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Abstract
Close connections between probability theory and the theory of belief change emerge
if the codomain of probability functions is extended from the real-valued interval [0, 1]
to a hyperreal interval with the same limits. Full beliefs are identified as propositions
with a probability at most infinitesimally smaller than 1. Full beliefs can then be given
up, and changes in the set of full beliefs follow a pattern very close to that of AGM
revision. In this contribution, iterated revision is investigated. The iterated changes
in the set of full beliefs generated by repeated revisions of a hyperreal probability
function can, semantically, be modelled with the same basic structure as the sphere
models of belief change theory. The changes on the set of full beliefs induced by
probability revision satisfy the Darwiche–Pearl postulates for iterated belief change.

Keywords AGM model · Darwiche–Pearl postulates · Hyperreal probabilities ·
Infinitesimal probabilities · Iterated revision · Jeffrey conditionalization · Probability
revision

1 Introduction

One of themost important issues in formal epistemology is how to combine full beliefs
and beliefs held to lower degrees in one and the same formal model. In our everyday
lives, we have both types of beliefs, and we have no difficulty in shifting our epistemic
attitude to a particular proposition between the two types. The full beliefs are those
which we currently do not doubt. For instance, when walking in the morning from my
home to the nearest metro station, I have no doubt whatsoever which is the shortest
way to it. But one morning I encountered large roadwork barriers, which made me
uncertain whether I could at all reach the metro via the usual route. Such shifts from
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certainty (full belief) to uncertainty (belief to a lower degree) are common, and we do
not conceive them as problematic.

The standard formal representation of beliefs coming in degrees makes use of
probability functions. However, although probability-based models provide highly
useful accounts of beliefs coming in different degrees, these models are not adapted
to also represent full beliefs. The most obvious mode of representation is to assign
probability 1 to full beliefs. This has the devastating disadvantage that full beliefs
cannot be given up. In standard probability theory, there are no means for reducing
the probability of a proposition from 1 to a lower number. Other demarcations of full
beliefs, such as identifying them as represented by sentences with a degree of belief
above some real-valued limit lower than 1, have other difficulties, as shown in the
lottery and preface paradoxes (Kyburg 1961, p. 197; Makinson 1965; Hansson 2018a;
Schurz 2019).

This does not mean that we lack formal models of full beliefs. A whole area of
formal epistemology, the theory of (dichotomous) belief change, is devoted to the
representation of full beliefs (Fermé and Hansson 2018). The problem is that we need
different types of models, probability theory and belief change models, to represent
the two types of belief. The fact that we combine the two types without problem in our
everyday lives, and shift between them without effort, attests to the urgency of finding
ways to combine them in one and the same formal model. We need to do this both
for theoretical reasons and in order to develop forms of knowledge representation that
mirror human reasoning.

Recent work has shown that fairly small changes in standard probability theory are
sufficient to allow for a more realistic representation of full beliefs (Hansson 2020;
2022b). The two crucial changes are as follows: First, the codomain of probability
functions has to be extended from the real-valued interval [0, 1] to a hyperreal-valued
intervalwith the same limits. Instead of assigning probability 1 to empirical full beliefs,
they are then assigned a probability that is infinitesimally smaller than 1. Secondly,
revision by a sentence a is performed as a Jeffrey conditionalization that assigns
probability 1 − δ to a and probability δ to ¬a, for some infinitesimal δ. This makes
it possible to give up full beliefs, and it allows the probability function to contain the
information needed to construct its successor after revision by the negation of a full
belief.

In this article, the hyperreal model of probability revision will be applied to one
of the major topics in studies of dichotomous belief change, namely how to perform
a series of revisions by different sentences (“iterated revision”). We will investigate
the changes in full beliefs that result from a series of revisions of a hyperreal proba-
bility function. After some formal preliminaries have been dealt with in Sect. 2, our
model for probability revision will be presented in Sect. 3, with an emphasis on the
changes in full beliefs that it gives rise to. Section 4 reports our main results, namely
strong connections between the hyperreal model of probability revision and standard
constructions and axioms from the literature on iterated dichotomous belief change.
All formal proofs are deferred to an Appendix.
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Iterated AGM Revision Based on Probability Revision 659

2 Formal Preliminaries

L is the object language. Its elements are sentences used to express beliefs. They
are represented by lowercase letters (a, b, . . .), and sets of sentences by capital letters
(A, B, . . .). The object language is formed from atomic sentences with the usual truth-
functional connectives: negation (¬), conjunction (&), disjunction (∨), implication
(→), and equivalence (↔). � is a tautology and ⊥ a logically contradictory sentence.

A Tarskian consequence operation Cn expresses the logic. It satisfies the standard
conditions: inclusion (A ⊆ Cn(A)), monotony (If A ⊆ B, then Cn(A) ⊆ Cn(B)) and
iteration (Cn(A) = Cn(Cn(A))). Furthermore, Cn is supraclassical (if a follows from
A by classical truth-functional logic, thena ∈ Cn(A)) and compact (ifa ∈ Cn(A), then
there is a finite subset A′ of A such that a ∈ Cn(A′)), and it satisfies the deduction
property (b ∈ Cn(A ∪ {a}) if and only if a → b ∈ Cn(A)). Cn(∅) is the set of
tautologies. X � a is an alternative notation for a ∈ Cn(X) and � a for a ∈ Cn(∅).

A set A of sentences is a (consistent) belief set if and only if it is consistent and
logically closed, i.e. A = Cn(A) �= Cn({⊥}). K denotes a belief set. The conjunction
of all elements of a finite set A of sentences is denoted&A. For all sets A of sentences
and all sentences a, the remainder set A⊥a is the set of inclusion-maximal subsets
of A not implying a. The maximal consistent sets of the language, i.e. the elements
of L ⊥ ⊥, will be called maxisets (thus avoiding the common but misleading term
“possible worlds”). For all sentences a, |a| is the set of a-containing maxisets, i.e.
|a| = {X | a ∈ X ∈ L ⊥ ⊥}.

We will use a system of hyperreal numbers for modelling purposes. A hyperreal
number system is an extension of the set R of real numbers. It consists of both finite
and infinite numbers, but our focus will be on the finite numbers. The finite hyperreal
numbers consist of (1) the real numbers and (2) other numbers on an extended number
line, which are posited between the real numbers. The positive hyperreal numbers that
are larger than 0 but smaller than all positive real numbers are the positive infinites-
imals. The negative infinitesimals are the numbers that are smaller than 0 but larger
than all negative real numbers. The construction of the hyperreal number system to
be used here is presented in Definition 2 and Postulate 1.

