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Abstract

Transformer-based Pre-Trained Language Models currently dominate the field of
Natural Language Inference (NLI). We first survey existing NLI datasets, and we
systematize them according to the different kinds of logical inferences that are being
distinguished. This shows two gaps in the current dataset landscape, which we propose
to address with one dataset that has been developed in argumentative writing research
as well as a new one building on syllogistic logic. Throughout, we also explore the
promises of ChatGPT. Our results show that our new datasets do pose a challenge to
existing methods and models, including ChatGPT, and that tackling this challenge via
fine-tuning yields only partly satisfactory results.

Keywords NLI - Inference - Transformer - MNLI - Survey - ChatGPT

1 The Generalization Problem of Neural NLI & Kinds of Inference

Current natural language inference (NLI) is typically conceived as a three-way classifi-
cation problem. With samples such as (1), consisting of a premise (P) and a hypothesis
(H), the models are tasked to categorize their relationship as either one of contradic-
tion (P and H cannot both be true or are unlikely to both be true), of entailment (If P is
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true, then H must be true as well or is likely true as well), or as being neutral (neither
of the two).

(I)  (P) The streets are wet. (H) It has rained.

While example (1) is an example for a syntactically rather simple, fallible, common-
sense inference, example (2) falls on the other side of the spectrum: It is a syntactically
complex, deductively valid inference that seems rather remote from common-sense.
Despite their differences, however, both are examples for valid inferences (see Sect. 2.1
for a systematic representation of this concept). The true challenge of NLI is to develop
methods that can cope with this diversity, perhaps by recognizing, as human experts
do, what kind of inference is at issue in a given context and argument.

(2)  (P) All Germans are childcare workers and all childcare workers are fingerprint
collectors. (H) All Germans are fingerprint collectors.

As we will show below (see Sect. 2.2), transformer-based pre-trained language
models (PLMs) are currently the standard to approach this task of NLI. What is
emerging as neural NLI’s most pressing problem is the fact that these neural PLMs
might almost outperform the crowdworker-based human baseline for the dataset on
which they were fine-tuned, but perform worse than random at out-of-dataset-samples.
We call this, following standard usage, the problem of generalization.

The work in this article can be seen as a contribution to addressing this problem of
generalization. On our analysis, what contributes to the problem are the conceptions of
inference inherent in the datasets that dominate current research: they tend to confine
themselves to a part of the conceptual space spanned by the concept of inference, which
means that models that have been trained on them struggle when tasked to cope with the
phenomenon of inference in its full breadth. More specifically, our article makes three
contributions. First, after detailing the concept of valid inference, we give a systematic
view on the NLI datasets that are currently available, which allows us to identify two
gaps in this dataset landscape, namely the lack of direct inductive inferences (such as
example (1) and a scarcity of syntactically complex, quantifier-heavy samples (such
as (2)).

Our second and third contributions aim at filling these gaps. Regarding the first gap,
we introduce to the field of NLI a well-established dataset from the argumentative
writing literature, which contains almost exclusively direct inductive inferences; we
examine the performance of state-of-the-art models on this dataset. Third, regarding the
second gap, we propose and make publicly available a fine-tuning and challenge dataset
that is based on syllogistic logic (and therefore made up of syntactically complex,
formally valid inferences), and we evaluate the performance of both neural NLI models
and a symbolic approach on this dataset. We also evaluate ChatGPT on both the
argumentative writing as well as our syllogistic dataset.

With regard to the overarching conceptual scheme, we propose to conceive NLI as
a kind of common-sense reasoning. Common-Sense reasoning is sometimes seen as a
use-case for formal logical methods (Davis & Marcus, 2015; Davis, 2017), and even
more often as an umbrella term for cognitive tasks that require some world knowledge
or common-sense knowledge (Storks et al., 2019; Trinh & Le, 2019; Zellers et al.,
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2018). Hence, on our proposal, NLI is a kind, but not the only kind, of common-sense
reasoning.

2 Survey of the Current state of Research

In this survey, we first detail the different kinds of valid inference (Sect. 2.1), then we
survey the current state of the art regarding models and datasets (Sect. 2.2), before
discussing the problem of generalization in NLI (Sect. 2.3).

2.1 Kinds of Inference

A first and central distinction to be drawn within the concept of valid inference is
the one between deductively valid inferences and inductively valid inferences (see
(Koons, 2021) for an introduction to the distinction and to the concept of inductive, or
defeasible reasoning).! An inference is deductively valid if it is not possible that the
premises are true while the conclusion is false (for the concept of necessity involved
here, see (Plantinga, 1974, 1ff.)). With inductive inference, this condition does not
hold: for such inferences to be valid, it is sufficient if the truth of the premise gives
good reason to accept the truth of the conclusion (which means that it is possible, but
unlikely, that the premise is true while the conclusion is wrong). Example (1) is a case
of inductive inference: the streets could be wet, but this could have other causes than
rain.

Within the domain of deductively valid inferences, it is common to distinguish
inferences that are deductively valid due to the form of the propositions that consti-
tute the inference, and others that are valid due to the content of these propositions
(see (Quine, 1980) for a critical discussion of the distinction). Example (2) is a case
of a formally deductively valid inference: It does not matter what you plug in for
“Germans”, “childcare workers”, and “fingerprint collectors”, you will always get a
deductively valid inference (note that the truth of either premise or hypothesis is not
required for an inference to be deductively valid. The concept of validity applies only
to the truth-functional relationship between premise and hypothesis. A deductively
valid inference with true premises is called a sound inference).

In contrast, example (3) is deductively valid because of the content, the meaning
of “bachelor” and “unmarried”: replacing these concepts with others will likely result
in an invalid inference.

(3)  (P) Peter’s marital status is that of a bachelor. (H) Peter is unmarried.

There are different proposals to systematize the domain of inductive inferences.
Currently, a prominent one is that inductive inferences are inferences to the best
explanation, that is, abductive inferences (for an excellent introduction to the con-
cept, see (Lipton, 2004)). Example (1) evinces the plausibility of this perspective: It
is reasonable to conceive the hypothesis there as an explanation for the premise. The

! For a discussion of the distinction between deductively valid inferences, especially as opposed to con-
ventional and conversational implicatures, see Zaenen et al. (2005).
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Valid Inference
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. T inductively valid
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... due to its form ... due to its content

Fig. 1 Kinds of valid inferences

inference is defeasible because there could emerge a better explanation for the premise
(in example (1), this could be the information that a street cleaning crew just passed
through the street). An alternative conception is that such inferences are inductive in
nature, that is, based on a number of previous observations of similar situations. Ever
since Hume (1999), it has been painfully clear that, without further metaphysical argu-
ment, such inductive inferences are not deductively valid. Figure 1 gives an overview
on these kinds of valid inference.

Having a clear conception of inference is obviously important for generalization.
For instance, a model fine-tuned to identify deductively valid inferences might not
excel at identifying inductively valid inferences: Pairs such as (1) should be labelled
entailment if inductively valid inference is at issue, but neutral from the perspective
of deductive validity. In other words, the validity of inductive inferences is simply
invisible to a model trained on deductive inferences, which might suggest a low recall
with such inferences. Furthermore, a model that is not used to inferences that are valid
due to their (perhaps syntactically complex form) might struggle to accurately classify
them.

