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Abstract
Recent work has shown that the input-output behavior of some common machine
learning classifiers can be captured in symbolic form, allowing one to reason about
the behavior of these classifiers using symbolic techniques. This includes explaining
decisions, measuring robustness, and proving formal properties of machine learning
classifiers by reasoning about the corresponding symbolic classifiers. In this work,
we present a theory for unveiling the reasons behind the decisions made by Boolean
classifiers and study some of its theoretical and practical implications. At the core of
our theory is the notion of a complete reason, which can be viewed as a necessary and
sufficient condition for why a decision was made. We show how the complete reason
can be used for computing notions such as sufficient reasons (also known as PI-
explanations and abductive explanations), how it can be used for determining decision
and classifier bias and how it can be used for evaluating counterfactual statements such
as “a decision will stick even if …because … .” We present a linear-time algorithm
for computing the complete reasoning behind a decision, assuming the classifier is
represented by a Boolean circuit of appropriate form.We then show how the computed
complete reason can be used to answer many queries about a decision in linear or
polynomial time. We finally conclude with a case study that illustrates the various
notions and techniques we introduced.
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1 Introduction

Consider Fig. 1 which depicts how most machine learning systems are constructed
today. We have a labeled dataset that is used to learn a classifier, which is commonly
a neural network, a Bayesian network or a random forest. These classifiers are effec-
tively functions that map instances to decisions. For example, an instance could be a
loan application and the decision is whether to approve or decline the loan. There is
now considerable interest in reasoning about the behavior of such systems. Explaining
decisions is at the forefront of current interests: Why did you decline Maya’s applica-
tion? Quantifying the robustness of these decisions is also attracting a lot of attention:
Would reversing the decision on Maya require many changes to her application? In
some domains, one expects the learned classifiers to satisfy certain properties, like
monotonicity, and there is again an interest in proving such properties formally. For
example, can we guarantee that a loan applicant will be approved when the only differ-
ence they havewith another approved applicant is their higher income?These interests,
however, are challenged by the numeric nature of machine learning classifiers and the
fact that these systems are often model-free, e.g., neural networks, so they appear as
black boxes that are hard to analyze.

Even though these machine learning classifiers are learned from data and are
numeric in nature, they often implement discrete decision functions. One can therefore
extract these functions and represent them symbolically. The outcome of this process
is normally a logical formula or a Boolean circuit that precisely captures the input-
output behavior of the learned classifier, which can then be used to reason about its
behavior, symbolically. This includes explaining decisions, measuring robustness and
formally proving properties. For a concrete example, consider Fig. 2 which depicts
one of the simplest machine learning systems: a Naive Bayes classifier. We have a
class variable P and three features B, U and S. Given an instance (patient) and their
test results b, u and s, this classifier renders a decision by computing the posterior
probability Pr(p|b, u, s) and then checking whether it passes a given threshold T .
If it does, we declare a positive decision; otherwise, a negative decision. While this
classifier is numeric and its decisions are based on probabilistic reasoning, it does
induce a discrete decision function. In fact, the function is Boolean in this case as it
maps the Boolean variables B,U and S, which correspond to test results, into a binary
decision (yes or no). This observation was originally made in Chan and Darwiche
(2003), which proposed the compilation of Naïve Bayes classifiers into symbolic
decision graphs as shown in Fig. 2. The compilation process guarantees that for every
instance, the decision made by the (probabilistic) Naïve Bayes classifier is identical
to the one made by the (symbolic) decision graph. This compilation algorithm was
recently extended to Bayesian network classifiers with tree structures (Shih et al. 2018)
and later to Bayesian network classifiers with arbitrary structures (Shih et al. 2019a).1

Certain classes of neural networks can also be compiled into, or reasoned about using,
decision diagrams as shown in Shih et al. (2019b), Shi et al. (2020). While Bayesian
and neural networks are numeric in nature, random forests are not (at least the ones
with majority voting). Hence, one can easily encode their input-output behavior using

1 See http://reasoning.cs.ucla.edu/xai/ for related software.
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On the (Complete) Reasons Behind Decisions 65

Fig. 1 Reasoning about machine learning classifiers

Fig. 2 Compiling a Naïve Bayes classifier into a symbolic decision graph. To classify an instance using the
decision graph, we start at the root node and repeat the following. If the feature we are at is positive, we
follow the left edge, otherwise we follow the left edge. We finally reach a leaf node, which determines the
class of the given instance. The figure shows the path followed from the root to a leaf (no) for the instance
(= B, −ve), (=U ,+ve) and (= S, −ve)

Boolean formulas. Since a random forest is an ensemble of decision trees, we first
encode each decision tree into a Boolean formula. This is straightforward even in the
presence of continuous variables as the learning algorithm discretizes variables by
identifying a set of thresholds for each variable.2 We then combine these formulas
using a majority formula or circuit; see, e.g., (Audemard et al. 2020; Choi et al. 2020).

This methodology for reasoning about the behavior of machine learning classifiers
has three dimension: (1) the kind of machine learning classifiers are we reasoning
about, (2) the symbolic representation we use to encode their input-output behavior,
and (3) the class of queries we are interested in and how to compute them efficiently.
We will not concern ourselves with the first dimension in this paper as we will assume
that the input-output behavior has already been encoded symbolically. Hence, our
discussion will be orthogonal to where the symbolic representation came from. As to
the second dimension, one can encode input-output behavior using standard logical

2 Each path in the decision tree can be represented by a conjunction of variable values (term). The instances
of a particular class can then be represented by a disjunction of corresponding terms (DNF).
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66 A. Darwiche, A. Hirth

formulas, which is the approach we shall pursue. While logical formulas are sufficient
for our treatment as far as semantics is involved, wewill use a particular class of logical
representations for computational reasons: tractable Boolean circuits (Darwiche and
Marquis 2002).3 As for the third dimension, we will focus on developing a theory for
reasoning about the decisions made by classifiers: What are the reasons behind them?
How can they counterfactually change? And are they biased?

In the proposed theory, a classifier is a Boolean function. Its variables are called
features, a particular input is called an instance, and the function output on some
instance is called a decision. If the function outputs 1 on an instance, the instance and
decision are said to bepositive;otherwise, they arenegative.Ourmain goal is to explain
the decisions made by Boolean classifiers on specific instances by way of providing
various insights into what caused these decisions. For some examples, consider Fig. 3
which depicts two classifiers (C1 andC2) for college admission, represented asOrdered
Binary Decision Diagrams (OBDDs) (Bryant 1986) (in which variables are binary and
ordered similarly on any path from the root to a leaf).4 Consider also Susanwho passed
the entrance exam, is a first-time applicant, has no work experience and a high GPA.
Susan will be admitted by classifier C1. She also comes from a rich hometown and
will be admitted by classifier C2. We can say that Susan was admitted by classifier C1
because she passed the entrance exam and has a high GPA. We can also say that
one reason why classifier C2 admitted Susan is that she passed the entrance exam
and has a high GPA (there are other reasons in this case). Moreover, we can say that
classifier C2 would still admit Susan even if she did not have a high GPA because she
passed the entrance exam and comes from a rich hometown. Finally, we can say that
classifier C2 can make biased decisions: ones that are based on protected features.
For example, it will make different decisions on two applicants who have the same
characteristics except that one comes from a rich hometown and the other does not.We
will also show that one can sometimes prove classifier bias by inspecting the reasons
behind one of its unbiased decisions. We will give formal definitions and semantics
for the statements exemplified above and show how to evaluate them algorithmically
and efficiently. As far as semantics, the main tool we will employ is Boolean logic
and particularly the classical notion of prime implicants (Crama and Hammer 2011;
Quine 1952;McCluskey1956;Quine 1959).On the computational side,wewill exploit
tractable Boolean circuits as mentioned earlier (Darwiche and Marquis 2002), while
providing some new fundamental results that further extend the reach of these circuits
to computing explanations. At the core of our theory is the notion of complete reason
behind a decision, which can be viewed as a necessary and sufficient condition for
why the decision was made. Most of what we shall discuss will be based on complete
reasons, both semantically and computationally.

