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Abstract
In this paper we present an extension of (bunched) separation logic, Boolean BI, with
epistemic anddynamic epistemicmodalities. This logic, called actionmodel separation
logic (AMSL), can be seen as a generalization of public announcement separation logic
in which we replace public announcements with action models. Then we not only
model public information change (public announcements) but also non-public forms
of information change, such as private announcements. In this context the semantics
for the connectives ∗ and −∗ from separation logic are epistemic versions of their
usual semantics. This is because formulas are interpreted in states, not in resources,
and agents may be uncertain between different states representing the same resource.
We present the logicAMSL and its semantics, with a detailed case study that highlights
its interest for modeling. We also prove the elimination of the dynamics modalities
and discuss some alternative epistemic semantics for the separation connectives.

Keywords Separation logic · Modal logic · Dynamic epistemic logic · Knowledge
and belief

1 Introduction

Epistemic Logic is the logic of knowledge and belief, which models and expresses
properties of knowledge that multiple agents may have about themselves and about
each other (Hintikka, 1962; van Ditmarsch et al., 2015). The models of epistemic
logic are based on possible worlds, that encode the possible states/configurations of
a considered system. The analysis of Moorean phenomena (Moore, 1942) played an
important role, for example that you cannot know that some fact p is true and that
you do not know this. On the one hand, this multi-agent logic of knowledge was
extended with group epistemic notions such as common knowledge (Aumann, 1976;
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McCarthy, 1990) and distributed knowledge (Hilpinen, 1977). On the other hand,
there was increased interest in the analysis of multiple agents informing each other
of their ignorance and knowledge, often inspired by logic puzzles (McCarthy, 1990;
Moses et al., 1986). This culminated in public announcement logic (PAL) (Plaza,
1989), wherein such informative actions became full members of the logical language
besides the knowledgemodalities; parallel developments of dynamic but not epistemic
logics of information change are van EmdeBoas et al. (1984) and vanBenthem (1989).
A further generalizationwas to non-public information change such as private or secret
announcements to some agentswhile other agents only partially observe that, inAction
Model Logic (AML) (Baltag et al., 1998); parallel, now lesser known, developments
are Gerbrandy and Groeneveld (1997) and van Ditmarsch (2000). Extensions of action
model logic with factual change have been proposed in van Benthem et al. (2006) and
van Ditmarsch and Kooi (2008). An independent quite successful line of research
involving knowledge dynamics, that we will bypass in this investigation, is the runs-
and-systems approach (Fagin et al., 1995, 1997).

In this context we want to enrich the models of such logics with more structure,
namely by considering the possible worlds as resources that can be combined or sepa-
rated. For that we consider the logic of Bunched Implications (BI) and its variants, like
Boolean BI (BBI) (O’Hearn & Pym, 1999; Pym, 2002), that mainly focus on resource
sharing and separation. The logics BI and BBI combine propositional classical addi-
tive (∧, →, ∨) and multiplicative (∗, −∗) connectives. The multiplicative conjunction
∗ expresses separation of resources and the multiplicative implication −∗ expresses
resource update (Galmiche et al., 2005; Pym, 2002).1 The semantics for BI and BBI
is interpreted on resources rather than states, where the main idea is that resources,
unlike states, can be used up, so to speak. To satisfy a standard implication p → q in a
given state it is sufficient to satisfy either ¬p or q in that state. In particular p → p is
trivial, a tautology.Whereas to satisfy p −∗ p it is far from guaranteed that after having
satisfied p in a resource, p is still satisfied in an updated resource. Let us remark that
we use here the term “separation logics” to denote the class of logics based on BI and
BBI and their modal extensions, even if originally separation logic (SL) is a bunched
logic, based on BBI, with resources being memory areas (Ishtiaq & O’Hearn, 2001),
and that successfully improved verification of programs with mutable data structures
(Reynolds, 2002).

Among extensions of separation logics with other modalities we can mention
Dynamic Modal BI (DMBI) (Courtault & Galmiche, 2018) and Epistemic Resource
Logic (ERL) (Galmiche et al., 2019). The first one is a BBI extension with the modal-
ities �, ♦, and a dynamic modality 〈a〉, that allows us to investigate how resource
properties change when dynamic processes are taking place, with an emphasis on
concurrent processes (Courtault & Galmiche, 2018). The second one is a BBI exten-
sion with epistemic modalities, that makes a modelling difference between ambient

1 One of the origins of dynamic epistemic logic is update semantics (Veltman, 1996), basically founded
on the linguistic analysis of conjunctions as changing the information state while being satisfied: if p
is true, then the information state updated with p may no longer satisfy p. There should be many other
relations between resource update −∗ and epistemic update than presented here, where they are orthogonal
dimensions.
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resources and local resources (assigned to each agent), and investigates their compo-
sition (Galmiche et al., 2019).

