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Abstract
In an earlier paper [Rational choice and AGM belief revision, Artificial Intelli-
gence, 2009] a correspondence was established between the set-theoretic structures of
revealed-preference theory (developed in economics) and the syntactic belief revision
functions of the AGM theory (developed in philosophy and computer science). In this
paper we extend the re-interpretation of those structures in terms of one-shot belief
revision by relating them to the trichotomous attitude towards information studied
in Garapa (Rev Symb Logic, 1–21, 2020) where information may be either (1) fully
accepted or (2) rejected or (3) taken seriously but not fully accepted. We begin by
introducing the syntactic notion of filtered belief revision and providing a character-
ization of it in terms of a mixture of both AGM revision and contraction. We then
establish a correspondence between the proposed notion of filtered belief revision and
the above-mentioned set-theoretic structures, interpreted as semantic partial belief
revision structures. We also provide an interpretation of the trichotomous attitude
towards information in terms of the degree of implausibility of the information.

Keywords Credible information · Allowable information · AGM belief revision ·
Choice function · Plausibility order

1 Introduction

The dominant paradigm in belief revision is the so-called AGM theory [Alchourrón et
al. (1985) andGärdenfors (1988)], which is a syntactic theory that represents the belief
state of an agent as a pair (K , ∗), where K is a consistent and deductively closed set
of formulas in a propositional language (interpreted as the agent’s initial beliefs) and
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646 G. Bonanno

∗ : � → 2� (where � denotes the set of formulas and 2� the set of subsets of �) is a
function that associates with every formula φ ∈ � (interpreted as new information) a
set K ∗ φ ⊆ �, representing the agent’s revised beliefs in response to information φ.
If the function ∗ satisfies a set of six properties, known as the basic AGM postulates,
then it is called a basic AGM belief revision function, while if it satisfies two additional
properties (the so-called supplementary postulates) then it is called a supplemented
AGM belief revision function. One of the six basic postulates is the success axiom,
according towhich every item of informationφ is incorporated into the revised beliefs:
φ ∈ K ∗φ. In the past twenty years a large literature has emerged centered on relaxing
the success axiom: the so-called non-prioritized belief revision approach [for surveys
of this literature see Hansson (1999b), Fermé and Hansson (2011, Section 6.2, 2018,
Chapter 8)]. This literature acknowledges the fact that there may be some items of
information that an agent is not disposed to accept, for a number of reasons:

1. the agent may doubt the reliability of the source of the information,
2. the information may be in conflict with some highly entrenched beliefs of the

agent,
3. the agent might judge the information to be too far-fetched or implausible.1

In Case 1 it is not the intrinsic content of the information that leads the agent to reject
it, but the lack of trust in its source; thus the same information may be accepted it
if originates from source A but rejected if it originates from source B. For a recent
investigation of the role of trust in belief revision see Booth and Hunter (2018).

In Case 2 it is the conflict of the information with some core beliefs of the agent
that leads to the information being rejected: such core beliefs are given a privileged
status by the agent and are essentially immune to revision. This possibility was first
studied in Makinson (1997) and Fermé and Hansson (2001).2

In Case 3, the agent’s belief state is described not only by the pair (K , ∗), but also
by a partition of the set of sentences into two sets: the set �C of credible sentences
and the set �R of rejected sentences. The belief revision function ∗ : � → 2� is then
such that K ∗ φ = K if φ ∈ �R (if the information is rejected then beliefs remain
unchanged), while the success postulate applies to credible information: φ ∈ K ∗ φ

if φ ∈ �C . This line of inquiry is pursued in Hansson et al. (2001).3 This approach is
taken a step further in Garapa (2020) [and, independently, Bonanno (2019)] with the
introduction of a third, and intermediate, possibility, namely formulas that are credible
but with a lower level of credibility:

1 For example, during the U.S. Presidential campaign in 2016, a ”news” item appeared on several internet
sites under the title “Pope Francis shocks world, endorses Donald Trump for president”. While, perhaps,
some people believed this claim, many discarded it as “fake news”. In today’s political climate, many items
of “information” are routinely rejected as not credible.
2 A related notion is that of “revision by comparison” studied in Fermé and Rott (2004). See also Rott
(2012).
3 See also Fermé et al. (2003), Garapa et al. (2018), Booth et al. (2012), Booth et al. (2014), Boutilier et al.
(1998) and Schlechta (1997). In Fermé and Hansson (1999) the possibility of selective revision is explored,
according to which only part of the information received is accepted, while the rest is rejected; in a similar
vein, Booth and Hunter (2018) propose the notion of “trust-sensitive revision”, based on the idea that only
part of the information is accepted, namely the part relative to which the source is qualified or competent.
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When revising by a sentence that is considered to be at the second level of
credibility, that sentence is not incorporatedbut all the beliefs that are inconsistent
with it are removed. The intuition underlying this behavior is that, the belief is
not credible enough to be incorporated in the agent’s belief set, but creates in the
agent some doubt making him/her remove all the beliefs that are inconsistent
with it. (Garapa (2020), p. 2.)

Garapa (2020) calls this trichotomous stance towards information “two level
credibility-limited revision”. To illustrate these different attitudes towards a partic-
ular item of information, consider the case of three husbands, A, B and C, each of
whom believes that his wife is, and has always been, faithful to him. Each husband
is approached by a trusted friend who tells him “your wife is having an affair with
another man”.

• Husband A accepts the information, comes to believe that his wife is unfaithful
and files for divorce.

• Husband B is unshakable in his belief that his wife is faithful and discards the
information as not credible.

• Husband C’s reaction is somewhere in the middle: he abandons his belief in his
wife’s faithfulness, but does not go all the way to believing that she is unfaithful; in
other words, he becomes open-minded about the possibility of her being unfaithful
(and, perhaps, hires a private investigator to resolve the uncertainty).

Thuswe partition the set of sentences� into three sets: the set�C of credible sentences
[these correspond to the “high credibility” sentences in Garapa (2020)], the set �R

of rejected sentences and the set �A of sentences that we call “allowable” [these
correspond to the “low credibility” sentences in Garapa (2020)].4 For the latter we
have that {φ,¬φ} ∩ (K ∗ φ) = ∅, that is, when informed that φ the agent believes
neither φ nor ¬φ (in other words, she is open-minded towards both φ and ¬φ).
While the approach in Garapa (2020) is entirely syntactic (see Sect. 2 for details), our
focus is on the semantics (Sect. 3). However, in Sect. 2 we start with the AGM-style
syntactic approach and put forward the notion of filtered belief revision and provide a
characterization of it in terms of basic AGM belief revision, as follows (Proposition
1). Let ◦ : � → 2� be a filtered belief-revision function (Definition 2, Sect. 2); then
for some basic AGM belief-revision function ∗ : � → 2�, ∀φ ∈ �:

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗ φ if φ ∈ �C

K ∩ (K ∗ φ) if φ ∈ �A.

(1)

Thus

1. if information φ is rejected then the original beliefs are maintained,
2. if φ is credible then revision is performed according to the basic AGM postulates

and

4 Note that if �A = ∅ then we fall back to the binary case of “credibility limited revision” of Hansson et
al. (2001).

123



648 G. Bonanno

3. if φ is allowable then revision is performed by contracting the original beliefs by
the negation of φ (by the Harper identity [Harper (1976)] the contraction by ¬φ

coincides with taking the intersection of the original beliefs with the revision by
φ).5 Note that this implies that the underlying contraction function satisfies the
recovery axiom: see Sect. 5 for a discussion of this point).

It is worth stressing that the focus of this paper is on one-shot belief revision (see
Sect. 5, for a discussion of this point).

In Sect. 3we turn to themain focus of this paper by proposing a semantics for filtered
belief revision that extends the semantics for AGM belief revision put forward in
Bonanno (2009), based on the structures of revealed-preference theory in economics.6

Revealed-preference theory considers choice structures 〈�, E, f 〉 consisting of a non-
empty set � (whose elements are interpreted as possible alternatives to choose from),
a collection E of subsets of � (interpreted as possible menus, or choice sets) and
a function f : E → 2� (2� denotes the set of subsets of �), representing choices
made by the agent, conditional on each menu. Given this interpretation, the following
restriction on the function f is a natural requirement (the alternatives chosen from
menu E should be elements of E): ∀E ∈ E ,

f (E) ⊆ E . (2)

The objective of revealed-preference theory is to characterize choice structures that
can be “rationalized” by a total pre-order� on�, interpreted as a preference relation,7

in the sense that, for every E ∈ E , f (E) is the set of most preferred alternatives in E :
f (E) = {ω ∈ E : ω � ω′,∀ω′ ∈ E}. In Bonanno (2009) a re-interpretation of choice
structures in terms of semantic partial belief revision functions was put forward. A
model of 〈�, E, f 〉 (where� is now thought of as a set of states) is obtained by adding
a valuation V that assigns to every atomic formula p the set of states at which p is
true. Truth of an arbitrary formula at a state is then defined as usual. Given a model
〈�, E, f , V 〉, the initial beliefs of the agent are taken to be the set of formulas φ such
that f (�) ⊆ ||φ||, where ||φ|| denotes the truth set of φ; thus f (�) is interpreted
as the set of states that are initially considered possible. The events (sets of states) in
E ⊆ 2� are interpreted as possible items of information. If φ is a formula such that
||φ|| ∈ E , the revised belief upon learning that φ is defined as the set of formulas ψ

such that f (||φ||) ⊆ ||ψ ||. Thus the event f (||φ||) is interpreted as the set of states that
are considered possible after learning that φ is the case. In light of this interpretation,
condition (2) above corresponds to the success postulate of AGM theory. A model
of a structure 〈�, E, f 〉 thus gives rise to a partial syntactic belief revision function
whose domain is typically a proper subset of the set of formulas. The objective of
Bonanno (2009) was to find necessary and sufficient conditions on the structure that

5 Letting K ÷ ¬φ denote the contraction of belief set K by ¬φ, the Harper identity states that K ÷ ¬φ =
K ∩ (K ∗ φ). Note that if φ ∈ K then K ◦ φ = K ; in fact, it follows from the AGM axioms (see Sect. 2)
that K ∗ φ = K and thus also K ∩ (K ∗ φ) = K .
6 See, for example, Rott (2001) and Suzumura (1983).
7 Thus the intended meaning of ω � ω′ is ”alternative ω is considered to be at least as good as alternative
ω′”.
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Filtered Belief Revision: Syntax and Semantics 649

guarantee the existence of an AGM belief-revision function that extends the partial
belief revision function obtained from an arbitrary model of it.

In this paper we continue the above analysis by removing restriction (2). First of
all, we allow for some events—in the set of potential items of information E—to be
treated as not credible, so that

f (E) = f (�) if E ∈ E is rejected as not credible. (3)

Secondly, for information E ∈ E which is credible we postulate the success property
(2):

f (E) ⊆ E if E ∈ E is credible.