3 See Darwiche (2020) for a recent survey/tutorial on tractable Boolean circuits and their applications in
AI. An alternative set of approaches abstract the machine learning classifier into symbolic form and reason
about its behavior using SAT-based or SMT-based techniques; see, e.g., (Katz et al. 2017; Leofante et al.
2018; Narodytska et al. 2018; Ignatiev et al. 2019a).
4 OBDDs are one example of tractableBoolean circuits. They can be unfolded intoBoolean circuits in linear
time (Darwiche and Marquis 2002). Moreover, they allow some hard queries to be answered in polynomial
time Bryant (1986). Ordered decision diagrams do not have to be binary. For example, the algorithm of
Chan and Darwiche (2003) compiled naïve Bayes classifiers into ordered decision diagrams with discrete
variables.
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On the (Complete) Reasons Behind Decisions 67

Fig. 3 Two OBDD classifiers: C1 (left) and C2 (right). Solid edges represent true values of a variable.
Dotted edges represent false values

This paper is structured as follows. We start in Sect. 2 by reviewing some Boolean
logic preliminaries including prime implicants. We then introduce the notion of com-
plete reason and related notions such as sufficient reasons and necessary characteristics
in Sects. 3–5. Counterfactual statements about decisions are discussed in Sect. 6, fol-
lowed by a discussion of decision and classifier bias in Sect. 7. We dedicate Sect. 8
to algorithms that compute the introduced notions and then illustrate them in Sect. 9
using a case study. We finally close with some concluding remarks in Sect. 10.

2 Boolean Logic Preliminaries

A literal is a Boolean variable X (positive literal) or its negation¬X (negative literal).
A term is a consistent conjunction of literals (e.g., A∧¬B∧C). ADisjunctive Normal
Form (CNF) is a disjunction of terms (e.g., (A∧¬B)∨ (B∧C)∨ (¬A∧C ∧ D)). An
instance is a term that includes precisely one literal for each Boolean variable. Term
τi subsumes term τ j iff τ j |� τi , where |� denotes logical entailment. For example,
term E ∧ ¬F subsumes term E ∧ ¬F ∧ G. We treat a term as the set of its literals
so we may write τi ⊆ τ j to also mean that τi subsumes τ j . We will often refer to a
literal as a characteristic and to a term τ as a property (of an instance that contains the
term). We use τ to denote the property resulting from negating every characteristic
in property τ . We sometimes use a comma (,) instead of a conjunction (∧) when
describing properties and instances (e.g., E,¬F instead of E ∧ ¬F).

We represent a classifier by a Boolean formula Δ whose models (i.e., satisfying
assignments) correspond to positive instances. The negation of the formula character-
izes negative instances. ClassifiersC1 andC2 in Fig. 3 are represented by the following
formulas:
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68 A. Darwiche, A. Hirth

Δ1 = E ∧ (¬F ∨ G ∨ W )

Δ2 = E ∧ (¬F ∨ G ∨ W ∨ R)

We use Δ(α) to denote the decision (0 or 1) of classifier Δ on instance α. That is,
Δ(α) = 1 iff α |� Δ and Δ(α) = 0 iff α |� ¬Δ. We also define Δα = Δ if the
decision is positive and Δα = ¬Δ if the decision is negative. This notation is critical
and will be used frequently later. By definition, for any two instances α and β, we have
Δα = Δβ iff α |� Δα and Δ(α) = Δ(β). Again, we use this observation frequently
later.

An implicant τ of Boolean formula Δ is a term that satisfies Δ, τ |� Δ. A prime
implicant is an implicant that is not subsumed by any other implicant. For example,
E ∧ ¬F ∧ G is an implicant of Δ1 but is not prime since it is subsumed by another
implicant E ∧ ¬F , which happens to be prime. Classifier C1 has the following prime
implicants:

Δ1 : (E ∧ ¬F) (E ∧ G) (E ∧ W )

¬Δ1 : (¬E) (F ∧ ¬G ∧ ¬W )

Classifier C2 has the following prime implicants:

Δ2 : (E ∧ ¬F) (E ∧ G) (E ∧ W ) (E ∧ R)

¬Δ2 : (¬E) (F ∧ ¬G ∧ ¬W ∧ ¬R)

The set of prime implicants for a Boolean formula can be quite large, which moti-
vated the notion of a prime implicant cover (Quine 1952; McCluskey 1956; Quine
1959). A set of terms τ1, . . . , τn is prime implicant cover for Boolean formula Δ if
each term τi is a prime implicant ofΔ and τ1∨ . . .∨τn is equivalent toΔ. A cover may
not include all prime implicants, with the missing ones called redundant. While cov-
ers can be useful computationally, they may not always be appropriate for explaining
classifiers as they may lead to incomplete explanations (more on this later).

We will make use of the conditioning operation on Boolean formulas. To condition
formula Δ on term τ , denoted Δ|τ , is to replace every literal l in Δ with constant 1
(true) if l ∈ τ , and to replace it with constant 0 (false) if ¬l ∈ τ . For example, if
α = (A∨¬B)∧ (C ∨ D) and τ = B,¬C , then α|τ = (A∨¬1)∧ (0∨ D) = A∧ D.
We will also use the existential quantification operation: ∃XΔ = (Δ|X) ∨ (Δ|¬X).

In the next few sections, we introduce notions such as the sufficient and complete
reasons behind a decision. We use these notions later to define decision and classifier
bias in addition to giving semantics to counterfactual statements relating to decisions.

3 Sufficient Reasons

Prime implicants have been studied and utilized extensively in the AI and computer
science literature.5 However, their active utilization in explaining decisions is more

5 One classical application of prime implicants in AI has been in the area of model-based diagnosis, where
they have been used to formalize the notion of kernel diagnoses (de Kleer et al. 1992). A kernel diagnosis is
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On the (Complete) Reasons Behind Decisions 69

recent, e.g., (Shih et al. 2018; Ignatiev et al. 2019a, b; Lindner and Möllney 2019).
This recent utilization introduced a key connection to properties of instances that we
highlight next and exploit computationally later.

Definition 1 (Sufficient Reason (Shih et al. 2018)) A sufficient reason for decision
Δ(α) is a property of instance α that is also a prime implicant of Δα (recall Δα = Δ

if the decision is positive and Δα = ¬Δ if the decision is negative).

A sufficient reason identifies characteristics of an instance that justify the decision:
The decision will stick even if other characteristics of the instance were different. A
sufficient reason is minimal: None of its strict subsets can justify the decision. A deci-
sion can have multiple sufficient reasons, sometimes a large number of them.6 There
is a key difference between prime implicants and sufficient reasons as the latter must
be properties of the given instance. This has significant computational implications
that we exploit in Sect. 8.

Sufficient reasons were introduced in Shih et al. (2018) under the name of PI-
explanations. They were also referred to as abductive explanations in Ignatiev et al.
(2019a).7 The new name we adopt is motivated by further distinctions that we draw
later and was also used in Lindner and Möllney (2019). We will sometimes say “a
reason” to mean “a sufficient reason.”