Two other extensions of separation logic are Epistemic separation logic (ESL)
(Courtault et al., 2015) and the related Public announcement separation logic (PASL)
(Courtault et al., 2019). These works present resource semantics including ways to
model uncertainty about resources and to model information updates reducing such
uncertainty. The first extends the language of separation logic with knowledge modal-
ities Ka (where a is one out of a finite set of agents), and the second extends it as
well with public announcement modalities representing reliable public observations,
as in PAL. In these logics the states or worlds represent resources, and the members
of the domain should represent a resource monoid. The monoidal structure entails
inclusion of a neutral element (neutral, or unit resource). The PASL semantics of
public announcement are therefore different from the usual model restricting PAL
semantics. A domain restriction risks eliminating the state representing the neutral
resource, in which case the domain of the resulting updated model would no longer
correspond to a resource monoid. However, as dynamic processes are carried out it is
vital that—in any case—the structure of our updated model still contains the neutral
element, so that the monoidal structure is preserved. In PASL the issue was resolved
by a so-called refinement semantics for public announcement (van Benthem & Liu,
2007), that ensures that no state (and therefore no resource) is ever removed from the
model.

In actionmodel separation logic (AMSL) that we present in this paperwe generalize
the dynamic aspects of PASL by replacing public announcements with action models.
In AMSL we not only model public information change (public announcements) but
also non-public forms of information change, such as private announcements, multi-
casts, etc.Also,we canmodel factual change.Unlike inPASL,wecannot identify states
with resources, as uncertainty about the actual state may involve uncertainty between
different states representing the same resource. As a consequence, our semantics for ∗
and −∗ cannot be as in BBI but are necessarily ‘epistemic’ versions of that, where we
detailedly motivate different choices. In the semantics of AMSL a state still represents
a resource, as in PASL, but different states can now be mapped to the same resource.
The updated epistemic model—obtained after action model execution—preserves all
state-to-resource mappings. But even if in some initial model only a single state was
mapped to some resource, the updated model may contain several copies of that state
still mapped to that same resource. Additionally, to preserve the resource monoid
part of our structure we also require that our action model is covering, a technical
requirement ensuring that the updated model always contains a state assigned to the
neutral resource. Just as for PASL, for this logic AMSL we show that we can eliminate
the dynamic modalities. In other words: every formula in the language with dynamic
modalities is equivalent to a formula in the language without these modalities. We also
provide a detailed case study of the use of our logic.

Section 2 presents the logic AMSL, its syntax, semantics, and associated structures,
with a focus on the motivation for the proposed semantics in comparison with the BBI
semantics. The expressivity is also analyzed. Section 3 provides a modelling example
in which we compare PASL and AMSL with regard to their abilities to model public
and private communications. Section 4 provides a reduction of dynamic modalities for
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action models, thus demonstrating that AMSL and ESL have the same expressivity.
Section 5 investigates alternative epistemic semantics for resource composition and
separation. Finally, Sect. 6 gives some conclusions and perspectives.

2 ActionModel Separation Logic

Throughout the contribution, given are a finite set of agents A (with members denoted
a, b, c, . . . ) and a countable set of propositional variables (atoms) P (with members
denoted p, q, p′, q ′, p1, p2, . . . ).

2.1 Syntax

The language L∗K⊗(A, P) of action model separation logic (AMSL) is defined as

ψ ::= p | ⊥ | I | ¬ψ | (ψ ∧ ψ) | (ψ ∗ ψ) | (ψ −∗ ψ) | Kaψ | [Ee]ψ

where Ee is an epistemic action (for language L∗K⊗(A, P)) as defined below. Mem-
bers of a language are denoted formulas and denoted with lower case Greek letters
ϕ,ψ, η, ϕ′, . . . .

Other propositional connectives are defined by abbreviation, such as ϕ → ψ :=
¬(ϕ∧¬ψ). Dualmodalities are also defined by abbreviation, such as K̂aϕ := ¬Ka¬ϕ

and 〈Ee〉ϕ := ¬[Ee]¬ϕ. Connective ∗ (resp. ∧) is the multiplicative (resp. additive)
conjunction and connective−∗ (resp.→) is themultiplicative (resp. additive) implica-
tion. Expression Kaψ stands for “agent a knows that ψ .” Expression [Ee]ϕ stands for
“after execution of action Ee, ϕ is true.”. Parentheses in formulas, and parameters A
and P in L∗K⊗(A, P), are omitted unless confusion results. The Ka in formula Kaψ

is an epistemic modality and the [Ee] in formula [Ee]ψ is a dynamic modality.
The following language fragments are also of interest. The fragment of the language

without the [Ee] modalities is denoted L∗K , and without Ka modalities as well it is
denoted L∗ (the language of separation logic). The fragment without ∗ and −∗ is
denoted LK⊗ (the language of action model logic) and without [Ee] as well we get
LK (the language of epistemic logic).