Finally, we also consider a third type of information, which is taken seriously but not
given the same status as credible information, and call it allowable; we capture this
possibility bymeans of the following condition, which says that allowable information
is not ruled out by the revised beliefs:

f (E) ∩ E �= ∅ if E ∈ E allowable. (4)

We model credibility, allowability and rejection by partitioning the set E of pos-
sible items of information into three sets: the set EC of credible items, the set EA

of allowable items and the set ER of rejected items. Thus we consider partial belief
revision structures (PBRS for short) 〈�, {EC , EA, ER}, f 〉 such that: (1) � �= ∅, (2)
EC , EA, ER are mutually disjoint subsets of 2� with � ∈ EC and ∅ /∈ EC ∪ EA and (3)
f : E → 2� (where E = EC ∪ EA ∪ ER) is such that f (�) �= ∅ and (a) if E ∈ ER
then f (E) = f (�), (b) if E ∈ EC then ∅ �= f (E) ⊆ E and (c) if E ∈ EA then
f (E) ∩ E �= ∅.
As explained above,we use valuations to link syntax and semantics and obtain, from

every model of a PBRS, a syntactic partial belief revision function. We then define a
PBRS to be basic-AGM consistent if, for every model of it, the associated partial belief
revision function can be extended to a full-domain belief-revision function ◦ : � →
2� such that, for some basic AGM belief-revision function ∗ : � → 2�, equation
(1) is satisfied. Proposition 3 in Sect. 3 provides necessary and sufficient conditions
for a PBRS to be basic-AGM consistent. In Sect. 4 we provide an interpretation of
credible, allowable and rejected information in terms of the degree of implausibility of
the information and then extend the analysis of the previous section to supplemented
AGM consistency. Section 5 contains a discussion of several aspects of the proposed
framework and of related literature.

2 The syntactic approach

Let � be the set of formulas of a propositional language based on a countable set At
of atomic formulas.8 We write � φ to denote that the formula φ is a tautology, that

8 Thus � is defined recursively as follows: if p ∈ At then p ∈ � and if φ, ψ ∈ � then ¬φ ∈ � and
(φ ∨ ψ) ∈ �. The connectives ∧, → and ↔ are then defined as usual.
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650 G. Bonanno

is, a theorem of Propositional Logic. Given a subset K ⊆ �, its PL-deductive closure
[K ]PL (where ‘PL’ stands for Propositional Logic) is defined as follows:ψ ∈ [K ]PL if
and only if there exist φ1, ..., φn ∈ K (with n ≥ 0) such that � (φ1∧· · ·∧φn) → ψ .9

A set K ⊆ � is consistent if [K ]PL �= � (equivalently, if there is no formula φ

such that both φ and ¬φ belong to [K ]PL ). A set K ⊆ � is deductively closed if
K = [K ]PL .

Let K ⊆ � be a consistent and deductively closed set of formulas representing the
agent’s initial beliefs. A (syntactic) belief revision function is a function ∗ : � → 2�

that associates with every formula φ ∈ � (thought of as new information) a set
K ∗ φ ⊆ � (thought of as the revised beliefs upon learning that φ). A belief revision
function ∗ : � → 2� is called a basic AGM function if it satisfies the first six of the
following properties and it is called a supplemented AGM function if it satisfies all of
them. The following properties are known as the AGM postulates: ∀φ,ψ ∈ �,

(AGM1) (closure) K ∗ φ = [K ∗ φ]PL .
(AGM2) (success) φ ∈ K ∗ φ.
(AGM3) (inclusion) K ∗ φ ⊆ [K ∪ {φ}]PL .
(AGM4) (vacuity) if ¬φ /∈ K , then [K ∪ {φ}]PL ⊆ K ∗ φ.
(AGM5) (consistency) K ∗ φ = � if and only if φ is a contradiction.
(AGM6) (extensionality) if � φ ↔ ψ then K ∗ φ = K ∗ ψ .
(AGM7) (superexpansion) K ∗ (φ ∧ ψ) ⊆ [(K ∗ φ) ∪ {ψ}]PL .
(AGM8) (subexpansion) if ¬ψ /∈ K ∗ φ, then [(K ∗ φ) ∪ {ψ}]PL ⊆ K ∗ (φ ∧ ψ).

AGM1 requires the revised belief set to be deductively closed.
AGM2 postulates that the information be believed.
AGM3 says that beliefs should be revisedminimally, in the sense that no new formula

should be added unless it can be deduced from the information received and the initial
beliefs.10

AGM4 says that if the information received is compatible with the initial beliefs, then
any formula that can be deduced from the information and the initial beliefs should
be part of the revised beliefs.

AGM5 requires the revised beliefs to be consistent, unless the information φ is a
contradiction (that is, unless � ¬φ).

AGM6 requires that if φ is propositionally equivalent toψ then the result of revising
by φ be identical to the result of revising by ψ .

AGM1-AGM6 are called the basicAGMpostulates, while AGM7 and AGM8 are called
the supplementary AGM postulates.
AGM7 and AGM8 are a generalization of AGM3 and AGM4 that concern composite belief
revisions of the form K ∗ (φ ∧ ψ):

The idea is that, if K is to be changed minimally so as to include two sentences
φ and ψ , such a change should be possible by first revising K with respect to φ

9 Note that, if F is a set of formulas, ψ ∈ [F ∪ {φ}]PL if and only if (φ → ψ) ∈ [F]PL .
10 Note that (see Footnote 9) ψ ∈ [K ∪ {φ}]PL if and only if (φ → ψ) ∈ K (since, by hypothesis,
K = [K ]PL ).
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Filtered Belief Revision: Syntax and Semantics 651

and then expanding K ∗φ byψ—provided thatψ does not contradict the beliefs
in K ∗ φ (Gärdenfors & Rott, 1995, p. 54).

For an extensive discussion of the rationale behind theAGMpostulates see Gärdenfors
(1988), Gärdenfors and Rott (1995).

We now extend the notion of belief revision by allowing the agent to discriminate
among different items of information.

Definition 1 Let � be the set of formulas of a propositional language. A credibility
partition is a partition {�C ,�A,�R} of � such that

1. �C is the set of credible formulas and is such that

(a) if � φ then φ ∈ �C ,
(b) if φ ∈ �C then φ is consistent,
(c) if φ ∈ �C and � φ ↔ ψ then ψ ∈ �C , that is, �C is closed under logical

equivalence.

2. �A is the (possibly empty) set of allowable formulas. We assume that if
φ ∈ �A then φ is consistent and that �A is closed under logical equivalence.

3. �R is the set of rejected formulas, which contains (at least) all the contradictions.

The properties thatwehave postulated for�C and�A are called “element consistency”
and “closure under logical equivalence” in Hansson et al. (2001). There are other,
natural, properties to consider, but for the time being we restrict attention to aminimal
set of properties that are sufficient for the representation result of Proposition 1. We
will address the issue of what are additional “natural” properties for the sets �C , �A

and �R in Sect. 5.
FollowingHansson et al. (2001), given a belief set K , we use the symbol ◦ to denote

a general belief revision function based on K (that is, a function ◦ : � → 2� that
associates with every φ ∈ � a new belief set K ◦ φ) and the symbol ∗ to denote a
(basic or supplemented) AGM belief-revision function based on K .

Definition 2 Let K be a consistent and deductively closed set of formulas (representing
the initial beliefs) and {�C ,�A,�R} a credibility partition of � (Definition 1). A
belief-revision function ◦ : � → 2� is called a filtered belief revision function (based
on K and {�C ,�A,�R}) if it satisfies the following properties: ∀φ,ψ ∈ �,

(F1) if φ ∈ �R then K ◦ φ = K ,

otherwise
(F2) if ¬φ /∈ K then

(a) if φ ∈ �C then K ◦ φ = [K ∪ {φ}]PL ,

(b) if φ ∈ �A then K ◦ φ = K ,

(F3) if ¬φ ∈ K then K ◦ φ is consistent and deductively closed and
(a) if φ ∈ �C then φ ∈ K ◦ φ,

(b) if φ ∈ �A then K ◦ φ ⊆ K \ {¬φ}
and [(K ◦ φ) ∪ {¬φ}]PL = K ,

(F4) if � φ ↔ ψ then K ◦ φ = K ◦ ψ.
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652 G. Bonanno

By (F1), if information φ is rejected (φ ∈ �R), then the original beliefs are preserved.
The next two properties deal with the case where φ /∈ �R .

(F2) says that if, initially, the agent did not believe ¬φ, then (a) if φ is credible
then the new beliefs are given by the expansion of K by φ, while (b) if φ is allowable
then the agent does not change her beliefs.

(F3) says that if, initially, the agent believed ¬φ, then (a) if φ is credible, then the
agent switches from believing ¬φ to believing φ, (b) if φ is allowable, then the agent
suspends her belief in ¬φ in a conservative way, that is, she contracts her belief set
by ¬φ in such a way as to retain as much as possible of her original beliefs and if she
were to re-introduce ¬φ into her revised beliefs and close under logical consequence
then she would go back to her initial beliefs. As noted in the introduction, this means
that contraction satisfies the so-called recovery postulate. See Sect. 5 for a discussion
of this assumption.

By (F4) belief revision satisfies extensionality: if φ is logically equivalent to ψ

then revision by φ coincides with revision by ψ .
The following proposition provides a characterization of filtered belief revision in

terms of basic AGM belief revision. The proof is given in Appendix A.

Proposition 1 Let K be a consistent and deductively closed set of formulas,
{�C ,�A,�R} a credibility partition of � and ◦ : � → 2� a belief revision function
based on K and {�C ,�A,�R}. Then the following are equivalent:

(A) ◦ is a filtered belief revision function,
(B) there exists a basic AGM belief revision function ∗ : � → 2� such that, ∀φ ∈ �,

equation (1) holds.

We take the belief state of the agent to be represented by the triple
(K , {�C ,�A,�R} , ◦): initial beliefs, credibility partition and revision function.11

Garapa (2020) shows that the credibility partition can be derived from the pair
(K , ◦) by defining �C = {φ : φ ∈ K ◦ φ}, �A = {φ : ¬φ /∈ K ◦ φ} \ �C and �R =
� \ (�C ∪ �A). Indeed Garapa (2020) proves the following equivalence.

Proposition 2 Garapa (2020, Theorem 3.14, p.10) Let K be a consistent and deduc-
tively closed set of formulas and ◦ : � → 2� a belief revision function based on K .
Then the following are equivalent:

(A) ◦ satisfies the following properties:

1. weak relative success: either φ ∈ K ◦ φ or K ◦ φ ⊆ K
2. closure: K ◦ φ = [K ◦ φ]PL
3. inclusion: K ◦ φ ⊆ [K ∪ {φ}]PL
4. consistency preservation: if K is consistent then K ◦ φ is consistent
5. weak vacuity: if ¬φ /∈ K then K ⊆ K ◦ φ

6. extensionality: if � φ ↔ ψ then K ◦ φ = K ◦ ψ

7. N-relative success: if ¬φ ∈ K ◦ φ then K ◦ φ = K

11 Thus, returning to the example of the three husbands given in the introduction, letting p be the sentence
“my wife is faithful”, we have that (1) for all three husbands, p ∈ K , (2) for Husband A, ¬p ∈ �C , while,
for Husband B, ¬p ∈ �R and, for Husband C, ¬p ∈ �A so that (3) for Husband A, ¬p ∈ K ◦ ¬p, for
Husband B, p ∈ K ◦ ¬p = K and, for Husband C, p /∈ K ◦ ¬p but also ¬p /∈ K ◦ ¬p.
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Filtered Belief Revision: Syntax and Semantics 653

8. containment: if K is consistent then K ∩ ([(K ◦ φ) ∪ {φ}]PL) ⊆ K ◦ φ.

