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Abstract
Research in dynamic semantics has made strides by studying various aspects of dis-
course in terms of computational effect systems, for example, monads (Shan, 2002;
Charlow, 2014), Barker and 2014), (Maršik, 2016). We provide a system, based on
graded monads, that synthesizes insights from these programs by formalizing individ-
ual discourse phenomena in terms of separate effects, or grades. Included are effects
for introducing and retrieving discourse referents, non-determinism for indefinite-
ness, and generalized quantifier meanings. We formalize the behavior of individual
effects, as well as the interactions between effects, in terms of algebraic laws tailored
to the relevant discourse phenomena. The system we propose is thus modular and sug-
gests a novel approach to integrating formal accounts of distinct semantic phenomena.
Finally, we give an interpretation of the system into pure λ-calculus that respects the
laws. Future work will aim to integrate more discourse phenomena using the same
methodology, for example, presupposition and conventional implicature.

Keywords Dynamic semantics · Algebraic effects · Monads · Compositionality

1 Introduction

In the last two decades, research in dynamic semantics has attained a breadth of
insights into the relation between compositional semantics and dynamic semantics
by viewing prima facie non-compositional phenomena as arising from computational
side effects. The effectful approach to meaning allows one to view compositionally
recalcitrant features—e.g., discourse referents, intensionality, and scope-taking—as
giving rise to a rich, but uniform structure which integrates themwith truth-conditional
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meaning. This integration is done by injecting truth-conditional meaning into the
effectful structure in a natural way, such that the structure gives rise to a functor. This
pattern of analysis has come in a variety of forms: continuations to study scope (Barker
2002; Barker and Shan 2014; de Groote 2001), graded applicative functors to study
quantification (Kobele, 2018a) , and monads to study discourse referents, anaphora,
and indefiniteness, among other phenomena (Shan, 2002; Giorgolo & Unger, 2009;
Giorgolo & Asudeh, 2012, Charlow, 2014, 2020a, 2020b, i.a.).

Progress in understanding dynamic and scopal phenomena in terms of effects,
however, has presented two basic methodological questions. On the one hand, given
effectful treatments of individual phenomena (say, discourse referents, quantification,
and conventional implicature), how does one integrate them into a semantic analysis
encompassing them all? On the other hand, how does one study interactions between
these phenomena, while simultaneously preserving their individual treatments in the
result? In this paper, we address both questions by providing a general framework,
basedonalgebraic effects, for characterizing individual dynamic semantic phenomena,
as well as their interactions, in terms of algebraic laws.

Stated in other terms, our goal is to improve the compositionality properties of
functor-based theories of dynamic semantics; i.e., by recasting them as algebraic the-
ories:
• At a meta-theoretical level, when two phenomena are described by two distinct
theories within our framework, we provide a systematic recipe for obtaining a
combined theory of both phenomena. The combination is monotonic, in the sense
that the predictions of the original theories, regarding either phenomenon, remain
unchanged in the combined theory.

• In individual analyses, when two syntactically adjacent constituents feature two
distinct (yet possibly interacting) phenomena, their meanings may always be com-
bined compositionally, in order to obtain a meaning for their combination.

We begin in Sect. 2 with a background to monadic dynamic semantics, and we
present the issue of compositionality that pertains to monads and monad transformers.
In Sect. 3, we axiomatize our approach in terms of the meta-language we use to
describe algebraic theories, and we show how meanings may be provided in terms
of this meta-language. Section 4 provides an interpretation of this axiomatizations in
terms of a simply typed λ-calculus with products. We discuss related work in Sect. 5
before concluding in Sect. 6.

2 Monadic Dynamic Semantics

Since the work of Shan (2002), monads have provided a popular interface for semantic
analyses employing computational effects. Monads have been used to study anaphora
(Giorgolo&Unger, 2009) and conventional implicature (Giorgolo andAsudeh 2012),
and have more recently been taken up by Charlow (2014, 2020a, b) to study the inter-
actions among quantification, anaphora, indefiniteness, and binding in a framework
that relies on monad transformers.

We assume a general familiarity with monads, but we briefly remind the reader of
their structure, in order to introduce notation. A monad M is an endofunctor that takes
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Algebraic Effects for Extensible Dynamic Semantics 221

a given type α onto a type Mα of computations exhibiting structure that encapsulates
some desired side effect, e.g., reading and writing to a store, or non-determinism.1

Each monad M is associated with two operators, η (‘return’) and � (‘bind’), having
the following type signatures, for any types α and β:

η : α → Mα

( � ) : Mα → (α → Mβ) → Mβ

The role of η is to inject pure (i.e., non-effectful) values into the structure provided
by M , while � sequences a computation of type Mα with an indexed computation of
type α → Mβ to produce a sequenced computation of type Mβ.

2.1 UsingMonad Transformers: Charlow (2014)

Charlow (2014) introduces a monadic dynamic semantics that combines analyses of
anaphora, indefiniteness, and quantification by relying on monad transformers. In
particular, Charlow uses a Powerset monad to characterize indefiniteness, and then
applies a State monad transformer, in order to obtain a system to characterize both
indefiniteness and anaphora in the same grammar. He then applies a Continuation
monad transformer, in order to provide a setting to study quantification. Crucially, the
analyses that he provides for individual phenomena are extended compositionally to
obtain analyses of their combinations with new phenomena.2

The Powerset monad P allows one to analyze indefinite noun phrases (and the
expressions with which they compose) as denoting sets, encoded as functions of type
α → t :

Pα = α → t

η : α → α → t

ηa = {a} (= λx .x = a)

( � ) : (α → t) → (α → β → t) → β → t

m � k =
⋃

x∈m
kx (= λy.∃x : mx ∧ kxy)

This way, the noun phrase a linguist, for instance, will denote the set {x | lingx} and
may be composed with an intransitive verb such as sleeps by injecting the latter into
the monad via η: ηsleep. To compose them, Charlow employs monadic functional
application (which he overloads with forward and backward application, to be disam-
biguated by the types of arguments). Functional application (FA) is defined as follows
for an arbitrary monad M :

FA : M(α → β) → Mα → Mβ

or Mα → M(α → β) → Mβ

1 The underlying category we employ will invariably be Cartesian closed. One may restrict attention to the
category of sets and functions, for example.
2 We use slightly different terminology and notation than that found in Charlow (2014).
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FAm n = m � λ f .n � λx .η( f x)

or m � λx .n � λ f .η( f x)

Now, a linguist sleeps may be interpreted as FA{x | lingx}(ηsleep), which can be
reduced to {sleepx | lingx}; that is, a set of truth values containing True iff some
linguist sleeps.