The letters s, t, u, v, x, y, and z represent hyperreal numbers (which may be real).
The letters δ and ε represent numbers that are either 0 or infinitesimal.

Each finite hyperreal number is infinitely close to exactly one real number, which
is called its standard part. The standard part of the number t is denoted st(t). Standard
parts satisfy the following rules.

st(−s) = −st(s)
st(s + t) = st(s) + st(t)
st(s − t) = st(s) − st(t)
st(s × t) = st(s) × st(t)
If st(t) �= 0 then st(s/t) = st(s)/st(t)

The symbols ≈ and � are used as follows:

a ≈ b if and only if st(a) = st(b)
a � b if and only if st(a) < st(b)
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The set of hyperreal numbers satisfies the same algebraic laws as the real numbers. Let
δ and ε be infinitesimals, and let s and t be finite numbers that are not infinitesimals.
Then:

δ + ε and δε are infinitesimals. If s �= 0, then sδ and δ/s are infinitesimals.
s + ε and st are finite and not infinitesimal. If s �= 0 �= t , then s/t �= 0.
The following is finite and may or may not be infinitesimal: s + t
The following may be infinite or finite, and in the latter case it may or may not be
infinitesimal: δ/ε.

There is a considerable literature on infinitesimal probabilities.Most of it has employed
infinitesimals to attack the problems arising when classical probability theory is
applied to infinite domains (event spaces). For instance, a fair lottery with an infi-
nite number of tickets cannot be modelled with real-valued probabilities, but it can be
modelled by assigning the same infinitesimal probability to all tickets. In this article,
infinitesimals will instead be used for two other purposes, both of which are known
from previous literature: (1) we will identify the set of full beliefs with the set of
propositions whose probabilities are infinitesimally close to 1, and (2) we will use
propositions with infinitesimal probabilities as “memory tracks” of beliefs that have
been given up.

For a more extensive introduction to the arithmetic of hyperreals and infinitesimals,
readers are referred to Keisler (1986 or 2022). Key references to the literature on
infinitesimal probabilities can be found in Hansson (2020, p. 1009).

3 Probability Revision

By a probability revision ismeant an operation that takes us from a probability function
and an input to a new probability function. Standard probability theory contains no
specifically defined operation of probability revision, but the role is filled by condition-
alization, with the protasis (a in p(d | a)) serving as input. When we conditionalize
a probability function p by a sentence a such that p(a) �= 0, we construct a new
probability function p′ such that for all sentences d: p′(d) = p(a&d)/p(a).

The standard notation p( | a) for conditionalization (revision) of p by a sentence
a does not show clearly that it refers to an operation. This notation is impractical
for repeated operations of change, such as revising first by a1 and then by a2. We
will therefore use the notation for operations of change that is used in the literature
on dichotomous belief change, where the revision of a belief set K by a proposition
a1 is denoted K ∗ a1, its revision by first a1 and then a2 is denoted K ∗ a1 ∗ a2,
etc. Generalizing this to other types of inputs, we can define probability revision as
follows:

Definition 1 An operation of probability revision is an operation ◦ such that for some
set I of inputs, for all probability functions p and inputs i ∈ I, p ◦ i is a probability
function.

Thus, p ◦ i1 · · · ◦ in is the outcome of revising p in turn by each of i1, . . . , in in the
given order. The input set I can be a set of sentences, for instance (as in dichotomous
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belief change) the whole object language. However, there are other options, such as
Jeffrey conditionalization inputs, which are pairs consisting of a sentence and its new
probability.

To further clarify the notation,we use boldface brackets around compositely notated
probability functions; thus we write (((p ◦ i1 ◦ in)))(d) instead of p ◦ i1 ◦ in(d).

As mentioned in the Introduction, all probability functions are assumed to have
a hyperreal interval [0, 1] as their codomain.1 Infinitesimal probabilities represent
possibilities that are currently treated as negligible, but kept in memory for possi-
ble future use. For instance, let a1 denote that Shakespeare wrote Hamlet and a2
that Francis Bacon did so, and let p(¬a1) = δ and p(a2) = δ/2. Then we have
p(¬a1&a2)/p(¬a1) = 0.5, which at least for Bayesians can be a reason to conclude
that after revising by ¬a1, the epistemic agent would assign a probability around 0.5
to a2. If we instead had p(¬a1) = 0, then the probability function would not carry any
information useful for constructing a new probability function after revising by ¬a1.

We will have use for infinitesimals of different magnitudes, but we will not need a
transfinitely extended hierarchy of infinitesimals. The following definitions and pos-
tulate limit the the hierarchies of infinitesimals to what is needed:

Definition 2 (Robinson 1973, pp. 88–89; Hammond 1994, pp. 46–47) Let ε̄ be a
hyperreal number such that 0 < nε̄ < 1 for all positive integers n. F is the set of
fractions of the form

s0 × ε̄0 + s1 × ε̄1 + s2 × ε̄2 + · · · + sk × ε̄k

t0 × ε̄0 + t1 × ε̄1 + t2 × ε̄2 + · · · + tn × ε̄n

within the closed hyperreal interval [0, 1], such that s0, . . . , sk and t0, . . . , tn are finite
series of real numbers and at least one of t0, . . . , tn is non-zero.

Definition 3 (Hansson 2022a) A hyperreal number y ∈ F is an infinitesimal of the
first order (in F) if and only if 0 �= y ≈ 0 but there is no z ∈ F such that 0 �= z ≈ 0
and y/z ≈ 0.

