction. Hence ¬∀� ≥ �(B ∈ � ⇒ ∃C(∼2C,∼4C ∈ �)). For the backward
direction, if ∼∼B ∈ � and B ∈ � ⊇ �, then ∼2B,∼4B ∈ �, as required.

Now if � �h A, then there is (arguing like (Omori & Wansing, 2018, Lemma 3.7))
�′ ⊇ � in the canonical model such that A /∈ �′. Therefore �′

� A. ��

3 Provable Contradictions inMP

As is mentioned in the introduction, (Omori & Wansing, 2018) observed that the
systems CP and IP prove contradictions, and thus are negation inconsistent. We shall
observe in this section that MP satisfies the same property. To be more precise, we
shall say a formula A is a provable contradiction in a sequent calculus if the sequents

2 As a notational difference, we are using use w �+ A and w �− A in place of 1 ∈ I (w, A) and
0 ∈ I (w, A), respectively.
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⇒ A and ⇒ ∼A are derivable. When it is a Hilbert-style system, then A being a
provable contradiction will mean that both A and ∼A are derivable.3

We will often appeal to the derivability of the sequents below, which correspond to
well-known equivalences in minimal logic.

Proposition 8 The following sequents are derivable in MP.

• ⇒ ∼4(A ∧ B) ↔ (∼4A ∧ ∼4B)

• ⇒ ∼4(A ∨ B) ↔ ∼4(∼4A ∨ ∼4B)

• ⇒ ∼4(A → ∼4B) ↔ (∼4A → ∼4B)

In Omori and Wansing (2018), ∼5(A ∧ ∼∼A) is given as an example of provable
contradiction for IP. The same formula can be used to show the negation inconsistency
of MP.

Proposition 9 ∼5(A ∧ ∼2A) is a provable contradiction in MP.

Proof We need to show thatMP � ⇒ ∼5(A ∧ ∼∼A) andMP � ⇒ ∼6(A ∧ ∼∼A).
For the former:

∼A ⇒ ∼A (R∼∧)∼A ⇒ ∼(A ∧ ∼2A)
(∼∼1)∼3(A ∧ ∼2A) ⇒ ∼3A

(R∼∧)∼3(A ∧ ∼2A) ⇒ ∼(A ∧ ∼2A)
(∼∼1)∼3(A ∧ ∼2A) ⇒ ∼5(A ∧ ∼2A)
(∼∼2)⇒ ∼5(A ∧ ∼2A)

For the latter (where a double line indicates a repeated application of a rule):

A ⇒ A (L∧)
A ∧ ∼2A ⇒ A (∼∼1)∼2A ⇒ ∼2(A ∧ ∼2A)

(L∧)
A ∧ ∼2A ⇒ ∼2(A ∧ ∼2A)

(∼∼1)
∼4(A ∧ ∼2A) ⇒ ∼6(A ∧ ∼2A)

(∼∼2)⇒ ∼6(A ∧ ∼2A)

��
Hence the formula ∼5(A ∧ ∼2A) is in a sense not a provable contradiction that is

characteristic of IP. A natural question then is whether there is a contradiction that is
provable in IP but not inMP.

Proposition 10 ∼3(∼2(A → A) → B) is a provable contradiction in IP.

Proof It suffices to show that IP � ⇒ ∼3(∼2(A → A) → B) and IP � ⇒
∼4(∼2(A → A) → B). For the former:

3 Another option is to define it as the derivability of the conjunction of a contradictory pair. The two
formulations are equivalent in the current setting, and we shall use the alternative formulation as well when
it is more convenient for presentation.
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A ⇒ A (R→)⇒ A → A (L∼∼)∼2(A → A) ⇒
(L∼→)∼(∼2(A → A) → B) ⇒
(R∼∼)⇒ ∼3(∼2(A → A) → B)

For the latter:

A ⇒ A (R→)⇒ A → A (L∼∼)∼2(A → A) ⇒
(RW)∼2(A → A) ⇒ B
(R→)⇒ ∼2(A → A) → B
(L∼∼)∼2(∼2(A → A) → B) ⇒
(R∼∼)⇒ ∼4(∼2(A → A) → B)

��
Proposition 11 MP � ⇒ ∼4(∼2(A → A) → B).

Proof By Theorem 3, if the sequent is provable then so is ⇒ ¬¬(¬(p → p) → q)

in LM, which is known not to be the case.4 ��
The observations above confirm thatMP is strong enough to be a non-trivial nega-

tion inconsistent system. Where, however, does the contra-classicality5 come from?
The relative weakness of minimal negation enables us to give the following explana-
tion to this question. We may observe (in the manner of (Colacito, 2016, Proposition
1.2.5)) that we do not lose the strength of the system by replacing (∼∼1) with the
rule:

A, � ⇒ B B, � ⇒ A
(∼∼3)∼∼A, � ⇒ ∼∼B

It is straightforward to check that (∼∼1) is derivable from (∼∼2) and (∼∼3). One
difference between (∼∼1) and (∼∼3) is that the latter rule is admissible in a clas-
sical sequent calculus when ∼ is identified with the classical negation. Thus in this
alternative formulation, the cause of the contra-classicality is isolated to (∼∼2) alone.

4 Embedding Provable Contradictions

So far we have looked at provable contradictions in IP and MP on a more or less
individual basis. Another, more general way to obtain provable contradictions in IP

4 The addition of ¬¬(⊥ → q) to minimal logic (note ⊥ is definable as ¬(p → p)) is considered by
Segerberg (1968).
5 We here follow Omori and Wansing (2018, pp.816-817) in using the term in the ‘superficial’ sense of
Humberstone (2000, p.438), namely that a contra-classical logic is a logic that is not a sublogic of classical
logic. This formulation however takes some aspects for granted, such as that the logic shares the same
language as classical logic. As one referee rightly pointed out, it may therefore leave some imprecision for
a more robust understanding of the concept.
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and MP is to appeal to negative translations extended to treat ∼. Using this method,
we shall observe that MP proves, in a sense, as many contradictions as CP. We start
with recalling CP and the Glivenko-like theorem in Kamide (2017), which embeds
the theorems of CP into those of IP.