Greg passed the entrance exam, is not a first time applicant, does not have a high
GPA but has work experience (α = E,¬F,¬G,W ). Classifier C1 admits Greg, a
decision that can be explained using either of the following sufficient reasons:

– Passed the entrance exam and is not a first time applicant (E,¬F).
– Passed the entrance exam and has work experience (E,W ).

Since Greg passed the entrance exam and has applied before, he will be admitted even
if his other characteristics were different. Similarly, since Greg passed the entrance
exam and has work experience, he will be admitted even if his other characteristics
were different.

Proposition 1 Every decision has at least one sufficient reason.

Proof Consider decision Δ(α). We have α |� Δα , which means Δα is consistent and
must have at least one prime implicant (the empty term if Δα is valid). Moreover, at
least one of these prime implicants must be a property of instance α since α |� Δα

and since Δα is equivalent to the disjunction of its prime implicants. Hence, we have
at least one sufficient reason for the decision. �	
defined for a given device behavior and is aminimal term representing the health of somedevice components.
Any system state that is compatible with a kernel diagnosis is feasible under the given system behavior.
Moreover, the set of kernel diagnoses characterize all feasible system states under the given behavior.
6 The popular Anchor system (Ribeiro et al. 2018) can be viewed as computing approximations of sufficient
reasons. The quality of these approximations has been evaluated on some datasets and corresponding
classifiers in Ignatiev et al. (2019c), where an approximation is called optimistic if it is a strict subset of a
sufficient reason and pessimistic if it is a strict superset of a sufficient reason.
7 In contrast to contrastive explanations which were formalized in Ignatiev et al. (2020) based on Miller
(2019). Contrastive explanations can be thought of as answering “why not” queries in contrast to the “why”
queries answered by abductive explanations.Aminimal hitting set duality between abductive and contrastive
explanations was also shown in Ignatiev et al. (2020).
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A classifier may make the same decision on two instances but for different reasons
(i.e., disjoint sufficient reasons). However, if two decisions on distinct instances share
a reason, they must be equal.

Proposition 2 If decisions Δ(α) and Δ(β) share a sufficient reason, the decisions
must be equal Δ(α) = Δ(β).

Proof Suppose the decisions share sufficient reason τ . Then τ is property of both α

and β and τ is a prime implicant of both Δα and Δβ . Hence, Δα = Δβ since τ is
consistent and Δ(α) = Δ(β). �	

We will see later that sufficient reasons can provide insights about a classifier that
go well beyond explaining its decisions.

4 Complete Reasons

A sufficient reason identifies a minimal property of an instance that can trigger a
decision. The complete reason behind a decision characterizes all properties of an
instance that can trigger the decision.

Definition 2 (CompleteReason) The complete reason for a decision is the disjunction
of all its sufficient reasons.

The complete reason for decision Δ(α) captures every property of instance α, and
only properties of instance α, that can trigger the decision. It precisely captures why
this particular decision was made on instance α.

Theorem 1 Let R be the complete reason for decision Δ(α). If instance β does not
satisfy R and Δ(β) = Δ(α), then no sufficient reason for decision Δ(β) can be a
property of instance α.

Proof Suppose β 
|� R and Δ(β) = Δ(α). Then Δβ = Δα . Let τ be a sufficient
reason for decision Δ(β). Then τ is a property of instance β and a prime implicant
of both Δβ and Δα . If τ were a property of instance α, then τ is a sufficient reason
for decision Δ(α), τ |� R and β |� τ |� R, a contradiction. Hence, τ cannot be a
property of instance α. �	
We will sometimes say “the reason” to mean “the complete reason.” Recall that we
also say “a reason” to mean “a sufficient reason.” According to Theorem 1, if the same
decision is made on instances α and β, and if instance β does not satisfy the complete
reason for decision Δ(α), then these decisions were made for different reasons.

ClassifierC1 admitsGreg (α = E,¬F,¬G,W ) for the reasonR = E∧(¬F∨W ).
Greg was admitted because he passed the entrance exam and satisfied one of two
additional requirements: he applied before and has work experience. Classifier C1
also admits Susan (β = E, F,G,¬W ). Susan does not satisfy the reason R. There
is one sufficient reason for admitting Susan: she passed the entrance exam and has a
good GPA (E,G), which is not a property of Greg. Hence, classifierC1 admitted Greg
and Susan for different reasons.
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On the (Complete) Reasons Behind Decisions 71

The complete reason behind a decision is unique up to logical equivalence and can
be used to enumerate all of the decision’s sufficient reasons.

Theorem 2 LetR be the complete reason for decision Δ(α). The prime implicants of
R are the sufficient reasons for decision Δ(α).

Proof Let τ1, . . . , τn be the sufficient reasons for decision Δ(α) and hence R =
τ1 ∨ . . . ∨ τn . The key observation is that each term τi is a property of instance α.
Hence, for every two terms τi and τ j , if term τi contains some literal X then term τ j
cannot contain literal ¬X . The DNF τ1 ∨ . . . ∨ τn is then closed under consensus.8

Since no term τi subsumes another term τ j , the DNF τ1 ∨ . . . ∨ τn contains all prime
implicants ofR. Hence, the prime implicants of complete reasonR are precisely the
sufficient reasons of decision Δ(α). �	

We will later use Theorem 2 to provide a new approach for enumerating sufficient
reasons, compared to earlier approaches such as those reported in Shih et al. (2018),
Ignatiev et al. (2019a).

We will close this section by further highlighting how the complete reason for a
decision can be viewed as a necessary and sufficient condition for explaining the deci-
sion. Consider the complete reasonR for decisionΔ(α) and recall that it characterizes
all properties of instance α that can trigger the decision: R ≡ ∨

τ |�Δα
τ, where τ is

a property of instance α. The reason R is then a logical condition that triggers the
decision (R |� Δα). If the complete reason is weakened into a condition Rw that
continues to trigger the decision (R |� Rw |� Δα), then Rw will admit properties
not satisfied by instance α. Moreover, if it is strengthened into a condition Rs , then
Rs is guaranteed to trigger the decision (Rs |� R |� Δα) but will not admit some
properties of instance α that can trigger the decision. Hence, the complete reason R
is a necessary and sufficient condition for explaining the decision on instance α.

5 Necessary Characteristics and Properties

The necessary property of a decision is a maximal property of an instance that is
essential for explaining the decision on that instance.

Definition 3 (Necessary Characteristics and Properties) A characteristic is nec-
essary for a decision if it appears in every sufficient reason for the decision. The
necessary property for a decision is the set of all its necessary characteristics.

The necessary property is unique but could be empty (when the decision has no
necessary characteristics). If an instance ceases to satisfy one necessary characteristic,
the corresponding decision is guaranteed to change.

Proposition 3 If instance β disagrees with instance α on only one characteristic nec-
essary for decision Δ(α), then Δ(α) 
= Δ(β).

8 The consensus rule infers the term δ1 ∧ δ2 from terms X ∧ δ1 and ¬X ∧ δ2. One can convert a DNF into
its set of prime implicants by closing the DNF under consensus and then removing subsumed terms; see
(Crama and Hammer 2011, Chapter 3).
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Proof Supposeα andβ are as premised. IfΔ(α) = Δ(β) thenΔα = Δβ and τ = α∩β

is an implicant of Δα by consensus on the flipped characteristic ρ. Moreover, τ does
not contain characteristic ρ so it cannot be necessary, a contradiction. �	

If an instance ceases to satisfy more than one necessary characteristic, the decision
does not necessarily change. However, if the decision sticks then it would be for
completely different reasons.