1 There is a small literature on how conditional probabilities can be based on standard conditionaliza-
tion on one-place probability functions with a hyperreal codomain (Skyrms 1980; Lewis 1980; McGee
1994; for an overview see Makinson 2011). This is a way to obtain definability for conditionals with an
antecedent that is too implausible to be assigned a positive real-valued probability. However, many authors
have avoided this solution. For instance, Spohn (1986, p. 69) mentioned nonstandard analysis as one of four
possible solutions to the problem of conditionalizing on propositions with the probability 0, but he chose
not to pursue this approach since nonstandard analysis is “a very intricate matter”. Two other solutions of
the problem are more popular, namely primitive conditional probabilities (“Popper functions”; Rényi 1955;
Popper 1959) and lexicographicmodels in which there is a sequence of probability functions p1, p2 . . . such
that p(a | d) = pk (a&d)/pk (d) for the first pk with pk (d) �= 0 (Blume et al. 1991a, b; Van Fraassen 1995;
Halpern 2010). Variants of the lexicographic approach have been shown to be equivalent with important
classes of Popper functions (Hammond 1994; Spohn 1986; Hawthorne 2014). McGee (1994) has shown a
similar correspondence with models based on non-standard one-place probabilities. With few exceptions
(Gärdenfors 1986; Lindström and Rabinowicz 1989; Makinson 2011) this literature on conditionals does
not discuss problems of belief change beyond the simplistic identification of belief change with condition-
alization. The requirement of contingency retainment (below, Definition 5), which is essential for iterated
revision, is not satisfied in belief revision directly based on the conditionals of the major systems proposed
in the literature.
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An infinitesimal y ∈ F is an infinitesimal of the nth order, for some n > 1, if and
only if:

(1) There is a series z1, . . . , zn−1 of non-zero elements of F, such that z1 ≈ 0,
zk/zk−1 ≈ 0 whenever 1 < k ≤ n − 1 and y/zn−1 ≈ 0, and

(2) There is no series z′1, . . . , z′n of non-zero elements of F, such that z′1 ≈ 0,
z′k/z′k−1 ≈ 0 whenever 1 < k ≤ n and y/z′n ≈ 0.

An infinitesimal is finite-ordered if and only if it is of the nth order for some positive
integer n.

Observation 1 ε̄ is a first-order infinitesimal.

Observation 2 If x ∈ F and 0 �= x ≈ 0, then x is finite-ordered.

Postulate 1 Probability functions have the codomain F.

This postulate puts rather strict restrictions on the set of hyperreal numbers that we use
in our model. For instance, square roots of first order infinitesimals are left undefined.
This may be unsatisfactory from amore general mathematical point of view. However,
it is necessary to obtain the hierarchical structure required for our purpose, and it does
not hamper the calculus of probabilities.

As a first try, one might use standard Bayesian conditionalization for probability
revision of hyperreal probabilities. However, this does not work satisfactorily, since
after revision by a sentence a1, the probability of ¬a1 will be 0, and it will remain
so after any subsequent series of revisions. (Let ★0 denote Bayesian revision. Then it
holds for any hyperreal probability function p and any series of sentences a1, . . . , an
with non-zero probabilities that (((p ★0 a1 . . . ★0 an)))(a1) = 1.) To avoid this problem
we can use Jeffrey conditionalization, and always leave an infinitesimal probability
that the input does not hold. In this way, the information needed to remove the input
sentence in some later revision is retained in the new probability function:

Definition 4 (Hansson 2022b) The hyperreal Bayesian probability revision in a lan-
guage L is the operation ★ such that for all probability functions p with L as domain
and all δ with 0 < δ ≈ 0:

(((p ★δ a)))(d) =
⎧
⎨

⎩

p(d) if p(a) = 0 or p(a) = 1

(1 − δ) × p(a&d)

p(a)
+ δ × p(¬a&d)

p(¬a)
if 0 �= p(a) �= 1

The index notation has been chosen for convenience. In the terminology of Definition
1, ★ is an operation with inputs of the form 〈δ, a〉, with 0 < δ ≈ 0 and a ∈ L. The
requirement that 0 < δ has the effect of disallowing the formation of unremovable
contingent full beliefs. This limitation can be removed by replacing the condition
0 < δ ≈ 0 by 0 ≤ δ ≈ 0.

The following definition and observation confirm that the use of Jeffrey condition-
alization instead of standard conditionalization has the desired effect.
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Definition 5 A probability revision ◦ satisfies contingency retainment if and only if
it holds for all probability functions p, all inputs i ∈ I, and all sentences d that if
0 �= p(d) �= 1, then 0 �= (((p ◦ i)))(d) �= 1.

This definition makes no assumptions about the formal structure of the set I of poten-
tial inputs. Sentences in the object language may be elements of I (as in conventional
probability theory), they may be components of the inputs (as in Jeffrey conditional-
ization), or they may be be totally unrelated to the set of inputs (Hansson 2017, pp.
45–52).

Observation 3 Hyperreal Bayesian probability revision (★) satisfies contingency
retainment.

The following definition and observation introduce the crucial property of hyperreal
probability functions that makes them useful for combining probabilistic and full
beliefs in one and the same formal framework, namely that the sentences whose prob-
ability is at most infinitesimally smaller than 1 form a logically closed belief set.

Definition 6 (Hansson 2020) Let p be a hyperreal probability function. Then �p� =
{a | st(p(a)) = 1}.
Observation 4 (Hansson 2020) Let p be a hyperreal probability function. Then: �p� =
Cn(�p�) (top closure).

It follows from Observation 4 that our operation ★ of probability revision gives rise to
a sentential revision (revision of a belief set with sentences as inputs) that only records
the effects of ★ on the belief sets associated with probability functions. This can be
called the “top revision” associated with ★, since it only revises the top-ranked (full)
beliefs.2

Definition 7 (Hansson 2022b) Let ∗ be a sentential revision on a belief set K in a
language L. Then ∗ is a local top revision on K if and only if there is a probability
function p on L and some δ with 0 < δ ≈ 0, such that �p� = K and �p ★δ a� = K ∗ a
for all a ∈ L.

It was shown in (Hansson 2022b) that for finite languages, the top revisions of local
(single-step) hyperreal Bayesian probability revisions almost coincide with AGM
revision, which is the standard operation of revision in the belief change literature
(Alchourrón et al. 1985; Fermé and Hansson 2018). More precisely, they coincide
with AGM revision except in the limiting case of revision by an inconsistent sentence.

Definition 8 (Hansson 2022b) Let ∗ be a sentential operation on a consistent belief set
K . Then ∗ is an AGMC revision (consistent AGM revision) on K if and only if there
is an AGM operation ∗′ on K such that:

(a) K ∗ a = K ∗′ a if a � ⊥, and
(b) K ∗ a = K if a � ⊥.

2 The term “top” for {a | p(a) = 1} was introduced by Lindström and Rabinowicz (1989).
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Theorem 1 (Hansson 2022b) Let K be a consistent belief set in a finite language L,
and let ∗ be a sentential operation on K . The following two conditions are equivalent:

(1) ∗ is a local top revision on K , based on a (hyperreal) probability function p such
that p(a) = 1 if and only if � a.

(2) ∗ is an AGMC revision on K .