Definition 7 (CP) The system CP in L∼ is defined by (Ax), (Ax∼) and the following
rules.

� ⇒ �, A A, � ⇒ �
(mCut)

�,� ⇒ �,�
� ⇒ � (mLW)

A, � ⇒ �
� ⇒ � (mRW)

� ⇒ �,C

A, B, � ⇒ �
(mL∧)

A ∧ B, � ⇒ �

� ⇒ �, A � ⇒ �, B
(mR∧)

� ⇒ �, A ∧ B

A, � ⇒ � B, � ⇒ �
(mL∨)

A ∨ B, � ⇒ �

� ⇒ �,C, D
(mR∨)

� ⇒ �,C ∨ D

� ⇒ �, A B, � ⇒ �
(mL→)

A → B, �,� ⇒ �,�

A, � ⇒ �,C
(mR→)

� ⇒ �, A → C

∼A, � ⇒ � ∼B, � ⇒ �
(mL∼∧)∼(A ∧ B), � ⇒ �

� ⇒ �,∼C,∼D
(mR∼∧)

� ⇒ �,∼(C ∧ D)

∼A,∼B, � ⇒ �
(mL∼∨)∼(A ∨ B), � ⇒ �

� ⇒ �,∼A � ⇒ �,∼B
(mR∼∨)

� ⇒ �,∼(A ∨ B)

A,∼B, � ⇒ �
(mL∼→)∼(A → B), � ⇒ �

� ⇒ �, A � ⇒ �,∼B
(mR∼→)

� ⇒ �,∼(A → B)

� ⇒ �,C
(mL∼∼)∼∼C, � ⇒ �

A, � ⇒ �
(mR∼∼)

� ⇒ �,∼∼A

Glivenko’s theorem (Glivenko, 1998) states that if A is a classical theorem, then
¬¬A is an intuitionistic theorem. TheGlivenko-like theorem (Kamide, 2017, Theorem
19) similarly states the following.

Theorem 12 CP � ⇒ A if and only if IP � ⇒ ∼4A.

This immediately implies that provable contradictions onCP can be embedded into
IP.

Corollary 13 If A is a provable contradiction in CP, then ∼4A is a provable contra-
diction in IP.

The question is whether we can have a similar result with respect to MP. While
the Glivenko-like theorem cannot be extended to MP, it is possible to extend the
Gödel-Gentzen-like theorem, also considered by Kamide.
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Definition 8 (Gödel-Gentzen-like translation) We define a translation h of formulas
in L∼ into itself by the following clauses.

h(p) = ∼4 p.

h(A◦B) = h(A)◦h(B).

h(A∨B) = ∼2(∼2h(A)∧∼2h(B)).

h(∼p) = ∼5 p.

h(∼(A∧B)) = ∼2(∼2h(∼A)∧∼2h(∼B)).

h(∼(A∨B)) = h(∼A)∧h(∼B).

h(∼(A→B)) = h(A)∧h(∼B).

h(∼∼A) = ∼∼h(A).
where ◦ ∈ {∧,→}.
Lemma 14 MP � ∼4h(A) ⇒ h(A).

Proof By induction on the complexity of A. For cases where h(A) has the form∼∼B,
the statement follows from MP � ∼6B ⇒ ∼2B. When A ≡ B → C , use the
derivability of ∼4(h(B) → h(C)) ⇒ h(B) → ∼4h(C) and (by I.H.) ∼4h(C) ⇒
h(C). For other cases, use the equivalence for conjunction in Proposition 8 via (Cut).

��
Given a finite set � of formulas, we define ∼� := {∼A : A ∈ �}. Then we have

the following lemma.

Lemma 15 If CP � � ⇒ � then MP � h(�),∼2h(�) ⇒ ∼2(p → p).

Proof By induction on the depth of derivation in CP. ��
Theorem 16 CP � ⇒ A if and only ifMP � ⇒ h(A).

Proof For the left-to-right direction, by Lemma 15 if CP � ⇒ A then MP �
∼∼h(A) ⇒ ∼∼(p → p). Thus by (∼∼1), MP � ∼4(p → p) ⇒ ∼4h(A).
Apply (Cut) and Lemma 14 to conclude MP �⇒ h(A). The right-to-left direction is
obtained by showingCP � h(A) ⇒ A; see also (Kamide, 2017, Lemma 10, Theorem
20). ��

The translation h is not sufficient to embed provable contradictions in CP into
provable contradictions inMP. For instance, while ∼(p ∧ ∼2 p) is known Omori and
Wansing (2018) to be a provable contradiction in CP, the translations of the formulas
do not preserve the form A and ∼A.

h(∼(p ∧ ∼2 p)) = ∼2(∼7 p ∧ ∼9 p).

h(∼2(p ∧ ∼2 p)) = ∼2(∼4 p ∧ ∼6 p).

What would be desirable, in order to preserve the form of contradiction, is to have
h(∼A) = ∼h(A) instead. However, this modification does not work for the Gödel-
Gentzen-like translation, because h(∼(p∧∼2 p))would then become∼(∼4 p∧∼6 p),
which is not provable inMP.

What can be done instead is to use a different translation. We shall use a translation
based on the minimal Kuroda-translation by Ferreira and Oliva (2011), which is a
generalisation of Kuroda’s translation by Kuroda (1951) to minimal logic.
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Definition 9 (minimal-Kuroda-like translation)We define a translation Ak of formulas
in L∼ into itself by the following clauses.

pk = p.

(A ◦ B)k = Ak ◦ Bk .

(A → B)k = Ak → ∼4Bk .

(∼A)k = ∼Ak .

where ◦ ∈ {∧,∨}. Then we define k(A) = ∼4Ak .

Lemma 17 MP � ⇒ h(A) ↔ k(A).