(B) there exists a basic AGM belief revision function ∗ : � → 2� and a credibility
partition {�C ,�A,�R} of � (Definition 1) such that Eq. (1) is satisfied.

While in the AGM approach the domain of a belief revision function is the entire set
of formulas (that is, every formula is viewed as a potential item of information), in the
following sections we will consider the possibility that the domain of a belief revision
function is a subset of the set of formulas �. Let K be a consistent and deductively
closed set of formulas, representing the agent’s initial beliefs, and let � ⊆ � be a set
of formulas representing possible items of information. Let ◦ : � → 2� be a function
that associates with every formula ψ ∈ � a set K ◦ ψ ⊆ �. If � �= � then ◦ is
called a partial belief revision function, while if � = � then it is called a full-domain
belief revision function. If ◦′ is a partial belief revision function with domain � and
◦ is a full-domain belief revision function, we say that ◦ is an extension of ◦′ if, for
all ψ ∈ �, K ◦ ψ = K ◦′ ψ . The rationale for considering partial belief revision
functions is discussed in Sect. 5.

We now turn to themain focus of this paper, namely the semantic structures outlined
in the introduction.

3 Semantics: belief revision structures

Definition 3 A partial belief revision structure (PBRS) is a tuple 〈�, {EC , EA, ER}, f 〉
such that:

1. � �= ∅,12

2. EC , EA, ER are mutually disjoint subsets of 2� with � ∈ EC and
∅ /∈ EC ∪ EA,13

3. f : E → 2� (where E = EC ∪ EA ∪ ER) is such that

(a) f (�) �= ∅,
(b) if E ∈ ER then f (E) = f (�),
(c) if E ∈ EC then ∅ �= f (E) ⊆ E ,
(d) if E ∈ EA then f (E) ∩ E �= ∅.

Next we turn to the notion of a model, or interpretation, of a PBRS.
Fix a propositional language based on a countable set At of atomic formulas and let

� be the set of formulas. A valuation is a function V : At → 2� that associates with
every atomic formula p ∈ At the set of states at which p is true. Truth of an arbitrary
formula at a state is defined recursively as follows (ω |� φ means that formula φ is
true at state ω):

(1) for p ∈ At, ω |� p if and only if ω ∈ V (p),

12 We do not assume that � is finite.
13 These sets may be “small”, that is, we do not assume that the union EC ∪ EA ∪ ER covers the entire set
2�. Note that if EA = ER = ∅ then the above definition of PBRS coincides with the definition of choice
structure in Bonanno (2009), which we will now call a simple PBRS.
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654 G. Bonanno

(2) ω |� ¬φ if and only if ω �|� φ,
(3) ω |� (φ ∨ ψ) if and only if either ω |� φ or ω |� ψ (or both).

The truth set of formula φ is denoted by ||φ||, that is, ||φ|| = {ω ∈ � : ω |� φ}.
Given a valuation V , define:14

K = {φ ∈ � : f (�) ⊆ ||φ||} (5)

� = {φ ∈ � : ||φ|| ∈ E} (6)

◦� : � → 2� given by: K ◦� φ = {χ ∈ � : f (||φ||) ⊆ ||χ ||} . (7)

Since f (�) is interpreted as the set of states that the individual initially considers
possible, (5) is the initial belief set. It is straightforward to show that K is consistent
(since, by 3(a) of Definition 3, f (�) �= ∅) and deductively closed.

(6) is the set of formulas that are potential items of information.
(7) is the partial belief revision function encoding the agent’s disposition to revise

her beliefs in response to items of information in � (for E ∈ E , f (E) is interpreted
as the set of states that the individual considers possible after receiving information
represented by event E).

Definition 4 Given a PBRS 〈�, {EC , EA, ER}, f 〉, a model or interpretation of it is
obtained by adding to it a pair ({�C ,�A,�R} , V ) (where {�C ,�A,�R} is a credi-
bility partition of � and V is a valuation) such that, ∀φ ∈ �,

1. if ||φ|| ∈ EC then φ ∈ �C ,
2. if ||φ|| ∈ EA then φ ∈ �A,
3. if ||φ|| ∈ ER then φ ∈ �R .

Definition 5 A partial belief revision structure 〈�, {EC , EA, ER}, f 〉 is basic-AGM
consistent if, for every model of it, letting ◦� be the corresponding partial belief
revision function (defined by (7)), there exist

1. a full-domain belief revision function ◦ : � → 2� that extends ◦� (that is, for
every ψ ∈ �, K ◦ ψ = K ◦� ψ) and

2. a basic AGM belief revision function ∗ : � → 2� such that, ∀φ ∈ �, equation
(1) is satified.

Equivalently, by Proposition 1, a PBRS is basic-AGM consistent if, for every model of
it, there exists a filtered belief revision function (Definition 2) that extends the partial
belief revision function generated by the model.

The following proposition gives necessary and sufficient conditions for a PBRS to be
basic-AGM consistent. The proof is given in Appendix B.

Proposition 3 Let C = 〈�, {EC , EA, ER}, f 〉 be a partial belief revision structure.
Then the following are equivalent:

(A) C is basic-AGM consistent (Definition 5).

14 All these objects, including the truth sets of formulas, are dependent on the valuation V and thus ought
to be indexed by it; however, in order to keep the notation simple, we omit the subscript V .
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(B) C satisfies the following properties: for every E ∈ EC ∪ EA,

1. if E ∩ f (�) �= ∅ then
(a) if E ∈ EC then f (E) = E ∩ f (�),
(b) if E ∈ EA then f (E) = f (�),

2. if E∩ f (�) = ∅ and E ∈ EA then f (E) = f (�)∪E ′ for some∅ �= E ′ ⊆ E.

4 Plausibility and supplemented AGM consistency

In this section we investigate what additional properties a PBRS needs to satisfy
in order to obtain a correspondence result analogous to Proposition 3 but involving
supplemented, rather than basic, AGMbelief revision (that is, belief revision functions
that satisfy the six basic AGM postulates as well as the two supplementary ones).15

To obtain a characterization in terms of supplemented AGM belief revision we need
to add more structure. In particular, we are interested in determining when a PBRS
can be “rationalized” by a plausibility order.16

In parallel to the partition of the set of sentences � into three sets (�C , the set of
credible sentences, �A, the set of allowable sentences, and �R , the set of rejected
sentences), we postulate a “plausibility-based” partition of the set of states � into
three sets: the set �C of credible states, which—in a precise sense explained below
– are the states with low implausibility, the set �A of allowable states, which are the
states with intermediate implausibility, and the set �R of rejected states, which are
the states with high implausibility. Note that, throughout this section, we shall assume
that the set of states � is finite.17

Definition 6 A plausibility order is a total pre-order on �, that is, a binary relation
�⊆ � × � which is complete or total (∀ω,ω′ ∈ � either ω � ω′ or ω′ � ω or
both) and transitive (∀ω,ω′, ω′′ ∈ � if ω � ω′ and ω′ � ω′′ then ω � ω′′). The
interpretation of ω � ω′ is that state ω is at least as plausible as state ω′. We denote
by � the strict component of �: ω � ω′ if ω � ω′ and ω′ �� ω (thus ω � ω′ means
that ω is more plausible than ω′) and by ∼ the equivalence component of �: ω ∼ ω′
if ω � ω′ and ω′ � ω (thus ω ∼ ω′ means that ω is just as plausible as ω′).

For every F ⊆ � we denote by best� F the set of most plausible elements of F ,
that is,

best� F = {ω ∈ F : ω � ω′,∀ω′ ∈ F}. (8)

Given a plausibility order � we can partition � into ranked equivalence classes as
follows.18

15 In Theorem 3.16 (p. 11) Garapa (2020) provides a syntactic characterization that is analogous to Propo-
sition 2 but in terms of supplemented, rather than basic, AGM belief revision.
16 The notion of a pre-order on the set of possible worlds as a semantics for the AGM theory of belief
revision first appeared in Katsuno and Mendelzon (1991).
17 Alternatively, we could allow � to be infinite and restrict attention to well-founded plausibility orders.
18 Plausibility orders are equivalent to a special case of the ordinal ranking functions introduced by Spohn
(1988), namely ranking functions r : � → N (where N denotes the set of non-negative integers) with no
gaps, that is, if r(ω) = k for some k > 0 then there exists an ω′ such that r(ω′) = k − 1. Starting from
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– Let �0 be the set of most plausible states in �:

�0 = best� � = {ω ∈ � : ω � ω′,∀ω′ ∈ �}.

– Let �1 be the set of most plausible states in � \ �0:

�1 = best� (� \ �0) = {ω ∈ � \ �0 : ω � ω′,∀ω′ ∈ � \ �0}.

– In general, for k ≥ 1, let �k be the set of most plausible states in � \
k−1⋃

j=0
� j :

�k = best�

⎛

⎝� \
k−1⋃

j=0

� j

⎞

⎠ =
⎧
⎨

⎩
ω ∈ � \

k−1⋃

j=0

� j : ω � ω′,∀ω′ ∈ � \
k−1⋃

j=0

� j

⎫
⎬

⎭
.

Ifω ∈ �k we say that k is the degree of implausibility of stateω (thus themost plausible
states are those with degree of implausibility 0, the next most plausible states are those
with degree of implausibility 1, etc.). Clearly, for every k ≥ 0, if ω,ω′ ∈ �k then
ω ∼ ω′. Let n̂ be the largest degree of implausibility, that is, n̂ is such that �n̂ �= ∅

and
n̂⋃

j=0
� j = �.

Given two integers m and n such that 0 ≤ m ≤ n ≤ n̂, let �C be the set of
states with degree of implausibility at most m, �A be the set of states with degree of
implausibility greater than m but at most n and �R the set of the remaining states:19

�C =
m⋃

j=0

� j �A =
n⋃

j=m+1

� j �R = � \ (�C ∪ �A) (9)

Definition 7 When a partition {�C ,�A,�R} of � is obtained from a plausibility
order � of � as explained above, we call it a plausibility-based partition; clearly, the
following holds:

if ω ∈ �C and ω′ ∈ �A ∪ �R then ω � ω′, and
if ω ∈ �A and ω′ ∈ �R then ω � ω′. (10)

That is, credible states (those in �C ) are more plausible than allowable or rejected
states (those in �A ∪ �R) and allowable states (those in �A) are more plausible than
rejected states (those in �R).

From now on we will focus on basic-AGM-consistent PBRS, which—in virtue of
Definitions 3 and 5 and Proposition 3—can be redefined as follows.

such a ranking function one would define � j = {ω ∈ � : r(ω) = j}. Furthermore, when � is taken to be
the set of maximally consistent sets of sentences, plausibility orders are also equivalent to the systems of
spheres introduced by Grove (1988).
19 If n = m then �A = ∅ and if n = n̂ then �R = ∅.
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Definition 8 A basic-AGM-consistent partial belief revision structure (BPBRS) is a
tuple 〈�, {EC , EA, ER}, f 〉 such that:

1. � �= ∅,
2. EC , EA, ER are mutually disjoint subsets of 2� with � ∈ EC and ∅ /∈ EC ∪ EA,
3. f : E → 2� (where E = EC ∪ EA ∪ ER) is such that

(a) f (�) �= ∅,
(b) if E ∈ ER then f (E) = f (�),
(c) if E ∈ EC then∅ �= f (E) ⊆ E and if E∩ f (�) �= ∅ then f (E) = E∩ f (�),
(d) if E ∈ EA then

i. if E ∩ f (�) �= ∅ then f (E) = f (�),
ii. if E ∩ f (�) = ∅ then f (E) = f (�) ∪ E ′ for some ∅ �= E ′ ⊆ E .