In the limiting case that constitutes the difference between AGM and AGMC, AGM
revision follows the maxim “if instructed to believe in an inconsistency, believe in
everything”, whereas AGMC revision adheres to the arguably more plausible maxim
“if instructed to believe in an inconsistency, ignore that instruction”.

4 Iterative Revision

An operation on belief states is local if it is only applicable to a specific belief state.
It is iterative, or with a more common but less adequate term, “iterated”, if it can be
applied to all outcomes that it gives rise to. It is global if it can be applied to all belief
states available within its framework. In dichotomous belief change with belief sets
serving as belief states, these definitions can be further specified as follows:

Definition 9 (1) ◦ is a local sentential operation on a belief set K in L if and only it
holds for all sentences a ∈ L that K ◦ a is a belief set in L.

(2) ◦ is an iterative sentential operation on a belief set K in L if and only if for all
belief sets K in L and sentences a1, a2 ∈ L: If K ◦ a1 is a belief set in L, then so
is K ◦ a1 ◦ a2.

(3) ◦ is a global sentential operation on belief sets in L if and only it holds for all
belief sets K in L and all sentences a ∈ L that K ◦ a is a belief set in L.

In probability theory, only global operations of revision appear to have been dis-
cussed. For instance, both standard conditionalization and Jeffrey conditionalization—
including our variant in Definition 4—are global operations. In contrast, the literature
on dichotomous belief change usually treats local operations as the basic case. A
standard AGM operation of revision applies only to one specific belief set. It can be
extended to iterative and global revision with the help of additional constructions, such
as a function that assigns an operation of revision to each belief set. The focus on local
operations as the basic case seems to depend largely on the history of this tradition; the
operations introduced in the original AGM framework were all local (Alchourrón et
al. 1985).3 For overviews of the major approaches to iterative and global dichotomous
belief revision, see Rott (2009), Peppas (2014) and Fermé and Hansson (2018, pp.
59–64).

We now turn to our main issue, namely whether the close connection between our
operation ★ of hyperreal probability revision and local AGM revision of belief sets that

3 This was largely unnecessary, since the original AGM operation, partial meet contraction, can in fact
straightforwardly be generalized to a global operation. This is because it holds for all beliefs set K1 and
K2 and all non-tautologous sentences p1 ∈ K1 and p2 ∈ K2 that if K1 ⊥ p1 = K2 ⊥ p2, then K1 = K2
and p1 and p2 are logically equivalent. See Hansson (2012, p. 152 and p. 160).
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was reported in Theorem 1 can be extended to global (and thus also iterative) AGM
revision. For that purpose, we are going to use the semantic framework for AGM that
has been most used in studies of iterative revision, namely ordered partitionings of
the maxisets (“possible worlds”) of the object language. The most common variant
of this approach is the spheres model, in which the partitioning is represented by a
series of concentric sets (“spheres”), such that the intersection of the elements of the
smallest sphere is equal to the current belief set, and the largest sphere contains all
the maxisets (Lewis 1973; Grove 1988). For formal developments it is convenient to
focus on the rings of sphere systems. A ring consists of those elements of some sphere
that are not elements of any of the spheres that are its proper subsets (Hansson 2017, p.
201). This approach was pioneered by Katsuno and Mendelzon (1992), whose system
of “faithful assignments” lacks the geometrical connotations of sphere systems. The
following definition dispenses both with the geometrical connotations of spheres and
the metaphysical connotations of possible worlds:

Definition 10 An ordered maxiset partitioning (OMP) for the finite language L is a
vector 〈R0, . . . , Rn〉 of maxisets such that:

(1) R0 ∪ · · · ∪ Rn = L ⊥ ⊥, and
(2) Rk ∩ Rm = ∅ whenever 0 ≤ k < m ≤ n.

The belief set associated with an OMP is the intersection of its top-ranked maxisets:

Definition 11 Let 〈R0, . . . , Rn〉 be an ordered maxiset partitioning. Then
‖〈R0, . . . , Rn〉‖ = ⋂

R0
is the belief set associated with 〈R0, . . . , Rn〉.
A particularly interesting type of operations of revision on OMPs are those that, when
revising by a sentence a, move up a-containing maxisets and/or move down ¬a-
containing maxisets, but keep the internal order and distance within each of those two
groups of maxisets unchanged. In order for the revision to be successful, it must be
the case that if a is consistent, then a is an element of all top-positioned maxisets in
the new OMP that results from the revision.4 This brings us to the following operation
of iterative revision for OMPs:

Definition 12 The operation of translational revision on orderedmaxiset partitionings
is the operation⍟ such that for any orderedmaxiset partitioning 〈R0, . . . , Rn〉, positive
integer v and consistent sentence a:

〈R0, . . . , Rn〉 ⍟v a = 〈R′
0, . . . , R

′
n〉,

such that for all X ∈ L ⊥ ⊥:

(1) If a ∈ X ∈ Rk , then X ∈ R′
k−m wherem is the lowest number such that¬a∉

⋂
Rm ,

and
(2) If ¬a ∈ X ∈ Rk , then X ∈ R′

k−m+v where m is the lowest number such that
a ∉

⋂
Rm .

4 AGMC does not satisfy the success postulate of AGM (a ∈ K ∗ a), but it satisfies the postulate of
consistent success (If � ¬a then a ∈ K ∗ a).
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Just as for ★, the index notation for ⍟ was chosen for convenience. Its inputs have the
form 〈v, a〉, where v is a positive integer and a is a consistent sentence. By specifying
v in different ways, various operations of revision for OMPs can be constructed that
have the consistent sentences in L as their input set.5

Each OMP corresponds to a sphere system 〈S0, . . . , Sn〉, such that Sk =⋃{R0, . . . , Rk} for all k with 0 ≤ k ≤ n. It follows directly from Definition 12
that

‖〈R0, . . . , Rn〉 ⍟v a‖ = ⋂
(|a| ∩ Rm) = ⋂

(|a| ∩ Sm),

where Rm is the lowest-numbered element of 〈R0, . . . , Rn〉whose intersection does not
contain¬a, and Sm is the lowest-numbered element of 〈S0, . . . , Sn〉whose intersection
does not contain ¬a. Since

⋂
(|a| ∩ Sm) is the outcome of revision by a in a sphere

system, it follows that the local restriction (one-step usage) of translational revision
coincides with both AGM and AGMC for consistent inputs.

The following theorem connects our (global) hyperreal probability function ★ with
(global) translational revision in essentially the same way as Theorem 1 connects the
local restriction of ★ with the local operation AGMC:

Theorem 2 Let ★ be the hyperreal Bayesian probability revision and ⍟ the transla-
tional revision on OMPs, both in the finite language L.