Proof By induction on the complexity of A. The crucial case is when A has the form
∼(B → C). In this case,

h(∼(B → C)) = h(B) ∧ h(∼C),

k(∼(B → C)) = ∼5(Bk → ∼4Ck).

By I.H., MP � ⇒ h(B) ↔ ∼4Bk (since k(B) ≡ ∼4Bk) and MP � ⇒ h(∼C) ↔
∼5Ck (since k(∼C) ≡ ∼4(∼C)k). Then we can show the equivalence

h(B) ∧ h(∼C) ↔ (∼4Bk ∧ ∼9Ck)

↔ ∼4(Bk ∧ ∼5Ck)

↔ ∼5(Bk → ∼4Ck).

��
Theorem 18 CP � ⇒ A if and only ifMP � ⇒ k(A).

Proof Immediate from Theorem 16 and Lemma 17. ��
Corollary 19 If A is a provable contradiction in CP, then k(A) is a provable contra-
diction inMP.

Proof If CP � ⇒ A and CP � ⇒ ∼A, then by Theorem 18 MP � ⇒ ∼4Ak and
MP � ⇒ ∼4(∼A)k , i.e. ∼4Ak(≡ k(A)) is a provable contradiction inMP. ��

Consequently,MP has, in a sense, no less advantage thanCP in producing provable
contradictions. This suggests that the properties classical/intuitionistic negation adds
to minimal negation, such as the law of excluded middle or explosion, have only a
limited effect for deriving provable contradictions.

5 Comparison with the Quarter Turn Operator

5.1 Classical Case

In CP, a triple negation ∼3 gives the following equivalences:
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Fig. 1 Rotation of the values

• ∼3(A ∧ B) ↔ (∼3A ∧ ∼3B)

• ∼3(A ∨ B) ↔ (∼3A ∨ ∼3B)

• ∼3(A → B) ↔ (A → ∼3B)

It thus resembles the conflation operator of Fitting (1991) except that we do not have
∼3∼3A ↔ A. In the semantics for CP given in Omori and Wansing (2018), the
truth tables of Fig. 1 are given for ∼ and the quarter turn operator � Ruet (1996).6

It is observed in Omori and Wansing (2018) that ∼ rotates the values of FDE-style
four-valued semantics in the opposite direction to �. This immediately implies that
� coincides with ∼3 and ∼ coincides with �3. The correspondence can be to our
advantage, because the equivalences above show that � makes a system more contra-
classical than∼ (when it is seen as a negation). One methodology to produce provable
contradictions for ∼ then is to obtain it for � and then make a translation.

The proof theory of Ruet’s operator has been investigated by Belikov et al. (2022)
under the name of connegation. The history of this type of operator can be traced back
to the cyclical negation of Post; see Karpenko (2017), Post (1921) for the details.

In what follows, we first define a classical system with � taken as primitive (i.e. in
L�). As we shall see, this system is only a slight variant to the system dCP in Belikov
et al. (2022), and as such we adopt the same name. It will be established that we can
embed the provable contradictions of each system (dCP, CP) into the other system.
We then extend the idea to IP by introducing an intuitionistic system dIP and show
an analogous result, this time with an additional help of the negative translations in
the previous section.

Definition 10 (dCP) The system dCP in L� is defined by (Ax), (mCut)–(mR→) and
the following rules.

�p ⇒ �p (Ax�)

�A,�B, � ⇒ �
(mL�∧)�(A ∧ B), � ⇒ �

� ⇒ �,�A � ⇒ �,�B
(mR�∧)

� ⇒ �,�(A ∧ B)

�A, � ⇒ � �B, � ⇒ �
(mL�∨)�(A ∨ B), � ⇒ �

� ⇒ �,�C,�D
(mR�∨)

� ⇒ �,�(C ∨ D)

� ⇒ �, A �B, � ⇒ �
(mL�→)�(A → B), �,� ⇒ �,�

A, � ⇒ �,�C
(mR�→)

� ⇒ �,�(A → C)

6 Sometimes the symbol � is used instead.
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� ⇒,�,C
(mL��)��C, � ⇒ �

A, � ⇒ �
(mR��)

� ⇒ �,��A

It is straightforward to check that dCP � A, � ⇒ �, A.

Remark 1 The difference between the current system and that of Belikov et al. (2022)
is in the rules for � →, for which they have:

� ⇒ �, A � ⇒ �,�3B

� ⇒ �,�3(A → B)

A,�3B, � ⇒ �

�3(A → B), � ⇒ �

It is easy to see that the systems become equivalent by (mCut) and the derivability
of �5A ⇒ �A and �A ⇒ �5A in both of the systems, if (Ax) and (Ax�) in the
formulation of Belikov et al. (2022) are replaced 7 with A ⇒ A and �A ⇒ �A.

Recall that a rule is said to be invertible (w.r.t. a premise) if the derivability of
the conclusion of the rule implies that of the premise, i.e. its converse rule (w.r.t. the
premise) is admissible. We need the next inversion lemma.

Lemma 20 (mL◦),(mR◦) for ◦ ∈ {∧,∨} and (mR→) are invertible in bothCP-(mCut)
and dCP-(mCut); (mL∼◦) and (mR∼◦) for ◦ ∈ {∧,∨,→,∼} are invertible in CP-
(mCut); and (mL�◦), (mR�◦) for ◦ ∈ {∧,∨,�} and (mR�→) are invertible in
dCP-(mCut). Moreover, the following rules are admissible in CP-(mCut) and dCP-
(mCut).
1. For both CP-(mCut) and dCP-(mCut)

• If � A → B, � ⇒ �, then � � ⇒ �, A and � B, � ⇒ �.

2. For dCP-(mCut):

• If � �(A → B), � ⇒ �, then � � ⇒ �, A and � �B, � ⇒ �.

Proof By induction on the depth of derivation. ��
We now define a pair of translations between L∼ and L�.

Definition 11 We define translations ()t : L∼ −→ L� and ()s : L� −→ L∼ by the
next clauses.

pt = p.

