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In recent years, there has been a surge of interest in tasks targetingNatural Language
Understanding (NLU) andReasoning.Most recently, Large LanguageModels (LLMs)
such as ChatGPT1 have received immense attention and have made such NLU tasks
seem more tangible as ever. For the creation of these models many research efforts
have focused on the creation of massive datasets and the training of huge, deep models
reaching human performance, cf. ChatGPT,2 PALM-2,3 LLaMMA,4 Falcon5 but also
Liu et al. (2019), Pilault et al. (2020). The world knowledge encapsulated in such
models and their robust nature enables them to deal with diverse and large amounts
of data in an efficient way. However, it has been repeatedly shown that such models
fail to solve basic human inferences and lack generalization power. When presented
with differently biased data (Poliak et al., 2018; Gururangan et al., 2018; Kalouli
et al., 2023) and smaller datasets with fewer or less diverse phenomena (Bender et
al., 2021), or with inferences containing hard linguistic phenomena, (Dasgupta et
al. 2018; Nie et al. 2018; Naik et al. 2018; Glockner et al. 2018; Richardson et al.
2020; McCoy et al. 2019; Bernardy amb Chatzikyriakidis 2019; Yanaka et al. 2020,
to name only a few), they struggle to reach the baseline. Explicitly detecting and
solving these weaknesses is only partly possible, e.g., through appropriate datasets,
fine-tuning or appropriate prompting, because such models act like black-boxes with

1 https://openai.com/blog/chatgpt
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low explainability. At the same time, another strand of research has continued to
target more traditional approaches to reasoning, employing some kind of logic or
semantic formalism. Such approaches excel in precision, especially of inferences with
hard linguistic phenomena, e.g., negation, quantifiers, modals, etc. (Bernardy and
Chatzikyriakidis 2017; Yanaka et al. 2018; Chatzikyriakidis and Bernardy 2019; Hu et
al. 2019; Abzianidze 2020, to name only a few). However, they suffer from inadequate
world knowledge and lower robustness, making it hard for them to compete with
state-of-the-art models. Thus, lately, a third research direction seeks to close the gap
between the two approaches by exploring how the strengths of the two approaches
can be combined and their weaknesses mitigated, e.g., through hybrid approaches.

Attempts to combine distributional and symbolic representations to tackle NLU
tasks have been pursued in three main directions. One strand of research has used
linguistic or formal semantic features as additional input to systems that create dis-
tributional representations, e.g., Padó and Lapata (2007), Bjerva et al. (2014), Levy
and Goldberg (2014), Bowman et al. (2015), Chen et al. (2018). Another strand of
research has attempted the opposite: to use distributional features as input to sys-
tems that create symbolic representations, e.g., May (2016), van Noord et al. (2018),
Oepen et al. (2020). Both these research directions have laid their focus on one of
the frameworks and have only used the other one in a complementary manner. The
third research direction has attempted to lay an equal focus on the two frameworks by
combining symbolic and distributional aspects in the final representation, e.g., Lewis
and Steedman (2013), Beltagy et al. (2016), Kalouli et al. (2019), Krishna et al. (2022),
marrying traditional reasoning paradigms with neural approaches, e.g., Liang et al.
(2017), Ebrahimi et al. (2021) or aiming at explainable Artificial Intelligence (AI)
(Calegari et al., 2020). We see such hybrid research efforts as promising not only to
overcome the described challenges and advance the field but also to contribute to the
symbolic-deep learning “debate" that has emerged in the field of NLU.

Indeed, hybrid approaches have been pursued in several sub-fields of NLU, such as
Natural Language Inference (NLI), Question-Answering (QA), Sentiment Analysis
andDialog. ConcerningNLI, recent research byKalouli et al. (2020) proposes a hybrid
approach where a trained classifier learns whether the symbolic or the deep learning
component of the system should be trusted based on the nature of the pair, i.e., on
whether it involves complex linguistic phenomena and thus requires precise reasoning
or whether robustness andworld-knowledge are necessary.Withinmedical NLI,Wu et
al. (2019) present an approach of an ensemble model, based on one symbolic and two
deep learning encoders. The symbolic encoder is a syntax encoder, capturing structural
information of the sentences, while the deep learning encoders are responsible for
converting the text into distributional representations and injecting domain knowledge
into the model. The QA field has attracted similar interest in hybrid methodology. Yi
et al. (2018) propose a neural-symbolic visual question-answering system, which first
recovers a structural scene representation from the image and a program trace from
the question and then executes the program on the scene representation to obtain an
answer. Honda and Hagiwara (2019) employ a combination of deep learning models,
Neural Machine Translation and Word2Vec training to learn the symbolic processing
performed by a Prolog system and use it to build a QA system. Within the field
of Sentiment Analysis, Hu et al. (2017) propose a framework that enhances various
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types of neural networks (e.g., CNNs and RNNs) with declarative first-order logic
rules by transferring the structured information of logic rules into the weights of
neural networks. They show that their approach is able to outperform the state-of-
the-art in Sentiment Analysis and Named Entity Recognition. More recent research
in hybrid Sentiment Analysis has been conducted by Cambria et al. (2020), who
implement a new version of SenticNet (Cambria et al., 2018), a knowledge base
used for sentiment analysis, by employing a top-down (symbolic) and a bottom-up
(subsymbolic) approach. They use logic and semantic networks to encodemeaning and
deep learning architectures to implicitly learn syntactic patterns from the data. Kalatzis
et al. (2016) and Eshghi et al. (2017) combine reinforcement learning with a symbolic
dynamicmodel of syntax (Dynamic Syntax) and demonstrate the effectiveness of such
approach in bootstrapping dialog data from very minimal data.