2.2 Structures

Definition 1 (Resource monoid) A partial resource monoid (or resource monoid) is
a structure R = (R, ◦, n) where R is a set of resources (with members denoted
r , r ′, r1, r2, . . . ) containing a neutral element n, and where ◦ : R × R → R is a
resource composition operator that is associative, that may be partial and such for all
r ∈ R, r ◦ n = n ◦ r = r . If r ◦ r ′ is defined we write r ◦ r ′ ↓ and if r ◦ r ′ is undefined
we write r ◦ r ′ ↑. When writing r ◦ r ′ = r ′′ we assume that r ◦ r ′ ↓.
Definition 2 (Epistemic frame) An epistemic frame (frame) is a structure (S,∼) such
that S is a set of states (with members denoted s, t, s′, t ′, . . . ) and∼ : A → P(S× S)

is a function that maps each agent a to an equivalence relation ∼(a) denoted as ∼a .
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Definition 3 (Epistemic resource model) Given a resource monoidR = (R, ◦, n), an
epistemic resource model (or plainlymodel) is a structureM = (S,∼, r , V ) such that
S is a domain of states (or worlds), ∼ : A → P(S × S) is a function that maps each
agent a to an equivalence relation ∼a , surjection r : S → R is a resource function,
that maps each state to a resource and where we write rs for r (s), and V : P → P(S)

is a valuation function, where V (p) denotes the set of states where variable p is true.
Given s ∈ S, the pair (M, s) is a pointed epistemic resource model, denoted Ms .

Definition 4 (Action model) Given a logical language L, an action model E is a
structure E = (E,≈, pre, post), such that E is a finite domain of actions (denoted
e, f , g, . . . ),≈a an equivalence relation on E for all a ∈ A, pre : E → L is a precon-
dition function, and post : E → P → L is a postcondition function such that every
post(e) is only finitely different from the identity: we can see its domain as a finite
set of variables Q ⊆ P . Given e ∈ E , a pointed action model (or epistemic action) is
a pair (E, e), denoted Ee. An action model is covering if

∨
e∈E pre(e) is a validity of

the logic of L. We require all action models to be covering.

2.3 Motivation for the Semantics

Before we present the epistemically motivated semantics for ∗ and−∗, we first wish to
motivate our deviation from the standard BBI semantics. In this subsection, for extra
clarity, instead of mathematical English terminology we write ∀ for ‘for all’, ∃ for
‘there is’, & for ‘and’ and ⇒ for ‘implies’.

The standard BBI semantics for ∗ and −∗ is as follows. Let a resource monoid
R = (R, ◦, n) be given and let r ∈ R and let ϕ,ψ ∈ L∗ (by ‘∃r ′r ′′’ we mean
∃r ′r ′′ ∈ R, etc.):

r |� ϕ ∗ ψ iff ∃r ′r ′′ : r = r ′ ◦ r ′′ & r ′ |� ϕ & r ′′ |� ψ

r |� ϕ −∗ ψ iff ∀r ′ : r ◦ r ′ ↓ & (r ′ |� ϕ ⇒ r ◦ r ′ |� ψ)

The AMSL semantics that we will propose is for states (worlds), not for resources.
This means that r |� ϕ is replaced by Ms |� ϕ. Multiple states can be mapped to a
single resource. This implies that we can either require all states mapped to a resource
to satisfy a given formula or that we require some state mapped to this resource to
satisfy that formula. Any r |� ϕ under the scope of a declared resource r can thus be
replaced by either ∀s : rs = r ⇒ Ms |� ϕ or by ∃s : rs = r & Ms |� ϕ.2

This straightforwardly gives us four versions for the ∗ semantics, denoted ∗∀∀, ∗∀∃,
∗∃∀, ∗∃∃, and four versions for the −∗ semantics, denoted −∗∀∀, −∗∀∃, −∗∃∀, −∗∃∃.

Let us make this computation for ∗∃∃, as an example. Assume M = (S,∼, r , V )

with r : S → R, and s ∈ S. By ‘∃t’ we mean ∃t ∈ S, etc.

Ms |� ϕ ∗∃∃ ψ

iff ∃r ′r ′′ : rs = r ′ ◦ r ′′ & (∃t : r t = r ′ & Mt |� ϕ) & (∃u : ru = r ′′ & Mu |� ψ)

2 Equivalently it could be replaced by ∀s ∈ r−1(r) : Ms |� ϕ respectively ∃s ∈ r−1(r) : Ms |� ϕ
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There are different ways to write this. For a compositional semantics specifiying
what is true in a state it seems preferable that the decomposition is also by quantifying
over states and not over resources. One can easily transform the above into an equiva-
lent description in terms of states. For the final paraphrase we revert to mathematical
English again.