(A ◦ B)t = At ◦ Bt .

(∼A)t = �3At .

ps = p.

(A ◦ B)s = As ◦ Bs .

(�A)s = ∼3As .
where ◦ ∈ {∧,∨,→}.

7 This modification is necessary, as the general versions are not derivable in the formulation of Belikov et
al. (2022). We can show by induction on the depth of derivation that the derivability of � ⇒ �,�(p → p)
(or �(p → p), � ⇒ �) implies that of � ⇒ �; so �(p → p) ⇒ �(p → p) is underivable if their
system is non-trivial. This indeed is the case since it is weaker than the modification suggested in Remark
1 and thus than our formulation of dCP whose non-triviality is assured by Corollary 23.
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Lemma 21 The following statements hold.

1. If CP-(mCut) � � ⇒ �, then dCP-(mCut) � �t ⇒ �t .
2. If dCP-(mCut) � � ⇒ �, then CP-(mCut) � �s ⇒ �s .

Proof By induction on the depth of derivation. ��
Lemma 22 The following statements hold.

1. If CP-(mCut) � (At )s, � ⇒ �, then CP-(mCut) � A, � ⇒ �.
2. If CP-(mCut) � � ⇒ �, (At )s , then CP-(mCut) � � ⇒ �, A.
3. If dCP-(mCut) � (As)t , � ⇒ �, then dCP-(mCut) � A, � ⇒ �.
4. If dCP-(mCut) � � ⇒ �, (As)t , then dCP-(mCut) � � ⇒ �, A.

Proof By induction on the complexity of A. For 1.–2., we must simultaneously show:

1’. If CP-(mCut) � ∼(At )s, � ⇒ �, then CP-(mCut) � ∼A, � ⇒ �.
2’. If CP-(mCut) � � ⇒ �,∼(At )s , then CP-(mCut) � � ⇒ �,∼A.

Here we consider the case for 1’. when A is B → C . Since ((B → C)t )s ≡ (Bt )s →
(Ct )s , assume CP-(mCut) � ∼((Bt )s → (Ct )s), � ⇒ �. Then by Lemma 20, we
have CP-(mCut) � (Bt )s,∼(Ct )s, � ⇒ �. Now by I.H. for 1. and 1’., CP-(mCut) �
B,∼C, � ⇒ �. Thus by (mL∼→) we concludeCP-(mCut) � ∼(B → C), � ⇒ �.
Other cases are similarly argued. For 3.–4., the induction must simultaneously show:

3’. If dCP-(mCut) � �(As)t , � ⇒ �, then dCP-(mCut) � �A, � ⇒ �.
4’. If dCP-(mCut) � � ⇒ �,�(As)t , then dCP-(mCut) � � ⇒ �,�A.

Otherwise the argument is analogous. ��
One consequence of the above lemmas is that (mCut) is eliminable in our formu-

lation of dCP.

Corollary 23 (mCut) is admissible in dCP-(mCut).

Proof Suppose dCP � � ⇒ �. Then it is easy to check that Lemma 21 2. holds
even with the presence of (mCut), because it is admissible in CP-(mCut) (Kamide,
2017, Theorem 2). Then Lemma 21 1. implies dCP-(mCut) � (�s)t ⇒ (�s)t . Use
Lemma 22 to conclude dCP-(mCut) � � ⇒ �. ��

We also obtain the desired correspondence between the two systems.

Theorem 24 The following statements hold.

1. CP � � ⇒ � if and only if dCP � �t ⇒ �t .
2. dCP � � ⇒ � if and only if CP � �s ⇒ �s .

Proof For 1., by Lemma 21, it suffices to show that dCP � �t ⇒ �t implies CP �
� ⇒ �. This holds by Lemma 22. The argument for 2. is analogous. ��

We can now use the correspondence to obtain a characterisation of provable con-
tradictions in the systems.
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Corollary 25 The following statements hold.

1. CP � ⇒ A ∧ ∼A if and only if dCP � ⇒ �3At ∧ �4At .
2. dCP � ⇒ A ∧ �A if and only if CP � ⇒ ∼3As ∧ ∼4As.

Proof 1. is an immediate consequence of Theorem 24 as well as dCP � C ⇒ �4C
and dCP � �4C ⇒ C . The case for 2. is analogous. ��

Corollary 25 allows us to obtain some provable contradictions in CP relatively
simply. For instance, it is easy to note that dCP � ⇒ p ∨ �2 p and dCP � ⇒ �(p ∨
�2 p). Then Corollary 25 tells that ∼3(p ∨ ∼6 p) is a provable contradiction in CP.
In addition, Corollary 25 clarifies that �, which makes the system seem quite contra-
classical if understood as a negation, does not produce more provable contradictions
than ∼.

5.2 Intuitionistic Case

Let us turn our attention back to IP. The main questions here is to what extent it is
possible to have a corresponding system like for CP. A natural starting point is to
restrict dCP and move on to a single-conclusion system.

Definition 12 (dIP) The system dIP in L� is defined by (Ax), (Ax�), (Cut)–(R→)
and the following rules.

�A,�B, � ⇒ C
(L�∧)�(A ∧ B), � ⇒ C

� ⇒ �A � ⇒ �B (R�∧)
� ⇒ �(A ∧ B)

�A, � ⇒ C �B, � ⇒ C
(L�∨)�(A ∨ B), � ⇒ C

� ⇒ �Ci (R�∨)
� ⇒ �(C1 ∨ C2)

� ⇒ A �B, � ⇒ C
(L�→)�(A → B), �,� ⇒ C

A, � ⇒ �C
(R�→)

� ⇒ �(A → C)

� ⇒ C (L��)��C, � ⇒
A, � ⇒

(R��)
� ⇒ ��A

where i ∈ {1, 2}.
We shall establish some basic properties of dIP.