Definition 9 A BPBRS is called plausibility based if there is a plausibility-based
partition {�C ,�A,�R} of � such that

1. If E ∈ EC then

(a) E ∩ �C �= ∅,
(b) E ∩ �C ∈ EC ,20
(c) f (E) = f (E ∩ �C ) ⊆ �C .

2. If �A �= ∅ then �A ∈ EA. Furthermore, if E ∈ EA then

(a) E ∩ �C = ∅,
(b) E ∩ �A �= ∅,
(c) E ∩ �A ∈ EA,
(d) f (E) = f (E ∩ �A).

3. If E ∈ ER then E ⊆ �R .

Thus,

• by Point 1, if information E has a credible content (E ∩ �C �= ∅), then the agent
revises her beliefs based exclusively on the credible content of the information
( f (E) = f (E ∩ �C )) and incorporates it into her revised beliefs ( f (E) ⊆ E ∩
�C ),21

• by Point 2, if information E does not have a credible content (E ∩ �C = ∅) but
does not consist entirely of rejected states either (E ∩ �A �= ∅), then the agent
revises her beliefs based exclusively on the “allowable” content of the information
( f (E) = f (E ∩ �A)),

• by Point 3, if information E is rejected then it consists entirely of rejected states
(E ⊆ �R).

We now turn to the issue of what properties of a plausibility-based BPBRS are
necessary and sufficient for supplemented AGM consistency. The following definition
mirrors Definition 5.

20 Thus, since � ∈ EC , �C ∩ � = �C and �C �= ∅, it follows that �C ∈ EC .

21 Since, by 3(c) of Definition 8, f (E) ⊆ E , it follows that f (E) ⊆ E ∩ �C . In particular, f (�) =
f (�C ) ⊆ �C .
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Definition 10 A plausibility-based BPBRS 〈{�C ,�A,�R}, {EC , EA, ER}, f 〉 is
supplemented-AGM consistent if, for every model 〈{�C ,�A,�R} , V 〉 of it, letting
◦� be the corresponding partial belief revision function, there exist

1. a full-domain belief revision function ◦ : � → 2� that extends ◦� (that is, for
every φ ∈ �, K ◦ φ = K ◦� φ) and

2. two supplementedAGMbelief revision functions∗C : � → 2� and∗A : � → 2�

such that, for every φ ∈ �,

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗C φ if φ ∈ �C

K ∩ (K ∗A φ) if φ ∈ �A.

(11)

Definition 11 Aplausibility-basedBPBRS 〈{�C ,�A,�R} , {EC , EA, ER} , f 〉 is ratio-
nalizable if the plausibility order� on� onwhich the partition {�C ,�A,�R} is based
is such that, ∀E ∈ E = EC ∪ EA ∪ ER ,

f (E) =
⎧
⎨

⎩

best� E if E ∩ �C �= ∅

best� � ∪ best� E if E ∩ �C = ∅ and E ∩ �A �= ∅.

best� � if E ⊆ �R .

(12)

If (12) is satisfied, we say that the plausibility order � rationalizes the BPBRS.

Note that, by 2(c) of Definition 6, best� � ⊆ �C and thus best� � = best� �C ;
furthermore, Properties 1 and 2 of Definition 9 are consistent with (12): for example,
if E ∩ �C �= ∅ then best� E = best� (E ∩ �C ), so that f (E) = f (E ∩ �C ).

Proposition 5 in Appendix C provides necessary and sufficient conditions for a
plausibility-based BPBRS to be rationalizable. Since that result is rather technical and
independent of the characterization of supplemented AGM consistency (Proposition
4 below), we have relegated it to an appendix.

The following proposition, which mirrors Proposition 3 of the previous section,
extends Propositions 7 and 8 in Bonanno (2009) to the current framework. The proof
is given in Appendix D.

Proposition 4 Let C = 〈{�C ,�A,�R}, {EC , EA, ER}, f 〉 be a plausibility-based
BPBRS where � is finite. Then the following are equivalent:

(A) C is supplemented AGM consistent,
(B) C is rationalizable (Definition 11).

As explained inBonanno (2009), the assumption that� is finite is needed to ensure that
best�E �= ∅, for every ∅ �= E ⊆ �. If one strengthens the definition of plausibility
order by requiring that, ∀E ⊆ �, if E �= ∅ then best�E �= ∅, that is, if one requires
the plausibility order to be well founded, then the assumption of finiteness of � can
be dropped.
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5 Discussion

We investigated a notion of belief revision that, besides acceptance of information,
allows for two additional possibilities: (1) that an item of information be discarded as
not credible and thus not allowed to affect one’s beliefs and (2) that an item of informa-
tion be treated as a serious possibility without assigning full credibility to it.We started
with a syntactic version of this notion, which we called ”filtered belief revision”, and
characterized it in terms of basic AGM belief revision. We then introduced the notion
of partial belief revision structure, which provides a simple set-theoretic semantics for
belief revision, and provided a characterization of filtered belief revision in terms of
properties of these structures. Finally, we considered the notion of rationalizability of
a choice structure in terms of a plausibility order and established a correspondence
between rationalizability and AGM consistency in terms of the full set of AGM postu-
lates (that is, the six basic postulates together with the supplementary ones). We also
provided an interpretation of credibility, allowability and rejection of information in
terms of the degree of implausibility of the information.

In this Section we discuss related literature and several aspects of the proposed
approach.

1. Alternative theories of non-prioritized belief revision. Several theories of
“non-prioritized” belief revision have been proposed in which the AGM success
postulate is relaxed.22 Fermé and Hansson (1999) put forward a syntactic model
of “selective revision” in which it is possible for the agent to accept only part of the
information. In a similar vein, Booth and Hunter (2018) develop a semantic model
where only part of the information originating from a given source is accepted,
namely that part relative to which the source is qualified or competent. Fermé and
Rott (2004) [see also Rott (2012)] introduce the notion of “revision by compari-
son” based on the idea that the degree of entrenchment of the information φ ought
to be compared with the degree of entrenchment of a reference sentence ψ which
is currently believed; the revision is performed according to the principle “see to
it that the entrenchment of φ is at least as firm as the entrenchment of ψ” (Fermé
and Rott (2004), p. 8).23

Our contribution is along the lines of Hansson et al. (2001) where the set of sen-
tences is partitioned into two sets, the set of credible sentences and the set of
rejected sentences: if information is credible then it is incorporated in the new
beliefs while if it is rejected then the initial beliefs are unaffected. Garapa (2020)
[and, independently, Bonanno (2019)] goes a step further by separating credible
sentences into two categories: the high-credibility sentences, for which the success
property holds, and the low-credibility sentences which induce a contraction of
the original belief set by the negation of the information (instead of ‘high cred-
ibility’ and ‘low credibility’ we used the terms ’credibility’ and ‘allowability’,
respectively). While the analysis in Garapa (2020) is exclusively focused on the

22 For an overview of the literature on non-prioritized belief revision see Chapter 8 of Fermé and Hansson
(2018).
23 If, however, the reference sentence ψ is too weakly entrenched relative to the negation of the input
sentence φ, then the attempted revision will fail and end up with a contraction of the belief set, more
precisely a severe withdrawal of the reference sentence in the sense of Rott and Pagnucco (1999).
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AGM-style syntactic approach, our focus has been on set-theoretic structures that
can be viewed as the semantic counterpart of partial belief revision functions.

2. Why a semantics based on partial belief revision functions? The semantic
structures we considered in Sections 3 and 4 are such that not every conceiv-
able proposition (or event) constitutes a possible item of information, so that –
typically—any given interpretation (or valuation) gives rise to a partial syntactic
belief revision function, that is, one whose domain is not the entire set of sen-
tences �. What is the rationale for the proposed semantics? It can be viewed as
complementing the traditional syntactic approach by “inverting” it, in the follow-
ing sense. The syntactic approach starts with an initial belief set and determines,
for every input sentence φ, a new belief set representing the revised beliefs in
response to φ. On the other hand, the partial belief revision structures considered
in Sections 3 and 4 can be thought of as providing a (possibly small) collection
of “revision scenarios”, each of which consists of a piece of new information
and its corresponding revision result (the set of pairs (E, f (E)), for every E in
some set E ⊆ 2�) and the question is “does there exist an AGM belief-revision
function that rationalizes those scenarios?” In other words, is the given collection
of revision scenarios consistent with a rational belief-revision policy? For exam-
ple, an agent might introspectively consider how she would react to a number of
hypothetical items of information and ask herself “would it be rational for me to
revise my beliefs in this way?” Alternatively, one could probe an agent with some
hypothetical informational inputs to see how she would react to those inputs and
ask the question “are the agent’s answers consistent with a rational disposition to
revise her beliefs?” The characterization results of Propositions 3 and 4 provide
an answer to these questions.24

3. Properties of the credibility partition. In Sect. 2 (Definition 1) we gave a list
of properties for a credibility partition {�C ,�A,�R}. The intention there was
to identify a minimal set of properties that would be sufficient for our results. It
should be noted that the twomain representation results provided in Garapa (2020)
(Theorems 3.14, p. 10 and 3.16, p. 11) also make use of the same two properties
that we considered for �C and �A. However, there are other, natural, properties
that have been discussed in the literature concerning the set of credible/allowable
sentences [Hansson et al. (2001); Fermé et al. (2003); Garapa et al. (2018); Garapa
(2020)] and we now turn to a discussion of this issue.
Let us start with the set of credible sentences �C . In Definition 1 we required this
set to contain only consistent sentences and to be closed under logical equivalence
[Hansson et al. (2001) call the first requirement “element consistency” and the sec-
ond requirement “closure under logical equivalence”]. Another natural property
to consider is closure under logical consequence, which Hansson et al. (2001) call
“single sentence closure”: if φ ∈ �C and � φ → ψ then ψ ∈ �C ; that is, if φ is
credible then any sentence that is logically implied by φ is also credible. Hansson
et al. (2001), Fermé et al. (2003) and Garapa et al. (2018) consider three more

24 There is an alternative setting in which partial belief revision functions make sense: when the language
used to define revision inputs is not rich enough to distinguish every state, so that the set E of possible
inputs consists of those subsets that are definable in the language. This is one of the main technical hurdles
inspiring the recent work on belief change in Horn Logic: see Delgrande et al. (2018).
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properties: “disjunctive completeness”: if φ ∨ ψ ∈ �C then either φ ∈ �C or
ψ ∈ �C , “negation completeness”: either φ ∈ �C or ¬φ ∈ �C , and “expansive
credibility”: if φ /∈ K then ¬φ ∈ �C . In order to gain some insight as to whether
these four additional properties (closure under logical consequence, disjunctive
completeness, negation completeness and expansive credibility) represent natu-
ral requirements and—at the same time—confirm the appropriateness of the two
assumed properties (element consistency and closure under logical equivalence),
let us take a semantic point of view. Consider an arbitrary finite set of states �, an
arbitrary plausibility partition {�C ,�A,�R} of � (Definition 7) and an arbitrary
valuation V : � → 2�.
Label a sentence φ

– credible if ||φ|| ∩ �C �= ∅,
– allowable if ||φ|| ∩ �C = ∅ and ||φ|| ∩ �A �= ∅,
– rejected if ||φ|| ⊆ �R .