Ms |� ϕ ∗∃∃ ψ

iff ∃r ′r ′′ : rs = r ′ ◦ r ′′ & (∃t : r t = r ′ & Mt |� ϕ) & (∃u : ru = r ′′ & Mu |� ψ)

iff ∃r ′r ′′tu : rs = r ′ ◦ r ′′ & r t = r ′ & ru = r ′′ & Mt |� ϕ & Mu |� ψ

iff ∃tu : rs = r t ◦ ru & Mt |� ϕ & Mu |� ψ

iff there are t, u ∈ S such that rs = r t ◦ ru,Mt |� ϕ and Mu |� ψ

For −∗∃∃ we get this.

Ms |� ϕ −∗∃∃ ψ

iff ∀r ′ : (rs ◦ r ′ ↓ & (∃t : r t = r ′ & Mt |� ϕ)) ⇒ (∃u : ru = rs ◦ r ′ & Mu |� ψ)

iff ∀r ′t : (rs ◦ r ′ ↓ & r t = r ′ & Mt |� ϕ) ⇒ (∃u : ru = rs ◦ r ′ & Mu |� ψ)

iff for all t ∈ S such that rs ◦ r t ↓ and Mt |� ϕ

there is u ∈ S such that ru = rs ◦ r t and Mu |� ψ

Not all versions of ∗ and −∗ have such straightforward paraphrases in terms of
states and epistemic models, and not all versions of ∗ and −∗ seem to make modelling
sense. We privilege the combination of ∗∃∃ with −∗∃∃ in the continuation, and we
therefore continue to write ∗ and −∗ for those, as usual in BBI. In a later section we
also discuss the combination of ∗∀∀ with−∗∀∀. The ∃∃ pair models the intuition that we
separate/update the resources as well as the epistemics, where the ∀∀ version models
that we separate/updates resource despite the uncertainty about resources. Section 5
will explain the difference in detail.

2.4 Semantics

In this section we present the semantics. Note that ∗ means ∗∃∃, and −∗ means −∗∃∃.

Definition 5 (Satisfaction relation) The satisfaction relation |� between pointed epis-
temic resource models Ms , where M = (S,∼, r , V ), for resources R = (R, ◦, n),
and where s ∈ S, and formulas in L∗K⊗(A, P), is defined by induction on formula
structure.

Ms |� p iff s ∈ V (p)
Ms |� ⊥ iff false
Ms |� I iff rs = n
Ms |� ¬ϕ iff Ms �|� ϕ

Ms |� ϕ ∧ ψ iff Ms |� ϕ and Ms |� ψ

Ms |� ϕ ∗ ψ iff there exist t, u ∈ S s.t. rs = r t ◦ ru,Mt |� ϕ and Mu |� ψ

Ms |� ϕ −∗ ψ iff for all t ∈ S such that rs ◦ r t ↓ and Mt |� ϕ,

there exists u ∈ S such that ru = rs ◦ r t and Mu |� ψ

Ms |� Kaϕ iff Mt |� ϕ for all t ∈ S such that s ∼a t
Ms |� [Ee]ϕ iff Ms |� pre(e)implies (M ⊗ E)(s,e) |� ϕ
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An Epistemic Separation Logic with Action Models 95

where in the clause for [Ee]ϕ, E is a covering action model, (M⊗E) is defined below,
and (s, e) ∈ D(M ⊗ E). A formula ϕ is valid on model M, notation M |� ϕ, iff for
all s ∈ S, Ms |� ϕ, and ϕ is valid, notation |� ϕ, iff ϕ is valid on all models M.

Definition 6 Given are resource monoid R = (R, ◦, n), epistemic resource model
M = (S,∼, r , V ), and covering action model E = (E,≈, pre, post). The updated
epistemic resource model M ⊗ E = (S′,∼′, r ′, V ′) is defined as

S′ = {(s, e) | Ms |� pre(e)}
(s, e) ∼′

a (t, f ) iff s ∼a t and e ≈a f
(s, e) ∈ V ′(p) iff Ms |� post(e)(p)
r ′
(s,e) = rs

Note that M ⊗ E is again an epistemic resource model for monoid (R, ◦, n). In
particular, let t ∈ S be the state such that r t = n. As E is a covering action model,
there is f ∈ E such thatMt |� pre( f ) so that (t, f ) is in the domain ofM⊗ E . This
is important, as r(t, f ) = r t = n.

2.5 Public and Private Announcement as ActionModels

Three common epistemic actions are the public announcement (Plaza, 1989), the semi-
private announcement (also known as semi-public announcement) (van Ditmarsch,
2002), and a version of the semi-private announcement where the non-informed agents
are uncertain if the announcement has been made (as described in for example (van
Ditmarsch et al., 2008), that we denote the suspected semi-private announcement. The
last epistemic action is non-deterministic so thatmultiple states in updatedmodelsmay
then map to the same resource.

For the public announcement we use the ‘refinement’ semantics of van Benthem
and Liu (2007), also employed in Courtault et al. (2019). The standard semantics of
Plaza (1989) that restricts the domain is unsuitable as we require the action model to
be covering. Whereas the refinement semantics for public announcement makes it a
covering action model.