Definition 13 We define a translation g of formulas in L� into those of L¬ by the
following clauses:

g(p) = p.

g(A ◦ B) = g(A) ◦ g(B).

g(�p) = p′.

g(�(A ∧ B)) = g(�A) ∧ g(�B).

g(�(A ∨ B)) = g(�A) ∨ g(�B).

g(�(A → B)) = g(A) → g(�B).

g(��A) = ¬g(A).
where ◦ ∈ {∧,∨,→}.
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Theorem 26 (Cut) is admissible in dIP.

Proof The argument is analogous to Kamide (2017, Theorem 11,12) except that we
need to use g instead of f in Definition 4. ��
Theorem 27 dCP � ⇒ A if and only if dIP � ⇒ �4A.

Proof Analogous to (Kamide, 2017, Theorem 19). ��
The translations t and s do not work for IP and dIP, because, for instance, (a)

IP � ∼(p ∧ q) ⇒ ∼p ∨ ∼q but dIP � �3(p ∧ q) ⇒ �3 p ∨ �3q; and (b)
dIP � �(p ∨ q) ⇒ �p ∨ �q but IP � ∼3(p ∨ q) ⇒ ∼3 p ∨ ∼3q, as can be
checked easily by searching possible derivations. Nonetheless, it is still possible to
give a restricted version of Corollary 25.

Corollary 28 The following statements hold.

1. IP � ⇒ ∼2A ∧ ∼3A if and only if dIP � ⇒ �5At ∧ �6At .
2. dIP � ⇒ �2A ∧ �3A if and only if IP � ⇒ ∼5As ∧ ∼6As.

Proof (i) If IP � ⇒ ∼2A∧ ∼3A then so is it derivable in CP. Hence by Theorem 24,
dCP � ⇒ �6At ∧ �9At . This is equivalent to dCP � ⇒ �At ∧ �2At . Then
by Theorem 27 and the distributivity of �4 over conjunction, we obtain dIP � ⇒
�5At ∧ �6At . The converse direction is argued along the same path, this time using
the equivalence between ∼6 and ∼2. The argument for (ii) is analogous. ��

On the other hand, it is not possible to obtain Corollary 25 fully for IP and dIP. In
order to see this, note that dIP � ⇒ �6(p∧�6 p)∧�7(p∧�6 p) and so we can show
dIP � ⇒ �3(∼(p ∧ ∼2 p))t ∧ �4(∼(p ∧ ∼2 p))t . However IP � ⇒ ∼(p ∧ ∼2 p).
Similarly, since it holds that IP � ⇒ ∼3(p ∨ ∼6 p) ∧ ∼4(p ∨ ∼6 p), we have IP �
⇒ ∼3(p ∨ �2 p)s ∧ ∼4(p ∨ �2 p)s . However dIP � ⇒ p ∨ �2 p.

Remark 2 If we write both ∼∼ and �� as ¬ (representing intuitionistic negation),
then the above proof establishes that IP � ⇒ ¬A iff dIP � ⇒ ¬At as well as
dIP � ⇒ ¬A iff IP � ⇒ ¬As . Hence the intuition that ∼ and � represent rotations
of values from opposite sides can be seen to be partially alive: for instance, in CP,
applying ∼ to (∼-free) A corresponds to applying � three times to it. In IP, applying
∼ to ¬A (i.e. ∼3A ≡ ¬∼A) corresponds to applying � three times to it (i.e. �5A ≡
¬�3A ≡ ¬(∼A)t ).

Another possible restriction is to disallow applications of certain rules.

Proposition 29 The following statements hold.

1. If IP-(Cut) � � ⇒ A with no applications of (L∼∧) or (L∼→1), then dIP �
�t ⇒ At .

2. If dIP-(Cut) � � ⇒ A with no applications of (L�∨), then IP � �s ⇒ As.

Proof For 1., by induction on the depth of derivation. For instance, when the last rule
applied is an instance of (L∼→2),
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∼B, � ⇒ C
∼(A → B), � ⇒ C

then by I.H. we have a derivation on IP of �3Bt , �t ⇒ Ct . Then since dIP-(Cut) �
�3(At → Bt ) ⇒ �3Bt , by the admissibility of (Cut) we infer �3(At → Bt ), �t ⇒
Ct . 2. is argued likewise. ��
Corollary 30 If dIP � ⇒ A∧�A and there is no occurrence of disjunction in A, then
IP � ⇒ ∼3As ∧ ∼4As.

Proof From Proposition 29 and the fact that if a disjunction occurs in a derivation of
dIP-(Cut), it must occur in the endsequent. ��

For example, we can show dIP � ((p ∧ �p) → p) ∧ �((p ∧ �p) → p), and the
corollary then tells that ∼3((p ∧ ∼3 p) → p) is a provable contradiction in IP.

6 Some Subsystems ofMP

In this section, we shall look at some examples of subsystems of MP, mainly ones
which do not prove a contradiction, to point out certain limits for weakening the
property of the double negation. We first give a general characterisation for a set of
formulas to contain a contradictory pair, assuming that it satisfies N4-like conditions.

Theorem 31 Let L be a set of formulas in L∼ such that:
1. A/∈L for some A.
2. A1∧A2∈L ⇒ Ai∈L for i∈{1, 2}.
3. A, A→B∈L ⇒ B∈L.
4. A∈L ⇒ A[p/B]∈L.

5. A∨B ∈ L ⇒ A∈L or B∈L.
6. ∼(A∧B)∈L ⇒ ∼A∨∼B∈L.
7. ∼(A∨B)∈L ⇒ ∼A∧∼B∈L.
8. ∼(A→B)∈L ⇒ A∧∼B∈L.

Then A,∼A ∈ L for some A if and only if there is B such that

• ∼B,∼∼B ∈ L.
• for any C such that |C | < |∼B|, either C /∈ L or ∼C /∈ L.

Proof The ‘if’ direction is immediate. For the ‘only if’ direction, we show the contra-
positive. So suppose for all B, if ∼B,∼∼B ∈ L then there is C such that |C | < |∼B|
and C,∼C ∈ L . We shall argue by induction on the complexity of A that A,∼A ∈ L
leads to contradiction.