Against this backdrop of hybrid approaches inNLU,wehave promoted this research
direction and fostered fruitful dialog between the two disciplines by establishing the
NALOMA (Natural Logic Meets Machine Learning) workshop series in 2020 6 and
continuing it since then. 7 Theworkshop,which started outwith a focus onNLI, aims to
bring together researchers working on hybrid methods in any subfield of NLU, includ-
ing but not limited to NLI, QA, Sentiment Analysis, Dialog, Machine Translation,
Summarization, etc. The workshops have also attracted researchers working on one of
the two disciplines but interested in moving into the hybrid direction. Topics that have
been part of the workshops include: NLU systems that integrate logic-based/symbolic
methods with neural networks, explainable NLU models, opening the “black box” of
deep learning inNLU, downstream hybrid NLU applications, comparison and contrast
between symbolic and deep learning work on NLU, etc.

With this special issue, we would like to put together extended versions of several
selected contributions to the NALOMA series. Specifically, the issue contains the
following four contributions.

Assessing the Strengths and Weaknesses of Large Language Models The open-
ing paper by Shalom Lappin includes a clear, calm and insightful discussion of the
strengths andweaknesses of LargeLanguageModels (LLMs). It provides a very timely
and a welcome contribution to the current, and potentially overhyped discussion on
LLMs. The article carefully examines the arguments against the use of LLMs and
takes a balanced stance according to which LLMs are far more than stochastic parrots,
but at the same time, the question of whether these models have anything to say in the
areas of human language learning and linguistic representation has been largely left
unanswered.

Capturing the Varieties of Natural Language Inference: A Systematic Survey of
Existing Datasets and Two Novel Benchmarks Gubelmann et al. specifically focus
on the task of NLI. After providing an extensive survey on the types of inference
(from a theoretical point of view) and on the current scenery of neural NLI models
and datasets, they lay the foundations to discuss the problem of generalization of these

6 https://typo.uni-konstanz.de/naloma20
7 https://typo.uni-konstanz.de/naloma21, https://sites.google.com/view/naloma22, https://sites.google.
com/view/naloma4
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models based on the theoretical notions of inference. Particularly, they use a dataset
of the argumentative writing field to evaluate and criticize the strengths of neural NLI
models on such kinds of inferences. In their second experiment, they create their own
dataset, which focuses on quantifiers and deductively valid inferences. Again, they
probe LLMs on these datasets and make conclusions about their capabilities in this
area. Last, the authors explore options for fine-tuning and optimizing the models, also
in comparison with a symbolic system of NLI.

Monotonicity Reasoning in the Age of Neural Foundation Models The paper by
Chen and Gao presents three methods to tackle monotonicity reasoning using deep
learning and large language models. The first approach utilizes a Tree-LSTM with
syntactic tree structures and a multi-hop self-attention aggregator to classify natural
language inference problems. The second approach represents a pipeline of rule-based
and neural components. The NLI pipeline first detects polarities of words based on
monotone operators and a sentence structure. Then, the search engine attempts to
gradually rewrite a premise into a hypothesis. One of the components in the rewrit-
ing search is neural-based which detects paraphrases that are beyond monotonicity
calculus. The third approach exploits LLMs, including GPT3.5, to classify mono-
tonicity inference problems in zero- and few-shot learning experiments. The overall
conclusion of the paper is three-fold: LLMs are far from mastering monotonicity rea-
soning, the underlying tree structures do help in classifying monotonicity inferences,
and joint reasoning with symbolic and neural components can set state-of-the-art on
monotonicity reasoning.

Monotonic Inference with Unscoped Episodic Logical Forms: From Principles
to System Kim et al. propose a theoretical framework and its implementation for
monotonicity inference with Unscoped Episodic Logical Forms (ULFs), where the
latter is an Episodic Logic formula with unresolved scope, anaphora, and word senses.
The implemented system ismainly a pipeline of rule-based components. The inference
process represents a forward search from the premises to the hypothesis. The authors
additionally extend the baseline system in three ways: (1) use lexical information from
the hypothesis to better guide the forward inference process, (2) consider multiple
possible scopings for a sentence, and (3) base matching of an obtained conclusion and
the hypothesis on surface forms to abstract from possible parsing errors introduced in
ULFs. Both baseline and extended systems are evaluated on the generalized quantifier
section of the FraCaS NLI dataset. The results show that each extension separately
improves the baseline but jointly yields an average improvement. This is partially due
to (2) and (3) introducing wrong entailment relations.
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