(1) Let p be a (hyperreal) probability function with L as domain. Then there is an
OMP 〈R0, . . . , Rm〉 in L, such that for all consistent sentences a1, . . . , an in L
and finite-order infinitesimals δ1, . . . , δn there are positive integers v1, . . . , vn
with:
�p ★δ1 a1 . . . ★δn an� = ‖〈R0, . . . , Rm〉 ★v1 a1 . . . ★vn an‖

(2) Let 〈R0, . . . , Rm〉 be anOMP inL. Then there is a (hyperreal) probability function
p with L as domain, such that for all consistent sentences a1, . . . , an in L and
positive integers v1, . . . , vn there are finite-order infinitesimals δ1, . . . , δn with:
�p ★δ1 a1 . . . ★δn an� = ‖〈R0, . . . , Rm〉 ★v1 a1 . . . ★vn an‖

The four postulates introduced by Darwiche and Pearl (1997, p. 11) have a central role
in the discussion on iterated belief change6:

If a1 � a2, then K ∗ a2 ∗ a1 = K ∗ a1 (DP1)
If a1 � ¬a2, then K ∗ a2 ∗ a1 = K ∗ a1 (DP2)
If K ∗ a1 � a2, then K ∗ a2 ∗ a1 � a2 (DP3)
If K ∗ a1 � ¬a2, then K ∗ a2 ∗ a1 � ¬a2 (DP4)

The following observation shows that close analogues of these four postulates hold
for the top revision obtained from our probability revision ★.

Observation 5 Let p be a probability function, a1 and a2 consistent sentences and δ,
δ′ and ε finite-order infinitesimals. Then:

• If a1 � a2, then �p ★δ a2★δ′a1� = �p ★ε a1� (DP1)

5 Revision by inconsistent sentences, left undefined in Definition 12, can be included by a convention, such
at setting 〈R0, . . . , Rn〉⍟v a = 〈R0, . . . , Rn〉 whenever � ¬a.
6 See Aravanis et al. (2019, pp. 1510–1511) for background information on these postulates.
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• If a1 � ¬a2, then �p ★δ a2★δ′a1� = �p ★ε a1� (DP2)
• If a2 ∈ �p ★ε a1�, then a2 ∈ �p ★δ a2★δ′a1� (DP3)
• If ¬a2 ∉ �p ★ε a1�, then ¬a2 ∉ �p ★δ a2★δ′a1� (DP4)

Observation 5 serves to strengthen the connections between probability revision and
the dominant approach to (iterative) changes in full beliefs. However, this connection
does not prove that the models thus connected with each other adequately reflect the
properties of either actual or ideally rational patterns of belief change. The Darwiche–
Pearl postulates have the status of a gold standard for iterated revision, and they have
been shown to be compatible with requirements of syntax splitting that limit the effects
of a revision on beliefs that are irrelevant for the input sentence (Kern-Isberner and
Brewka 2017). However, there is also much criticism of these postulates, largely based
on counter-examples (Konieczny and Pérez 2000, p. 352; Jin and Thielscher, 2007,
p. 6 and p. 14; Stalnaker 2009, pp. 205–206; Hansson 2017, pp. 39–42; Aravanis et
al. 2019). The search for plausible models of epistemic change should continue. The
results presented here indicate that a stronger focus should be put on the construction
of models of iterative change that account for changes both in full beliefs and in beliefs
that come in lower degrees.
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Appendix: Proofs

Proof of Observation 1 Clearly, 0 �= ε̄ ≈ 0. It remains to show that there is no z ∈ F
with 0 �= z ≈ 0 and ε̄/z ≈ 0. Suppose to the contrary that there is such a z. According
to Definition 2, there is some positive real number s and some positive integer k such
that (s× ε̄k)/z ≈ 1, thus (ε̄/z)×s× ε̄k−1 ≈ 1, contrary to ε̄/z ≈ 0. This contradiction
concludes the proof. ��
Lemma 1 (Hansson2022a) If y and y′ are both nth order infinitesimals, then0 � y/y′.
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Proof of Lemma 1 Suppose that this is not the case. Then y/y′ ≈ 0 and the following
holds:

z1 ≈ 0, z2/z1 ≈ 0,…y′/zn−1 ≈ 0, y/y′ ≈ 0
so that y is of at least (n + 1)th order, contrary to the assumption. ��
Lemma 2 Let � be an infinitesimal of the first order. Then t is an infinitesimal of the
nth order if and only if there is a real number x such that:

t

�n × x
≈ 1.

Proof of Lemma 2 From left to right: Since t is an infinitesimal of the nth order, there
are hyperreal numbers z1, . . . , zn−1 such that:

⎧
⎨

⎩

z1 ≈ 0
zk/zk−1 ≈ 0 for 1 < k ≤ n − 1
t/zn−1 ≈ 0

Suppose that z1 is an infinitesimal of orderm, withm > 1. Then there are y1, . . . , ym−1
such that:

⎧
⎨

⎩

y1 ≈ 0
yk/yk−1 ≈ 0 for 1 < k ≤ m − 1
z1/ym−1 ≈ 0

so that t is of at least order n + m − 1, contrary to the conditions. In the same way
it follows that zk/zk−1 is of order 1 whenever 1 < k ≤ n − 1 and that t/zn−1 is of
order 1. Thus, each of z1, z2/z1, . . . , zn−1/zn−2, t/zn−1 is of order 1. It follows from
Lemma 1 that there are non-zero real numbers x1, . . . , xn such that:

⎧
⎨

⎩

z1/� ≈ x1
zk/(zk−1 × �) ≈ xk whenever 1 < k ≤ n − 1
t/(zn−1 × �) ≈ xn

Let x = x1 × · · · × xn . We then have:

t = z1 × z2
z1

× · · · × zn−1

zn−2
× t

zn−1
t

�n
= z1

�
× z2

z1 × �
× · · · × zn−1

zn−2 × �
× t

zn−1 × �≈ x1 × · · · × xn = x

Thus,
t

�n × x
≈ 1.