To incorporate anaphora, he invokes the following State monad transformer, which
takes an underlying monad M onto a newmonad ST M , for some fixed type s of states:

ST M α = s → M(α × s)

η : α → s → M(α × s)

ηa = λs.η〈a, s〉
( � ) : (s → M(α × s)) →

(α → s → M(β × s)) →
s → M(β × s)

m � k = λs.ms � λ〈x, s′〉.kxs′

In this exampleM will be instantiated to thePowersetmonad, and s to the type of lists of
individuals. This transformation of the Powerset monad to provide State functionality
allows such lists to be accessed and updated throughout semantic composition as
lists of discourse referents. To allow the indefinite a linguist to introduce a discourse
referent, for example, Charlow defines the following operation, (·)	, for an underlying
Powerset monad, though which we give for an arbitrary underlying monad M in the
presence of State functionality:

(·)	 : ST Mα → ST Mα

m	 = m � λ〈x, s〉.ηx(x :: s)

Here, the operation :: conses a new individual onto a list, thus providing it as a discourse
referent. Now, one can associate the sentence a linguist sleepswith a discourse referent
by having a linguist introduce it (given an updated instance of FA):

FA(λs.{〈x, s〉 | lingx}	)(ηsleep)

= λs.{〈sleepx, x :: s〉 | lingx}

Thus the meaning of a linguist has changed, given our use of the State-transformed
Powerset monad. The new meaning is, in fact, straightforward to obtain from the old
meaning, however, in terms of a function lifting values from Mα to ST Mα:

liftS : Mα → ST Mα

liftSm = λs.m � λx .η〈x, s〉
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Algebraic Effects for Extensible Dynamic Semantics 223

It is in this sense that the addition of State functionality tomeanings stated with respect
to the Powerset monad is (in principle) compositional. Both the monadic combinators
of the Powerset monad, and the meanings it is used to characterize, may be injected
into the State setting.

Charlow uses this strategy to introduce analyses of quantificational noun phrases
into the monadic setting. Taking inspiration from the continuation-style treatments of
quantifiers of Barker (2002) and Barker and Shan (2014), he employs the following
Continuation monad transformer, CT .

CT Mα = (α → Mt) → Mt

η : α → (α → t) → t

ηa = λc.ca

( � ) : ((α → Mt) → Mt) →
(α → (β → Mt) → Mt) →
(β → Mt) → Mt

m � k = λc.m(λx .kxc)

The underlying monad, in this case, is the State-transformed Powerset monad. Like
the State monad transformer, the Continuation monad transformer also comes with a
lifting function liftC:

liftC : Mα → CT Mα

liftC m = λk.m � k

Now, a quantificational noun phrase such as every philosopher can be given the mean-
ing λc, s.{〈∀x .philx → ∃y, s′ : 〈True, s′〉 ∈ cxs, s〉}.3 Moreover, a sentence such as
every philosopher sees a linguist, may be composed as follows, given a version of FA
appropriate to the Continuation monad:

FA(λc, s.{〈∀x .philx → ∃s′ : 〈True, s′〉 ∈ cxs, s〉})
(FA(ηsee))(li f tC(λs.{〈y, s〉 | lingy}))))

= λc, s.

⎧
⎨

⎩〈∀x .philx → ∃s′ : 〈True, s′〉 ∈
⋃

lingy

(c(seeyx)s), s〉
⎫
⎬

⎭

Finally, as Charlow shows, such meanings of type CT (ST P)t may be lowered to ones
of type ST Pt by applying them to the η of the State-transformed Powerset monad:

lowerC

⎛

⎝λc, s.

⎧
⎨

⎩〈∀x .philx → ∃s′ : 〈True, s′〉 ∈
⋃

lingy

(c(seeyx)s), s〉
⎫
⎬

⎭

⎞

⎠

3 Themeanings Charlow provides for quantificational noun phrases headed by every are assembled in terms
of more primitive operators which he defines elsewhere. We have thus somewhat simplified his presentation
for our purposes.
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=
⎛

⎝λc, s.

⎧
⎨

⎩〈∀x .philx → ∃s′ : 〈True, s′〉 ∈
⋃

lingy

(c(seeyx)s), s〉
⎫
⎬

⎭

⎞

⎠ η

= λs.{〈∀x .philx → ∃s′ : 〈True, s′〉 ∈ {〈seeyx, s〉 | lingy}, s〉}
= λs.{〈∀x .philx → ∃y : lingy ∧ seeyx, s〉}
= η(∀x .philx → ∃y : lingy ∧ seeyx)

Such lowered meanings may, in turn, be lifted back into the Continuation monad, e.g.,
in order to further compose them with quantificational meanings:

liftC(η(∀x .philx → ∃y : lingy ∧ seeyx))

= λk.η(∀x .philx → ∃y : lingy ∧ seeyx) � k

= λk.k(∀x .philx → ∃y : lingy ∧ seeyx)

= η(∀x .philx → ∃y : lingy ∧ seeyx)

Note that once a quantifier has been lowered, its scope is fixed. ThusCharlowcomposes
liftC and lowerC in this way, as an operator reset, in order to delimit the scope of
quantifiers to finite clause boundaries. At the same time, as he shows, lowering does not
affect the capacity of indefinite nounphrases anddiscourse referents to take scope; their
side effects are still potent, as they are represented in terms of the State-transformed
Powerset monad. As a consequence, the limited scopal possibilities for quantifiers and
the flexible scoping behavior of indefinites and discourse referents may be modeled
within the same continuation-based setting.

2.2 Monads and Compositionality

The above discussion provides only a schematic presentation of the system of Charlow
(2014). What we hope to have conveyed, however, is the manner in which the system,
as a theory of indefiniteness, anaphora, and quantification, is monotonic and compo-
sitional in the senses introduced earlier. The theory of indefiniteness may be stated
on its own, in terms of the Powerset monad, and then embedded into the combined
theory of indefiniteness and anaphora, using a monad transformer. This combined the-
ory may likewise be embedded into the combined theory of indefiniteness, anaphora,
and quantification. To say that the embedding is monotonic and compositional is to
say that it constitutes a (monad) homomorphism. Every lifting function lift has the
property, in general, that it preserves the monadic combinators: lift (ηa) = ηa, and
lift (m � k) = lift m � λx .lift (kx). Thus the theory stated with respect to the underlying
monad is never truly forgotten and may, in fact, be used when convenient, i.e., before
applying a lift.