2.2 Neural NLI: Models & Datasets
2.2.1 The Models

Transformer-based PLMs have become the de facto standard in a variety of natural lan-
guage processing tasks, including NLI. Based on the encoding part of the transformer
(Vaswani et al., 2017), researchers have proposed a number of highly successful NLU
architectures, starting with BERT (Devlin et al., 2019), quickly followed by others,
including RoBERTa (Liu et al., 2019), XLNet (Yang et al., 2019), DeBERTa (He et
al., 2020), and smaller versions such as DistilBERT (Sanh et al., 2019) and Albert
(Lan et al., 2019). Additionally, a number of sequence-to-sequence architectures have
been proposed that are more similar to the original transformer than to BERT in that
they directly try to transform one sequence to another, much like the basic set-up of
neural machine translation. These include T5 (Raffel et al., 2019) and BART (Lewis
et al., 2020).

These PLMs are then fine-tuned on specific datasets, such as the Multi-Genre
Natural Language Inference (MNLI) dataset, which means that, while predicting
labels on the dataset in question, a part of their parameters is being optimized.
Fine-tuning usually takes several thousand times less computations than pre-training.
Such transformer-based PLMs fine-tuned to specific datasets perform impressively

@ Springer



Capturing the Varieties of Natural Language Inference... 25

at standard natural language understanding (NLU) benchmarks, which include natu-
ral language inference (NLI) tasks. The MNLI Leaderboard (https://paperswithcode.
com/sota/natural-language-inference-on-multinli), for instance, shows that the top ten
PLMs are without exception transformer-based.

With ChatGPT (OpenAl), a general-purpose chatbot trained by OpenAl, things are
a little different. Due to OpenAlI’s non-disclosure of crucial parameters of the model
and its training (and its refusal to publicly release the model), little details are known
about it, and it is not possible to fine-tune it. Hence, we simply evaluate the version
available via the API on April 13, 2023.

2.2.2 The Datasets

Given the importance of fine-tuning for the entire method of tackling NLI as it is
currently practiced, it is clear that this method is squarely based on the availability —
and quality — of large NLI datasets. Thanks to their sheer size, the Stanford Natural
Language Inference (SNLI) datasets (Bowman et al., 2015) and MNLI (Williams et
al., 2018) have come to dominate the field, as their size is suitable for fine-tuning
large PLMs for NLI. For an example, see (4) (the example is from MNLI, SNLI is
identically structured, with the main difference lying in the genres of the premises).

(4)  55785e (P) I burst through a set of cabin doors, and fell to the ground- (H) I
burst through the doors and fell down. (entailment)

As a consequence of their popularity, as we shall see in the following Sect. 2.3,
most of the research on generalization issues focuses on MNLI and SNLI. In contrast,
our goal is to give a full picture of the variety of NLI datasets currently available.
We try to give this overview on Table 1 (we dive deeper into these datasets in the
appendix, Sect. A). We take the multitude of approaches that the field has developed
in recent years to be a clear advantage: Human ability to draw logical inferences is
a complex, multi-faceted ability, ranging from drawing strict deductive inferences to
very implicit and fallible common-sense inferences. However, we also think that being
aware of the different shades of the concept of inference is relevant for generalization
issues. A system that is trained on a dataset representing deductive validity will classify
inductively valid inferences as invalid, for instance and therefore have a low recall with
these types of inferences. Note that not all of the datasets listed in table 1 are explicitly
proposed as NLI datasets. We elaborate on this in the following.

What Qualifies as an NLI Dataset? We have included PIQA among the NLI datasets
even though their authors (unlike the creators of (Hella)SWAG and SIQA) do not
explicitly consider themselves as creating an NLI dataset. However, it seems helpful
to group this carefully designed dataset together with its social-reasoning-focused
counterpart, SIQA, and its frame-completing further counterpart (Hella)SWAG. PIQA
is in good company here in requiring that subjects infer the most appropriate means to
reach a given goal using their store of common-sense physical knowledge. The OBQA
and ARC datasets are included here in accordance with the stated opinions of their
authors in the papers.

@ Springer


https://paperswithcode.com/sota/natural-language-inference-on-multinli
https://paperswithcode.com/sota/natural-language-inference-on-multinli

26 R. Gubelmann et al.

Table 1 Matrix representation of current NLI datasets

Deductive validity Inductive validity
(Formal and material inf.) (Only indirect found)
yes-no-questions BoolQ (Clark et al., 2019),
FraCas (Cooper et al., 1996)
Classification (3-, 2- and SNLI (Bowman et al., 2015),
5-class) MNLI (Williams et al.,

2018), SICK (Marelli et al.,
2014), PPDB 2.0 (Pavlick

etal., 2015), RTE (Wang et
al., 2018), WNLI (Wang et

al., 2018)

Multiple-choice OBQA (Mihaylov et al., SWAG, HellaSWAG (Zellers et al.,
2018), ARC (Clark et al., 2018, 2019), PIQA (Bisk et al.,
2018) 2020), SIQA (Sap et al., 2019)

Furthermore, and perhaps slightly more controversially, we have not included the
QNLI dataset, which was designed by Wang et al. (2018) as an NLI benchmark as
well as CB, which was included into SuperGLUE (Wang et al., 2019) as an NLI
task (even though Marneffe et al. (2019), the creators of CB, do not see it as an NLI
dataset). With QNLI, the reason for not including it as an NLI dataset is rather simple:
It is one task to determine whether a given sentence can be logically inferred from
another one, and quite another task to determine whether a given sentence answers a
given question. This is why, incidentally, researchers such as Demszky et al. (2018)
develop sophisticated transformation methods to convert question-answer pairs into
premise-hypothesis pairs.

With the so-called commitment bank (CB), things are different. The problem here
is that the entire dataset is centered around the notion of commitment. For instance,
there just is no contradiction between “I don’t think they’ve ever made a movie, do
you?" and “they’ve ever made a movie”, simply because somebody might very well
think not-A while A is true (for more details on this dataset, see the appendix, Sect. 1).
If I think that the earth is flat, while it is in fact round, then there is a conflict between
my belief and common knowledge, but there is no contradiction between the sentence
“I think that the world is flat” and the claim “The world is round”.

Deductive or Inductive Validity?

The BoolQ and FraCas dataset are explicitly designed with deductive validity in
mind. With the RTE challenge dataset from Wang et al. (2018), careful qualitative
inspection shows clearly that it represents a deductive notion of inference; example
(5) is representative in this regard: Usually the entailment pairs have a hypothesis that
is a paraphrase of the premise or one whose truth-conditions are a proper subset of the
premises. The contradiction pairs usually contain a hypothesis that is incompatible
with the premise.