If A is p or ∼p, then A,∼A ∈ L implies ∼p ∈ L . By the condition 4. for L ,
we infer ∼(D → D) ∈ L and so D ∈ L for all D by the conditions 2. and 8.. This
contradicts the condition 1..

If A is D ∧ E , then D ∧ E,∼(D ∧ E) ∈ L and so D, E ∈ L by the condition
2.. Also ∼D ∨ ∼E ∈ L and so either ∼D ∈ L or ∼E ∈ L by the conditions 5.
and 6.. Consequently either D,∼D ∈ L or E,∼E ∈ L , But by I.H. both lead to a
contradiction. The case when A is D ∨ E is analogous.

If A is D → E , then D → E,∼(D → E) ∈ L and so D,∼E ∈ L by the condition
8.. Also D, D → E ∈ L means E ∈ L by the condition 3, so E,∼E ∈ L and by I.H.
we obtain a contradiction.

If A is ∼D, then the case |∼D| = 0 is already treated. Otherwise, by our initial
supposition there has to be a formula C of lower complexity such that C,∼C ∈ L , to
which we can apply I.H.. ��
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6.1 Systems with Double Negation Rules

Wewill formulate our examples in this section axiomatically. For the first example, we
keep the axiom schema (A → ∼∼A) → ∼∼A inMP, but the other double negation
axiomschema isweakened to a rule corresponding to (A ↔ B) → (∼∼A ↔ ∼∼B)8.

Definition 14 (H-WP) The system H-WP is defined from H-MP by replacing the
axiom schema (A ↔ B) → (∼∼B ↔ ∼∼A) by:

A ↔ B
∼∼A ↔ ∼∼B

We check that H-WP satisfies the disjunction property, using the technique of the
Aczel slash Aczel (1968).

Definition 15 (Aczel slash) We define the notion of |A for formulas in L∼ by the
following clauses.

|p ⇔ H-WP � p.

|A ∧ B ⇔ |A and |B.

|A ∨ B ⇔ |A or |B.

|A→B ⇔ (|A implies |B)

and H-WP�A→B.

|∼p ⇔ H-WP � ∼p.

|∼(A ∧ B) ⇔ |∼A or |∼B.

|∼(A ∨ B) ⇔ |∼A and |∼B.

|∼(A → B) ⇔ |A and |∼B.

|∼∼A ⇔ H-WP�∼∼A.

Lemma 32 |A if and only if H-WP � A.

Proof The left-to-right direction is shown by induction on the complexity of formulas.
The right-to-left direction is shown by induction on the depth of derivation. In particu-
lar, for the axiom schema (A → ∼∼A) → ∼∼A, it suffices to show that |A → ∼∼A
implies |∼∼A. The former impliesH-WP � A → ∼∼A, soH-WP � ∼∼A and thus

|∼∼A, as required. For the rule A ↔ B
∼∼A ↔ ∼∼B

, if |∼∼A then H-WP � ∼∼A
and so H-WP � ∼∼B. Thus |∼∼B and consequently |∼∼A → ∼∼B. Similarly,
|∼∼B → ∼∼A and so |∼∼A ↔ ∼∼B. ��
Proposition 33 If H-WP � A ∨ B then either H-WP � A or H-WP � B.

Proof If H-WP � A ∨ B, then by Lemma 32 |A ∨ B and so |A or |B. By the same
lemma, this implies either H-WP � A or H-WP � B. ��

We now show that no formula of the form ∼∼A is derivable in the system, using
a Gödel-Dummett style infinite-valued matrix (cf. e.g. Ono (2019)).

8 In the following, we shall assume thatH-MP is axiomatised with these double negation axiom schemata,
rather than with (A → B) → (∼∼B → ∼∼A). The equivalence between the two axiomatisations is again
checkable straightforwardly.
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Definition 16 Let T = {2−i : i ∈ N} ∪ {0}. Let v be an assignment of values
v+(p), v−(p) ∈ T to each propositional variable p. For compound formulas, we
set:

v+(A∧B) = min(v+(A), v+(B)) v−(A∧B) = max(v−(A), v−(B)).

v+(A∨B) = max(v+(A), v+(B)) v−(A∨B) = min(v−(A), v−(B)).

v+(A→B) =
{
1 if v+(A)≤v+(B).

v+(B) otherwise.
v−(A→B) = min(v+(A), v−(B)).

v+(∼A) = v−(A) v−(∼A) =
{
1 if v+(A)=0.

2−(i+1) if v+(A)=2−i .

A formula A is then said to be valid if v+(A) = 1 for any assignment v.

Proposition 34 H-WP � ∼∼A for any A.

Proof It is straightforward to check that H-WP is sound with respect to the above
matrix. For instance, if v+(A) = 0 then v+(∼∼A) = v−(∼A) = 1. Otherwise,
v+(A) = 2−i > 2−(i+1) = v+(∼∼A) and so v+(A → ∼∼A) = v+(∼∼A).
So v+((A → ∼∼A) → ∼∼A) = 1 under any assignment v. Also, if A ↔ B
is valid, then for any v we have v+(A) = v+(B), from which it also follows that
v+(∼∼A ↔ ∼∼B) = 1, and so the formula is valid.

Now, it is easy to see that if v is an assignment such that v∗(p) > 0 for all p and
∗ ∈ {+,−}, then v∗(A) > 0 for all A. Hence under this assignment, for no A we have
v+(∼∼A) = 1. The statement then follows by soundness. ��
Corollary 35 H-WP does not have a provable contradiction.

Proof It readily from Proposition 33 that the set of theorems of H-WP satisfies the
conditions of Theorem 31. Then the statement follows using Proposition 34. ��

This example in particular shows that (A → ∼∼A) → ∼∼A is insufficient by
itself to cause negation inconsistency.

At this point, one might wonder what happens for the other way of weakeningMP,
namely to retain (A ↔ B) → (∼∼A ↔ ∼∼B) while (A → ∼∼A) → ∼∼A is
made into a rule A → ∼∼A

∼∼A
. Let us call this system H-XP. We can confirm that this

system is negation inconsistent.