What we aim to show in this paper is that the algebraic approach that we advocate
has this property to an even greater degree. Indeed, the simple monadic approach
requires, in many cases, determining a monad ahead of time that combines all of the
effects which may occur in a given analysis. For example, say that one wants a theory
of quantification on its own, independent of a theory of indefiniteness and anaphora.
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Algebraic Effects for Extensible Dynamic Semantics 225

Then, one may employ the Continuation monad (as akin to Barker 2002; Barker and
Shan 2014); in this case, the definitions of η and � remain identical to those stated
above, except for their types: the result type of the continuation is now simply t , so that
Mα = (α → t) → t . In turn, every philosopher may be given its usual generalized-
quantifier meaning, i.e., λk.∀x : philx → kx . Incorporating theories of indefiniteness
and anaphora, however, will now prove more difficult. The State monad transformer
will provide a monad that takes a type α onto the type s → (α × s → t) → t :

STCα = s → C(α × s)

= s → (α × s → t) → t

ηa = λs, c.c〈a, s〉
m � k = λs, c.ms(λ〈x, s′〉.kxs′c)

Indeed, this result may appear, at first, to be suitable for a combined analysis of
quantification and anaphora, but note, for example, that the value returned within the
underlying Continuation monad will systematically have the type of a product. As a
result, a lower operation will be required to have the type (s → (t × s → t) → t) →
s → t × s, but it is not obvious what the appropriate definition of such an operation
would be.4 Rather, in order to achieve the desired result, it seems that one must start
with the Powerset monad, then incorporate anaphora, and then finally, incorporate
quantification. Much more generally, the lifting functions liftX associated with each
monad transformer X are often unidirectional, requiring that a choice of result fixes
the underlying monad. Thus, ensuring that the resulting monad has a certain desired
behavior will limit the flexibility with which one is able to combine different sources
of functionality. In contrast, as we will show, the algebraic approach assigns a type
with the minimum required effect to each meaning, and the combination of meanings
with different effects systematically computes the appropriate result. There is thus no
priority associated with one effect or another.5

A second difference between our algebraic approach and the monadic approach is
that the typeswe compute formeanings exhibitingmultiple effects ismore informative:
it yields a linguistically meaningful summary of the effects an expression gives rise
to, as we will show.

4 The most obvious candidate would be to throw out the state returned by the surrounding function on
continuations—that is, such a lower would be defined as:

lowerm = λs.〈m s (λ〈a, s′〉.a), s〉

Such an operation, however, would invariably discard the anaphoric potential of its argument, treating, e.g.,
quantifiers and proper names alike. (In contrast, choosing State to be the underlying monad would allow
anaphoric side effects to survive when they do not arise from bona fide quantifers.)
5 One may wonder if the algebraic approach could be recast in terms of monad transformers. An issue
which would arise is that the relevant lifting operation depends both on the meaning to which it is applied
and on the context. Thus if we have n different atomic effects, we must consider n × (n − 1) combinations
of them (one for each pair of effects). Furthermore, monad transformers are ill-equipped to deal with effect
bracketing, which we introduce in Sect. 3.5.
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3 Algebraic Effects via GradedMonads

As a way forward, we propose a double move: to simultaneously make the monadic
approach modular and make its types more fine-grained.

First, we propose that semantic side effects be studied algebraically, in terms of
equational laws characterizing the individual phenomena, which may then be com-
bined. This move is inspired by Maršík (2016) and Maršík and Amblard (2014,
2016), who develop a typed extension of the λ-calculus to study algebraic effects
in semantics.6 Unlike the approach of Maršík, we show how effects employed by
semanticists—e.g., state and non-determinism—may be recast algebraically (while
remaining in a pure setting), leading to more extensible grammars.

Second, we propose to track the relevant effects at the level of types, by using
a graded monad.7 In contrast to plain monads, graded monads are indexed with an
abstraction of the effect that they perform, hereafter referred to simply as the “grade”.
The unit η of the monad is associated the unit grade (1). The grade of the composition
of effects under � is the composition of their grades, written with the operator (·)
(see Fig. 1). Graded monads have been applied previously in the field of programming
language theory to describe the semantics of algebraic effects (Katsumata, 2014;
Mycroft et al., 2016; Orchard et al., 2019) . In natural language semantics, they have
been employed in the analysis of presupposition projection and anaphora (Grove,
2019) . In our analysis, different phenomena are assigned different grades indepen-
dently of each other. This means that the interpretations associated with individual
phenomena may be freely composed, in order to yield grammars that combine the
relevant effects.

One can then describe the interactions between effects using two sets of laws. The
first set concerns the abstract level of grades. The second set concerns the concrete
level of λ-terms and operations. These two sets of laws are related: any law between
terms generates a corresponding law between grades; that is, any law governing terms
is only allowable if there exists a corresponding law governing the behavior of grades.
To illustrate, consider the unit and associativity laws on terms, which are part of the
definition of a graded monad (Fig. 1). For types to be preserved in the statement of
associativity for � , the (·) operator must be associative. Likewise, for types to be
preserved in the identity laws regulating the behavior of η, 1 must be the left and right
unit of (·). That is, grades must form a monoid.

From now on, we develop not just an equational theory of terms and grades, but a
theory of reduction. That is, we use a reduction relation between terms written ‘−→’,
and one between grades written ‘�’. These relations are the (respective) reflexive
transitive congruence of the laws that we list below. By definition, two terms t1 and
t2 are equal if they are inter-reducible; likewise for grades. At this point, our theory
encompasses only the graded monad laws. At the introduction of any new law, we
will ensure that the reduction relations on both grades and terms are confluent. In
particular, we will ensure that the asserted laws are compatible with associativity; i.e.,

6 We trace the the idea of algebraic effects to the work of Kiselyov and Ishii (2015), Plotkin and Power
(2001) and Plotkin and Pretnar (2008).
7 Our approach straightforwardly adapts to the setting of graded applicative functors (Kobele, 2018a) .
The two variants afford different dimensions of generalization.
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Fig. 1 Definition of a graded monad

g1 · (g2 · g3) and (g1 · g2) · g3 should always reduce to the same grade. Similarly at
the level of terms: any proposed reduction rule should respect the Associativity law.
We further discuss the importance of confluence in Sect. 5.1.

3.1 Compositional Dynamic Semantics

As recalled in Sect. 2, monadic semantics in the style of Shan (2002) aims to augment
the interpretation of each syntactic category with an effect. In the present framework,
this effect is graded. For example, if a sentence is interpreted as a truth value of type t in
a non-effectful semantics, it is interpreted in our framework as a truth value associated
with an effect with some grade g, i.e., of type Mgt .

Moreover, whereas in Montague semantics, one uses functional application, we
additionally employ the graded applicative functor structure arising from the graded
monad, characterized by (either of) the operators (	) and (�):

(	) : Mp(α → β) → Mqα → Mp·qβ
m 	 n = m � λ f .n � λx .η( f x)

(�) : Mpα → Mq(α → β) → Mp·qβ
m � n = m � λx .n � λ f .η( f x)

For illustration, we present a small applicative categorial grammar fragment in
Table 1, and, in Fig. 2, two rules of interpretation corresponding to functional applica-
tion and two rules which make use of the applicative functor structure of our system.
The need for seemingly redundant rules corresponding to simple functional applica-
tion (above in Fig. 2), in addition to applicative combination (below in Fig. 2), arises
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Fig. 2 Rules for forward and backward application

Table 1 A lexicon fragment

Expression Meaning Category Type

john ηj N P M1e

walks ηwalk N P\S M1(e → t)

from the fact that some meanings manipulate effectful values directly: their type is of
the form Mpα → Mqβ, rather than Mq(α → β). As such, they cannot be combined
by either of the 	 or � operators.8 We additionally admit a rule (μ) which collapses a
meaning of type Mg1(Mg2α) into one of type Mg1·g2α by sequencing it (via � ) with
the identity function. In the following pages, we write ‘μm’ in place of ‘m � λx .x’ to
be concise.