Given some domain of states S, the identity relation is the binary relation on S
defined as I := {(s, s) | s ∈ S}, and the universal relation is the relation defined as
U := {(s, t) | s, t ∈ S} (that is, U = S × S).

We define the public announcement Ee where E = (E,≈, pre, post) and e ∈ E ,
the semi-private announcement E ′

e′ where E ′ = (E ′,≈′, pre′, post′) and e′ ∈ E ′, and
the suspected semi-private announcement E ′′

e′′ where E ′′ = (E ′′,≈′′, pre′′, post′′) and
e′′ ∈ E ′′. In all three cases the postconditions are trivial, i.e., for any action point e
of their respective domains E, E ′, E ′′, we have that post(e)(p) = p for any p ∈ P .
Postconditions are therefore omitted from the definitions.
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Let ϕ ∈ L∗K⊗, a ∈ A, B ⊆ A, b ∈ B and c ∈ A\B.

E = {e, f } E ′ = {e′, f ′} E ′′ = {e′′, f ′′, g′′}
≈a = I ≈′

b = I ≈′′
b = I

≈′
c = U ≈′′

c = U
pre(e) = ϕ pre′(e′) = ϕ pre′′(e′′) = ϕ

pre( f ) = ¬ϕ pre′( f ′) = ¬ϕ pre′′( f ′′) = ¬ϕ

pre′′(g′′) = �

By notational abbreviation for their respective modalities binding formulas, we
denote public announcement of ϕ binding ψ as [ϕ]ψ , semi-private announcement
(to subgroup B ⊆ A of agents) as [ϕ]Bψ and where [ϕ]{a}ψ is written [ϕ]aψ , and
suspected semi-private announcement as [ϕ]+Bψ ([ϕ]+a ψ), where [ϕ]−Bψ represents
that nothing happened (precondition �); and similarly for their diamond versions:
〈ϕ〉ψ , 〈ϕ〉Bψ , 〈ϕ〉+Bψ , 〈ϕ〉−Bψ . Note that [ϕ]−Bψ has the same meaning as [¬ϕ]−Bψ

and that 〈ϕ〉−Bψ has the same meaning as 〈¬ϕ〉−Bψ : either way, the precondition is �,
the notation is merely to evoke the preconditions for the informative part of the action
model.

2.6 Expressivity

The extension of the epistemic languagewith∗ and−∗ enhances the expressivity.Given
two logical languages L and L′ (and a logical semantics), L is at least as expressive
as L′ if for every formula in L there is an equivalent formula in L′, notation L ≥ L′.
If L ≥ L′ and L′ ≥ L, then L and L′ are equally expressive (as expressive). If L ≥ L′
and L′ � L, then L is more expressive than L′.

As LK is a sublanguage of L∗K , it is trivial that L∗K is at least as expressive as
LK . By example we now show that LK is not at least as expressive as L∗K . And from
both then follows that L∗K is more expressive then LK .

Consider the following epistemic resource model M = (S,∼, r , V ) for a single
agent a and a single atom p, with S = {s, t, u}, ∼a = S2, rs = 0, r t = 1, ru = 2,
and V (p) = {1}. The resource monoid R = {{0, 1, 2}, ◦} represents agent a (Alice)
being allowed to borrow 0, 1, or 2 books from a library, where 2 is the maximum
(we anticipate on a more detailed subsequent example in Sect. 3). Unfortunately Alice
forgot how many books she still has at home, and she is therefore uncertain between
all three options. The resource composition ◦ is defined as: r ◦ r ′ ↑ if r + r ′ > 2,
and otherwise r ◦ r ′ = r + r ′. Note that 0 is the neutral element n. A depiction of the
model is:

s t u

0 1 2
¬p p ¬p
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We now have, for example, that:

Ms |� ¬p ∧ ¬(p ∗ p)
Mt |� p
Mu |� p ∗ p

However, in the language without ∗ and −∗, we cannot distinguish the states s and
u. It is easy to show by formula induction that for all ϕ ∈ LK ,Ms |� ϕ iffMu |� ϕ,
where we note that for the inductive case ‘knowledge’ according to the semantics both
s and u satisfy the same formulas of form Kaϕ, because:Ms |� Kaϕ, iffMu |� Kaϕ,
iff Ms |� ϕ and Mt |� ϕ and Mu |� ϕ. On the other hand we can distinguish state
t from states s and u, namely by the atom p that is only true in t : Ms �|� p and
Mu �|� p, whereas Mt |� p.

Therefore LK is not at least as expressive as L∗K .

3 The Library Example

In this sectionwe illustrate the semanticswith a detailed example. It recalls the ‘library’
example from Courtault et al. (2019), where we now can give a much greater vari-
ety of dynamics, not only for public information change (public announcements) as
in Courtault et al. (2019) but for any type of epistemic action, such as also private
announcements.

Alice and Bob want to borrow books from a library. They are allowed to borrow
at most two books. Their book requests are known to the librarian. The librarian can
carry at most two requested books.