With this interpretation and focusing first on the set �C of credible sentences,
it is clear that the properties assumed in Definition 1 are satisfied: (1) element
consistency (if φ is a contradiction then ||φ|| = ∅ and thus ||φ|| ∩ �C = ∅, so
that φ is not credible), (2) closure under logical equivalence (if � φ ↔ ψ then
||φ|| = ||ψ || and thus ||φ||∩�C �= ∅ if and only if ||ψ ||∩�C �= ∅). Now let us go
through the additional properties: (3) closure under logical consequence is satisfied
(if � φ → ψ then ||φ|| ⊆ ||ψ || and thus ||φ|| ∩ �C �= ∅ implies ||ψ || ∩ �C �=
∅), (4) disjunctive completeness is satisfied (since ||φ ∨ ψ || = ||φ|| ∪ ||ψ ||, if
||φ ∨ψ || ∩�C �= ∅ then either ||φ|| ∩�C �= ∅ or ||ψ || ∩�C �= ∅); (5) negation
completeness is also satisfied (if ||φ|| ∩ �C = ∅ then �C ⊆ ||¬φ|| and thus,
since �C �= ∅, �C ∩ ||¬φ|| = �C �= ∅); on the other hand, (6) expansive
credibility does not hold: it is possible that, for a credible sentence φ, φ /∈ K
and yet ||¬φ|| ∩ �C = ∅, so that ¬φ is not credible. Thus natural properties
to impose on �C—besides the two given in Definition 1—are: closure under
logical consequence (or single sentence closure: if φ ∈ �C then [φ]PL ⊆ �C ),
disjunctive completeness (if φ ∨ ψ ∈ �C then either φ ∈ �C or ψ ∈ �C ) and
negation completeness (either φ ∈ �C or ¬φ ∈ �C ).
Turning now to the set �A of allowable sentences, we postulated (Definition 1)
that, like �C , also �A contains only consistent sentences and is closed under
logical equivalence. These two properties pass the semantic test suggested above.
On the other hand, closure under logical consequence does not apply to �A. To
see this, let φ ∈ �A and note that � φ → (p ∨ ¬p); yet, since (p ∨ ¬p) is
a tautology, (p ∨ ¬p) is credible, rather than allowable. A property that does
satisfy the semantic test is the following: if φ ∈ �A then ¬φ ∈ �C (indeed, if φ is
allowable then ||φ||∩�C = ∅ and thus, as shown above,�C∩||¬φ|| = �C �= ∅).
Another property that passes the semantic test is: if φ ∈ �A and ψ ∈ �A then
φ ∨ψ ∈ �A (indeed, if φ andψ are allowable then ||φ||∩�C = ||ψ ||∩�C = ∅,
||φ|| ∩ �A �= ∅ and ||ψ || ∩ �A �= ∅, so that (||φ|| ∪ ||ψ ||) ∩ �C = ∅ and
(||φ|| ∪ ||ψ ||) ∩ �A �= ∅).
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The properties discussed so far pertain to the sets �C and �A. One can also relate
properties of the belief operator to properties of the sets�C and�A: Garapa (2020,
Proposition 3.12, p. 9) provides a thorough analysis of 14 such possible links.
Finally, we turn to the set �R of rejected sentences. For this set natural properties
are: (1) closure under logical equivalence (if � φ ↔ ψ then ||φ|| = ||ψ || and thus
||φ|| ⊆ �R if and only if ||ψ || ⊆ �R), (2) if φ ∈ �R then ¬φ ∈ �C (indeed, if
φ is rejected then ||φ|| ⊆ �R and thus, since �R ∩ �C = ∅, ||φ|| ∩ �C = ∅ and
therefore, as shown above, ||¬φ|| ∩ �C �= ∅), (3) if φ ∈ �R and ψ ∈ �R then
φ ∨ ψ ∈ �R .

4. Categorical matching. We identified the belief state of an agent with a triple
〈K , {�C ,�A,�R} , ◦〉 where
– K ⊂ � is a consistent and deductively closed set of sentences, representing
the initial beliefs,

– {�C ,�A,�R} is a partition of the set of sentences into credible, allowable and
rejected sentences, representing the disposition of the agent whether to accept
any given sentence as information,

– ◦ : � → 2� is a belief revision function transforming the initial belief set
K into a new belief set K ◦ φ in response to a sentence φ (thought of as
information).

However, a belief-revision theory should satisfy what Gärdenfors and Rott (1995,
p. 37) called the principle of categorical matching, that is, the principle that “the
representation of a belief state after a belief change has taken place should be of the
same format as the representation of the belief state before the change” [see also
Rott (1999)]. This is particularly important in the context of iterated belief revision
[see Darwiche and Pearl (1997)]. In our context, ifS is the set of belief states of the
form 〈K , {�C ,�A,�R} , ◦〉 then a belief-revision function ought to be defined as
a function f : � × S → S. The function ◦ : � → 2� gives only one of the three
components of f (φ, 〈K , {�C ,�A,�R} , ◦〉), namely the new belief set K ◦ φ,
but—in general—also the function ◦ and the credibility partition {�C ,�A,�R}
could change as a result of receiving informational input φ. Since this paper is not
concerned with iterated belief revision, that is, its focus is on “one-shot” revision,
our analysis (which follows the traditional approach) is without loss of generality.
We leave the extension of the analysis to the context of iterated belief revision as
a topic for future research.

5. The recovery postulate. We proposed a notion of belief change, called “filtered
belief revision”, which was shown to be equivalent to a combination of classical
AGM belief revision and contraction, the latter defined via the Harper Identity.
Contraction by ¬φ occurs when the agent is informed of a sentence φ which she
deems not credible but allowable. The agent’s reaction is then to suspend judgment
about φ, in particular to abandon her belief in ¬φ if the latter was in her initial
belief set. For such a belief change we postulated the recovery property, according
to which the agent would return to her initial belief set if she were to then accept
¬φ. The recovery postulate appears to be a natural way of capturing a “minimal”
way of suspending belief in ¬φ, but has been subject to scrutiny (see Makin-
son, 1987; Fuhrmann, 1991; Hansson, 1991, 1996, 1999a; Levi 1991; Lindström
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& Rabinowicz, 1991; Niederée, 1991). In Makinson’s terminology Makinson
(1987), contraction operations that do not satisfy the recovery postulates are called
withdrawals. Alternative types of withdrawal operators have been studied in the
literature: contraction without recovery (Fermé (1998)), semi-contraction (Fermé
and Rodriguez (1998)), severe withdrawal (Rott and Pagnucco (1999)), systematic
withdrawal (Meyer et al. (2002)), mild contraction (Levi (2004)). A potential topic
for future research is whether one can relax the recovery postulate and still obtain
a simple characterization, in terms of AGM belief revision, of the appropriately
modified notion of filtered belief revision.
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appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

A Proof of Proposition 1

(A) implies (B). Given a belief set K , a credibility partition {�C ,�A,�R} and a
filtered belief revision function ◦ : � → 2�, define the function ∗ : � → 2� as
follows:

K ∗ φ =
{

� if φ is a contradiction

[(K ◦ φ) ∪ {φ}]PL if φ is consistent.
(13)

First we show that the function ∗ so defined is a basic AGM belief revision function.
Fix an arbitrary φ ∈ �.

1. Suppose first that φ is a contradiction, so that, by (13), K ∗ φ = �. Then

• (AGM1) is satisfied since � = [�]PL .
• (AGM2) is satisfied since φ ∈ �.
• (AGM3) is satisfied since [K ∪ {φ}]PL = � (because, by hypothesis, φ is a
contradiction).

• (AGM4) is satisfied trivially, since, by hypothesis, � ¬φ and thus ¬φ ∈ K
because K is deductively closed.

• The ‘if’ part of (AGM5) is satisfied by construction.
• (AGM6) is satisfied because if � (φ ↔ ψ) then ψ is also a contradiction and
thus K ∗ ψ = K ∗ φ = �.

2. Suppose now that φ is consistent, so that, by (13), K ∗ φ = [(K ◦ φ) ∪ {φ}]PL .
Then

• (AGM1) is satisfied because [(K ◦ φ) ∪ {φ}]PL = [[(K ◦ φ) ∪ {φ}]PL]PL
.

• (AGM2) is satisfied because φ ∈ [(K ◦ φ) ∪ {φ}]PL .
• (AGM3) is satisfied because,
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(1) if ¬φ ∈ K then [K ∪ {φ}]PL = � and,
(2) if ¬φ /∈ K then, by Definition 2,

– if φ ∈ �C then K ◦φ = [K ∪{φ}]PL and thus K ∗φ = [[K ∪ {φ}]PL ∪ {φ}]PL =
[K ∪ {φ}]PL ,

– ifφ ∈ �A∪�R then K ◦φ = K and thus K ∗φ = [(K ◦φ)∪{φ}]PL = [K∪{φ}]PL .
• (AGM4) is satisfied, because - as shown above - if¬φ /∈ K then [(K ◦φ)∪{φ}]PL =

[K ∪ {φ}]PL .
• The ‘only if’ part of (AGM5) is satisfied because

– if ¬φ ∈ K then, by Definition 2, K ◦ φ is consistent and thus not equal to �,

– if ¬φ /∈ K then K ◦ φ =
{

[K ∪ {φ}]PL if φ ∈ �C

K if φ ∈ �A ∪ �R
and thus, since K is

consistent and does not imply ¬φ, K ◦ φ �= �.

• (AGM6) is satisfied because if � φ ↔ ψ then, by (F4) of Definition 2, K ◦ φ =
K ◦ ψ and thus [(K ◦ φ) ∪ {φ}]PL = [(K ◦ ψ) ∪ {ψ}]PL .

Since, by (F1) of Definition 2, K ◦ φ = K when φ ∈ �R , we only need to show that

(a) if φ ∈ �C then K ◦ φ = K ∗ φ, and
(b) if φ ∈ �A then K ◦ φ = K ∩ (K ∗ φ).

(a) Fix an arbitrary φ ∈ �C .

– If¬φ /∈ K then, by (F2a) of Definition 2, K ◦φ = [K ∪{φ}]PL ; furthermore,

[K ∪ {φ}]PL = [[K ∪ {φ}]PL ∪ {φ}]PL . Hence K ◦ φ = [(K ◦ φ) ∪ {φ}]PL
and, by (13), [(K ◦ φ) ∪ {φ}]PL = K ∗ φ.

– If ¬φ ∈ K then, by (F3a) of Definition 2, φ ∈ K ◦ φ and thus [(K ◦ φ) ∪
{φ}]PL = [K ◦ φ]PL = K ◦ φ (the last equality holds because, by (F3) of
Definition 2, K ◦ φ is deductively closed); thus, by (13), K ∗ φ = K ◦ φ.