Using only the (\) rule, we may interpret john walks as a value whose grade is 1,
i.e., one without any dynamic effect.

〈john, ηj〉 :: N P 〈walks, ηwalk〉 :: N P\S \〈john walks, (ηj) � (ηwalk)〉 :: S
The definition of (�) and the monad laws allow this result to be reduced:

(ηj) � (ηwalk)

= ηj � λx .ηwalk � λ f .η( f x)

−→ η(walk j) (by Left Identity)

3.2 Anaphora

We can extend our analysis to account for anaphora. For any type α, we may posit a
grade Get[d : α], along with a new primitive, getd :

getd : MGet[d:α]α

8 Indeed, the choice between the simple and applicative variants of (/) in a derivational step is determined
by the semantic types of the arguments being combined. Likewise for the choice between the variants of
(\). (Semantic types of the form Mpα → Mqβ will be encountered in Sect. 3.5.) The same quirk justifies
the presence of the μ rule, which we introduce next.
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Algebraic Effects for Extensible Dynamic Semantics 229

The purpose of getd is to retrieve a discourse referent d, whose type is α, from the
linguistic context.9 For instance, one can consider α to be e, the semantic type of
entities, although any semantic type is supported, in principle.

The grade Get[d : α] records that one presupposes the existence of a discourse
referent with label d and type α. For example, getd may be used to interpret a pronoun,
with the typing getd : MGet[d:e]e. The labels used for discourse referents are equipped
with a decidable equality relation, but otherwise, they carry no meaning.10 It should
be noted that labels occur only inside grades—in Sect. 4, we show how the primitives
may be interpreted into a label-free calculus. Finally, thanks to the typing rule for � ,
a phrase which uses some number of discourse referents lists them all in its grade. For
example, we might have the typeMGet[dmasc:e]·Get[d f em :e]t for the sentence he likes her.

Our goal is to formalize how grades interact. Since we do not keep track of the
order in which discourse referents are introduced, we have the following equality on
grades:

Get[d1 : α] · Get[d2 : β] = Get[d2 : β] · Get[d1 : α] (1)

Whenever we assert such a law on grades, it is important to check that it preserves the
overall system’s confluence in the presence of the other laws, including the monoid
laws. So far, we have asserted only a commutation law, and it is easy to see that no
problem arises.

Second, we do not keep track of how many references to a single discourse referent
occur. Moreover, if two references to the same discourse referent are made, their types
should agree. This is captured by the following law:11

Get[d : α] · Get[d : α] � Get[d : α] (2)

To complete the formal definition of the treatment of anaphoric expressions, it
suffices to state how two instances of getd should interact, as guided by the behavior
of their grades. We employ two laws on terms (which we label according to the

9 We encode here roughly the notion of discourse referents of Karttunen (1976).
10 This decision procedure tells whether or not there is co-reference. A possible implementation of it would
be to match the properties of referents with predicates associated with anaphoric expressions (Bernardy
et al., 2021) .
11 Our framework is, in principle, agnostic about the type system of the underlying λ-calculus. For instance,
rich types, as proposed by Luo (2012), are supported, as is the simply typed λ-calculus. Even though we
will avoid rich types in our analysis, we note that they may be particularly beneficial when it comes to
tracking discourse referents. For instance, law (2) generalizes as follows:

Get[d : α] · Get[d : β] � Get[d : α ∧ β]

(where ‘α ∧β’ refers to the meet of types α and β). Thus if two parts of a phrase refer to the same discourse
referent, then the type associated with that discourse referent needs to be the meet of the types found in the
parts.
Additionally, complex relations can be captured within the types of discourse referents. For example,
the meaning of john sees his dog could be assigned the type MGet([d:�(x :dog)(have(j,x))]), which records
a presupposition of the existence (via a � type) of John’s dog. In the presence of rich types, one can
additionally expect the types of the discourse referents to play a role in resolving anaphora.
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Table 2 Adding discourse referents

Expression Meaning Category Type

john (ηj)�d N P MPut[d:e]e
he getd N P MGet[d:e]e
walks ηwalk N P\S M1(e → t)

sits ηsit N P\S M1(e → t)

; η(λφ, ψ.φ ∧ ψ) S\(S/S) M1(t → t → t)〉

respective corresponding laws on grades):

getd1 � λx .getd2 � λy.η〈x, y〉 = getd2 � λy.getd1 � λx .η〈x, y〉 (1′)
getd � λx .getd � λy.η〈x, y〉 −→ getd � λx .η〈x, x〉 (2′)

The first law states that references to independent discourse referents commute. This
law corresponds to law (1) on grades stating that the order of labels in a grade does
not matter. The second law states that two references to the same discourse referent
collapse to a single reference. This law corresponds to law (2) on grades, which
collapses two associations with the same label. Note that, instead of first presenting
the laws on grades, we could have stated the algebraic laws on terms and deduced their
typing. Correct typing ensures that the behavior of terms, as captured by the algebraic
laws, is mirrored by the behavior of grades, as captured by the grade laws.

3.3 Introducing Discourse Referents

As the dual to accessing discourse referents, one can introduce new ones. For this
purpose, we add a new grade Put[d : α], along with a new primitive:

putd : α → MPut[d:α]�

The returned type, �, is the unit type, thus signifying that putd makes no significant
contribution at the level of values. In terms of this primitive, one can define an operation
(·)�d , which binds its argument to the discourse referent d. (The notation is inspired
by the similar notation of Barker and Shan (2014), as well as of Charlow (2014).) This
operation performs the dynamic effects associated with its argument, following which
it binds the value returned to d:

(·)�d : Mgα → Mg·Put[d:α]α
m�

d = m � λx .putd x � λ�.ηx

The ‘λ�.’ notation indicates that a value of type � is expected as an argument to the
relevant λ-expression.

To illustrate, let us return to our running example, given the updated lexicon in
Table 2. We now interpret john walks as follows.
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〈john, (ηj)�d 〉 :: N P 〈walks, ηwalk〉 :: N P\S \〈john walks, (ηj)�d � (ηwalk)〉 :: S
After unfolding the definitions and β-reducing, we obtain putd j � λ�.η(walk j), whose
type is MPut[d:e]t , thus capturing that the discourse referent d has been introduced.