Theorem 3 Let β be an instance that disagrees with instance α on at least one char-
acteristic necessary for decision Δ(α). Decisions Δ(α) and Δ(β) must have disjoint
sufficient reasons.

Proof Let σ be the necessary characteristics of decision Δ(α) that instances α and β

disagree on. A sufficient reason τ of Δ(α) cannot be a property of instance β since
σ ⊆ τ and β contains σ . Hence, τ cannot be a sufficient reason for decision Δ(β) and
the two decisions must have disjoint sufficient reasons. �	

Consider a classifierΔ = (X∧Y ∧Z)∨(¬X∧¬Y ∧Z) and instance α = X ,Y , Z .
The decision Δ(α) is positive with X ,Y , Z as the only sufficient reason. Hence, all
three characteristics of α are necessary: Flipping any single characteristic of instance
α will lead to a negative decision. However, flipping the two characteristics X and Y
preserves the positive decision but leads to a new, single sufficient reason¬X ,¬Y , Z .

The complete reason for a decision has enough information to compute its necessary
characteristics and property.

Proposition 4 A characteristic is necessary for a decision iff it is implied by the deci-
sion’s complete reason.

Proof Follows from Definition 3 and Theorem 2. �	

6 Decision Counterfactuals

Wementioned Susan earlier who passed the entrance exam, is a first time applicant, has
a high GPA but no work experience (α = E, F,G,¬W ). Classifier C1 admits Susan
because she passed the entrance exam and has a high GPA as this is the only sufficient
reason for the decision. Greg was also admitted by this classifier. His application
is similar to Susan’s except that he applied before and has work experience (β =
E,¬F,G,W ). The decision on Greg has multiple sufficient reasons so we cannot
issue a “because” statement when explaining this decision.

Definition 4 (Because) Consider decision Δ(α) and property τ of instance α. We say
the decision is made because τ if τ is the only sufficient reason for the decision.

Proposition 5 Consider decision Δ(α) and property τ of instance α. The decision is
made because τ iff τ is the decision’s complete reason.

Proof Follows from Definitions 1 and 2. �	

123



On the (Complete) Reasons Behind Decisions 73

One may be interested in statements that provide insights into a decision beyond
the reasons behind it. For example, we may want to know how the classifier may have
decided an instance if some of its characteristics were to be different. An example of
this is the statement wementioned in Sect. 1 with regards to classifierC2: Susan would
still be admitted even if she did not have a high GPA because she comes from a rich
hometown and passed the entrance exam. This statement exemplifies counterfactuals
of the following form: The decision will stick even if ρ because τ , where ρ and τ

are properties of the given instance. Recall that ρ is the property which results from
flipping every characteristic in property ρ.

Definition 5 (Even-If-Because) Consider decision Δ(α) and properties ρ and τ of
instance α. We say the decision sticks even if ρ because τ if τ is the complete reason
for decision Δ(β), where instance β is the result of replacing property ρ in instance
α with property ρ.

The following result justifies the above definition.

Theorem 4 Suppose decision Δ(α) sticks even if ρ because τ , and let instance β be
the result of replacing property ρ in instance α with ρ. ThenΔ(β) = Δ(α). Moreover,
τ is the only sufficient reason for decision Δ(β) and must be disjoint from ρ.

Proof Suppose decision Δ(α) sticks even if ρ because τ , and let β be the described
instance. By Definition 5, τ is the complete reason for decision Δ(β). Since τ is
a property, it must be the only sufficient reason for decision Δ(β) by Theorem 2.
Hence, τ is a property of instance β and must therefore be disjoint from property
ρ since flipping the characteristics of ρ in instance α left property τ intact. Since
property τ justifies decision Δ(β), τ |� Δβ , and since τ is also a property of instance
α, α |� τ , we now have α |� τ |� Δβ and therefore Δ(β) = Δ(α). �	

Applicant Susan who we discussed earlier (α = E, F,G,¬W , R) is admit-
ted by classifier C2. The decision will stick even if Susan had a low GPA (¬G)
because she comes from a rich hometown and passed the entrance exam (E, R). This
statement is justified since E, R is the complete reason for decision Δ(β). Here,
β = E, F,¬G,¬W , R is the result of replacing characteristic G by ¬G in instance
α.

Jackie did not pass the entrance exam, is not a first time applicant, has a low
GPA but has work experience (α = ¬E,¬F,¬G,W ). Jackie is denied admission
by classifier C1. The decision will stick even if Jackie had a high GPA (G) because
she did not pass the entrance exam (¬E). This statement is justified since ¬E is
the complete reason for decision Δ(β), where β = ¬E,¬F,G,W is the result of
replacing characteristic ¬G by G in instance α.

7 Decision Bias and Classifier Bias

Wewill now discuss the dependence of decisions on certain features, with a particular
application to detecting decision and classifier bias.
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74 A. Darwiche, A. Hirth

Intuitively, a decision is biased if it depends on some protected features: ones that
should not be used when making the decision (e.g., gender, zip code, or ethnicity).9

We formalize bias next while making a distinction between classifier bias and decision
bias. A classifier is biased if it makes some biased decisions, yet some of the other
decisions it makes may still be unbiased. While classifier bias can always be detected
by examining its decision function, we will show that it can sometimes be detected by
examining the complete reason behind one of its unbiased decisions.

Definition 6 (Decision Bias) Decision Δ(α) is biased if Δ(α) 
= Δ(β) for some β

that disagrees with α on only protected features.

Bias can be positive or negative. For example, an applicantmay be admitted because
they come from a rich hometown, or may be denied admission because they did not
come from a rich hometown. The following result provides a necessary and sufficient
condition for detecting decision bias.

Theorem 5 A decision is biased iff each of its sufficient reasons contains at least one
protected feature.

Proof We will show both directions of the theorem next.
Suppose decision Δ(α) is biased yet has a sufficient reason τ with no protected

features. We will now show a contradiction. Since the decision is biased, there must
exist an instance β that disagrees with instance α on only protected features and
Δ(α) 
= Δ(β). Since τ is a property of α and β, we have α |� τ |� Δα and β |� τ |�
Δα . Hence, Δα = Δβ and Δ(α) = Δ(β), which is a contradiction.

Suppose every sufficient reason for decision Δ(α) contains at least one protected
feature. Let X be these protected features and let τ be the characteristics of instance α

that do not involve features X. Assume Δ(α) = Δ(β) for every instance β that agrees
with instance α on characteristics τ (that is, β disagrees with α only on the protected
features X). Term τ must then be an implicant of Δα and a subset σ of τ must be a
prime implicant of Δα (could be τ itself). Since τ is a property of instance α, decision
Δ(α) has sufficient reason σ that does not include a protected feature in X, which is a
contradiction. Hence, Δ(α) 
= Δ(β) for some instance β that disagrees with instance
α on only protected features in X, and decision Δ(α) is biased. �	

We emphasize that Theorem 5 does not require sufficient reasons to share protected
features, only that each must contain at least one protected feature.

Consider classifier C3, which admits applicants who have a good GPA (G) as long
as they pass the entrance exam (E), are male (M) or come from a rich hometown (R):

Δ3 = (G ∧ E) ∨ (G ∧ M) ∨ (G ∧ R). (1)

Bob has a good GPA, did not pass the entrance exam and comes from a rich hometown
(α = G,¬E, M, R). He is admitted with two sufficient reasons: G, M and G, R. The
decision is biased since each sufficient reason contains a protected feature (M and R).
This classifier will not admit Nancy who has similar characteristics but does not come

9 A protected feature may have been unprotected during classifier design.
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from a rich hometown: β = G,¬E,¬M,¬R. It will also admit Scott who has the
same characteristics as Nancy: γ = G,¬E, M,¬R.