Formally, there two agents a, b (Alice and Bob) and three propositional vari-
ables pa, pb, c, standing for ‘Alice requests one book and Bob requests no books’,
‘Alice requests no books and Bob requests one book’, and ‘the librarian can carry
the requested books’. Resources are pairs (i, j) representing that Alice requests i
books and Bob requests j books. The resource monoid R = (R, ◦, n) is such that:
R = {(i, j) | 0 ≤ i, j ≤ 2}, the neutral element n = (0, 0), and resource composition
◦ is defined as: (i1, j1) ◦ (i2, j2) = (i1 + i2, j1 + j2) if these sums are both at most
2 and otherwise (i1, j1) ◦ (i2, j2)↑. The initial epistemic model isM = (S,∼, r ,V )

where

S = {i j | i, j ∈ N, 0 ≤ i, j ≤ 2}
∼a = {(i j, i ′ j ′) | i = i ′}
∼b = {(i j, i ′ j ′) | j = j ′}
r i j = (i, j)

V (pa) = {10}
V (pb) = {01}
V (c) = {i j | i + j ≤ 2}
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M2 M1 M3

public announcement c initial model semi-private ann. c to a

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2) – – –

(0, 0) (1, 0) (2, 0)

(0, 1) (1, 1) (2, 1)

(0, 2) (1, 2) (2, 2)

suspected semi-private announcement c to a
M4

Fig. 1 Alice and Bob request at most two books from a librarian who can carry at most two requested
books. Visual conventions are explained in the main text

It encodes that agents are aware of the previous scenario and otherwise only know
how many books they requested themselves.

The model is depicted in Fig. 1. In the figure we use the following conventions.
Links for Alice (a) are solid and links for Bob (b) are dashed. Grey means ‘cannot
carry’. States are labelled with resources they map to. ModelM1 is the initial model;
M2 is the result of the public announcement whether the librarian can carry the books;
M3 is the result of the semi-private announcement of that to Alice; M4 is the result
of the suspected semi-private announcement of that to Alice. The dashes between
the two submodels of M4 represent that states mapping to the same resource are
indistinguishable for Bob.

We now model check some formulas in this setting, in particular involving dynam-
ics.

• Alice and Bob both request one book.

M1
11 |� pa ∗ pb

Note that M1
11 �|� pa ∧ pb. The ordinary conjunction is not satisfied here, only

the multiplicative conjunction. The ordinary conjunction is unsatisfiable on this
model for the given set of resources, as a state cannot be mapped to (0, 1) and
(1, 0) simultaneously.

• …but neither Alice nor Bob knows that! For example:

M1
11 �|� Ka(pa ∗ pb)

This is because Alice does not know that Bob has requested one book, although
she knows that she has one book herself. Alice also considers it possible that Bob
has requested two books, that is:M1

11 |� K̂a(pa ∗ (pb ∗ pb)). Or that Bob has not
requested any book.
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• Even if Alice and Bob request one book, they are both uncertain whether the
librarianwill be able to handle (carry) their request. Let us abbreviate Kaϕ∨Ka¬ϕ

(Alice knows whether ϕ) by Kwaϕ, and similarly for Kwbϕ (Bob knows whether
ϕ).

M1 |� (pa ∗ pb) → (¬Kwac ∧ ¬Kwbc)

Note that this is a model validity (only a single state, 11, satisfies the antecedent).
• However, after the librarian informed them whether can he carry the requested
books, they know that (where the resulting model is M2).

M1 |� [c](Kwac ∧ Kwbc) as well as M1 |� [¬c](Kwac ∧ Kwbc)

In our public announcement semantics, the update due to some ϕ (such as c) is
the same as the update due to ¬ϕ. The [ϕ] versions of the announcement modality
are conditional to the truth of the announcement. Only the dual versions of the
announcement modality assume the truth of the announcement. So, for example:

M1
11 |� 〈c〉(Kwac ∧ Kwbc) as well as M1

21 |� 〈¬c〉(Kwac ∧ Kwbc)

• Let Alice request two books and Bob one book, as above. We will now illustrate
the different ways for the librarian to inform them. The public announcement way
is as above: shouting “Are you out of your mind, I cannot carry that”. This has
other interesting consequences as well, for example:

M1
21 |� 〈¬c〉(pb ∗ Kac)

We can decompose the resource 21 into 01 and 20, and the (state labelled with the)
01 satisfies pb whereas 20 satisfies Kac, formally: M2

01 |� pb and M2
20 |� Kac,

because 20 is the only state Alice considers possible inM2.
• However, the librarian might also have chosen to inform Alice privately that he
cannot carry the requested books. For example, because the librarian might find it
more reasonable that Alice changes her order and requests fewer books than that
Bob changes his order. We now get:

M1
21 |� 〈¬c〉a(pb ∗ Kac)