When considered on its own, putd behaves similarly to getd . The order of intro-
duction does not matter:12

Put[d1 : α] · Put[d2 : β] = Put[d2 : β] · Put[d1 : α] (3)

Consequently, twodiscourse referents commute.Wecan formalize this as the following
equation on terms:

putd1a � λ�.putd2b = putd2b � λ�.putd1a (3′)

Although getd and putd arise independently and have interpretations on their own,
we can describe their interactions in terms of algebraic laws. We illustrate this fact
first on the relations on terms, by adding two laws:

putda � λ�.getd −→ (ηa)�d (4′)
putd1a � λ�.getd2 −→ getd2 � λx .putd1a � λ�.ηx (d1 
= d2) (5′)

These laws ensure that getd uses only the discourse referent d that putd introduces.
Assuming that the terms are well typed, the grades on the left should reduce to the
grades on the right; consequently, the following laws hold on grades:

Put[d : α] · Get[d : α] � Put[d : α] (4)

Put[d1 : α] · Get[d2 : β] � Get[d2 : β] · Put[d1 : α] (d1 
= d2) (5)

The first law finds a satisfying linguistic justification: when a discourse referent is
introduced, it is no longer presupposed. The second law ensures that introductions
and uses of distinct discourse referents ignore each other.

To illustrate, consider composing the two utterances john walks with he sits. Given
the lexicon in Table 2, this miniature discourse receives the following meaning:

�john walks; he sits�

= ((putd j � λ�.η(walk j)) � η(λφ, ψ.φ ∧ ψ)) 	 (getd � λx .η(sitx)) (by /, \, μ)

−→ (putd j � λ�.getd ) � λx .η(walkj ∧ sitx) (by Associativity, Left Identity)

−→ (ηj)�d � λx .η(walkj ∧ sitx) (by law (4))

−→ putd j � λ�.η(walkj ∧ sitj) (by Associativity, Left Identity)

12 Note that this algebra merely characterizes the logic of discourse referents, saying nothing about their
accessibility from a cognitive standpoint.
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The resulting meaning is of type MPut[d:e]t ; it introduces a discourse referent (d),
but has no anaphoric presupposition, despite the presence of the pronoun he. That
is, its reference is resolved. Checking confluence is a less easy exercise now than
before. We can, however, convince ourselves that it holds by noting that the following
re-association is confluent:

Put[d : α] · (Get[d : α] · Get[d : α])
� Put[d : α] · Get[d : α] (by law (2))

�(Put[d : α] · Get[d : α]) · Get[d : α] (by law (4))

3.4 On the State Monad

Both Charlow 2014 and other work in monadic dynamic semantics have employed the
statemonad, in order tomodel anaphora (Giorgolo&Unger, 2009;Unger, 2012) . The
foregoing formalization vindicates some of the state monad laws (laws (2) and (4)),
but to get a full specification of the state monad, one additionally needs the following
law:

getd � λx .putd x = η� (6′)

To preserve types, this law on terms requires the following law to hold on grades:

Get[d : α] · Put[d : α] = 1 (6)

Such a law is problematic, however, as it contravenes confluence:

Get[d : α] · (Get[d : α] · Put[d : α])
� Get[d : α] · 1 (by law (6))

= Get[d : α] (by Right Identity)


= 1

�Get[d : α] · Put[d : α] (by law (6))

�(Get[d : α] · Get[d : α]) · Put[d : α] (by law (2))

Thus not all of the state monad laws can be imported into our framework, given how
we employ graded types. What is responsible for this difference? The state monad is
a theory of memory locations. According to the corresponding model of state, such
memory locations pre-exist the lifetime of a program, and can be updated any number
of times. Using a state monad to model anaphora would thus require that a constant
set of referents be handled by the discourse. In comparison, our encoding of discourse
referents is more precise: we record at the level of grades the exact discourse referents
either introduced or presupposed. For our purposes, there is a fundamental difference
between introducing a discourse referent and not introducing it. A contrario, we ought
to reject the hypothetical law (6), which implies that using a discourse referent and
then introducing it is, in fact, equivalent to doing nothing.
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3.5 Quantification

As a further step, we may introduce another grade, Scope, in order to analyze expres-
sions, such as every, which are commonly taken to denote generalized quantifier
meanings. Like those introduced above, this grade is accompanied by its own primi-
tive:

scope : ((e → t) → t) → MScopee

Thus given a quantifier q of type (e → t) → t , scope q allows it to act as an entity
at the level of values, i.e., in terms of the variable q binds, given that the primitive’s
return type is e.13

Indeed, the scopes of natural language quantifiers have been observed to be
restricted in certain ways: one common view is that a quantifier cannot take scope
outside the smallest finite clause in which it occurs syntactically. For example, some
cat fears every dog will chase it can be understood only to imply the existence of a
single highly pessimistic cat. To capture the effect of scope islands, we also introduce
an operation 〈〈 · 〉〉 on grades and a primitive 〈〈 · 〉〉 which introduces it:

〈〈 · 〉〉 : Mgt → M〈〈g〉〉t

The intent is that 〈〈body〉〉 allows one to ensure that a value bound in body using scope q
is not available outside of body. This makes it possible to statically limit the scope of
a variable bound by a quantifier.

The modularity provided by our approach allows us to import the laws regulating
anaphora into the current setting. At the same time, we may describe the interactions
between anaphora and quantification. To that end, we may state the following laws on
grades:

Scope · Get[d : α] � Get[d : α] · Scope (7)

〈〈1〉〉 � 1 (8)

〈〈g · Scope〉〉 � 〈〈g〉〉 (9)

〈〈g · Scope · Put[d : α]〉〉 � 〈〈g〉〉 (10)

13 The ‘scope’ notation is inspired byMaršík (2016) andMaršík and Amblard (2016) though the construc-
tors’ exact purpose and semantics are different between the two approaches.
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〈〈Put[d : α] · g〉〉 � Put[d : α] · 〈〈g〉〉 (11)

〈〈Get[d : α] · g〉〉 � Get[d : α] · 〈〈g〉〉 (12)

These laws are reflected on terms as follows:14

scope q � λx .getd � λy.η〈x, y〉
−→ getd � λy.scope q � λx .η〈x, y〉 (7′)

〈〈ηφ〉〉 −→ ηφ (8′)
〈〈m � λx .scope(qx) � λy.η(φxy)〉〉

−→ 〈〈m � λx .η(qx(λy.φxy))〉〉 (9′)
〈〈m � λx .scope(qx) � λy.putd(axy) � λ�.η(φxy)〉〉

−→ 〈〈m � λx .η(qx(λy.φxy))〉〉 (10′)
〈〈putda � k〉〉 −→ putda � λ�.〈〈k�〉〉 (11′)
〈〈getd � k〉〉 −→ getd � λx .〈〈kx〉〉 (12′)

The occurrences of Get[d : α] inside a bracket can be pulled to its left [laws (7) and
(12)]. Doing so, moreover, facilitates it meeting a Put[d : α], which can then eliminate
it.