(b) Fix an arbitrary φ ∈ �A. We need to show that K ◦ φ = K ∩ (K ∗ φ). First of all,
note that, by (F2) and (F3) of Definition 2, K ◦ φ is deductively closed, that is,
K ◦ φ = [K ◦ φ]PL .
– If ¬φ /∈ K then, by (F2b) of Definition 2, K ◦ φ = K ; furthermore, K ◦ φ ⊆

[(K ◦ φ) ∪ {φ}]PL = K ∗ φ; hence K ◦ φ = K ∩ (K ∗ φ).
– If ¬φ ∈ K then, by (F3b) of Definition 2,

K ◦ φ ⊆ K \ {¬φ} and (14)

[(K ◦ φ) ∪ {¬φ}]PL = K . (15)

Since K ◦ φ ⊆ [(K ◦ φ) ∪ {φ}]PL = K ∗ φ it follows from this and (14) that
K ◦ φ ⊆ K ∩ (K ∗ φ).
It remains to prove that K ∩ (K ∗ φ) ⊆ K ◦ φ. By (15), ∀ψ ∈ �,

ψ ∈ K if and only if (¬φ → ψ) ∈ K ◦ φ. (16)
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Fix an arbitraryψ ∈ K ∩ (K ∗φ). Sinceψ ∈ K , by (16), (¬φ → ψ) ∈ K ◦φ.
Since ψ ∈ K ∗ φ = [(K ◦ φ) ∪ {φ}]PL , (φ → ψ) ∈ K ◦ φ. Thus, since
K ◦ φ is deductively closed (¬φ → ψ) ∧ (φ → ψ) ∈ K ◦ φ; hence, since
� ((¬φ → ψ) ∧ (φ → ψ) → ψ) and K ◦φ is deductively closed,ψ ∈ K ◦φ.

(B) implies (A).Let ∗ : � → 2� be a belief revision function based on K that satisfies
the six basic AGM postulates and let ◦ : � → 2� be such that, ∀φ ∈ �,

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗ φ if φ ∈ �C

K ∩ (K ∗ φ) if φ ∈ �A.

(17)

We need to show that ◦ is a filtered belief revision function, that is, that, ∀φ,ψ ∈ �,

(F1) if φ ∈ �R then K ◦ φ = K ,

(F2) if ¬φ /∈ K then
(a) if φ ∈ �C then K ◦ φ = [K ∪ {φ}]PL ,

(b) if φ ∈ �A then K ◦ φ = K ,

(F3) if ¬φ ∈ K then K ◦ φ is consistent and deductively closed and
(a) if φ ∈ �C then φ ∈ K ◦ φ,

(b) if φ ∈ �A then K ◦ φ ⊆ K \ {¬φ}
and [(K ◦ φ) ∪ {¬φ}]PL = K ,

(F4) if � φ ↔ ψ then K ◦ φ = K ◦ ψ.

(18)

(F1) is the first line in (17). Fix an arbitrary φ ∈ �C ∪ �A; then, by Definition 1, φ
is consistent.

Suppose first that ¬φ /∈ K . Then, by AGM3 and AGM4, K ∗ φ = [K ∪ {φ}]PL so
that, if φ ∈ �C , Part (a) of (F2) follows from the second line of (17) and, if φ ∈ �A,
then also Part (b) of (F2) is satisfied because K ⊆ [K ∪ {φ}]PL = K ∗ φ so that
K ∩ (K ∗ φ) = K .

Suppose now that ¬φ ∈ K . Since φ is consistent, by AGM1 and AGM5, K ∗ φ

is deductively closed and consistent; since, by hypothesis, K is deductively closed
and consistent it follows that K ∩ (K ∗ φ) is also deductively closed and consistent,
so that K ◦ φ is deductively closed and consistent. If φ ∈ �C then Part (a) of (F3)
is satisfied because, by AGM2, φ ∈ K ∗ φ. Suppose that φ ∈ �A. Since K ∗ φ is
consistent and φ ∈ K ∗ φ it follows that ¬φ /∈ K ∗ φ and thus ¬φ /∈ K ∩ (K ∗ φ) =
K ◦ φ, so that K ◦ φ ⊆ K \ {¬φ}. Next we show that [(K ◦ φ) ∪ {¬φ}]PL = K .
Since, by hypothesis, ¬φ ∈ K , and, by construction, K ◦ φ ⊆ K , it follows that
((K ◦ φ) ∪ {¬φ}) ⊆ K and thus [(K ◦ φ) ∪ {¬φ}]PL ⊆ [K ]PL = K . It remains to
prove that K ⊆ [(K ◦ φ) ∪ {¬φ}]PL . Fix an arbitrary ψ ∈ K . Since, by hypothesis,
K = [K ]PL and � ψ → (¬φ → ψ), (¬φ → ψ) ∈ K . Since φ ∈ K ∗ φ and K ∗ φ

is deductively closed, (φ ∨ ψ) ∈ K ∗ φ and since (φ ∨ ψ) is logically equivalent to
(¬φ → ψ), it follows that (¬φ → ψ) ∈ K ∗ φ. Thus (¬φ → ψ) ∈ K ∩ (K ∗ φ) and
thus ψ ∈ [(K ∩ (K ∗ φ)) ∪ {¬φ}]PL = [(K ◦ φ) ∪ {¬φ}]PL .
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Finally, if ψ is logically equivalent to φ then ψ ∈ �C ∪ �A because both sets are
closed under logical equivalence and, by hypothesis, φ ∈ �C ∪�A. Since, by AGM4,
K ∗ φ = K ∗ ψ it follows that (F4) is satisfied.

B Proof of Proposition 3

(A) implies (B). Fix a basic-AGM-consistent PBRS 〈�, {EC , EA, ER}, f 〉 and an arbi-
trary E ∈ EC ∪ EA. Let p, q and r be atomic propositions and consider a model
({�C ,�A,�R} , V ) (Definition 4) where ||p|| = E , ||q|| = f (E) and ||r || = f (�).
Let K = {φ ∈ � : f (�) ⊆ ||φ||}, � = {φ ∈ � : ||φ|| ∈ E} and define ◦� : � → 2�

by K ◦� φ = {χ ∈ � : f (||φ||) ⊆ ||χ ||} . Thus r ∈ K , p ∈ � and q ∈ K ◦� p. Let
◦ : � → 2� be a full-domain extension of ◦� : � → 2� and ∗ : � → 2� a basic
AGM revision function such that, for every φ ∈ �,

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗ φ if φ ∈ �C

K ∩ (K ∗ φ) if φ ∈ �A.

(19)

• Suppose first that
E ∩ f (�) �= ∅. (20)

We need to show that

if E ∈ EC then f (E) = E ∩ f (�). (21)

and
if E ∈ EA then f (E) = f (�). (22)

By (20), f (�) � � \ E = � \ ||p|| = ||¬p||, that is,

¬p /∈ K (23)

so that, by AGM3 and AGM4,

K ∗ p = [K ∪ {p}]PL . (24)

– Consider first the case where E ∈ EC , so that p ∈ �C . Since K ◦� p = K ∗ p
and q ∈ K ◦� p, q ∈ K ∗ p, so that, by (24), q ∈ [K ∪ {p}]PL ; hence
(p → q) ∈ K (recall that K is deductively closed), that is, f (�) ⊆ ||¬p ∨
q|| = (� \ E) ∪ f (E); thus, intersecting both sides with E , E ∩ f (�) ⊆
f (E) ∩ E = f (E) (recall that, by Definition 3, since E ∈ EC , f (E) ⊆ E).
Next we show that f (E) ⊆ E ∩ f (�). Since f (�) = ||r ||, r ∈ K and thus,
since K is deductively closed, (p → r) ∈ K , from which it follows that
r ∈ [K ∪{p}]PL = K ∗ p (by (24)); thus, since K ∗ p = K ◦� p, r ∈ K ◦� p,
that is, f (E) ⊆ ||r || = f (�). Hence, since f (E) ⊆ E , f (E) ⊆ E ∩ f (�).
This completes the proof of (21).
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– Consider next the casewhere E ∈ EA, so that p ∈ �A. By (19), since q ∈ K ◦�

p, q ∈ K ◦ p = K∩(K ∗ p). From q ∈ K it follows that f (�) ⊆ ||q|| = f (E).
It remains to prove that the converse is also true, namely that f (E) ⊆ f (�).
Since f (�) = ||r ||, r ∈ K . Thus, since K is deductively closed, (p → r) ∈
K , from which it follows that r ∈ [K ∪ {p}]PL = K ∗ p (by (24)). Thus
r ∈ K ∩ (K ∗ p), so that, since (by (19)) K ∩ (K ∗ p) = K ◦ p = K ◦� p,
r ∈ K ◦� p, that is, f (E) ⊆ ||r || = f (�). This completes the proof of (22).

• Suppose now that E ∈ EA (thus, by Point 2 of Definition 3, E �= ∅) and

E ∩ f (�) = ∅. (25)

We need to show that f (E) = f (�) ∪ E ′ for some ∅ �= E ′ ⊆ E . Since E ∈ EA

and ||p|| = E , p ∈ �A. Thus, by (19),

K ◦� p = K ◦ p = K ∩ (K ∗ p). (26)

Since E = ||p|| and f (E) = ||q||, q ∈ K ◦� p and thus, by (26), q ∈ K , that is,
f (�) ⊆ ||q|| = f (E). It follows from this and the fact that f (E) ∩ E ⊆ f (E),
that

f (�) ∪ ( f (E) ∩ E) ⊆ f (E). (27)

Next we show that f (E) ⊆ f (�) ∪ ( f (E) ∩ E). Since f (�) = ||r ||, r ∈ K and
thus, since K is deductively closed, (r ∨ p) ∈ K . Since p ∈ K ∗ p and K ∗ p is
deductively closed, (r ∨ p) ∈ K ∗ p. Thus, by (26), (r ∨ p) ∈ K ◦� p, that is,
f (E) ⊆ ||r ∨ p|| = ||r || ∪ ||p|| = f (�) ∪ E ; hence (intersecting both sides with
� \ E),

f (E) ∩ (� \ E) ⊆ ( f (�) ∪ E) ∩ (� \ E)

= ( f (�) ∩ (� \ E)) ∪ (E ∩ (� \ E))

= f (�) ∩ (� \ E) =(by (25)) f (�).

(28)

Thus,

f (E) = ( f (E) ∩ (� \ E)) ∪ ( f (E) ∩ E) ⊆(by (28)) f (�) ∪ ( f (E) ∩ E) .

(29)
If follows from (27) and (29) that f (E) = f (�) ∪ E ′ with E ′ = f (E) ∩ E .
Finally, by (d) of definition of PBRS (Definition 3), f (E) ∩ E �= ∅.

(B) implies (A). Fix a PBRS that satisfies the properties of part (B) of Proposition 2
and an arbitrary model ({�C ,�A,�R} , V ) of it (Definition 4). As usual, let

K = {φ ∈ � : f (�) ⊆ ||φ||} , (30)

� = {φ ∈ � : ||φ|| ∈ E} , (31)

◦� : � → 2� given by: K ◦� φ = {χ ∈ � : f (||φ||) ⊆ ||χ ||} . (32)
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Let ∗ : � → 2� be the following full domain belief revision function: ∀φ ∈ �,

K ∗ φ =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1. � if and only if φ is a contradiction

2. [φ]PL if ||φ|| /∈ EC ∪ EA

3. [K ∪ {φ}]PL if ||φ|| ∈ EC ∪ EA and ¬φ /∈ K

4. [{ψ ∈ � : f (||φ||) ⊆ ||ψ ||}]PL if ||φ|| ∈ EC and ¬φ ∈ K

5. [{ψ ∈ � : ( f (||φ||) ∩ ||φ||) ⊆ ||ψ ||}]PL if ||φ|| ∈ EA and ¬φ ∈ K

(33)

First we show that ∗ is a basic AGM belief revision function.