Proposition 36 ∼(∼(A∧∼2A)∧∼3(A∧∼2A)) is a provable contradiction inH-XP.

Proof Wefirst observe thatH-XP � ∼∼(A∧∼∼A). This follows from (A∧∼∼A) →
(A ↔ (A ∧ ∼∼A)) by first applying the double negation axiom schema of H-XP,
giving (A ∧ ∼∼A) → (∼∼A → ∼∼(A ∧ ∼∼A)). Hence H-XP � (A ∧ ∼∼A) →
∼∼(A ∧ ∼∼A), to which we can apply the double negation rule. This implies then
H-XP � ∼(∼(A ∧ ∼2A) ∧ ∼3(A ∧ ∼2A)). On the other hand, the negation of the
formula is obtained by taking ∼(A ∧ ∼∼A) in place of A in ∼∼(A ∧ ∼∼A). ��

123



Double Negation as Minimal... 881

Fig. 2 The effect of changing axioms to rules

Figure 2 summarises what happens to negation inconsistency when we weaken the
axioms schemata ofH-MP corresponding to (∼∼2) and (∼∼3) into the corresponding
rules. Alternatively, we can also consider the weakening of the axiom schema corre-
sponding to (∼∼1) as well. In that case, the negation inconsistency is kept even when
both of the axiom schemata areweakened to rules: we have∼5(A∧∼2A) as a provable
contradiction, as can be checked by mimicking the derivations in Proposition 9.

7 Informational Interpretation ofMP

The introduction by Kamide of the kind of negation we are considering seems to have
been motivated more from a technical perspective. Hence it did not necessarily come
with a (non-logical) philosophical project to which the formalisation of CP and IP
is dedicated. Nonetheless, it will be of a considerable interest if these logics with
unusual features get tied with a robust philosophical interpretation. At the same time,
it may be unlikely to immediately reach a definite interpretation, so we shall aim at
a more modest goal of enriching our understanding of the logics by suggesting an
interpretation from a point of view alternative to the pre-existing one.

As mentioned in the introduction, the double negation in CP and IP are already
explained in Omori and Wansing (2018) in terms of negative concord. This inter-
pretation is however linguistic in character, and a more constructive interpretation is
perhaps also beneficial for systems like IP and MP. A canonical example of such
an interpretation is the BHK-interpretation for intuitionistic logic, which explains the
meaning of a connective by the proof condition of a formula with the connective as
the main connective (see e.g. Troelstra and van Dalen (1988)). For systems related to
N4, an extended interpretation is often used, in which the explanation is given by the
parallel notion of refutation/disproof condition as well (Nelson, 1949; López-Escobar,
1972).

If we allow ourselves to understand by a proof/disproof a construction that provides
an evidence in favour of a statement’s truth/falsity, BHK-style interpretation can be
connected to an interpretation based on the notion of information. The recent proposal
of dimathematism by Wansing (2022) appears to be particularly suitable for IP and
MP. As observed in that paper, IP (and also MP) satisfies the qualification of strong
dimathematism:

Strong dimathematism is an informational view: some languages L and some
contradictory L-formulas are such that their truth is supported by every state from
every L-model. That is, where ∼ is negation, there are L-sentences A, such that
for every L-modelM and every statew fromM, inM statew supports the truth
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of both A and ∼A. Given that a state supports the falsity of A iff it supports the
truth of ∼A, this is to say that there are some L-formulas A, such that every
L-model M and state w from M are such that in M state w supports both the
truth and the falsity of A. [Wansing (2022)]

The view thus liberates us from the perhaps constructively untenable notions of
truth and falsity by replacing them with the more tangible notions of supports of truth
and falsity. An interpretation of MP (or IP) from this viewpoint then has to answer
how the falsity of ∼A is supported.

7.1 Double Negation and Strong Support

Limiting our attention toMP, we have to explain the condition:

w �− ∼A iff ∀w′ ≥ w(w′�+A ⇒ w′ ∈ Q).

In minimal logic, Q is used to capture the absurdity constant ⊥, and as a consequence
Q is best understood as a set of worlds which disfavour the truth of A. Nonetheless, it
is also possible to consider Q as a set of worlds which favour A. Although we in no
way expect it to be a definitive interpretation, we tentatively suggest to deem Q as a
set of worlds in which the supported formulas obtain a higher informational status or
a strong support.

Once we understand Q in such a way, then the equivalence above seems less per-
plexing. One can perhaps defend it on the following ground: it is something unusual
if any later state that supports the truth of A is one that is capable of giving a strong
support. This regularity challenges the claim that A is false; so the falsity of ∼A is
supported,9. Then conversely the falsity of ∼A can be taken to be supported only if
the above situation holds.

Remark 3 To understand the naïve intuition behind the interpretation, it may help to
see each world metaphorically as an agent (ordered by what they support), and Q
as the set of ones who are trustworthy. Then consider as an example the case of an
agent assessing the falsity of the statement ‘global warming is not a major issue.’. In
order to evaluate the statement, the agent looks at other agents with whom he shares
what to support (i.e. later worlds), and discovers that every agent who supports the
truth of the statement ‘global warming is a major issue’ is trustworthy.10 Based on
this evidence, the agent supports the falsity of the original statement. This method of
evaluation seems rather natural, as we often refer to people making relevant claims
and check their credibility, when we judge a claim.

9 Needless to say, the acceptability of this reasoning dependsmuch on the relationship between the supports
of truth and falsity. This is left unspecified in MP which is perhaps unsatisfactory. On the other hand, N4
may be argued to have a similar problem as well.
10 Grigory Olkhovikov pointing out that it can happen that such an agent is in fact in the minority among
the agents in Q, in which case concluding the support of falsity may seem odd. One possible defence to the
objection would be to argue that the rule of majority should not play a role when it comes to evaluating the
opinions of trustworthy agents.
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It is hard to apply a similar kind of interpretation to IP, because in the intuitionistic
setting, Q has to be empty. We can not, as a result, have a ‘positive’ reading of the
support of falsity condition for negation, unlike inMP. This may be hinting thatMP,
which in a way liberates from the view that the double negation must resemble a
demi-negation, is more preferable than IP from the informational point of view.