Note that a law commuting Put[d : α] and Scope is absent. Indeed, the grade
Scope ·Put[d : α] corresponds to introducing an entity which may depend on another
entity quantified over. Such a commutation should be rejected, as it would allow the
introduced entity to escape its scope. An entity which is introduced inside a bracket,
but before any Scope introduction, however, can be pulled out of the bracket, as per
law (11).

A Scope introduced at the rightmost point of the body of a bracket can be reduced
(law (9)): the operational interpretation of this law is to apply the quantifier to the
returned property. If a discourse referent is introduced at the rightmost point of the
body, immediately after Scope, then the introduction is simply ignored (law (10)).
This should remain true for any number of introduced entities, moreover. To avoid
introducing a scheme of reduction laws, we may use a law such as the following one,
which coalesces indefinitely many introductions into one (or splits them) as needed:

Put[d1 : α] · Put[d2 : β] = Put[〈d1, d2〉 : α × β] (13)

putd1a � λ�.putd2b = put〈d1,d2〉〈a, b〉 (13′)

14 We leave the proof of confluence to the reader. It relies on checking that appending something to the
left-hand side of a reduction yields the same result as appending it to the right-hand side.
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3.6 Indefinites

We now turn to indefinite noun phrases. Here, we pursue the idea of Charlow (2014,
2020a, b) that the meaning of an indefinite noun phrase is to non-deterministically
choose an entity from the set defined by its restriction. To do so, we introduce a new
grade, Choose[α], indexed by a type α, and associate it with the following primitive:

choose : (α → t) → MChoose[α]α

We additionally provide the following law on grades:

Choose[α] · Choose[β] � Choose[α × β] (14)

This law is reflected at the level of terms as follows:

choose s1 � λx .choose (s2x) � λy.η〈x, y〉
−→ choose (λ〈x, y〉.s1x ∧ s2xy) (14′)

Intuitively, what this law says is that choosing two values in sequence is the same as
choosing them simultaneously, as a pair. When it comes to the interaction with other
grades, the Choose[α] grade behaves similarly to Put[d : α]: it commutes to the left
of Put[d : α] (law (15)), but not to the left of Get[d : α] or Scope; moreover, it is
forgotten once it is sandwiched between Scope and the end of a bracket [laws (18)
and (19)]; however, it can nevertheless escape on the left of a bracket [law (17)].

Put[d : β] · Choose[α] � Choose[α] · Put[d : β] (15)

Choose[α] · Get[d : β] � Get[d : β] · Choose[α] (16)

〈〈Choose[α] · g〉〉 � Choose[α] · 〈〈g〉〉 (17)

〈〈g · Scope · Choose[α]〉〉 � 〈〈g〉〉 (18)

〈〈g · Scope · Choose[α] · Put[d : β]〉〉 � 〈〈g〉〉 (19)

To remain concise, we transcribe only the laws on terms that relate choose and scope
[laws (18) and (19)].

〈〈m � λx .scope(qx) � λy.choose (sxy) � λz.η(φxyz)〉〉
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Table 3 Adding indefinites and quantifiers

Expression Meaning Category Type

dog ηdog N M1(e → t)

cat ηcat N M1(e → t)

sees ηsee (N P\S)/N P M1(e → e → t)

a η(λPe→t .choose P) N P/N M1((e → t) → MChoose[e]e)
every η(λPe→t .scope(everyP) N P/N M1((e → t) → MScopee)

ε λφ.〈〈φ〉〉 CP/S Mgt → M〈〈g〉〉t

−→ 〈〈m � λx .η(qx(λy.∃z : sxyz ∧ φxyz))〉〉 (18′)
〈〈m � λx .scope(qx) � λy.choose (sxy) � λz.putd(axyz) � λ�.η(φxyz)〉〉

−→ 〈〈m � λx .η(qx(λy.∃z : sxyz ∧ φxyz))〉〉 (19′)

To illustrate, consider the meaning derived for every dog sees a cat, given the
updated lexicon in Table 3.

�every dog sees a cat�

= 〈〈(μ(η(scope(every dog)))) � ((ηsee) 	 (μ(η(choose cat))))〉〉 (by/, \, μ)

−→ 〈〈(scope(every dog)) � ((ηsee) 	 (choose cat))〉〉 (by Left Identity)

−→ 〈〈scope(every dog) � λx .choose cat � λy.η(seeyx)〉〉 (by Left Identity)

−→ 〈〈η(every dog(λx .∃y : caty ∧ seeyx))〉〉 (by law (18))

−→ η(every dog(λx .∃y : caty ∧ seeyx)) (by law (8))

3.7 Determiners and Donkey Anaphora

The determiner algebra provides a new grade, Det, from which we define a new
primitive, det, having the following type signature:

det : ((e → t) → (e → t) → t) → MDet((e → t) → (e → t) → t)

det introduces a determiner meaning, which it merely returns. The utility of including
determiners among the grades is manifest, however, when considering their interac-
tions with other effects; in particular Choose[α]:

Det · Get[d : α] � Get[d : α] · Det (20)

〈〈g · Det〉〉 � 〈〈g〉〉 (21)
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〈〈g · Det · Put[d : α]〉〉 � 〈〈g〉〉 (22)

〈〈g · Det · Choose[e]〉〉 � 〈〈g〉〉 (23)

〈〈g · Det · Choose[e] · Put[d : α]〉〉 � 〈〈g〉〉 (24)

Note that each of these laws has a corresponding law that involves Scope, rather than
Det. Indeed, the corresponding laws on terms are analogous, except for laws (23) and
(24), which are substantively different. Before we demonstrate this, we give the laws
on terms for laws (21) and (22), which are realized by feeding a determiner meaning
to its continuation:15

〈〈m � λx .det(Qx) � λQ′.η(φxQ′)〉〉
−→ 〈〈m � λx .η(φx(Qx))〉〉 (21′)

〈〈m � λx .det(Qx) � λQ′.putd(axQ′) � λ�.η(φxQ′)〉〉
−→ 〈〈m � λx .η(φx(Qx))〉〉 (22′)

More interesting are laws (23) and (24), each ofwhich can be realized in twoways. The
first gives rise to a “weak” existential reading of donkey sentences, while the second
gives rise to a “strong” universal reading.16 We provide the two laws corresponding
to law (23), as those for law (24) are uninterestingly different (i.e., they additionally
erase an occurrence of putd ).