Even though this classifier is biased, some of its decisions may be unbiased. If an
applicant has a good GPA and passes the entrance exam (G, E), they will be admitted
regardless of their protected characteristics. Moreover, if an applicant does not have a
goodGPA (¬G), theywill be denied admission regardless of their other characteristics,
including protected ones.

Definition 7 (Classifier Bias) A classifier is biased if at least one of its decisions is
biased.

We emphasize again that a biased classifier may still make some unbiased decisions.
As we show next, one can sometimes infer classifier bias by inspecting the sufficient
reasons behind one of its unbiased decisions.

Theorem 6 A classifier is biased iff one of its decisions has a sufficient reason that
includes at least one protected feature.

Proof We will next show both directions of the theorem.
Suppose classifier Δ is biased. By Definition 7, some decision Δ(α) is biased. By

Theorem5, every sufficient reason of decisionΔ(α)must contain at least one protected
feature.

Suppose decision Δ(α) has a sufficient reason τ that contains protected features
X 
= ∅. For any instance β such that β |� τ , we must have Δ(β) = Δ(α). We now
show that there is an instance β |� τ and instance γ that disagrees with β on only
features X such that Δ(β) 
= Δ(γ ). Suppose the contrary: for all such β and γ , we
have Δ(β) = Δ(γ ) = Δ(α). Then τ \ ρ is an implicant of Δα , where ρ are the
protected characteristics in τ . This is impossible since τ is a prime implicant of Δα .
Hence, Δ(β) 
= Δ(γ ) for some β and γ with the stated properties so the classifier is
biased. �	

If decision Δ(α) has protected features in some but not all of its sufficient reasons,
the decision is not biased according to Theorem 5. But classifierΔ is biased according
to Theorem 6 as it will make a biased decision on some other instance β 
= α.

Consider classifier C3 in (1) and Lisa who has a good GPA, passed the entrance
exam and comes from a rich hometown (G, E,¬M, R). The classifier will admit Lisa
for two sufficient reasons: G, E and G, R. The decision is unbiased: any applicant
who has similar unprotected characteristics will be admitted. However, since one of
the sufficient reasons contains a protected feature, the classifier is biased as it can
make a biased decision on a different applicant. The proof of Theorem 6 suggests that
the classifier will make different decisions on two applicants with a good GPA who
disagree only on whether they come from a rich hometown. Nancy (G,¬E,¬M,¬R)
and Heather (G,¬E,¬M, R) are such applicants.

The following theorem shows how one can detect decision bias using the complete
reason behind the decision.Wewill use this theorem (and Theorem 8)when discussing
algorithms in Sect. 8.

Theorem 7 A decision is biased iff ∃(X1, . . . , Xn)R is not valid where X1, . . . , Xn

are all unprotected features and R is the complete reason behind the decision.
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Proof Let τ1, . . . , τn be the decision’s sufficient reasons and henceR = τ1 ∨ . . .∨ τn .
Existentially quantifying variables Xi from a DNF is done by replacing their literals
with 1. The result is valid iff some term τi contains only variables in X1, . . . , Xn .
Hence, ∃X1, . . . , XnR is not valid iff each term τi contains variables beyond Xi (i.e.,
each sufficient reason contains protected features). �	

The following result shows how classifier bias can sometimes be detected based on
the complete reason behind an unbiased decision.

Theorem 8 A classifier is biased ifR|X 
≡ R|¬X where X is a protected feature and
R is the complete reason for some decision.

Proof Given Theorems 2 and 6, it is sufficient to show thatR|X 
≡ R|¬X iff feature
X appears in some prime implicant ofR. Let τ1, . . . , τn be the prime implicants ofR.
Feature X appears either positively or negatively in these prime implicants since terms
τi are all properties of the same instance. Supposewithout loss of generality that feature
X appears positively in terms τi (if any). ThenR|X ≡ ∨

X /∈τi
τi ∨∨

X∈τi
τi \ {X} and

R|¬X ≡ ∨
X /∈τi

τi . Hence R|X 
≡ R|¬X iff X ∈ τi for some prime implicant τi . �	
Theorem 8 follows from Theorems 2 and 6 and a known result: A Boolean function
depends on a variable X iff X appears in one of its prime implicants. We included the
full proof for completeness.

8 Computing Reasons and Related Queries

The enumeration of PI-explanations (sufficient reasons) was treated in Shih et al.
(2018) by modifying the algorithm in Coudert andMadre (1993) for computing prime
implicant covers; see also (Coudert et al. 1993; Minato 1993). The modified algorithm
optimizes the original one by integrating the instance into the prime implicant enu-
meration process, but we are unaware of a complexity bound for the original algorithm
or its modification. Moreover, since the algorithm is based on prime implicant covers,
it is incomplete. Consider classifier Δ = (X ∧ Z) ∨ (Y ∧ ¬Z), which has three prime
implicants: (X ∧ Z), (Y ∧ ¬Z) and (X ∧ Y ). The last prime implicant is redundant
and may not be generated when computing a cover. Instance α = X ,Y , Z leads to
a positive decision and two sufficient reasons: (X ∧ Z) and (X ∧ Y ). An algorithm
based on covers may miss the sufficient reason (X ∧ Y ) and is therefore incomplete.
This can be problematic for queries that rely on examining all sufficient reasons, such
as decision and classifier bias (Definitions 6 and 7).

We next propose a new approach based on computing the complete reason R for
a decision (Definition 2), which characterizes all sufficient reasons, and then use it to
compute multiple queries. For example, we can enumerate all sufficient reasons using
the reason R (Theorem 2). We can also use it to compute necessary characteristics
(Proposition 4) and to detect decision bias (Theorem 7). Even classifier bias can
sometimes be inferred directly using the reasonR (Theorem 8) among other queries.

Assuming the classifier is represented using a suitable tractable Boolean circuit,
our approach will compute the complete reason for a decision in linear time regardless
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of how many sufficient reasons it may have (could be exponential). Moreover, it will
ensure that the computed complete reason is represented by a tractable circuit, allowing
us to answer many queries in polytime.

8.1 Computing Complete Reasons

Our approach for computing complete reasons requires the classifierΔ and its negation
¬Δ to be represented as Decision-DNNF circuits, which we define next.

Definition 8 (Decision-DNNF Circuit) An NNF circuit is a Boolean circuit that has
literals or constants as inputs and two type of gates: and-gates and or-gates. A DNNF
circuit is an NNF circuit in which the subcircuits feeding into each and-gate share no
variables.10 A Decision-DNNF circuit is a DNNF circuit in which every or-gate has
exactly two inputs of the form: X ∧ μ and ¬X ∧ ν, where X is a variable.11

DNNF circuits were introduced in Darwiche (2001). Decision-DNNF circuits were
identified in Huang and Darwiche (2005, 2007). OBDDs which we discussed ear-
lier are a subset of Decision-DNNF circuits as one can convert an OBDD into a
Decision-DNNF circuit in linear time. Figure 4 depicts an OBDD and its correspond-
ingDecision-DNNF circuit. The circuit is obtained bymapping eachOBDDnodewith
variable X , high child μ and low child ν into the circuit fragment (X ∧μ)∨ (¬X ∧ ν)

(two and-gates and one or-gate). For more on Decision-DNNF circuits and OBDD,
see (Bryant 1986; Darwiche andMarquis 2002; Huang andDarwiche 2007; Oztok and
Darwiche 2014). One can obtain a Decision-DNNF circuit by compiling a Boolean
formula in Conjunctive Normal Form (CNF) using systems such as c2d12 (Darwiche
2004) and d413 (Lagniez and Marquis 2017). One can also compile an OBDD from
any Boolean formula using systems such as cudd.14

We compute the complete reason for a decision Δ(α) by applying two operations
to a Decision-DNNF circuit for Δα: consenus then filtering.