7.2 Extending the Interpretation

One possible objection to the support of falsity condition for negation in MP, when
understood in the abovemanner, is thatw �− ∼A holds even when there is now′ ≥ w

such thatw′ �+ A. It may be suggested that the falsity of∼A should not be supported
when the truth of A will not ever be supported. Accepting this criticism motivates one
to make the following modification to the forcing conditions in the semantics forMP:

w �− ∼A iff ∀w′ ≥ w((w′�+A ⇒ w′ ∈ Q) and ∃x ≥ w′(x �+ A)).

This condition ensures that that the aforementioned situation does not occur, and also
preserves the upward closure of the forcing relation. Let us denote the consequence
for the modified semantics by �m .

We can show using a standard method (see e.g. van Dalen (2014)) that the modifi-
cation does not affect the constructive character of the semantics.

Proposition 37 If �m A ∨ B then �m A or �m B.

Proof We show the contrapositive. So suppose �m A and �m B. Then there are
countermodels Mi = ((Wi ,≤i , Qi ),Vi ) for i ∈ {1, 2} such that there are wi ∈ Wi

withM1, w1 �
+ A andM2, w2 �

+ B. We may assumeW1 ∩W2 = ∅. Define a new
model M = ((W ,≤, Q),V) where:

• W = W1 ∪ W2 ∪ {g}, where g is a new element.
• w ≤ w′ if w,w′ ∈ Wi and w ≤i w′, or w = g.
• Q = Q1 ∪ Q2.
• V∗(p) = V∗

1 (p) ∪ V∗
2 (p) for ∗ ∈ {+,−}.

Then for i ∈ {1, 2} and ∗ ∈ {+,−}, it holds that for all w ∈ Wi , we have M, w �∗
A iff Mi , w �∗ A. Consider as an example the case when A is ∼B, w ∈ W1
and ∗ = −. Then M, w �− ∼B iff ∀w′ ≥ w((M, w′ �+ B ⇒ w′ ∈ Q) and
∃x ≥ w′(M, x �+ B)). By I.H., this is equivalent to ∀w′ ≥ w((M1, w

′ �+ B ⇒
w′ ∈ Q1) and ∃x ≥ w′(M1, x �+ B)) and thus toM1, w �− ∼B.

Nowwe haveM, w1 �
+ A,M, w2 �

+ B and soM, g �
+ A∨B; thus�m A∨B.

��
On the other hand, if one is interested in a negation-inconsistent system, then the

semantics is not adequate.

Proposition 38 �m ∼∼A for any A.

Proof Consider a model with Q = ∅. In the model, M, w �+ ∼∼A iff
∀w′ ≥ w(w′

�
+ A and ∃x ≥ w′(x �+ A)). Hence ∼∼A is never forced in such

a model. ��
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Corollary 39 There is no formula A such that �m A and �m ∼A.

Proof Let L = {A :�m A}. Then the statement follows from Theorem 31 as well as
Proposition 37 and 38. ��
Remark 4 It may be suggested that Proposition 38 can be avoided by putting an extra
condition that Q �= ∅. In that scenario, when W = {w} we obtain the equivalence
w �− ∼A if and only if w �+ A. In a model based on such a frame11, if w �+ A
and w �+ ∼A, where |A| ≥ 1, we can always find a strict subformula B of A such
that w �+ B and w �+ ∼B. It follows then that we do not have such A in a model
where V+(p) = V−(p) = ∅. This gives a countermodel for A∧ ∼A in the suggested
semantics, and so we again end up with a negation-consistent system.

The above observations suggest that it is essential for the negation inconsistency of
MP that the falsity of negation can be ‘vacuously’ supported. Is it possible to make
sense of such a support?

One reply to this question might be to note that a vacuous support does not mean it
contains no information. Observing that the truth of A is never going to be supported
provides enough information to rule out a counterexample to the support of falsity for
∼A, in the sense of a later world which supports the truth of A but not in Q. Hence a
vacuous support is something more than a non-support. Nonetheless, one might argue
that we cannot regard the observation as a support, because it gives less information
than the non-vacuous cases. However, this should not be too much of a problem, as
our interpretation presupposes that supports come in different degrees.

8 Concluding Remarks

This paper explored some subsystemsofKamide’s logicsCP and IP, in order to analyse
the cause of the non-trivial negation inconsistency of the systems. We formulated the
system MP, whose double negation can be seen as the minimal negation. MP, as
we found out, is not only negation inconsistent, but also is a system into which any
provable contradiction in CP can be embedded, preserving the status of provable
contradiction. This result was also used to show how provable contradictions in CP
and IP correspond to those of the systems with quarter turn operator, dCP and dIP.

As the Hilbert-style system H-MP clarifies, (A → ∼∼A) → ∼∼A is isolated as
the sole axiom schema inducing the contra-classicality. Then to understand the role of
the schema further, we looked at some subsystems of MP in which double negation
axiom schemata are turned into rules.We observed the status of negation inconsistency
depends on which axiom schema is weakened.

Lastly, we attempted to give an interpretation of MP from an informational, and
more specifically dimathematic point of view. We suggested that the support of falsity
for ∼A can perhaps be understood as the regularity that the support of truth for A
being always strong. We then observed that the negation consistency is lost if some
stronger conditions are imposed.

11 A model of this kind is equivalent to the one for the system CLoNs in Batens et al. (1999).
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MP may perhaps not rival N4 in terms of naturalness, but given the interpretation,
the difference might be not as wide as it appears at first sight. The crucial question
then is under which contexts it can work as a complementary system. This needs to
be explored further in order to justify the importance of Kamide’s negation and the
contradictions it creates.
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