17

〈〈m � λx .det(Qx) � λQ′.choose (sxQ′)�λy.η(φxQ′ y)〉〉 (23′: weak)

−→ 〈〈m � λx .η(Qx(λz.∃y : sx(Qx)y ∧ φx(λp, q.pz)y)(λz.∃y : sx(Qx)y ∧ φx(λp, q.pz ∧ qz)y))〉〉
〈〈m � λx .det(Qx) � λQ′.choose (sxQ′) � λy.η(φxQ′ y)〉〉

−→ 〈〈m � λx .η(Qx(λz.∃y : sx(Qx)y ∧ φx(λp, q.pz)y)(λz.∀y : sx(Qx)y → φx(λp, q.pz → qz)y))〉〉 (24′: strong)

With the lexicon in Table 4, we may derive the following meaning for every new
yorker who sees a dog pets it:

�every new yorker who sees a dog pets it�

15 We omit the corresponding law for law (20), which is uninterestingly different from its variant involving
Scope.
16 An alternative approach to rendering dynamically potent determiner meanings out of static ones of
type (e → t) → (e → t) → t is provided by Kobele (2018b). The laws of Kobele, which inspire ours,
incorporate the contexts and discourse continuations of de Groote (2006) by relying on λ-homomorphisms.
17 In this framework, these two laws are formally incompatible. We could add non-determinism, but prefer
not to, in order to avoid obscuring our main points. In general, however, a full account will provide the
conditions under which each reading is available; see, e.g., Kanazawa (1994).

123



238 J. Grove, J. Bernardy

Ta
bl
e
4

A
dd

in
g
de
te
rm

in
er
s

E
xp

re
ss
io
n

M
ea
ni
ng

C
at
eg
or
y

Ty
pe

se
es

η
se
e

(N
P

\S
)/
N
P

M
1
(e

→
t)

pe
ts

η
p
et

(N
P

\S
)/
N
P

M
1
(e

→
t)

ne
w
yo
rk
er

η
N
Ye

r
N

M
1
(e

→
t)

do
g

η
do

g
N

M
1
(e

→
t)

a
η
(λ

P
e→

t .
(c
ho

os
e
P

)� d
)

N
P

/
N

M
1
((
e

→
t)

→
M
C
ho

os
e[e

]·P
ut

[d:
e]e

)

it
ge

t d
N
P

M
G
et

[d:
e]e

ev
er
y

λ
P
M
g
(e

→
t)

.d
et

ev
er
y
�
λ
Q

.P
�
λ
P

′ .s
co
p
e(
Q
P

′ )
N
P

/
N

M
g
(e

→
t)

→
M
D
et

·g·
Sc
op

e
e

w
ho

η
(λ

P
,
Q

,
x.
Q
x

∧
P
x)

(N
\N

)/
(N

P
\S

)
M
1
((
e

→
t)

→
(e

→
t)

→
e

→
t)

ε
λ
φ
.〈〈φ

〉〉
C
P

/
S

M
g
t
→

M
〈〈g

〉〉t

123



Algebraic Effects for Extensible Dynamic Semantics 239

= 〈〈(det every � λQ. (by/, \, μ,Left Identity)

(μ(η(choose dog)�d ) � λx .η(λy.NYery ∧ seexy))

� λP.scope(QP)) � ((ηpet) 	 getd )〉〉
−→ 〈〈det every � λQ. (by Left Identity)

((choose dog)�d � λx .η(λy.NYery ∧ seexy))

� λP.scope(QP) � λy.getd � λx ′.η(petx ′y)〉〉
−→ 〈〈det every � λQ. (by law(7))

((choose dog)�d � λx .η(λy.NYery ∧ seexy))

� λP.getd � λx ′.scope(QP) � λy.η(petx ′y)〉〉
−→ 〈〈det every � λQ.(choose dog)�d (by Associativity, Left Identity)

� λx .getd � λx ′.scope(Q(λy.NYery ∧ seexy)) � λy.η(petx ′y)〉〉
−→ 〈〈det every � λQ.choose dog (by Associativity, Left Identity, law(4))

� λx .putd x � λ�.scope(Q(λy.NYery ∧ seexy)) � λy.η(petxy)〉〉
−→ 〈〈det every � λQ.choose dog (by law(9))

� λx .putd x � λ�.η(Q(λy.NYery ∧ seexy)(λy.petxy))〉〉

At this point, we have two options, depending on the reduction rule we choose to
coincide with law (24). If we opt for the weak reading, we can continue as follows:

−→ 〈〈η(every(λy.∃x : dogx ∧ NYery ∧ seexy))

(λy.∃x : dogx ∧ NYery ∧ seexy ∧ petxy)〉〉
−→ η(every(λy.∃x : dogx ∧ NYery ∧ seexy))

(λy.∃x : dogx ∧ NYery ∧ seexy ∧ petxy)

On this reading, every New Yorker who sees a dog pets at least one dog they see. If
we opt instead for the strong reading, we can continue as follows:

−→ 〈〈η(every(λy.∃x : dogx ∧ NYery ∧ seexy))

(λy.∀x : dogx → ((NYery ∧ seexy) → petxy))〉〉
−→ η(every(λy.∃x : dogx ∧ NYery ∧ seexy))

(λy.∀x : dogx → ((NYery ∧ seexy) → petxy))

Now, every New Yorker who sees a dog pets every dog they see; i.e., the reading
attributed to donkey sentences by most dynamic semantic accounts.

4 Realization in Terms of a Pure Calculus

In this section, we provide meanings to the grades, the operations, and their relation
in terms of the simply typed λ-calculus with products (hereafter, STLC). We will only
provide proof sketches here, but we note that the contents of this section and Sect. 3
have been formalized using the Agda proof assistant.
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Theorem 1 (Coherence of reduction relations) If t1 : Mg1α, t2 : Mg2α, and t1 −→ t2,
then g1 � g2.

Proof By case analysis. ��
Definition 1 (Interpretation of grades) For every graded typeMgα, there is a semantic
interpretation �Mgα� = Sg(�α�) as a type in the STLC (or, more generally, in the
underlying typed λ-calculus without effects). �·� preserves STLC types and is defined
on graded types as follows.

S1(α) = α

S f ·g(α) = S f (Sg(α))

SPut[d:β](α) = �β� × α

SGet[d:β](α) = �β� → α

SScope(α) = ((e → t) → t) × (e → α)

SChoose[γ ](α) = (�γ � → t) × (�γ � → α)

SDet(α) = ((e → t) → (e → t) → t) × (((e → t) → (e → t) → t) → α)

S〈〈g〉〉(α) = Sg(t) × (t → α)

We stress that this interpretation is entirely modular in the sense that the meanings of
the atomic effects are devised independently, without taking into account any inter-
play between effects. (It is a homomorphism on the grade structure.) As a rule, if
the primitive operation associated with an effect takes as input an object of type X ,
then we take the product with X in the interpretation. Conversely, if such a primitive
returns a type Y , then Y is found as the domain of an arrow in the interpretation. A
consequence of this modularity is that all the results of this section can be proven in
a modular fashion, by case analysis for each atomic grade. For grade composition, a
straightforward induction applies.