Definition 9 (Consensus Circuit) The consensus circuit of Decision-DNNF circuit
Γ is denoted consensus(Γ ) and obtained by adding input μ∧ ν to every or-gate with
inputs X ∧ μ and ¬X ∧ ν.

Figure 4 depicts a Decision-DNNF circuit and its consensus circuit (third from left).
The consensus operation adds four and-gates denoted with double circles.

Proposition 6 A Decision-DNNF circuit Γ has the same satisfying assignments as its
consensus circuit consensus(Γ ).

Proof (X ∧ μ) ∨ (¬X ∧ ν) ≡ (X ∧ μ) ∨ (¬X ∧ ν) ∨ (μ ∧ ν). �	
10 This is called the decomposability property.
11 This is called the decision property.
12 http://reasoning.cs.ucla.edu/c2d/
13 http://www.cril.univ-artois.fr/kc/d4.html
14 http://vlsi.colorado.edu/personal/fabio/CUDD/
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Fig. 4 From left to right: OBDD, Decision-DNNF circuit, consensus circuit, and the filtering of consensus
circuit by instance ¬A, B,C

A consensus circuit can be obtained from a Decision-DNNF circuit in time linear. We
next discuss the filtering of a consensus circuit, which leads to a tractable circuit.

Definition 10 (Filtered Circuit) The filtering of consensus circuit Γ by instance α,
where Γ (α) = 1, is denoted filter(Γ , α) and obtained by replacing every literal l /∈ α

by constant 0.

Filtering is defined only on consensus circuits and requires an instance that satisfies
the consensus circuit (we are only interested in such instances). Figure 4 depicts an
example. The filtered circuit is on the far right of the figure, where grayed out nodes
and edges can be dropped due to replacing literals by constant 0.

Filtering is also a linear time operation. Consensus preservesmodels (i.e., satisfying
assignments of the circuit), but filtering drops some of them. We will characterize the
models preserved by filtering after presenting two required results.

Let Γ be a circuit that results from filtering by instance α. The circuit is monotone
in the following sense. If the common literals between instances α and β are a subset
of the common literals between instances α and γ , then β |� Γ only if γ |� Γ . For
example, if α = X ,Y , Z , β = ¬X ,Y ,¬Z and γ = ¬X ,Y , Z , then α and β agree on
literals {Y } while α and γ agree on literals {Y , Z} so the condition is met in this case.

Theorem 9 If circuit Γ results from filtering by instance α then every literal l that
appears in Γ also appears in α. Moreover, Γ (γ ) ≥ Γ (β) if γ ∩ α ⊇ β ∩ α.

Proof Filtering removes every literal not in instance α. Hence, every literal in the
filtered circuit Γ is in α, which implies the next result. Suppose that γ ∩ α ⊇ β ∩ α

and Γ (β) = 1. When evaluating circuit Γ at γ compared to β, the only literals
that change values are l1 ∈ γ \ β and l2 ∈ β \ γ . Literals l1 change values from
0 to 1 and literals l2 change values from 1 to 0. Changes to the values of l1 cannot
decrease the output of circuit Γ since it is an NNF circuit. Literals l2 are not in α since
γ ∩α ⊇ β ∩α so do not appear in circuit Γ and changes to their values do not matter.
Hence, Γ (γ ) = 1. �	

We also need the following result which identifies circuit models that are preserved
by the filtering of a consensus circuit.
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Proposition 7 Consider a Decision-DNNF circuit Δ and instance α such that
Δ(α) = 1. If τ is an implicant of Δ and α |� τ then τ is also an implicant of
filter(consensus(Δ), α).

Proof Let Γ = filter(consensus(Δ), α), I (Δ) = {τ : τ |� Δ} and I (Δ, α) = {τ :
τ |� Δ and α |� τ }. We need to show that I (Δ, α) ⊆ I (Γ ). That is, Γ preserves
the implicants τ of Δ satisfied by α. The proof is by induction on the structure of Δ.

(Base Case) If Δ is a literal l or a constant, then Δ = Γ since consensus is not
applicable and filtering will not replace literal l by constant 0 (l ∈ α since Δ(α) = 1).
Hence, I (Δ, α) ⊆ I (Γ ).

(Inductive Step) If Δ = Δ1 ∧ Δ2 then Γ = Γ1 ∧ Γ2 where Γ1 =
filter(consensus(Δ1), α) and Γ2 = filter(consensus(Δ2), α). SinceΔ1 andΔ2 share
no variables (decomposability),I (Δ) = I (Δ1)×I (Δ2) (Cartesian product). Sim-
ilarly, I (Γ ) = I (Γ1) × I (Γ2). By the induction hypothesis, I (Δ1, α) ⊆ I (Γ1)

and I (Δ2, α) ⊆ I (Γ2). Hence,

I (Δ, α) = I (Δ1, α) × I (Δ2, α) ⊆ I (Γ1) × I (Γ2) = I (Γ ).

(Inductive Step) If Δ = (l ∧Δ1)∨ (¬l ∧Δ2) and literal l ∈ α then Γ = (l ∧Γ1)∨
(Γ1 ∧Γ2) where Γ1 = filter(consensus(Δ1), α) and Γ2 = filter(consensus(Δ2), α).
Due to decomposability, l and ¬l do not appear in Δ1 or Δ2. Hence, I (Δ) = I1 ∪
I2 ∪ Ic where

I1 = {l, τ : τ ∈ I (Δ1)}
I2 = {¬l, τ : τ ∈ I (Δ2)}
Ic = I (Δ1 ∧ Δ2).

Since I2 ∩ I (Δ, α) = ∅ we have

I (Δ, α) = {l, τ : τ ∈ I (Δ1, α)} ∪ I (Δ1 ∧ Δ2, α).

Moreover, I (Γ ) = {l, τ : τ ∈ I (Γ1)} ∪ I (Γ1 ∧ Γ2). By the induction hypothesis,
I (Δ1, α) ⊆ I (Γ1) and I (Δ2, α) ⊆ I (Γ2), which gives {l, τ : τ ∈ I (Δ1, α)} ⊆
{l, τ : τ ∈ I (Γ1)} and I (Δ1 ∧ Δ2, α) ⊆ I (Γ1 ∧ Γ2). Hence, I (Δ, α) ⊆ I (Γ ).

�	
The following fundamental result reveals the role of filtering a consensus circuit.

It also reveals our linear-time procedure for computing the complete reason behind a
decision as a (tractable) circuit that compactly characterizes all sufficient reasons.

Theorem 10 Consider aDecision-DNNFcircuitΔand instanceα such thatΔ(α) = 1.
Term τ is a prime implicant ofΔ andα |� τ (that is, τ is a sufficient reason for decision
Δ(α)) iff τ is a prime implicant of filter(consensus(Δ), α).