(5) 85 This growth proved short-lived, for a Swedish invasion (1655-56) devastated the flourishing city
of Warsaw. Warsaw was invaded by the Swedes in 1655, and the city was devastated. (entailment)
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With SNLI and MNLI, the explicit commentary by the creators as well as the
crowdworker-instructions have convinced us that they are best conceived as aiming at
deductive validity. The instructions to the crowdworkers by Bowman et al. (2015) for
SNLI require that, given a prompt, the workers write one caption that is “definitely
a true description” (entailment), “might be a true description” (neutral), and a third
one that is “definitely a false description” of the photo described by the prompt. The
use of “definitely” as opposed to “highly plausibly” or similar clearly signals that the
dataset to be created will represent a concept of inference close to standard deductive
validity. Similarly, for MNLI, probably the most popular NLI dataset of our days, the
crowdworkers are given a prompt and instructed to write three prompts, one that is
“definitely correct”, one that “might be correct”, and one that is “definitely incorrect”
about the situation in the prompt. Furthermore, Williams et al. (2018) state that, for
their entailment labels, they are aiming at pairs where the hypothesis is “necessarily
true or appropriate whenever the premise is true”. This adds to the evidence that these
two very influential datasets are squarely aiming at deductively valid inferences rather
than inductive inference. We give the full crowdworker instructions in the appendix,
Sect. A.15.

The OBQA and ARC datasets are open-book. This means that the correct answer
can be inferred from collections of factuality statements that are provided with the chal-
lenge datasets. Looking at the specific examples provided by the authors of the dataset,
it is clear that they, too are aiming at deductively valid inferences with these open-book
question-answering challenges, see (Mihaylov et al., 2018, 2381) and (Clark et al.,
2018, 6) respectively.

Direct or Indirect Inductive Inference?

Our decision to classify datasets such as (Hella)SWAG and P/SIQA as aiming at
inductive validity through indirect reasoning might raise eyebrows. Our reasoning is
as follows. The usual way to aim for inductively valid inferences is to go at it directly.
This means to support a contested hypothesis directly with (defeasible) grounds, such
as at the very beginning in example (1), where we defeasibly infer from the wetness
of the streets that it has rained: To point to the wetness of the street directly (but
defeasibly) supports the claim that it has rained.

In contrast, with the four datasets mentioned, the prompts never provide direct
grounds to choose the appropriate answer from the choices. A (Hella)SWAG prompt
directly triggers merely a certain frame in the competent language user, which then
lends certain assumptions more plausibility than others. For instance (see the example
(6)), if a woman walks on stage and takes a seat at the piano, this is probably because
she wants to give a piano concert, a goal that makes options a)-c) very implausible.

(6)  On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll. b) smiles with someone as
the music plays. ¢) is in the crowd, watching the dancers. d) nervously sets her
fingers on the keys.

This choice of option (d), however, is not supported directly by the initial prompt
in the way the wetness of the streets directly supports the hypothesis that it has rained
in example (1). Indeed, this is explicitly advertised as a strength of the datasets: They
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are intended to be particularly difficult for PLMs by requiring this indirect way of
reasoning.

Similarly, with SIQA and PIQA, to understand why one option is more plausible
than another, one has to be able to, as it were, think sideways. For instance, to under-
stand that Remy will likely want to get her Room key in the example given in example
(7) for the SIQA dataset, we have to understand that a concierge is usually checking
in for somebody other than herself, that, given the frame that has been activated, this
is probably Remy, and that you usually want to have a key as a main outcome of the
check-in process.

(7)  Remy gave Skylar, the concierge, her account so that she could check into the
hotel. What will Remy want to do next? (a) lose her credit card (b) arrive at a
hotel X (c) get the key from Skylar

In sum, it is remarkable that there are no datasets that focus on direct reasoning
aiming at inductive validity such as example (1), and, to the best of our knowledge,
no large datasets involving syntactically complex, formally valid inferences, such as
example (2) (this is also pointed out by Bernardy and Chatzikyriakidis (2019)). We
see two reasons for this.

Formally Simple Deductive inferences are cost-efficient First, writing up materially
deductively valid inferences is much easier and hence faster and cheaper than writ-
ing up inductively valid inferences. Just exploit a simple conceptual hierarchy to
materially infer, say, from the fact that a dog is playing outside the fact that an ani-
mal is playing outside. Similarly, if you want to create a contradiction, just negate
the prompt and voil4, you’ve got yourselves a contradiction — a deductive one, of
course. It would require much more reflection to come up with a counterclaim that
seriously questions the prompt without downright contradicting it.

Inductive Inferences Should be Challenging Second, if researchers take the pains
to create inductively valid pairs, they want it to have good chances at outsmarting
the PLMs. This is antecedently more probable with the kind of indirect reasoning
used in the datasets just discussed. It seems less promising to use direct reasoning,
where less world knowledge and intuition seems to be required to fill the gap.

This results in two research gaps: (1) a scarcity of datasets and challenges for what
might be the most mundane use case for NLI tout court: direct inductive inferences
such as the very first example (1). (2) A scarcity of syntactically complex, formally
valid inferences, such as example (2).

2.3 The Generalization Problem of Neural NLI & Kinds of Inference

The basic problem that has emerged with this currently dominant approach to NLI
is the problem of generalization. By this, we understand the inability of the PLMs
to transfer the impressive performance on datasets on which they have been fine-
tuned to out-of-dataset samples. Of course, a drop in performance is natural (even
for humans) if the PLM is asked to perform the same task on substantially different
data. If, however, the performance of a PLM simply collapses entirely when applied
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to out-of-dataset-samples, then this implies that it has learned something other than
the task itself.

The problem of generalization in NLI is broadly acknowledged in the literature, see
Zhou and Bansal (2020); Bras et al. (2020); Utama et al. (2020); Asael et al. (2021);
He et al. (2019); Mahabadi et al. (2019), and Bernardy and Chatzikyriakidis (2019). It
is generally assumed that the underlying cause of the problem of generalization is the
PLMs’ overfitting (see (Goodfellow et al., 2016)) on the training set. This overfitting,
so the assumption goes, leads to the PLMs’ picking up on spurious idiosyncrasies
of the datasets, leading to the use of shallow heuristics and ultimately to a lack of
generalization. For an overview on the current approaches to mitigate this situation,
see Gubelmann et al. (2022).

We suggest that the multi-facetedness of inferences, which has so far ben addressed
only partially by current datasets, is another cause of the problem of generalization,
and one that has been largely overlooked in the current debate. Building on this insight,
we make two contributions to the ongoing research effort to overcome the problem
of generalization. In the following two sections, we will present two datasets that
are intended to contribute towards filling the two research gaps identified and hence
towards solving the problem of generalization by acquainting the models with a more
comprehensive conception of inference. First, the argumentative writing dataset pro-
vides a substantial number of direct inductive inferences (see Sect. 3). Second, the
dataset that we will present in Sect. 4 is intended to remedy both the lack of quanti-
fiers and the lack of complex, syntax-based inference-patterns, given its grounding in
syllogistic logic.

In a sense, our two contributions fall onto the two extreme ends of the spectrum
of valid inferences introduced above (Sect. 2.1). The argumentative writing dataset
contains inferences of the kind of (1), while example (2) is directly taken from our
syllogistic dataset. We hope that these datasets contribute to training scenarios that
allow PLMs to implicitly represent the kinds of inference that exist and to learn to
predict which of these kinds is at issue in a given context.