From right to left: Let t/(�n × x) ≈ 1. To see that clause (1) of Definition 3 is
satisfied, let z1 = x × � and zk = �

k when 1 < k ≤ n − 1. Then z1 ≈ 0. zk/zk−1 ≈ 0
when 1 < k ≤ n − 1, and t/zn−1 ≈ (�n × x)/�

n−1 ≈ 0
To see that clause (2) is satisfied, suppose to the contrary that it is not. Then there

are infinitesimals δ1, . . . , δm with n ≤ m, such that �
n−1/(δ1 × · · · × δm) ≈ 1. It

follows that (�/δ1) × · · · × (�/δn−1) ≈ δ1 × · · · × δm , thus �/δk ≈ 0 for at least one
δk , thus 0 �= δk ≈ 0 and �/δk ≈ 0, contrary to the assumption that � is a first-order
infinitesimal (cf. Definition 3). ��
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Proof of Observation 2 Let sa be the first non-zero coefficient in the numerator of x
and tb the first non-zero coefficient in its denominator. It follows from 0 ≈ x that
b < a. Dividing both numerator and denominator by ε̄b, we obtain:

x = sa × ε̄a−b + sa+1 × ε̄a−b+1 + · · · + sk × ε̄k

tb × ε̄0 + tb+1 × ε̄1 + · · · + tn × ε̄n

≈ sa
tb

× ε̄a−b

If a − b = 1, then it follows from Observation 1 that x is a first-order infinitesimal. If
a − b > 1, then it follows from Lemma 2 that x is an infinitesimal of order a − b. ��
Proof of Observation 3 Excluding trivial limiting cases, we assume that 0 �= p(a) �= 1.
Let 0 �= p(d) �= 1. We have:

(((p ★δ a)))(d) = (1 − δ) × p(a&d)

p(a)
+ δ × p(¬a&d)

p(¬a)
First suppose that(((p★δa)))(d) = 0. Since δ �= 0we then havep(a&d) = p(¬a&d) = 0,
thus p(d) = 0, contrary to the conditions. Next suppose that (((p ★δ a)))(d) = 1. Since
δ �= 0 we then have p(a&d) = p(a) and p(¬a&d) = p(¬a), thus p(d) = p(a&d) +
p(¬a&d) = p(a) + p(¬a) = 1, contrary to the conditions. ��
Proof of Observation 4 See Hansson (2020, pp. 1034–1035). ��
Proof of Theorem 1 See Hansson (2022a). ��
Definition 13 Two hyperreal probability functions p and p′ are order-equivalent if and
only if it holds for all sentences a that either (1) p(a) = p′(a) = 0, (2) 0 � p(a) and
0 � p′(a), or (3) p(a) and p′(a) are infinitesimals of the same order.

Lemma 3 Let p and p′ be order-equivalent, let δ and ε be infinitesimals of the same
(finite) order, and let a be a consistent sentence. Then p ★δ a and p′

★ε a are order-
equivalent.

Proof of Lemma 3 Due to Definition 4, the cases when p(a) = 0 and p(a) = 1 are
trivial. In all other cases, the same definition yields:

(((p ★δ a)))(d) = (1 − δ) × p(a&d)

p(a)
+ δ × p(¬a&d)

p(¬a)

(((p′
★ε a)))(d) = (1 − ε) × p′(a&d)

p′(a)
+ ε × p′(¬a&d)

p′(¬a)
Step 1:We are going to show that (1− δ)(p(a&d)/p(a)) and (1− ε)(p′(a&d)/p′(a))

are either both positive non-infinitesimal numbers or infinitesimals of the same
order. Clearly, (1 − δ)(p(a&d)/p(a)) and p(a&d)/p(a) are either both positive non-
infinitesimal numbers or infinitesimals of the same order. It follows from Lemma 1
and the order-equivalence of p and p′ that there are positive non-infinitesimal num-
bers x1 and x2 such that p′(a&d) = x1 × p(a&d) and p′(a) = x2 × p(a), thus
p′(a&d)/p′(a) = (x1/x2) × (p(a&d)/p(a)), thus p′(a&d)/p′(a) and p(a&d)/p(a))

are either both positive non-infinitesimal numbers or infinitesimals of the same order,
thus so are (1 − δ)(p(a&d)/p(a)) and (1 − ε)(p′(a&d)/p′(a)).
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Step 2: We are going to show that δ(p(¬a&d)/p(¬a)) and ε(p′(¬a&d)/p′(¬a))

are either both positive non-infinitesimal numbers or infinitesimals of the same order.
Due to Lemma 1, there are positive non-infinitesimal numbers y1, and y2, and y3 such
that ε = y1×δ, p′(¬a&d) = y2×p(¬a&d), and p′(¬a) = y3×p(¬a). It follows that
ε(p′(¬a&d)/p′(¬a)) = (y1y2/y3)×δ(p(¬a&d)/p(¬a)), thus ε(p′(¬a&d)/p′(¬a))

is an infinitesimal of the same order as δ(p(¬a&d)/p(¬a)).
Step 3: First: 0 � (((p ★δ a)))(d) iff 0 � (1 − δ)(p(a&d)/p(a)), due to step 1 iff

0 � (1 − ε)(p′(a&d)/p′(a)), iff 0 � (((p′
★ε a)))(d).

Secondly: If (((p ★δ a)))(d) is an infinitesimal, then it has the lowest order that either
(1 − δ)(p(a&d)/p(a)) or δ(p(¬a&d)/p(¬a)) has, which according to steps 1 and 2
is the lowest order that either (1 − ε)(p′(a&d)/p′(a)) or ε(p′(¬a&d)/p′(¬a)) has,
which is the same order that (((p′

★ε a)))(d) has. ��
Lemma 4 Let p be a hyperreal probability function such that p(a) = 1 if and only
if � a. Let a1, . . . , an be consistent non-tautologous sentences. Let δ1, . . . , δn be
infinitesimals, and such that for all k with 1 ≤ k ≤ n, δk has the order vk , with vk
a positive integer. Let � be a first order infinitesimal. Then (((p ★δ1 a1 . . . ★δn an))) and
(((p ★�v1 a1 . . . ★�vn an))) are order-equivalent.

Proof of Lemma 4 From repeated applications of Lemmas 2 and 3. ��
Definition 14 Let p be a probability function and 〈R0, . . . , Rn〉 an ordered maxiset
partitioning (OMP), both in the finite language L. Then p and 〈R0, . . . , Rn〉 are order-
equivalent if and only if it holds for all X ∈ L ⊥ ⊥ that

(1) X ∈ R0 if and only if 0 � p(&X), and
(2) If 0 < k, then X ∈ Rk if and only if p(&X) is a kth order infinitesimal.

Lemma 5 Let L be a finite language. Then:

(1) For each probability function p onL that assigns either a positive non-infinitesimal
or a finite-order infinitesimal probability to all consistent elements of L there is
an ordered maxiset partitioning 〈R0, . . . , Rn〉 such that p and 〈R0, . . . , Rn〉 are
order-equivalent.