Proof LetΓ = filter(consensus(Δ), α). Observe thatΓ |� Δ since consensus(Δ) ≡
Δ and since Γ is the result of replacing some inputs of consensus(Δ) with constant
0.
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Suppose τ is a prime implicant of circuit Δ and α |� τ . Then τ is an implicant of
circuit Γ by Proposition 7, τ |� Γ . If τ is not a prime implicant of Γ , we must have
some term ρ ⊂ τ such that ρ |� Γ . Therefore ρ |� Δ since Γ |� Δ, which means
that τ is not a prime implicant of Δ, a contradiction. Hence, τ is a prime implicant of
Γ .

Suppose τ is a prime implicant of circuit Γ . Then τ is an implicant of Δ since
Γ |� Δ. We next show that τ is a prime implicant of Δ and α |� τ . Let β be an
instance such that β |� τ and β disagrees with α on all variables outside τ . Then
Γ (β) = 1 and α ∩ β ⊆ τ . Every instance γ such that γ |� α ∩ β must satisfy
Γ (γ ) = 1 since α ∩ γ ⊇ α ∩ β, leading to Γ (γ ) ≥ Γ (β) by Theorem 9. Hence,
α ∩β is an implicant of Γ . Since τ is a prime implicant of Γ , we must have α ∩β = τ

and hence α |� τ . Suppose now τ is not a prime implicant of Δ. Some term ρ ⊂ τ is
then a prime implicant of Δ and α |� ρ. By the first part of this theorem, ρ is a prime
implicant of Γ , a contradiction. Therefore, τ is a prime implicant of Δ. �	

This is our final definition in this section, which captures the computation of com-
plete reasons using circuits.

Definition 11 (Reason Circuit) For classifier Δ, instance α and a Decision-DNNF
circuit Γ for Δα , the circuit filter(consensus(Γ ), α) is called a reason circuit and is
denoted by reason(Δ, α).

The circuit reason(Δ, α) depends on the specific Decision-DNNF circuit Γ used to
represent Δα but will always have the same models.

8.2 Tractability of Reason Circuits

Wenext show that reason circuits are tractable. Sincewe represent the complete reason
for a decision as a reason circuit, many queries relating to the decision can then be
answered efficiently.

Definition 12 (Monotone) An NNF circuit ismonotone if every variable appears only
positively or only negatively in the circuit.

Reason circuits are filtered circuits and hence monotone as shown by Theorem 9. The
following theorem mirrors what is known about monotone Boolean formulas, but we
include it for completeness.

Theorem 11 The satisfiability of a monotone NNF circuit can be decided in linear
time. A monotone NNF circuit can be negated and also conditioned in linear time to
yield a monotone NNF circuit.

Proof The satisfiability of a monotone NNF circuit can be decided using the following
procedure. Constant 0 is not satisfiable. Constant 1 and literals are satisfiable. An
or-gate is satisfiable iff any of its inputs is satisfiable. An and-gate is satisfiable iff
all its inputs are satisfiable. All previous statements are always correct except the
last one which depends on monotonicity. Consider a conjunction μ ∧ ν and suppose
every variable shared between the conjuncts appears either positively or negatively
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Algorithm 1 PI(Δ,α)
input: Decision-DNNF circuit Δ and instance α such that Δ(α) = 1.
output: Prime implicants of circuit filter(consensus(Δ), α).
1: if cache(Δ) is set then
2: return cache(Δ)

3: else if Δ is constant 0 then
4: r = {}
5: else if Δ is constant 1 then
6: r = {{}}
7: else if Δ = Δ1 ∧ Δ2 then
8: r = cartesian_product(PI(Δ1, α), PI(Δ2, α))

9: else if Δ = (X ∧ Δ1) ∨ (¬X ∧ Δ2) then
10: (�, Γ ) = (X ,Δ1) if literal X in α else (¬X , Δ2)

11: p = cartesian_product(PI(Δ1, α), PI(Δ2, α))

12: q = {{�} ∪ τ for τ ∈ PI(Γ , α)}
13: r = p ∪ q
14: r = remove_subsumed(r)
15: cache(Δ) = r
16: return r

in both. Any model of μ can be combined with any model of ν to form a model for
μ ∧ ν. Hence, the conjunction is satisfiable iff each of the conjuncts is satisfiable.
Conditioning replaces literals by constants so it preserves monotonicity. To negate a
monotone circuit, replace and-gates by or-gates, or-gates by and-gates and literals by
their negations. Monotonicity is preserved. �	
Given Theorem 11, the validity of a monotone NNF circuit can be decided in linear
time (we check whether the negated circuit is unsatisfiable).15 We can also conjoin the
circuit with a literal in linear time to yield a monotone circuit since Δ∧ l = (Δ|l)∧ l.

Variables can be existentially quantified from a monotone circuit in linear time,
with the resulting circuit remaining monotone. This is critical for efficiently detecting
decision bias as shown by Theorem 7.

Theorem 12 Replacing every literal of variable X with constant 1 in a monotone NNF
circuit Γ yields a monotone NNF circuit equivalent to ∃XΓ .

Proof If variable X appears only positively in circuit Γ then Γ |¬X |� Γ |X and
∃X Γ = (Γ |X) ∨ (Γ |¬X) = Γ |X . If variable X appears only negatively in Γ then
Γ |X |� Γ |¬X and ∃X Γ = (Γ |X) ∨ (Γ |¬X) = Γ |¬X . Variable X can therefore
be existentially quantified by replacing its literals with constant 1. �	

8.3 Computing Queries

We can now discuss algorithms. To compute the sufficient reasons for a decisionΔ(α):
get a Decision-DNNF circuit for Δα , transform it into a consensus circuit, filter it by
instance α and finally compute the prime implicants of filtered circuit. Algorithm 1

15 Validity can be checked more directly as follows. Constant 1 is valid. Constant 0 and literals are not
valid. An and-gate is valid iff all its inputs are valid. An or-gate is valid iff any of its inputs is valid. The
previous statements are always correct except the last one which requires monotonicity.
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does this in place, that is without explicitly constructing the consensus or filtered
circuits. It assumes a positive decision (otherwise we pass ¬Δ).

Algorithm 1 uses subroutine cartesian_productwhich conjoins twoDNFs by com-
puting the Cartesian product of their terms. It also uses remove_subsumed to remove
subsumed terms from a DNF.

Theorem 13 Consider a Decision-DNNF Δ and instance α. If Δ(α) = 1 then a call
PI(Δ, α) to Algorithm 1 returns the prime implicants of circuit filter(consensus(Δ), α).

Proof Consensus and filtering are applied implicitly on Lines 10-11. Filtered circuit
are monotone. We compute the prime implicants of a monotone circuit by converting
it into DNF and removing subsumed terms (Crama and Hammer 2011, Chapter 3).
This is precisely what Algorithm 1 does. �	

Consider now a decision Δ(α) and its complete reasonR = reason(Δ, α), which
is a monotone NNF circuit. Let n be the size of circuit R and m be the number of
features. We next show how to compute various queries using circuitR.
Sufficient Reasons. By Theorems 2 and 13, the call PI(Δα, α) to Algorithm 1 will
return all sufficient reasons for decision Δ(α), assuming Δα is a Decision-DNNF
circuit. Thenumber of sufficient reasons canbe exponential, butwe can actually answer
many questions about them without enumerating them directly as shown below.
Necessary Property. By Proposition 4, characteristic (literal) l is necessary for deci-
sion Δ(α) iff R |� l. This is equivalent to R|¬l being unsatisfiable, which can be
decided in O(n) time given Theorem 11. The necessary property (all necessary char-
acteristics) can then be computed in O(n · m) time.
Because Statements. To decide whether decision Δ(α) was made “because τ” we
checkwhether property τ is the complete reason for the decision (Definition 4): τ |� R
andR |� τ . We have τ |� R iff ¬R|τ is unsatisfiable. Moreover,R |� τ iffR|¬l is
unsatisfiable for every literal l in τ . All of this can be done in O(n · |τ |) time.
Even if, Because Statements.To decidewhether decisionΔ(α)would stick “even if ρ
because τ”we replace propertyρ withρ in instanceα to yield instanceβ (Definition 5).
We then compute the complete reason for decision Δ(β) and check whether it is
equivalent to τ . All of this can be done O(n · |τ |) time.
Decision Bias. To decide whether decision Δ(α) is biased we existentially quantify
all unprotected features from circuitR and then check the validity of the result (The-
orem 7). All of this can be done in O(n) time given Theorems 11 and 12.