3 Argumentative Writing: Direct Inductive Inferences

Given the lack of direct inductive inference datasets, we hypothesize that models
fine-tuned on datasets that are representing a deductive concept of inference would
have a low recall with entailment relations that are not deductively valid, but merely
inductively valid. The reason for this is that an inference that is inductively valid is
often deductively invalid. Hence, when looking on it from the perspective of deductive
validity, it would receive the label neutral. An analogous hypothesis can be proposed
for contradiction.

3.1 Dataset

To investigate this hypothesis, we build on the argumentative writing literature.
Arguably the most prominent dataset in this area is the one by Stab and Gurevych
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(2014), expanded upon by Stab and Gurevych (2017). The dataset consists of anno-
tations of 402 persuasive essays from students, taken from the online portal called
essayforum. Overall, there are 6089 argument components annotated that are con-
nected by 3832 relationships. Three annotators annotated a subset of 80 essays, the
remaining 322 essays were annotated by just one annotator. For details regarding the
annotation procedure and inter-annotator-agreement scores, see Stab and Gurevych
(2017).

The dataset fits the bill because the arguments that are annotated are of the right
type of inference, namely inductive inference, and because the creators of the dataset
use a labelling structure that can easily be mapped onto ours. The relationships that
are annotated between them are “support” and “attack”. These are non-symmetric
relationships that can hold between ‘“Premises” and “Claims” as well as between
“Claims” and “MajorClaims”. These relationships of support and attack map nicely
onto the NLI labels of entailment and contradiction, conceived inductively. Neutral
labels are then simply any relationships between sentences that are not annotated
with support and attack. Example (8) (Stab & Gurevych, 2014, 1504) shows a sample
annotation for both attack and support.

(8)  Living and studying overseas is an irreplaceable experience when it comes
to learn standing on your own feet. One who is living overseas will of course
struggle with loneliness, living away from family and friends but those difficul-
ties will turn into valuable experiences in the following steps of life., Moreover,
the one will learn living without depending on anyone else.3

In this example, the claim in focus is the one put in boldface. According to the
annotations, which are in a separate file, it is attacked by premise 1, which is in turn
attacked by premise 2. Premise 3 then adds further support to the main claim. The
example nicely shows that the kind of arguments in focus of this dataset is exactly the
kind lacking in current NLI literature, namely cases of direct inductive reasoning. The
entire reasoning in this example is fallible - it might be that somebody who studies
overseas ends up with a highly protective aunt that leaves absolutely no room for
personal development. Still, in general, the third premise directly supports the claim
of the paragraph.

With the goal of examining the generalization abilities of NLI models fine-tuned
on MNLI (as is currently the standard), we wanted to assess how well the models cope
with the kind of annotations in the dataset. To this end, we have let three selected PLMs
predict any relationship between any of the sentences in the dataset compiled by Stab
and Gurevych (2017), in the following referred to as “AAE-DS”. Taking the absence
of an annotation as evidence for the neutral label yields a strong label imbalance, as
most of the relationships between sentences in AAE-DS lack a label and are hence
treated as neutral. More specifically, we obtain 54,657 neutral, 3259 entailment, and
156 contradiction pairs. While this imbalance is strong indeed, it is quite common
among natural language texts, even in argumentative essays: given two sentences,
there probably is no relationship existing between them. Therefore, in real-world use
cases, this is the kind of label distribution that one could expect. Still, when diving
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Table2 Performance of the models on the argument annotated essays dataset by Stab and Gurevych (2017).
We report accuracy for the overall performance

PLM (# Parameters) Global Entailment Contradiction Neutral
W-Acc U-F1 Prec Rec Prec Rec Prec Rec
ce-deberta-large (435 M) 87% 0.32 0.07 0.02 0.00 0.07 0.94 0.92
ta-fb-bart-large (406 M) 1% 0.06 0.06 0.95 0.00 0.01 0.96 0.04
ce-MiniLM2 (66 M) 86% 0.32 0.11 0.03 0.00 0.07 0.94 0.91
ChatGPT 60% 0.51 0.51 0.5 0.33 0.34 0.69 0.69

(175B 1k smpl.)

deeper into the results, we will also look at label-specific figures, giving unweighted
F1-scores in addition to weighted measures.

Due to financial limitations, we selected an evaluation dataset of 1’000 labels in total
for ChatGPT, composed of 100 contradiction labels, 300 entailment labels, and 600
neutral labels. This is not the same label distribution as in the full AAE-DS, however,
we wanted to have at least 100 samples per label and therefore had to compromise.

3.2 Experiment

We used the PLMs that are hosted by Huggingface (Wolf et al., 2019), one of them
is fine-tuned by Morris et al. (2020), prefixed with “ta” for “textattack”, and two by
Reimers and Gurevych (2019), prefixed with “ce” for “crossencoder” (‘facebook”
is abbreviated by “fb”’). We mapped predictions by the models in the way already
suggested: entailment onto support, contradiction onto attack and neutral onto (no
relation). Details on dataset creation and relationship prediction can be found in the
appendix, Sect. B.

3.3 Results & Discussion

The results of our experiments can be seen in Table 2. For crossencoder-PLMs, the
results show hardly any drop in performance between MNLI-matched and our AAE-
DS (with MNLI-matched, their accuracies are 87% and 88% respectively, see the
Appendix, Table 5 for our own figures on MNLI-M): the variation is less than 2%. For
textattack’s bart-large, in contrast, the accuracy completely collapses to 1%.

The striking drop in performance by bart-large can be ascribed to a very poor
recall (0.04) in the large neutral class, which is tantamount to much hallucination of
contradiction and entailment relationships: its precision with these labels is at 0.06
and 0.01. One could of course argue that the strong label imbalance of our AAE-DS is
the root cause of this very poor performance. However, we emphasize again that this
situation is not artificially construed, but rather directly taken from a well-respected
argumentative writing dataset.
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The two ce-models, in contrast, have high recall and precision with neutral, which
implies, due to label imbalance, high overall accuracy. Their precision and recall with
the other two labels is, however, very low.

ChatGPT, finally, copes rather well with its 1k dataset, resulting in an accuracy of
60%. Taking a closer look at precision per label, we see that it performs better than
the other models — with one important exception: the neutral class which makes up
for the majority of labels. Its precision with contradiction and entailment is 0.3 and
0.5 respectively, implying that it is hallucinating much less than the other models. We
have also run the other models on the 1k dataset that ChatGPT was tested on, and it
turns out that ChatGPT outperforms the CE-Models by 3% in accuracy there. Note,
again, that the label imbalance, while favoring the ce-models, is a realistic assumption.

With regard to our hypothesis, the figures are very encouraging: recall on entailment
and contradiction relations is low with deberta and minilm2 —and it would likely also be
low for BART-large if it would not hallucinate as much as it did. With ChatGPT, finally,
recall is substantially higher than with the other models when looking at entailment
and contradiction. However, the figures are still around.5 and thus still very low for a
cutting-edge model performing a standard NLU task.

If we compare unweighted F1-score (column 3) instead of weighted accuracy (col-
umn 2), then ChatGPT performs considerably better: it leads the field, distancing both
ce-models by nearly 0.2. This implies that ChatGPT would perform best with a dataset
where the labels are balanced. However, even there, it only reaches an F1-score of 0.51
which is clearly still unsatisfactory.