Again, afterwards pb ∗ Kac is true in the state labeled 21, however this is now in
model M3. A difference between M2 and M3 is, of course, that Bob does not
know that Alice knows that the librarian cannot carry the books:

M1
21 |� 〈¬c〉a¬KbKa¬c,

but he knows that Alice now knows whether c:

M1
21 |� 〈¬c〉aKbKwac.
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• For a further complication, Bob may be uncertain whether Alice is privately
informed, what we defined as ‘suspected semi-private announcement’. We now
again have that:

M1
21 |� 〈¬c〉+a (pa ∗ Kac)

The model resulting from this action isM4, with as designated state the right one
from the two labelled with (2, 1) in Fig. 1. Similarly, we obtain

M1
21 |� 〈¬c〉+a (pa ∗ ¬Kac)

in which case ¬Kac is validated by the left state labelled with (2, 1) in the figure.
Let the ‘name’ of suspected semi-private announcements with modality 〈ϕ〉+B be
ϕ+
B , and analogously for ϕ−

B . Then in accordance with our notational conventions
the right (2, 1) is formally state (21,¬c+

a ) in the modal product and the left (2, 1)
is is formally state (21,¬c−

a ).
Again,M4

(21,¬c−
a )

|� pb ∗¬Kac, because (2, 0) ◦ (0, 1) = (2, 1),M4
(01,c−

a )
|� pb

and M4
(20,c−

a )
�|� Kac because Alice is uncertain between (2, 0), (2, 1) and (2, 2)

in that part of the model.
Also, to continue our previous example, unlike before we now have that Bob does
not know that Alice knows whether c, because Bob is uncertain which of 〈c〉+a and
〈c〉−a took place. That is:

M1
21 |� 〈¬c〉aKbKwac

M1
21 |� 〈¬c〉+a ¬KbKwac

• If Alice and Bob both did not request a book, then if they both were to request a
book, the librarian can carry the requested books:

M1
00 |� (pa ∗ pb) −∗ c

ConsiderM1
00. The unique resource satisfying pa ∗ pb is (1, 1), (0, 0) ◦ (1, 1) =

(1, 1), and indeed M1
11 |� c. However, Alice does not know this, nor does Bob:

M1
00 |� ¬Ka((pa ∗ pb) −∗ c) ∧ ¬Kb((pa ∗ pb) −∗ c)

because in fact they consider it possible that the librarian is the unable to carry the
books:

M1
00 |� K̂a((pa ∗ pb) −∗ ¬c) ∧ K̂b((pa ∗ pb) −∗ ¬c)

This is because Alice and Bob both consider it possible that the other agent already
requested as least one book. For example, Alice considers possible that the actual
state is (0, 1), and (0, 1) ◦ (1, 1) = (2, 1), in which case (pa ∗ pb) −∗ ¬c is true.
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For another example, (pa ∗ pa ∗ pa) −∗ ⊥ is a model validity, as (1, 0) ◦ (1, 0) ◦
(1, 0) ↑.

Expressivity revisited The library example of this section is not so different from the
example in the previous section demonstrating that ∗ and −∗ increase the expressivity
of the logical language. Like in that example, also herewe have few atoms, namely only
pa and pb representing the request of one book by a respectively b, where all other
states can be described by composition of these ‘basic’ resources; and additionally
atom c. A fair question is whether without ∗ and −∗ we can still distinguish all the
states of the models involved in the library example. It is easy to see that if we can
distinguish all states in the initial model, then also in any of its subsequent updates
due to announcements.

Like before, we can distinguish all states in the initial model M by a formula in
the language of separation logicL∗. In other words, for all states i j in domain S ofM
there is unique formula in L∗ that is only true in i j . This is elementary, as any i j has
a (not necessarily unique) decomposition into other resources distinguishing it from
all other resources. For example:

M22 |� pa ∗ pa ∗ pb ∗ pb
M12 |� pa ∗ pb ∗ pb
. . .

Unlike before, all states in the initial model M can also be distinguished by a
(purely) epistemic formula, that is, in the language LK (without ∗ and −∗). This is
maybe not so evident. Note the (diagonal) mirror symmetry in the formulas below.

M00 |� Kac ∧ Kbc M10 |� pa M20 |� Kbc ∧ K̂a¬c ∧ ¬pa
M01 |� pb M11 |� K̂a pa ∧ K̂b pb M21 |� ¬c ∧ K̂b pb
M02 |� Kac ∧ K̂b¬c ∧ ¬pb M12 |� ¬c ∧ K̂a pa M22 |� ¬c ∧ Ka¬pa ∧ Kb¬pb