9 A Case Study

We now consider a more refined admission classifier to illustrate the notions and
concepts we introduced more comprehensively.

This classifier highly values passing the entrance exam and being a first time appli-
cant. However, it also gives significant leeway to students from a rich hometown.
In fact, being from a rich hometown unlocks the only path to acceptance for those
who failed the entrance exam. The classifier is depicted as an OBDD in Fig. 5. It
corresponds to the following Boolean formula, which is not monotone (the previous
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Fig. 5 Admission classifier

Fig. 6 Applicants and characteristics

Fig. 7 From left to right: Reason circuit for the decision on applicants Scott, Robin and April (Fig. 6)

classifiers we considered were all monotone):

Δ = [E ∧ [(F ∧ (G ∨ W )) ∨ (¬F ∧ R)]] ∨ [G ∧ R ∧ W ].
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The classifier has the following prime implicants, some are not essential (all prime
implicants of a monotone formula are essential):

(E, F,W )(E, F,G)(G, R,W )(E,¬F, R)(E, R,W )(E,G, R).

We will consider applicants Scott, Robin and April in Fig. 6, where feature R is
protected (whether the applicant comes from a rich hometown). The complete reasons
for the decisions on these applicants are shown in Fig. 7. These are reason circuits
produced as suggested by Definition 11, except that we simplified the circuits by
propagating and removing constant values (a reason circuit is satisfiable as it must be
satisfied by the instance underlying the decision).

The decision on applicant Scott is biased. To check this, we can existentially quan-
tify unprotected features E, F,G,W from the reason circuit in Fig. 7 and then check
its validity (Theorem 7). Existential quantification is done by replacing the literals
E,¬F,G,W in the circuit with constant 1. The resulting circuit is not valid. We
can also confirm decision bias by considering the sufficient reasons for this decision,
which all contain the protected feature R (Theorem 5):

(E,G, R) (E, R,W ) (E, R,¬F) (G, R,W )

If we flip the protected characteristic R to¬R, the decision will flip with the complete
reason being ¬F,¬R so Scott would be denied admission because he is not a first
time applicant and does not come from a rich hometown (Definition 4).

The decision on Robin is not biased. If we existentially quantify unprotected fea-
tures E, F,G,W from the reason circuit (by replacing their literals with constant 1),
the circuit becomes valid. We can confirm this using the decision’s sufficient reasons:

(E, F,G) (E, F,W ) (E,G, R) (E, R,W ) (G, R,W )

Two of these sufficient reasons do not contain the protected feature so the decision
cannot be biased (Theorem 5). The decision will be the same on any applicant with
the same characteristics as Robin except for the protected feature R. However, since
some of the sufficient reasons contain a protected feature, the classifier must be biased
(Theorem 6): It will make a biased decision on some other applicant. This illustrates
how classifier bias can be inferred from the complete reason behind one of its unbiased
decisions. This method is not complete though: the classifier may still be biased even
if no protected feature appears in a sufficient reason for one of its decisions.

The decision on April is not biased even though the protected feature R appears
in the reason circuit (the circuit is valid if we existentially quantify all features but
R). Moreover, E, F are all the necessary characteristics for this decision (i.e., the
necessary property). Flipping either of these characteristics will flip the decision.
Recall that violating the necessary property may either flip the decision or change
the reason behind it (Theorem 3) but flipping only one necessary characteristic is
guaranteed to flip the decision (Proposition 3).

The decision on April would stick even if she were not to have work experience
(¬W ) because she passed the entrance exam (E), has a good GPA (G) and is a first
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time applicant (F). April would be denied admission if she were to also violate one
of these characteristics (Definition 5 and Proposition 3).

We close this section by an important remark. Even though most of the notions
we defined are based on prime implicants, our proposed theory does not necessarily
require the computation of prime implicants which can be prohibitive. Reason circuits
characterize all relevant prime implicants and can be obtained in linear time from
Decision-DNNF circuits. Reason circuits are also monotone, allowing one to answer
many queries about the embedded prime implicants in polytime. This is a major
contribution of this work.

10 Concluding Remarks

We introduced a theory for reasoning about the decisions of Boolean classifiers, which
is based on the fundamental notion of complete reasons. We presented applications of
the theory to explaining decisions, evaluating counterfactual statements about deci-
sions and identifying decision and classifier bias. We showed that if classifiers are
represented by Decision-DNNFs, which are a superset of OBDDs, then the complete
reason for a decision can be computed in linear time and in the form of a tractable
Boolean circuit that we called a reason circuit. We then presented linear-time and
polytime algorithms for computing most of the introduced notions based on reason
circuits. More recently, the notion of a complete reason was formulated using quan-
tified Boolean logic and shown to be also computable efficiently when classifiers are
represented by CNFs or SDDs (Darwiche and Marquis 2021). An SDD is a decision
diagram that branches on formulas (sentences) instead of variables (SDD stands for
Sentential Decision Diagram) (Darwiche 2011). SDDs are also a superset of OBDDs
but they are not comparable to Decision-DNNFs in terms of succinctness (Bollig and
Buttkus 2019; Beame and Liew 2015; Beame et al. 2013).

There has been a significant interest recently in the computation and complexity
of explanation queries, particularly sufficient reasons. This included investigations
into the computation of shortest sufficient reasons which are length-minimal instead
of subset-minimal. For Naïve Bayes (and linear) classifiers, it was shown that one
sufficient reason can be generated in log-linear time, and all sufficient reasons can be
generated with polynomial delay (Marques-Silva et al. 2020). For decision trees, the
complexity of generating one sufficient reason was shown to be in polynomial time
(Izza et al. 2020). Laterworks showed the same complexity for decision graphs (Huang
et al. 2021b) and some classes of tractable circuits (Audemard et al. 2020; Huang et
al. 2021a). The generation of sufficient reasons for decision trees was also studied
in Audemard et al. (2021b), including the generation of shortest sufficient reasons
which was shown to be hard even for a single reason. The generation of shortest
sufficient reasons was also studied in a broader context that includes decision graphs
and SDDs (Darwiche and Ji 2022). More general studies of complexity were also
conducted in Audemard et al. (2020), Huang et al. (2021a), where classifiers where
categorized based on the tractable circuits that represent them (Huang et al. 2021a) or
the kinds of processing they permit in polynomial time (Audemard et al. 2020). The
complexity of robustness queries and shortest sufficient reasonswas studied in Barceló
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et al. (2020) for Boolean classifiers which correspond to decision graphs and neural
networks with ReLU activation functions. A comprehensive study of complexity was
presented recently in Audemard et al. (2021a) for a large set of explanation queries
and classes of Boolean classifiers.
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