We conclude therefore that the need for more direct inductive inferences as training
data that we have identified a priori via our systematic Table 1 has been supported
by our experiment. From the empirical data, we can directly, if only inductively (and
hence defeasibly), infer that the models do not see the inductive validity of these
inferences because they were fine-tuned mostly on deductive inferences.

4 The Syll-DS: Bias, Shallow Heuristics, and Formal Complexity

In our second experiment, we address the second research gap identified by the survey
of NLI datasets (see Sect. 2.2), namely that there is currently a lack of large datasets that
center on quantifiers as well as deductively valid inferences, by providing a dataset that
focuses on these very domains. While we might not reach the syntactic sophistication
of FraCas (Cooper et al., 1996), our dataset is still squarely focused on syntactically
rather complex patterns of formal validity, large and hopefully contributes to filling
the research gap identified.

Furthermore, our dataset provides a simple way to distinguish two properties of
models that are often conflated: bias and shallow heuristics. As we have seen above
(Sect. 2.2), it is often said that the datasets or the models contain various biases.
However, following Blodgett et al. (2020), we propose to use bias only for evaluations
that are inherently normative and part of a larger worldview that is usually viewed as
potentially harmful. For instance, if a model expects that doctors are always men
and therefore fails to correctly predict some logical relationships between sentences,
one should attribute this to a bias: the model represents doctors as men, which is a
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clear case of a gender stereotype and hence part of a larger worldview. In contrast, a
shallow heuristic is a local tactic to succeed at a given task without any understanding
or mastery of the actual task that is explicitly not part of an intrinsically normative
worldview. The so-called negation bias is a clear case for such a shallow heuristic: It
is not connected to any larger and problematic worldview but a simple instance of a
rule of thumb.

4.1 Dataset

While it has so far not been used to assess NLI capacities of NLU models, the sys-
tematic behind our dataset dates back to Aristotle. In his Prior Analytics (composed
around 350 BC), (Aristotle, 1984, book 1) diligently analyzes the possible combina-
tions of subject-, predicate-, and middle-term via quantifiers and negations to form a
number of formally valid inferences. He deduces 24 formally valid patterns of infer-
ences, so-called syllogisms. Example (2) in Sect. 1 is an instance of such a syllogism,
belonging to the mood of the first figure that goes by the name of “BARBARA”, the
capital “A” signifying affirmative general assertions (“All X are Y.”).

Now, consider the formal logical relationship in (9). By starting out with (2) and
changing one single word, three letters in total, we have switched the relationship from
entailment to contradiction.

(9)  (P) All Germans are childcare workers and all childcare workers are fingerprint
collectors. (H) No Germans are fingerprint collectors.

Finally, consider the formal logical relationship in (10). By changing one word, four
letters, we switched the relationship from entailment to neutral. Given the premise of
(10), it is simply not clear whether the hypothesis is true or not.

(10)  (P) All Germans are childcare workers and some childcare workers are fin-
gerprint collectors. (H) All Germans are fingerprint collectors.

We are using a total of 12 formally valid syllogisms — called BARBARA, CELAR-
ENT, DARII, FERIO, CESARE, CAMESTRES, FESTINO, BAROCO, DISAMIS,
DATISI, BOCARDO, FERISON - and we manually develop 24 patterns that are very
similar to these 12 syllogisms, but where the first and the second sentence together
contradict or are neutral to the third sentence. This yields a total of 36 patterns, 12 of
which are valid syllogisms, 12 are contradictory, and 12 are neutral. To fit the premise-
hypothesis structure expected by the models, we combine premise one and two to form
a single premise.

We then use a pre-compiled list of occupations, hobbies, and nationalities to fill the
subject- middle- and predicate-terms in these patterns. Using 15 of each of them and
combining them with the 36 patterns yields 121,500 test cases in total, each consisting
of a premise and a hypothesis. This variation allows us to capture the influence of
any bias on model prediction, that is, any expectations of the models that certain
nationalities are only likely to entertain certain hobbies and certain jobs, regardless of
any valid inferences suggesting otherwise. Furthermore, it allows us to systematically
distinguish it from shallow heuristics, rules of thumb that are not connected to any
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Performance of Models by Correct Label

il ll HE

li-ce-
ta-distilbert-  nli-ce-deberta- ni-ce ce-nli-MiniLM2-  ce-nli-roberta- ChatGPT (1k

Accuracy

ta-fb-bart-large ta-bert-base-uc base-uc base dlstl:::sbeerta- 16-H768 base samples)
| contradiction 95% 70% 88% 100% 72% 95% 86% 90%
u entailment 83% 89% 100% 76% 87% 100% 92% 75%
neutral 7% 9% 8% 7% 8% 0% 2% 23%

Fig.2 Performance on our syllogistic dataset by correct label

general worldviews or racial biases, but merely local attempts to succeed at the tasks
without understanding it.

We are also testing ChatGPT (with the model that is available via the API on
April 13, 2023). Due to costs per inference, we were only able to test 1296 samples
as opposed to the 121k samples for the other models. We highlight this by adding
“lk samples” to all charts reporting ChatGPT’s results alongside the results by other
models. The composition of this dataset as well as the precise prompts that we used
can be found in the appendix, Sect. D.

4.2 Experiment

We run a total of seven freely available PLMs on our test dataset, all of which are fine-
tuned on standard NLI datasets, namely SNLI and MNLI (see the Appendix, Table 5
for their respective performance on MNLI). Additionally, we also evaluate ChatGPT
on a smaller dataset of 1296 samples. The PLMs are hosted by Huggingface (Wolf
et al., 2019), three of them are fine-tuned by Morris et al. (2020), prefixed with “ta”
for “textattack”, and four by Reimers and Gurevych (2019), prefixed with “ce” for
“crossencoder”.

The models’ performances on MNLI, per our own evaluation (not all of the models
provide evaluation scores, and we did not find precise documentation on how the scores
were obtained), are given in the appendix, Sect. C, Table 5, together with details of
the evaluation. Performance ranges from 81% accuracy for distilbert to 89% accuracy
for BART-large. We have not evaluated ChatGPT on MNLI.

The basic idea behind the experiment is to assess whether the PLMs’ performance
on our dataset reveals any shallow heuristics learned by the models during fine-tuning
on MNLI and SNLI.

The results of our experiments are shown in Fig. 2. For instance, the model whose
performance is represented on the very left, textattack’s fine-tuned version of BART
large, predicts the correct label in only 7% of cases for neutral labels, while doing so
in 95% for entailment samples and still 83% for contradiction labels.