• AGM1 is satisfied by construction.
• AGM2 is clearly satisfied in cases 1–3 and 5 of (33). As for case 4, since ||φ|| ∈ EC ,
by definition of PBRS f (||φ||) ⊆ ||φ||.

• AGM3 is clearly satisfied in cases 1–3 of (33). In cases 4 and 5, since ¬φ ∈ K ,
[K ∪ {φ}]PL = � and the property holds trivially.

• AGM4 is clearly satisfied in cases 1–3 of (33) since [(K ∗ φ) ∪ {φ}]PL = K ∗ φ.
In cases 4 and 5 the property holds trivially since ¬φ ∈ K .

• AGM5 is satisfied by construction.
• AGM6 is satisfied because if � φ ↔ ψ then

1. if φ is a contradiction then so isψ and thus, by construction, K ∗φ = K ∗ψ = �.
2. [φ]PL = [ψ]PL .
3. [K ∪ {φ}]PL = [K ∪ {ψ}]PL .
4. and 5. ||φ|| = ||ψ ||.
Next define the following full-domain belief revision function ◦ : � → 2�:

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗ φ if φ ∈ �C

K ∩ (K ∗ φ) if φ ∈ �A

(34)

where K ∗ φ is given by (33). Then, by definition of basic-AGM consistent PBRS
(Definition 5), it only remains to prove that ◦ is an extension of ◦� (given by (32)),
that is, that, for every φ ∈ �, χ ∈ K ◦� φ if and only if χ ∈ K ◦ φ. Fix an arbitrary
φ ∈ �, that is, a formula φ such that ||φ|| ∈ E .
• If ||φ|| ∈ ER (so thatφ ∈ �R) then (bydefinitionofPBRS:Definition3) f (||φ||) =

f (�) and thus, ∀χ ∈ �, χ ∈ K ◦� φ if and only if f (�) ⊆ ||χ || if and only if
χ ∈ K and, by (34), K ◦ φ = K .

• If ||φ|| ∈ EC (so that φ ∈ �C ) then (recall that ∀χ ∈ �, χ ∈ K ◦� φ if and only
if f (||φ||) ⊆ ||χ ||)

– if ¬φ ∈ K then, by 4 of (33), f (||φ||) ⊆ ||χ || if and only if χ ∈ K ∗ φ = K ◦ φ,
– if ¬φ /∈ K then f (�) ∩ ||φ|| �= ∅ and thus, by hypothesis (1(a) of Part (B)
of Proposition 3), f (||φ||) = f (�) ∩ ||φ|| so that χ ∈ K ◦� φ if and only if
f (�) ∩ ||φ|| ⊆ ||χ || if and only if f (�) ⊆ (� \ ||φ||) ∪ ||χ || = ||φ → χ || if and
only if (φ → χ) ∈ K , if and only if χ ∈ [K ∪ {φ}]PL = K ∗ φ = K ◦ φ.
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• If ||φ|| ∈ EA (so that φ ∈ �A) then,

– if ¬φ ∈ K , that is, f (�) ∩ ||φ|| = ∅ then, by hypothesis, f (||φ||) = f (�) ∪ E ′
for some ∅ �= E ′ ⊆ ||φ|| so that E ′ = f (||φ||) ∩ ||φ||; hence χ ∈ K ◦� φ if and
only if f (||φ||) ⊆ ||χ || if and only if f (�) ⊆ ||χ || and f (||φ||) ∩ ||φ|| ⊆ ||χ ||, if
and only if χ ∈ K and, by 5 of (33), χ ∈ K ∗φ, that is, χ ∈ K ∩ (K ∗φ) = K ◦φ,

– if¬φ /∈ K then f (�)∩||φ|| �= ∅ and thus, by hypothesis, f (||φ||) = f (�) so that
χ ∈ K ◦� φ if and only if f (�) ⊆ ||χ || if and only ifχ ∈ K = K ∩[K ∪{φ}]PL =
K ∩ (K ∗ φ) = K ◦ φ. ��

C Necessary and sufficient conditions for rationalizability of a BPBRS

In this appendixwe provide necessary and sufficient conditions for a plausibility-based
BPBRS to be rationalizable.25

Proposition 5 Aplausibility-basedBPBRS 〈{�C ,�A,�R} , {EC , EA, ER} , f 〉 is ratio-
nalizable if and only if, for every sequence 〈E1, ..., En, En+1〉 in E with En+1 = E1,
conditions (A) and (B) below are satisfied:

(A) if (Ek ∩ �C ) ∩ f (Ek+1 ∩ �C ) �= ∅, ∀k = 1, ..., n, then (Ek ∩ �C ) ∩
f (Ek+1 ∩ �C ) = f (Ek ∩ �C ) ∩ (Ek+1 ∩ �C ) , ∀k = 1, ..., n.

(B) if Ek ∩ �C = ∅, ∀k = 1, ..., n, and (Ek ∩ �A) ∩ f (Ek+1 ∩ �A) �= ∅, ∀k =
1, ..., n, then (Ek ∩ �A)∩ f (Ek+1 ∩ �A) = f (Ek ∩ �A)∩(Ek+1 ∩ �A) , ∀k =
1, ..., n.

The proof of Proposition 5 makes repeated use of Proposition 6 below due to Hansson
(1968, Theorem 7, p. 455). We begin with a definition.

Definition 12 A simple choice structure is a triple 〈W ,F , h〉whereW is a non-empty
set, F ⊆ 2W , with ∅ /∈ F and W ∈ F , and h : F → 2W satisfies ∅ �= h(F) ⊆ F ,
for all F ∈ F .

Proposition 6 (Hansson, 1968) Let 〈W ,F , h〉 be a simple choice structure. Then the
following conditions are equivalent:

1. there exists a total pre-order �⊆ W × W such that, for all F ∈ F ,

h(F) = best� F
def= {w ∈ F : w � w′,∀w′ ∈ F},

25 Conditions A and B in Proposition 5 below are a generalization of what is known in the revealed
preference literature as the Strong Axiom of Revealed Preference (SARP), which is a necessary, but not
sufficient, condition for rationalizability by a total pre-order (see Hansson, 1968). Let 〈�,E, f 〉 be a simple
choice structure (Definition 12 below) and let

〈
E1, . . . , En , En+1

〉
be a sequence in E with En+1 = E1.

Then SARP is the following condition: if Ek ∩ f (Ek+1) �= ∅, ∀k ∈ {1, . . . , n}, then there exists a
j ∈ {1, . . . , n} such that E j ∩ f (E j+1) = f (E j ) ∩ E j+1. For the case where n = 2, SARP says the
following (interpreting f (E) as the set of alternatives chosen from E): if from a set of alternatives E1, x
is chosen when y and z are available, and if from some other set of alternatives E2, y is chosen while z is
available, then there can be no set of alternatives containing x and z where z is chosen and x is not (SARP
extends this condition to chains of any finite length).
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2. for every sequence 〈F1, ..., Fn, Fn+1〉 inF with Fn+1 = F1, if Fk ∩h(Fk+1) �= ∅,
∀k = 1, ..., n, then Fk ∩ h(Fk+1) = h(Fk) ∩ Fk+1, ∀k = 1, ..., n.

Proof of Proposition 5 First we show that if � rationalizes the plausibility-based
BPBRS 〈{�C ,�A,�R} , {EC , EA, ER} , f 〉 then (A) of Proposition 5 is satisfied. Con-
struct the following simple choice structure 〈W ,F , h〉:

⎧
⎨

⎩

W = �C

F = {E ∩ �C : E ∈ EC }
h : F → 2W is the restriction of f to F .

(35)

By Definition 9, �C �= ∅. By 2 of Definition 9, if E ∈ EC then E ∩ �C ∈ EC and by
2 of Definition 8, ∅ /∈ F and �C ∈ F . By 3(c) of Definition 8, h(F) �= ∅,∀F ∈ F .
By hypothesis, since the BPBRS is rationalized by the total pre-order �⊆ � × �, if
E ∈ EC then f (E) = f (E ∩ �C ) = best� (E ∩ �C ) ⊆ E ∩ �C and thus, letting
F = E ∩ �C , h(F) ⊆ F . Hence we have indeed defined a simple choice structure.
Let�C be the restriction of� to�C (that is,�C =� ∩ (�C × �C )). By construction,
since � rationalizes the given PBRS, we have that

∀F ∈ F , h(F) = best�C
F

def= {ω ∈ F : ω �C ω′,∀ω′ ∈ F}. (36)

Now fix an arbitrary sequence 〈E1, ..., En, En+1〉 in EC with En+1 = E1 such
that, ∀k = 1, ..., n, (Ek ∩ �C ) ∩ f (Ek+1 ∩ �C ) �= ∅. Let 〈F1, ..., Fn, Fn+1〉 be
the corresponding sequence in F , that is, for every k = 1, ..., n, Fk = Ek ∩ �C

(thus Fn+1 = F1). Then, for every k = 1, ..., n, Fk ∩ h(Fk+1) �= ∅. Thus, by
(36) and Proposition 6, Fk ∩ h(Fk+1) = h(Fk) ∩ Fk+1, ∀k = 1, ..., n, that is,
(Ek ∩ �C ) ∩ f (Ek+1 ∩ �C ) = f (Ek ∩ �C ) ∩ (Ek+1 ∩ �C ) , ∀k = 1, ..., n; that is,
(A) of Proposition 5 holds.
Next we show that if � rationalizes the plausibility-based BPBRS then Part (B) of
Proposition 5 is satisfied. If �A = ∅ there is nothing to prove. Assume, therefore,
that �A �= ∅ (so that, by 3 of Definition 9, �A ∈ E). Construct the following simple
choice structure 〈W ,G, g〉:

⎧
⎨

⎩

W = �A

G = {E ∩ �A : E ∈ EA}
g : G → 2W is the restriction of f to G.

(37)

By 3(d) of Definition 8, for every G ∈ G, g(G) �= ∅; furthermore, by hypothesis,
since the BPBRS is rationalized by the total pre-order �⊆ � × �, if E ∈ EA then
f (E) = f (E ∩ �A) = best� (E ∩ �A) ⊆ E ∩ �A and thus, letting G = E ∩ �A,
g(G) ⊆ G. Hence we have indeed defined a simple choice structure.
Let�A be the restriction of� to�A (that is,�A =� ∩ (�A × �A)). By construction,
since � rationalizes the given PBRS, we have that

∀G ∈ G, g(G) = best�A
G

def= {ω ∈ G : ω �A ω′,∀ω′ ∈ G}. (38)
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Nowfix an arbitrary sequence 〈E1, ..., En, En+1〉 in EA with En+1 = E1 (thus, by 3(a)
of Definition 9 Ek∩�C = ∅, ∀k = 1, ..., n) such that (Ek ∩ �A)∩ f (Ek+1 ∩ �A) �=
∅, ∀k = 1, ..., n. Let 〈G1, ...,Gn,Gn+1〉 be the corresponding sequence in G, that is,
for every k = 1, ..., n,Gk = Ek∩�A (thusGn+1 = G1). Then, for every k = 1, ..., n,
Gk ∩g(Gk+1) �= ∅. Thus, by (38) and Proposition 6,Gk ∩g(Gk+1) = g(Gk)∩Gk+1,
∀k = 1, ..., n, that is, (Ek ∩ �A) ∩ f (Ek+1 ∩ �A) = f (Ek ∩ �A) ∩ (Ek+1 ∩ �A) ,

∀k = 1, ..., n, that is, (B) of Proposition 5 holds.
Next we show that if the BPBRS 〈{�C ,�A,�R} , {EC , EA, ER} , f 〉 satisfies Prop-

erties (A) and (B) of Proposition 5 then it can be rationalized by a plausibility order
�⊆ � × �.