Lemma 1 S is a graded monad.

The proof relies on the following facts: (1) each atomic grade is interpreted as a functor;
(2) the unit grade is interpreted as the identity functor; (3) the composition of grades
is interpreted as functor composition.

Theorem 2 If g1 � g2, then there is a function f : Sg1(α) → Sg2(α) for each STLC
type α.

Proof This is a constructive proof done by case analysis. The function f says how
(the semantic interpretations of) effects are transformed by reductions. For instance,
the law

Put[d : α] · Get[d : α] � Put[d : α]

corresponds to functions f : (α × (α → β)) → (α × β), which pass the newly
introduced value (of type α) to its continuation, which then uses it. That is, f 〈x, k〉 =
〈x, kx〉. ��
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We call the relation induced by such functions ‘�g1 � g2�’. (That is, x �g1 � g2� y iff
f x = y, where f is a function provided by Theorem 2.)18 Finally, it bears repeating
that the above construction defines the semantics of the reduction relation, and is thus
the keystone of the interpretation.

Definition 2 (Interpretation of terms) For every well-typed term t : Mgα, we define
an interpretation �t� such that �t� : Sg(�α�). The interpretations of η and � are given
by the graded monadic structure of S (Lemma 1). The recipe for interpreting each
atomic grade is based straightforwardly on the type of the primitive giving rise to the
grade. For example, �getd� = λx .x , �〈〈t〉〉� = 〈�t�, λφ.φ〉, etc.
Theorem 3 (Adequacy of the interpretation) The interpretation of terms respects the
interpretation of grades and the interpretation of reductions as functions. Formally, if
t1 : Mg1α, t2 : Mg2α, and t1 −→ t2, then �t1��g1 � g2��t2�.

This theorem essentially tells us that the axiomatization of term reductions exactly fits
the interpretations of grades. As a result, if one wishes, one may omit the axiomati-
zation, and use only the interpretation and the corresponding reduction relation. We
have chosen to present the axiomatic view to emphasize the operational behavior of
terms having effects. If one is interested only in the end product (i.e., pure λ-terms),
then one would be better off axiomatizing grades and their relations only. This way, by
omitting the axiomatization of operations and algebraic laws, one can describe their
compositional meanings (as in Definitions 1 and 2) directly.

5 RelatedWork

5.1 Effects and Handlers

To improve compositionality, general effects and handlers systems have been proposed
for dynamic semantics by Maršík (2016) and Maršík and Amblard (2014, 2016). In
these approaches, new operations, such as get or put, can be declared and defined
locally in terms of the ambient calculus. These approaches have much in common
with ours, insofar as they provide modular interpretations of the effectful operations
they employ. Furthermore, while effectful meanings are defined in a typed extension
of λ-calculus, they yield terms of a pure λ-calculus once they are handled.

The chief difference between the effects and handlers approach and the one
advanced here, which makes algebraic laws central, is that the former approach
demands that every occurrence of an operation be interpreted (i.e., handled) inde-
pendently of the context in which it occurs. This requirement enforces absolute
compositionality of interpretation, whereas ourmethod does not. In other words, while

18 In addition, any two reduction functions associated with grade equality form an isomorphism; i.e.,
if g1 = g2, then Sg1 (α) ∼= Sg2 (α) (for any α). This can be seen by noting two facts. First, that the
monoid laws regulating grades give rise to identity functions on terms, since 1 is interpreted via the identity
functor, and functor composition is associative. Second, that otherwise equivalent grades require merely
rearranging either the order of λ-abstractions or the components of a tuple in the interpretation. For example,
Put[d1 : α] · Put[d2 : β] = Put[d2 : β] · Put[d1 : α] corresponds to the isomorphisms �α� × (�β� × γ ) ∼=
�β� × (�α� × γ ).
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our syntax is compositional, the eventual interpretation of a grade may depend on its
context. Indeed, our reduction rules are written so that the meaning of an operation can
depend on its neighbors. This design allows the interpretation of Scope, for example,
to occur only at the rightmost point in a bracket, where it may receive a function of
type e → t . Crucially, nevertheless, the results yielded by the applications of laws are
compositional: due to associativity and confluence, one may safely apply reduction
rules to a term m or a grade g independently of the context in which m or g occurs.
When combining m with a continuation k, it suffices to consider their reduced forms:
confluence guarantees that the result ofm � k is the same, regardless of what reductions
occur before their combination.

5.2 The Underlying Calculus

Even though we have assumed the STLC as our ambient calculus, monadic and alge-
braic effects approaches (and, more generally, approaches based on computational
effects) are agnostic as to the type system used by the underlying λ-calculus, be it
Martin Löf Type Theory (Martin-Löf, 1984) or one of its variants, System F Girard
1972, Cooper’s TTR Cooper and Ginzburg 2015, Asher’s TCL Asher 2011, etc. Thus
our approach (as others) may be added to such systems without modifying the respec-
tive calculi.

5.3 Graded Effects

Our treatment of discourse phenomena in terms of grades is partially inspired by the
interpretation of Cooper storage in terms of a graded applicative functor due to Kobele
(2018a). Kobele employs grades that correspond to stores of quantifier meanings,
in order to encode the types of both stored quantifiers and the variables they bind.
We employ somewhat richer grades than Kobele, in order to encode, e.g., discourse
referents. Such rich grades allow us to describe linguistically meaningful interactions
at the level of types that reflect the algebraic laws that apply at the level of terms.

5.4 Modalities Instead of GradedMonads

Our presentation relies on the standard structure of λ-calculi to encode dynamic effects
as monads. This causes a certain amount of notational weight in the axiomatization.
Namely, we have to use a family of operators 	, �, � , etc., instead of simple functional
application.

To avoid this overhead, an alternative presentation could usemodalities to represent
the combination of dynamic effects associated with a value. Several calculi supporting
these kind of modalities have been developed recently (Petricek et al. 2014; Orchard
et al. 2019; Abel and Bernardy 2020).
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6 Conclusion

We have proposed a framework which both unifies and refines approaches to dynamic
semantics based on monads. The key idea is to break down effects into atomic grades.
The interactions among grades are provided by algebraic laws, which can be presented
in a modular fashion. Even though the number of possible laws grows quadratically
with the number of possible effects, laws aremuch fewer than this theoreticalmaximum
if we exclude the mechanical commutation laws.

The process of applying this refinement reveals possible improvements to earlier
analyses, for example regarding the interpretation of anaphora using the state monad
(Sect. 3.4). The use of a bracketing operation to delimit scope appears to be new, and
is an essential device in the interpretation of quantification effects.

Our framework can either be given a purely axiomatic treatment (Sect. 3), or, like
many accounts, be provided as part of a pure λ-calculus (Sect. 4). In future work, we
intend to describe more effects within the same framework, including presupposition
and conventional implicature.
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