Figure2 shows clearly that the models’ predictions are quite accurate for labels
entailment and contradiction, but very poor for neutral, with ChatGPT being a bit of an
outlier, as it is strongest on contradiction labels and achieves double-digit performance
on neutral labels as well (albeit still below a purely random baseline).
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Fig. 3 Left: Predicted labels for patterns that are symmetric between premise and hypothesis regarding
existential quantifier and negation. Right: Predicted labels for patterns that are asymmetric between premise
and hypothesis regarding existential quantifier and negation

4.3 Results & Discussion

Overall, Fig. 2 shows that textattack’s distilbert leads the field with a accuracy of 65%,
which might be surprising just because it was among the smallest models evaluated
here —and also because it even beats ChatGPT, which only achieves an overall accuracy
of 63%. However, there is growing evidence that NLI, and its more formal-deductive
parts in particular, cannot be solved by simply increasing model size. Researchers at
DeepMind find that larger models tend to generalize worse, not better, when it comes to
tasks involving logical relationships. The large study by (Rae et al., 2021, 23) strongly
suggests that, in the words of the authors, “the benefits of scale are nonuniform”,
and that logical and mathematical reasoning does not improve when scaling up to the
gigantic size of Gopher, a model having 280B parameters (in contrast, Gopher sets
a new SOTA with many other NLU tasks such as RACE-h and RACE-m, where it
outperforms GPT-3 by some 25% in accuracy).

Furthermore, Fig. 2 also shows that all of the models perform very poorly with neu-
tral samples; indeed, none of the models is able to recognize such neutral relationships
with a accuracy of more than 25%, with ChatGPT being the only model that reaches
double-digits. Given that pure chance would still yield an accuracy of some 33%, this
is a very poor performance.

We have therefore further probed the heuristics that the models might be using
that could cause the poor performance with neutral labels. Manual inspection showed
that they respond strongly to symmetries regarding quantifiers and negations between
premises and hypotheses. In particular, if either both or none of the premise and
the hypothesis contain a “some” (existential quantifier) or a negation (the symmetric
conditions), then the models are strongly biased to predict entailment (see Fig. 3,
left chart). Conversely, if the pattern contains an asymmetry regarding existential
quantifier and negation between premise and hypothesis, then the models are very
strongly inclined to predict contradiction (see Fig. 3, right chart). ChatGPT clearly
also follows these heuristics, with the only slight difference that it is more inclined
than the other models to predict neutral with the first of these two patterns.

In the case of contradiction and entailment pairs, these heuristics serve the models
well in our dataset, resulting in impressive performance. However, when applied to the
neutral samples, the heuristics break down, performance falls below simple guessing.
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Table 3 Accuracies of fine-tuned models and GKR4NLI on different test sets; For FT1-fine-tuned models,
“Neutr.” consists of 3k neutral samples from the syllogistic dataset, for FT2-fine-tuned models, it consists
of 13k neutral samples from the same source. MNLI-M is MNLI-matched. *For GKR4NLI, we report
accuracies on the test datasets from FT1/FT2

Model Neutr MNLI-M
FT1-crossencoderMiniLM2-L6-H768 100% 72%
FT2-crossencoderMiniLM2-L6-H768 62% 70%
FT1-textattack-distilbert-base-uncased-MNLI 100% 38%
FT2-textattack-distilbert-base-uncased-MNLI 61% 53%
GKR4NLI 89/23%%* N.a

We conclude this part of our discussion by noting that the experiments did not
show any significant bias in the behavior of the PLMs: Their accuracy did not change
depending on existing preconceptions, say, that Germans are always engineers and like
to collect stamps. What we have found, in contrast, is heavy use of shallow heuristics
(also by ChatGPT), as the Fig. 3 evinces.

4.4 Fine-Tuning, Testing of a Symbolic Approach

In anext step, we assessed whether the models’ poor performance with neutral samples
in our dataset can be remedied with fine-tuning. For obvious reasons, we had to exclude
ChatGPT from this experiment. We conducted two different fine-tuning runs, FT1 and
FT2. Their sole difference consists in the way that we split up the 121k samples. For
FT1, we used 110k samples for training and validation, and we tested on the neutral
subset of the 10k remaining samples, which is about 3k samples (“3k” in Fig. 3). For
FT2, we used 71k samples for training and validation, leaving the neutral subset of
the remaining 50k samples, about 13k samples, for testing.2

We fine-tuned crossencoderMiniLM2-L6-H768 and textattack-distilbert-base-
uncased-MNLI (BART-large from facebook exceeded our capacities). Furthermore,
we also evaluated one of the currently leading symbolic NLI systems on both test
datasets, namely GKR4NLI, introduced in (Kalouli et al., 2020). The results of all of
these evaluations is shown in Table 3.

The results shown in Table 3 show that fine-tuning does indeed help. In the first
fine-tuning split FT1, both models achieve 100% accuracy; this, however, comes at
rather high cost in terms of accuracy on MNLI-matched (14% and 43% respectively).
GKR4NLI also performs well at this test set with 89% out of the box. With regard to the
second fine-tuning split FT2, GKR4NLI’s performance drops to 23%, while the two
fine-tuned models achieve accuracies of around 62%, again at the cost of significantly
reduced accuracy in MNLI. These results suggest that it is not easy for the models
tested to combine the representations needed to perform well at MNLI-matched with
those needed to do well in our neutral samples. In particular, the results suggest that a
large number of training samples is needed, as in FT1. We note that our results leave
open the possibility that larger models can accommodate both kinds of sample.

2 We adapted a huggingface-notebook found here letting run each fine-tuning process for three epochs with
a batch size of 16 on one GPU of a DGX-2.
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We take these results to confirm that our dataset can make a valuable contribution
to the field, as it presents a challenge for both neural and symbolic systems as well
as for ChatGPT. Indeed, in light of these results, one could wonder whether it is not
unfair to expect any NLI system to master our syllogistic dataset, as samples such as
(2), (9), and (10) might be said to be very far away from ordinary language use. In
response to this, we point out that, as a matter of logical fact, these are formally valid
inferences which should be covered by any NLI system that aspires to cover the full
extent of NLI. Furthermore, students of logics have acquired their concepts of formal
validity through such examples for millennia, making it a rather natural stepping stone
for Al systems. Perhaps we could see the difficulty as an asset: Maybe we have made
some progress towards what Richardson et al. (2020) explicitly ask for, namely more
difficult fragments? Finally, as already mentioned, it might very well be that large
models could accommodate both the defeasible kinds of inferences in MNLI and our
deductively valid ones.

5 Conclusion

We have surveyed current NLI datasets and depicted the problem of generalization
from the background of a systematic view on the kinds of inferences that exist. We
have suggested that current datasets are light on direct inductive inferences as well
as on syntactically complex, formally valid inferences. We have then proposed two
steps towards addressing these research gaps. First, using a dataset from argumen-
tative writing research, we could add empirical support to our hypothesis that there
is a shortage of directly inductive inference datasets. To address the second research
gap, we have proposed our own syllogistic dataset. This dataset allows to distinguish
between bias and shallow heuristic, it focuses on syntactically complex, formally valid
inferences, and our results suggest that it can help to improve both neural and symbolic
approaches.

We have also found that, on both experiments, ChatGPT is outperformed by much
smaller PLMs, adding further evidence to the hypothesis that larger models do not per
se perform better with logical tasks (note, however, that the datasets used to evaluate
ChatGPT are of limited size of about 1k). In the future, we would like to further analyze
the hallucination phenomena that we have observed in the AAE-DS and work towards
providing a large-scale dataset focusing on direct inductive generalization.
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Appendix: A Further Details on NLI Datasets

Table 4 gives more information on the NLI datasets systematized above, Table 1. In
the following, we comment on these datasets, highlighting what sets them apart from
the well-known MNLI and SNLI datasets.