Let 〈W ,F , h〉 be the simple choice structure defined in (35). Fix an arbitrary
sequence 〈E1, ..., En, En+1〉 in EC with En+1 = E1 such that (Ek ∩ �C ) ∩
f (Ek+1 ∩ �C ) �= ∅, ∀k = 1, ..., n, and let 〈F1, ..., Fn, Fn+1〉 be the correspond-
ing sequence in F (that is, Fk = Ek ∩ �C , for all k = 1, ..., n). By the Property
(A) of Proposition 5, (Ek ∩ �C ) ∩ f (Ek+1 ∩ �C ) = f (Ek ∩ �C ) ∩ (Ek+1 ∩ �C ) ,

∀k = 1, ..., n, that is, Fk ∩ h (Fk+1) = h (Fk)∩ Fk+1, ∀k = 1, ..., n. Hence, since the
sequence was chosen arbitrarily, it follows from Proposition 6 that there exists a total
pre-order �C on W × W = �C × �C such that

∀F ∈ F , h(F) = best�C
F

def= {ω ∈ F : ω �C ω′,∀ω′ ∈ F}. (39)

Two cases are possible.
Case 1: �A = ∅. In this case, define �⊆ � × � as follows:

� = �C ∪ {
(ω, ω′) : ω ∈ �C and ω′ ∈ �R

} ∪ {
(ω, ω′) : ω,ω′ ∈ �R

}
. (40)

Then � is a plausibility order (Definition 6) and satisfies the properties given in (10).
Fix an arbitrary E ∈ E . If E ∩ �C �= ∅ then, by 2(c) of Definition 9, f (E) = f (E ∩
�C )

de f= h(E∩�C ) and by (39) h(E∩�C ) = best�C
(E∩�C ). By (40), ifω ∈ E∩�C

and ω′ ∈ E \�C then ω � ω′ so that best�E = best�(E ∩�C ) = best�C
(E ∩�C );

thus f (E) = best�E . If E ∩ �C = ∅ then E ⊆ �R and, by 3(b) Definition 3,

f (E) = f (�). Since � ∩ �C = �C �= ∅, f (�) = f (� ∩ �C )
de f= h(�C ) and by

(39) h(�C ) = best�C
(�C ); by (40), best�� = best�C

�C , so that f (�) = best��.
Case 2: �A �= ∅. In this case let 〈W ,G, g〉 be the choice structure defined in

(37). Fix an arbitrary sequence 〈E1, ..., En, En+1〉 in E with En+1 = E1 such that
Ek∩�C = ∅, ∀k = 1, ..., n, and (Ek ∩ �A)∩g (Ek+1 ∩ �A) �= ∅, ∀k = 1, ..., n and
let 〈G1, ...,Gn,Gn+1〉 be the corresponding sequence in G (that is, Gk = Ek ∩ �A,
for all k = 1, ..., n). By Property (B) of Proposition 5, (Ek ∩ �A)∩g (Ek+1 ∩ �A) =
g (Ek ∩ �A)∩(Ek+1 ∩ �A) , ∀k = 1, ..., n, that is,Gk ∩g (Gk+1) = g (Gk)∩Gk+1,

∀k = 1, ..., n. Hence, since the sequence was chosen arbitrarily, it follows from
Proposition 6 that there exists a total pre-order �A on W × W = �A × �A such that

∀G ∈ G, g(G) = best�A
G

def= {ω ∈ G : ω �A ω′,∀ω′ ∈ G}. (41)
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Define �⊆ � × � as follows (where �C is the total pre-order on �C × �C that
satisfies (39)):

� = �C ∪ �A

∪ {(ω, ω′) : ω ∈ �C and ω′ ∈ �A ∪ �R}
∪ {(ω, ω′) : ω ∈ �A and ω′ ∈ �R}
∪ {(ω, ω′) : ω,ω′ ∈ �R}.

(42)

Then � is a plausibility order (Definition 6) and satisfies the properties given in (10).
Fix an arbitrary E ∈ E . If E ∩ �C �= ∅ or E ⊆ �R , then f (E) = best�E by the
argument developed in Case 1. If E ∩ �C = ∅ and E ∩ �A �= ∅, then, by 3(d)

of Definition 9, f (E) = f (E ∩ �A)
de f= g(E ∩ �A) and by (41) g(E ∩ �A) =

best�A
(E ∩ �A). By (42), if ω ∈ E ∩ �A and ω′ ∈ �R then ω � ω′ so that

best�E = best�(E ∩ �A) = best�A
(E ∩ �A); thus f (E) = best�E . ��

D Proof of Proposition 4

(A) implies (B). Let C (with a finite set of states �) be a plausibility-based BPBRS
which is supplemented AGM consistent, that is, there exist supplemented AGM belief
revision functions ∗C : � → 2� and ∗A : � → 2� such that the function ◦ : � → 2�

defined by

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗C φ if φ ∈ �C

K ∩ (K ∗A φ) if φ ∈ �A

(43)

is an extension of ◦� : � → 2�, where, as usual, K = {φ ∈ � : f (�) ⊆ ||φ||},
� = {φ ∈ � : ||φ|| ∈ E} and K ◦� φ = {χ ∈ � : f (||φ||) ⊆ ||χ ||}. We need to show
that C is rationalizable by a plausibility order � on �, in the sense that, for every
E ∈ E = EC ∪ EA ∪ ER ,

f (E) =
⎧
⎨

⎩

best� E if E ∩ �C �= ∅

best� � ∪ best� E if E ∩ �C = ∅ and E ∩ �A �= ∅

best� � if E ⊆ �R

(44)

(as usual, for every F ⊆ �, best� F
def= {ω ∈ F : ω � ω′,∀ω′ ∈ F}). Extract from

C the simple choice structure 〈�C ,F , h〉 where F = {E ∩�C : E ∈ EC } and h is the
restriction of f to F . By 2(c) of Definition 9, (1) f (�) = f (� ∩ �C ) = f (�C ) =
h(�C ), so that {φ ∈ � : h(�C ) ⊆ ||φ||} = K and (2) �F

de f= {φ ∈ � : ||φ|| ∈ F} ⊆
�. For every φ ∈ �, let K ◦�F φ = {χ ∈ � : h(||φ||) ⊆ ||χ ||}. Then, by (43), the
supplemented AGM function ∗C is an extension of ◦�F and thus the simple structure
〈�C ,F , h〉 is AGM consistent in the sense of Definition 3 in Bonanno (2009) so that,
by Proposition 8 in Bonanno (2009), there exists a total preorder �C on �C such that,
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for every F ∈ F ,

h(F) = best�C
F

def= {ω ∈ F : ω �C ω′,∀ω′ ∈ F}. (45)

Two cases are possible.
Case 1: �A = ∅. In this case, define �⊆ � × � as in (39) and the argument to

show that, ∀E ∈ E, f (E) = best�E is a repetition of the argument used in Case 1 of
the proof of Proposition 5.

Case 2: �A �= ∅. In this case extract from C the simple choice structure 〈�,G, g〉
where G = {E ∩ �A : E ∈ EA} ∪ {�} and g is the restriction of f to G. By 3(d) of

Definition 9, �G
de f= {φ ∈ � : ||φ|| ∈ G} ⊆ �. By construction, since g(�) = f (�),

{φ ∈ � : g(�) ⊆ ||φ||} = K . Then, by (43), the supplemented AGM function ∗A is
an extension of ◦�G and thus the simple structure 〈�,G, g〉 is AGM consistent in the
sense of Definition 3 in Bonanno (2009) so that, by Proposition 8 in Bonanno (2009),
there exists a total preorder �′

A on � such that, for every G ∈ G,

g(G) = best�′
A
G

def= {ω ∈ G : ω �′
A ω̄,∀ω̄ ∈ G}. (46)

Let �A=�′
A ∩ (�A × �A) and define �⊆ � × � as in (42). Then the argument to

show that, ∀E ∈ E, f (E) = best�E is a repetition of the argument used in Case 2 of
the proof of Proposition 5.
(B) implies (A). Let C (with a finite set of states �) be a plausibility-based BPBRS
which is rationalized by a plausibility order � on � (Definition 6), in the sense that,
for every E ∈ E ,

f (E) =
⎧
⎨

⎩

best� E if E ∩ �C �= ∅

best� � ∪ best� E if E ∩ �C = ∅ and E ∩ �A �= ∅

best� � if E ⊆ �R .

(47)

We want to show that C is supplemented AGM consistent (Definition 10). Let
〈�C ,F , h〉 be the simple choice structure described above (F = {E ∩ �C : E ∈ EC }
and h is the restriction of f to F). Then, by (47), 〈�C ,F , h〉 is rationalized by the

total pre-order �C
def= � ∩ (�C × �C ), so that, by Proposition 7 in Bonanno (2009),

there exists a supplemented AGM function ∗C that extends the function ◦�F defined
above (K ◦�F φ = {χ ∈ � : h(||φ||) ⊆ ||χ ||}). Similarly, let 〈�,G, g〉 be the other
simple choice structure described above (G = {E ∩ �A : E ∈ EA} ∪ {�} and g is the
restriction of f to G). Then, by (47), 〈�,G, g〉 is rationalized by the total pre-order

�A
de f= � ∩ (�A × �A), so that, by Proposition 7 in Bonanno (2009), there exists a

supplemented AGM function ∗A that extends the function ◦�G defined above (that is,
K ◦�G φ = {χ ∈ � : g(||φ||) ⊆ ||χ ||}). Now define ◦ : � → 2� by

K ◦ φ =

⎧
⎪⎨

⎪⎩

K if φ ∈ �R

K ∗C φ if φ ∈ �C

K ∩ (K ∗A φ) if φ ∈ �A.

(48)
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We need to show that ◦ is an extension of ◦� . This is a consequence of the following
facts:

1. by Definitions 3 and 4, if ||φ|| ∈ ER , then φ ∈ �R and K ◦� φ = {χ ∈ � :
f (�) ⊆ ||χ ||} = K ,

2. ∗C is an extension of ◦�F (recall that, by Definition 4, if ||φ| ∈ EC then φ ∈ �C ),
3. ∗A is an extension of ◦�G (recall that, by Definition 4, if ||φ| ∈ EA then φ ∈ �A),
4. by Definition 9, if E ∈ EA then ∅ �= E ∩ �A ∈ EA and E ∩ �C = ∅, so that

by (47) f (E) = best� � ∪ best� E = f (�) ∪ best� E ; thus if ||φ|| ∈ EA then
f (||φ||) ⊆ ||χ || if and only if f (�) ⊆ ||χ || (that is, χ ∈ K ) and best� E ⊆ ||χ ||
(so that χ ∈ K ∗A φ) and thus K ◦� φ ⊆ K ∩ (K ∗A φ). ��
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