(2) For each ordered maxiset partitioning 〈R0, . . . , Rn〉 on L there is a probability
function p on L such that p and 〈R0, . . . , Rn〉 are order-equivalent.

Proof of Lemma 5 Part 1: For all X ∈ L ⊥ ⊥, let X ∈ R0 if and only if 0 � p(&X),
and if 0 < k, then let X ∈ Rk if and only if p(&X) is a kth order infinitesimal.

Part 2: Let � be a first-order infinitesimal. For all X ∈ L ⊥ ⊥, if X ∈ Rk and 0 < k,
let

p(&X) = �
k

numb(Rk)
,

where numb(Rk) is the number of elements in Rk . If X ∈ R0, let

p(&X) = 1 − ∑{p(&Y ) | Y ∈ L ⊥ ⊥ and p(&Y ) ≈ 0}
numb(R0)

��
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Lemma 6 Let � be a first-order infinitesmal, let v be a positive integer and let a be
a logically consistent sentence. Let p and 〈R0, . . . , Rn〉 be order-equivalent. Then
p ★�v a and 〈R0, . . . , Rn〉 ⍟v a are order-equivalent.

Proof of Lemma 6 Let 〈R0, . . . , Rn〉 ⍟v a = 〈R′
0, . . . , R

′
n〉. Consider a maxiset X .

There are three cases.
First case, a ∈ X ∈ R′

0:
X ∈ R′

0 iff a ∈ X ∈ Rk , where Rk is the lowest-numbered level holding an
a-containing maxiset.

Definition 12
iff a ∈ X and p(&X) and p(a) are either both positive non-infinitesimals or same-

ordered infinitesimals.
Each level holds a finite number of maxisets

iff a ∈ X and 0 � p(&X)/p(a) Lemma 1
iff 0 � p(&X&a)/p(a) a ∈ X

iff 0 � (1−�
v)× p(&X&a)

p(a)
+�

v × p(&X&¬a)

p(¬a)
Only infinitesimal terms added

iff 0 � (((p ★�v a)))(&X) Definition 4
Second case, a ∈ X ∉ R′

0: We need to show that for all t > 0: X ∈ R′
t iff (((p ★�v

a)))(&X) is a t th order infinitesimal.
Let a ∈ X ∈ R′

t . Due to Definition 12 there are k and m such that t = k − m
and that X ∈ Rk and that Rm is the lowest-numbered level holding an a-containing
maxiset.

It follows that p(&X), i.e. p(&X&a), is an infinitesimal of the kth order and p(a)

an infinitesimal of the mth order. Due to Lemma 2,
p(&X&a)

p(a)
is an infinitesimal of

order k − m. Thus so is

(1 − �
v) × p(&X&a)

p(a)
+ �

v × p(&X&¬a)

p(¬a)
to which we have just added the two terms −�

v × (p(&X&a))/(p(a)), which is an
infinitesimal of higher order than k − m, and �

v × (p(&X&¬a))/(p(¬a)), which is
equal to 0 since p(&X&¬a) = 0. Thus according to Definition 4, (((p ★�v a)))(&X) is
an infinitesimal of order k − m, i.e. of order t .

Third case, ¬a ∈ X : Then X ∉ R′
0. Let ¬a ∈ X ∈ R′

t . Then there are k and m
such that t = k − m + v and X ∈ Rk and Rm is the lowest-numbered level holding a
¬a-containing maxiset. It follows that p(&X) is an infinitesimal of order k and p(¬a)

an infinitesimal of order m. Thus:

(((p ★�v a)))(&X) = (1 − �
v) × p(&X&a)

p(a)
+ �

v × p(&X&¬a)

p(¬a)
Definition 4

= �
v × p(&X&¬a)

p(¬a)
since p(&X&a) = 0 due to ¬a ∈ X

= �
v × p(&X)

p(¬a)
since ¬a ∈ X

Since �
v , p(&X), and p(¬a) are infinitesimals or orders v, k and m, respectively, it

follows that (((p ★�v a)))(&X) is an infinitesimal of order k − m + v, i.e. of order t . ��
Lemma 7 If p is order-equivalent with 〈R0, . . . , Rn〉, then �p� = ‖〈R0, . . . , Rn〉‖.
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Proof of Lemma 7 d ∈ �p�
iff p(d) ≈ 1
iff

∑{p(&X) | d ∈ X ∈ L ⊥ ⊥} ≈ 1
iff

∑{p(&X) | d ∈ X ∈ L ⊥ ⊥ and 0 � p(&X)} ≈ 1 A finite number of
infinitesimal terms excluded

iff
∑{p(&X) | d ∈ X ∈ R0} ≈ 1 Definition 14

iff d ∈ X for all X ∈ R0 0 � p(&X) for all X ∈ R0
iff d ∈ ⋂

R0
iff d ∈ ‖〈R0, . . . , Rn〉‖ Definition 1 ��

Proof of Theorem 2 Part 1: Let p be a probability function. It follows from Lemma 5,
part 1, that there is some OMP 〈R0, . . . , Rm〉 such that p and 〈R0, . . . , Rm〉 are order-
equivalent. Let � be a first order infinitesimal, and for each δk , let vk be the order of
infinitesimals that δk belongs to. It follows from Lemma 4 that p ★δ1 a1 . . . ★δn an and
p★�v1 a1 . . .★�vn an are order-equivalent. It follows by repeated application of Lemma6
that p ★�v1 a1 . . . ★�vn an and 〈R0, . . . , Rm〉 ⍟v1 a1 · · · ⍟vn an are order-equivalent.
Thus p ★δ1 a1 . . . ★δn an and 〈R0, . . . , Rm〉⍟v1 a1 · · ·⍟vn an are order-equivalent, thus
according to Lemma 7, �p ★δ1 a1 . . . ★δn an� = ‖〈R0, . . . , Rm〉 ⍟v1 a1 · · · ⍟vn an‖.

Part 2: Let 〈R0, . . . , Rm〉 be an OMP. It follows from Lemma 5, part 2, that there
is some probability function p such that p and 〈R0, . . . , Rm〉 are order-equivalent.