A.1 FraCas

The FraCas test suite consists of 346 challenges that are carefully hand-crafted fol-
lowing a systematic of a variety of different linguistic phenomena. For instance, the
example (11) is exploiting disjunction distribution (Cooper et al., 1996, 116).

Table 4 Size & source of existing NLI datasets

Name Size Source(s)

FraCas (Cooper et al., 1996) 346 Hand-crafted

SICK (Marelli et al., 2014) 9.8k Video & Image captions

PPDB 2.0 (Pavlick et al., 2015) 100 M/ 26k Word-Based

SNLI (Bowman et al., 2015) 570k image captions

RTE (Wang et al., 2018) 6k News, Wikipedia

WNLI (Wang et al., 2018) 852 Hand-written

SWAG (Zellers et al., 2018) 113k Activity Net Captions

HellaSWAG (Zellers et al., 2019) 70k ActivityNet, WikiHow

MNLI (Williams et al., 2018) 433k 10 genres, written & spoken

BoolQ (Clark et al., 2019) 16k Queries to Google Search

PIQA (Bisk et al., 2020) 21k Crowdworker-Written guided by
Instructables

SIQA (Sap et al., 2019) 38k Crowdsourced

ARC (Clark et al., 2018) 7.8k Science Textbooks

OBQA (Mihaylov et al., 2018) 6k WorldTree (Jansen et al., 2018) facts,

Crowdsourced Questions
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(I1)  Smith saw Jones sign the contract and his secretary make a copy.
Did Smith see Jones sign the contract?

A.2 SICK

This dataset is based on image and video captions, which are normalized and then
expanded to fit the three-way-classification scheme that has become the quasi-standard
in NLI. See example (12).

(12) "The young boys are playing outdoors and the man is smiling nearby"
"The kids are playing outdoors near a man with a smile" O (entailment)

A.3 PPDB

This paraphrase database is different in two important ways from the other NLI datasets
considered so far. First, it is word-based (as opposed to sentence-based); second, it
differs from the typical three-way-classification in NLI detailed above, Sect. 1. Further-
more, it provides 26k hand-annotated word-pairs. The remaining 100M word-pairs
are obtained by training a regression classifier based on these 26k. Note that example
(13) only shows a small part of the entire row dedicated to the relationship between
transplant and transplantation. The final column contains the logical relationship (here:
OtherRelated).

(13)  [NN] ||| transplant ||| transplantation ||| [...] ||| OtherRelated

A.4RTE

The RTE Dataset has been Compiled by Wang et al. (2018) from RTE1 (Dagan et al.,
2005), RTE2 (Bar Haim et al., 2006), RTE3 (Giampiccolo et al., 2007), and RTES
(Bentivogli et al., 2009). Compare example (14) for an illustration of the kind of pair
found in this dataset.

(14) 85 This growth proved short-lived, for a Swedish invasion (1655-56) devastated the flourishing city
of Warsaw. Warsaw was invaded by the Swedes in 1655, and the city was devastated. (entailment)

A.5 (Hella)SWAG

(Zellers et al., 2018) emphasize that their task is not typical inference but what they
call grounded commonsense inference. As can be seen in example (15), the task
consists not in assigning one of three labels to pairs of sentences, but in choosing
one out of four options to continue a description of a scene. Hence, success at this
task depends heavily on common-sense knowledge about how certain events usually
develop. The authors cite the notion of object affordances developed by Gibson (2014)
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as well as frame semantics by Baker et al. (1998). As detailed above (Sect. 2.2), we
suggest to conceive this challenge as centering around indirect inductive inferences.
HellaSWAG is like SWAG, but with better adversarial filtering and longer sentences
to make it harder for PLMs to succeed.

(15) On stage, a woman takes a seat at the piano. She
a) sits on a bench as her sister plays with the doll. b) smiles with someone as the music plays. ¢)
is in the crowd, watching the dancers. d) nervously sets her fingers on the keys.

A.6 WNLI

In this challenge, which was created by Wang et al. (2018) based on Rahman and Ng
(2012), the task consists in assigning two labels (1 and O in the datasets, mapping onto
entailment and non_entailment) to pairs filtered from the original Winograd Challenge.
As Winograd challenge is originally a pronoun resolution challenge, the correct label is
entailment if the pronoun refers correctly and non_entailment otherwise. See example
(16) for an illustration.

(16) 36 I tried to paint a picture of an orchard, with lemons in the lemon trees, but they came out
looking more like telephone poles. The lemons came out looking more like telephone poles. O

A.7 BoolQ

The BoolQ (Clark et al., 2019) dataset contains a text with yes-or-no (Boolean) ques-
tions whose correct answer can be deductively inferred from the text. For example,
see (17)

(17 Q: Has the UK been hit by a hurricane? P: The Great Storm of 1987 was a violent extratropical
cyclone which caused casualties in England, France and the Channel Islands A: Yes.

A.8 PIQA
The PIQA dataset consists of multiple-choice questions where the subjects have to
choose the best means to reach a given goal. See example (18) for an illustration.

(18) [Goal] How do I find something I lost on the carpet? [Soll] Put a solid seal on the end of your
vacuum and turn it on. [Sol2] Put a hair net on the end of your vacuum and turn it on.

A.9 SIQA

The SIQA dataset consists of common-sense multiple-choice questions about social
interactions. See example (19) for an illustration.

(19) Remy gave Skylar, the concierge, her account so that she could check into the hotel. What will
Remy want to do next? (a) lose her credit card (b) arrive at a hotel X (c) get the key from Skylar
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A.10 ARC

The arc dataset contains open-book grade-school-style multiple choice questions from
the science domain. Open-book here means that the dataset comes with a knowledge
base that contains the elements from which answers to all questions can be deductively
inferred. For example, see (20).

(20)  Which factor will prompt an animal’s fight-or-flight response? (A) population size (B) competition
for food [correct] (C) seasonal temperatures (D) protection of the environment

A.11 OBQA

The OBQA dataset is composed of 4-way-open-book multiple choice questions. Open-
book here means that the dataset comes with a knowledge base that contains the
elements from which answers to all questions can be deductively inferred. For example,
see (21).

(21)  Which of these would let the most heat travel through?
A) a new pair of jeans. B) a steel spoon in a cafeteria. C) a cotton candy at a store. D) a calvin
klein cotton hat.

A.12 QNLI

The QNLI dataset was developed by the creators of the influential GLUE benchmark
(Wang et al., 2018), who reference the work by Demszky et al. (2018). However,
unlike the latter, Wang et al. (2018) simply extract the question and answer pairs from
each of the samples in SQUAD (Rajpurkar et al., 2016) and apply some filtering for
lexical overlap. The label entailment is then applied to all pairs where the answer to
the question is present in the second sentence, non_entailment to all where it is not so
present. Compare example (22). As a consequence, the notion of entailment at work
here is not that of commonsense or strict logical entailment, but rather of semantic
inclusion. It has therefore not been included in the overviews on Tables 1 and 4.

(22) 17 What percentage of farmland grows wheat? More than 50% of this area is sown for wheat,
33% for barley and 7% for oats. entailment

A.13 CommitmentBank

The 1.2k samples from the CommitmentBank (CB) corpus are not about entailment,
but rather about the commitment of a speaker to the truth of an embedded claim. For
instance, in example (23), the question is whether John’s complex assertion commits
him to the truth of the claim that Tess crossed the finish line, that it commits him to
the contrary claim, or to none of both of them. Wang et al. (2019), the originators of
SuperGLUE, mapped these commitment labels onto the three well-known labels of
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entailment, contradiction, and neutral, depending on whether the speaker is committed,
is committed to the contrary claim, or is uncommitted.

(23)  “premise”: “A: 1 do too, so she couldn’t possibly turn them out like some of these popular writers,
B: Huh-uh. A: but oh, her books are just incredible. I don’t think they’ve ever made a movie, do
you?”,

“hypothesis”: “they’ve ever made a movie”, “label”: “contradiction”

A.14 Dataset Creation From Other Sources

There are a number of systematic proposals how to create datasets from other sources,
see White et al. (2017), Chatzikyriakidis (2017) reflect about the possible way forward,
Demszky et al. (2018) present a combination of rule-based and neural approach to
convert question answering tasks in NLI tasks.

A.15 Instructions Given to Crowdworkers in MNLI

In the following, we quote in full how (Williams et al., 2018, 1114) specify the tasks
for the crowdworkers:

“This task will involve reading a line from a non-fiction article and writing three
sentences that relate to it. The line will describe a situation or event. Using only this
description and what you know about the world:

e Write one sentence that is definitely correct about the situation or event in the line.

e Write one sentence that might be correct about the situation or event in the line.

e Write one sentence that is definitely incorrect about the situation or event in the
line. ”

Appendix B: Details on Experiment with Argumentative Writing
Dataset

Algorithm 1 gives the algorithm for deriving the large dataset, algorithm 2 does the
same for the 1k dataset used with ChatGPT, and algorithm 3 gives the procedure used
to derive predictions.

Appendix C: Method used for evaluation of Models on MNLI

To evaluate the models used in the experiment from Sect. 4, we have used
Huggingface’s trainer API, see Huggingface (Wolf et al., 2019). In particular, we fol-
lowed the instructions in the notebook here (https://colab.research.google.com/github/
huggingface/notebooks/blob/master/transformers_doc/pytorch/training.ipynb). The results
are given in Table 5. We evaluated the models using the API out-of-the-box, with the
following exceptions:
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Algorithm 1 Deriving NLI-Style sentence-pairs for three-way-classification from

AAE-Annotations
annotated Relations < load(relations) > loading all existing annotations per text into a dictionary
allRelations < []

for i in range(1, 403) do > Total of 403 essays
thisText Annotations < annotated Relations[i]
essay < load(essayj)
sentences < spacy.splitSentences(essay) > no such method exists - used for brevity

for j in range(len(sentences)) do
for k in range(j, len(sentences)) do
flag < True

for annRel in thisTextAnnotations do
if (annRel[1] in sentences[j] and annRel[2] in sentences[k]) or (annRel[1] in sentences[k] and
annRel[2] in sentences[j]) then
allRelations.append([sentences|j], sentences[k], annRel[0]])
> annRel[0]: the existing, annotated label of the relation
flag < False
end if

if flag then
allRelations.append([sentences|j], sentences[k], neutrall)
> If there is no annotation: assign neutral
end if
end for
end for
end for
end for

store(all Relations) > Saving the relations (circa 58k) locally for reuse

1. The textattack-models had as labels "LABEL_0, LABEL_1, LABEL_2", which
could not be read by the function that ensures that the labels are used equivalently
by both model and dataset; hence, we reconfigured the models to use as labels
“contradiction, entailment, neutral”.

2. facebook-bart-large-mnli by textattack posed two additional challenges.

(a) Due to out of memory issues, we had to split up processing of the validation
set into three chunks, averaging the accuracy received afterwards.

(b) The logits containing the predictions issued by facebook-bart-large-mnli could
not be processed by the evaluation function, which caused the need to select
only the first slice of the tensor that the model was issuing, ensuring that the
metric function got a 1-dimensional tensor to compute accuracy.
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Algorithm 2 Deriving the 1k sample for ChatGPT-Probing

allRelations < load(all Relations) > All relations stored from algorithm 1
entailsIndices < []

contradictsIndices < []

neutralIndices < []

for i, line in enumerate(allRelations) do
if line[2] == ’entails’ then
entailsIndices.append (i)
else if line[2] == ’contradicts’ then
contradictsIndices.append (i)

else if line[2] == "neutral’ then
neutrallndices.append (i)
end if
end for

randomlIndices < random.sample(entailsIndices, 300)
+ random.sample(contradictsIndices, 100) + random.sample(neutralIndices, 600) > Creating
a list of 1k random indices

sample < []

for randIndex in randomIndices do
sample.append (all Relations[randIndex])

end for

store(sample)

Algorithm 3 Predicting

data < load(sample) > Or load(allRelations)
trueAnd PredRelations < []

for line in data do
predLabel < model.predict(line[0], line[1])
trueAnd PredRelations.append([line[0], line[1], line[2], pred Label])
> line[0], line[1] contains the sentences, line[2] the true label
> For ChatGPT, we sent a prompt with the two sentences instead
end for

store(trueAnd Pred Relations) > Storing true and predicted labels for each model

Appendix D: Details on Prompting ChatGPT with the Syll-Dataset

To create the smaller dataset for probing ChatGPT, we started out with the same 36
syllogistic and pseudo-syllogistic patterns also used for the testing of the other PLMs,
but we only expanded them using 4 nationalities (Gabonese, Georgians, Germans,
Haitians) and 3 professions and hobbies (Clergys, Carpenters, Cashiers, Knife col-
lectors, Films collectors, Element collectors). This yielded a total of 1296 samples,
evenly distributed across the 36 patterns.
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According to our information, the model that we were accessing through the API
is GPT—3.5-turbo.?

The prompt used to get ChatGPT’s verdict of the logical relationship between
premise and hypothesis is as follows:

In one word, is the relation between the sentences "sentencel" and "sentence2"
an entailment, contradiction or neutral?

ChatGPT then promptly responded with one of the three classifying options given.
Table5 Performance of the models in focus of the experiment in Sect. 4 on the MNLI-Matched validation

set. PLMs marked with one star “*” have only been fine-tuned on MNLI, PLMs marked with two stars have
been fine-tuned on both SNLI and MNLI

PLM N-Par MNLI-M
textattack-facebook-bart-large-MNLI* 406 M 0.8887
crossencoder-deberta-base™* 123M 0.8824
crossencoder-roberta-base** 123M 0.8733
crossencoder-MiniLM2-L6-H768** 66 M 0.86602
textattack-bert-base-uncased-MNLI* 109M 0.8458
crossencoder-distilroberta-base** 82M 0.8364
textattack-distilbert-base-uncased-MNLI* 66 M 0.8133
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