It follows by repeated application of Lemma 6 that p ★�v1 a1 . . . ★�vn an and
〈R0, . . . , Rm〉 ⍟v1 a1 · · · ⍟vn an are order-equivalent, thus according to Lemma 7,
�p ★�v1 a1 . . . ★�vn an� = ‖〈R0, . . . , Rm〉 ⍟v1 a1 · · · ⍟vn an‖. ��
Proof of Observation 5 Due to Theorem 2 we can equivalently prove the following
properties of translation revisions on ordered maxiset partitionings, for consistent
sentences a1 and a2 and positive integers v, v1, and v2:

If a1 � a2, then ‖〈R0, . . . , Rn〉 ⍟v2 a2 ⍟v1 a1‖ = ‖〈R0, . . . , Rn〉 ⍟v a1‖ (DP1)
If a1 � ¬a2, then ‖〈R0, . . . , Rn〉 ⍟v2 a2 ⍟v1 a1‖ = ‖〈R0, . . . , Rn〉 ⍟v a1‖ (DP2)
If a2 ∈ ‖〈R0, . . . , Rn〉 ⍟v a1‖, then a2 ∈ ‖〈R0, . . . , Rn〉 ⍟v2 a2 ⍟v1 a1‖ (DP3)
If ¬a2 ∉ ‖〈R0, . . . , Rn〉 ⍟v a1‖, then ¬a2 ∉ ‖〈R0, . . . , Rn〉 ⍟v2 a2 ⍟v1 a1‖ (DP4)

The following abbreviations will be used:

• 〈R′
0, . . . , R

′
n〉 = 〈R0, . . . , Rn〉 ⍟v2 a2

• 〈R′′
0 , . . . , R

′′
n 〉 = 〈R0, . . . , Rn〉 ⍟v2 a2 ⍟v1 a1

• 〈R†
0, . . . , R

†
n〉 = 〈R0, . . . , Rn〉 ⍟v a1

Part 1, DP1: Let Rk be the lowest-numbered a2-containing element in 〈R0, . . . , Rn〉
and Rm its lowest-numbered a1-containing element.7 It follows from a1 � a2 that
k ≤ m. It holds for all maxisets X that contain a2 (and thus for all that contain a1) that
if X ∈ Rs , then X ∈ R′

s−k . Since Rm is the lowest-numbered a1-containing element in
〈R0, . . . , Rn〉,R′

m−k is the lowest-numbered a1-containing element of 〈R′
0, . . . , R

′
n〉.

Alla1-containingmaxisets X aremoved leftwards from 〈R′
0, . . . , R

′
n〉 to 〈R′′

0 , . . . , R
′′
n 〉,

so that the leftmost of them is moved from R′
m−k to R′′

0 . This means that for all a1-
containing X : If X ∈ R′

t , then X ∈ R′′
t−(m−k).Wehave t−(m−k) = (s−k)−(m−k) =

s − m. Thus, if a1 ∈ X ∈ Rs then X ∈ R′′
s−m .

7 Rk is a-containing if and only if ¬a ∉
⋂

Rk .
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Since R′′
0 consists only of a1-containing maxisets, it follows that X ∈ R′′

0 if and
only if a1 ∈ X ∈ Rm .

Next, note that for all maxisets X , if a1 ∈ X ∈ Rs , then X ∈ R†
s−m . Since

R†
0 consists only of a1-containing maxisets, it follows that X ∈ R†

0 if and only if
a1 ∈ X ∈ Rm . Thus:

‖〈R′′
0 , . . . , R

′′
n 〉‖ = ⋂

R′′
0 = ⋂

(Rm ∩ |a1|) = ⋂
R†
0 = ‖〈R†

0, . . . , R
†
n〉‖.

Part 2,DP2: Let Rk be the lowest-numbereda1-containing element in 〈R0, . . . , Rn〉,
and let R′

m be the lowest-numbered a1-containing element in 〈R′
0, . . . , R

′
n〉. Since all

a1-containing maxisets contain ¬a2, they are moved in parallel in the transition from
〈R0, . . . , Rn〉 to 〈R′

0, . . . , R
′
n〉, thus |a1| ∩ Rk = |a1| ∩ R′

m = R′′
0 . It follows directly

that R†
0 = |a1| ∩ Rk , thus R′′

0 = R†
0, thus ‖〈R′′

0 , . . . , R
′′
n 〉‖ = ‖〈R†

0, . . . , R
†
n〉‖.

Part 3,DP3: Let Rm be the lowest-numbereda1-containing element in 〈R0, . . . , Rn〉.
It follows from a2 ∈ ‖〈R0, . . . , Rn〉 ⍟v a1‖ and ‖〈R†

0, . . . , R
†
n〉‖ = ⋂

R†
0 =⋂

(Rm ∩ |a1|) that a2 ∈ ⋂
(Rm ∩ |a1|).

Let X be one of the leftmost maxisets in 〈R0, . . . , Rn〉 such that a1&a2 ∈ X and
let X ′ be one of the leftmost maxisets in 〈R0, . . . , Rn〉 such that a1&¬a2 ∈ X ′. It
follows from a2 ∈ ‖〈R0, . . . , Rn〉⍟v a1‖ that X is in a position to the left of that of X ′
in 〈R0, . . . Rn〉. Thus Rm ∩ |a1&a2| = Rm ∩ |a1|. In the operation that takes us from
〈R0, . . . , Rn〉 to 〈R′

0, . . . , R
′
n〉, X ′ will be moved to the right, whereas X will either not

be moved or moved to the left. Thus X is positioned to the left of X ′ in 〈R′
0, . . . , R

′
n〉.

Thus X ∈ R′′
0 but X ′

∉ R′′
0 . Consequently a2 ∈ ⋂

R′′
0 , i.e. a2 ∈ ‖〈R′′

0 , . . . , R
′′
n 〉‖.

Part 4,DP4: Let Rm be the lowest-numbereda1-containing element in 〈R0, . . . , Rn〉.
Since R†

0 = Rm∩|a1|, it follows from¬a2∉‖〈R0, . . . , Rn〉⍟va1‖ that there is some
X ′ such that a2 ∈ X ′ ∈ Rm ∩ |a1|. In other words, X ′ is one of the lowest-numbered
a1-containing maxisets in 〈R0, . . . Rn〉. It follows from a2 ∈ X ′ that X ′ is one of the
leftmost maxisets containing a1 in 〈R′

0, . . . R
′
n〉 as well. Therefore X ′ is an an element

of R′′
0 . It follows from a2 ∈ X ′ ∈ R′′

0 that ¬a2 ∉ R′′
0 , i.e. ¬a2 ∉ ‖〈R′′

0 , . . . R
′′
n 〉‖. ��
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