Postconditions and factual change The reader may observe that we did not model
factual change in our examples, although our logical semantics allow for that, as the
action models have postconditions that can change the value of factual propositions.
The presence of factual change seems slightlymore suitable for different combinations
of resource update and information update, wherein the resource functions r can map
states to different resources before and after the update (thus reflecting a simultaneous
resource update). This is deferred to future research. As a mere example of factual
change, and to ponder about the consequences this may have, consider a singleton
actionmodelwith trivial precondition, accessible for all agents, andwith postcondition
(for the single event e): post(e)(pa) = pa ∗ pa . This has the effect that the denotation
of pa is changed, for example, in themodelM1 above it was (1, 0) but it now becomes
(2, 0). In such an updated model, it is now the case that pa ∗ pa −∗ ⊥, unlike above,
because the truth of pa ∗ pa no longer means that Alice wants 1 + 1 = 2 books but
that she wants 2+ 2 = 4 books, which, as we know, is definitely not permitted by the
librarian: (2, 0) ◦ (2, 0) ↑.
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4 Eliminating Dynamic Modalities

In this section we show that every formula in L∗K⊗ is equivalent to a formula in
L∗K wherein therefore no action model modality occurs. In order words, we reduce
any given formula to an equivalent formula without dynamic modalities. From this it
follows that the expressivity of the two languages is the same.

The usual strategy for such reductions is to show that whenever a dynamic modality
x binds a given formula with a main logical connective y, this is equivalent to some
formula wherein the main connective is y but where the constituent or constituents
bound by y may involve dynamic modality x . If we then also have some basic case
where x binds an propositional variable that can be shown to be equivalent to some
formula not containing x , we can formally define some recursive rewriting procedure
for which we ‘merely’ have to show termination in the fragment without modalities x .
To prove termination one defines a complexity or weight measure on formulas, which
allows to compare a formula with formulas that are not subformulas of it.

A first step towards such a proof for our current logic is to show that whenever an
action model modality binds a multiplicative conjunction ∗ or multiplicative impli-
cation −∗, this is equivalent to a formula with main connective ∗ or −∗, respectively,
and where the action models occur in the constituents of that. This is formalized in
the following lemma, wherein we use diamond versions of the modalities to obtain
a smoother proof. We recall that ∗ means ∗∃∃ and that −∗ means −∗∃∃. By ‘

∨
f ’ we

mean ‘
∨

f ∈E ’, etc.

Lemma 1 The following schemas are valid in AMSL:

〈Ee〉(ϕ ∗ ψ) ↔ pre(e) ∧ ∨
f ,g(〈E f 〉ϕ ∗ 〈Eg〉ψ)

〈Ee〉(ϕ −∗ ψ) ↔ pre(e) ∧ ∧
f (〈E f 〉ϕ −∗ ∨

g〈Eg〉ψ)

Proof We first show the validity for ∗. Let M = (S,∼, r , V ) and s ∈ S be arbitrary.
(⇒)
Assume Ms |� 〈Ee〉(ϕ ∗ ψ). Then Ms |� pre(e) and (M ⊗ E)(s,e) |� ϕ ∗ ψ .

Therefore, there are (t, f ), (u, g) ∈ D(M ⊗ E) such that r(s,e) = r(t, f ) ◦ r(u,g),
(M ⊗ E)(t, f ) |� ϕ and (M ⊗ E)(u,g) |� ψ . Also, as (t, f ), (u, g) ∈ D(M ⊗ E),
we may conclude that Mt |� pre( f ) and Mu |� pre(g). From (M ⊗ E)(t, f ) |� ϕ

and Mt |� pre( f ) it follows that Mt |� 〈E f 〉ϕ. From (M ⊗ E)(u,g) |� ψ and
Mu |� pre(g) it follows that Mu |� 〈Eg〉ψ . Then, from r(s,e) = r(t, f ) ◦ r(u,g),
r(s,e) = rs , r(t, f ) = r t and r(u,g) = ru we obtain that rs = r t ◦ ru . Finally, from
rs = r t ◦ ru ,Mt |� 〈E f 〉ϕ, andMu |� 〈Eg〉ψ we obtain thatMs |� 〈E f 〉ϕ ∗ 〈Eg〉ψ ,
so that also Ms |� ∨

f ,g(〈E f 〉ϕ ∗ 〈Eg〉ψ) and together with the already obtained
Ms |� pre(e) we get the required Ms |� pre(e) ∧ ∨

f ,g(〈E f 〉ϕ ∗ 〈Eg〉ψ).
(⇐)
AssumeMs |� pre(e)∧∨

f ,g(〈E f 〉ϕ∗〈Eg〉ψ).We follow a fairly similar argument
but now in the other direction. From the assumption we obtain thatMs |� pre(e) and
that there are f , g ∈ E such thatMs |� 〈E f 〉ϕ ∗ 〈Eg〉ψ . Therefore there are t, u ∈ S
such that rs = r t ◦ ru , Mt |� 〈E f 〉ϕ and Mu |� 〈Eg〉ψ). From that we obtain,
as before, that (M ⊗ E)(t, f ) |� ϕ and (M ⊗ E)(u,g) |� ψ . From Ms |� pre(e)
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we get that (s, e) ∈ D(M ⊗ E) and from that and rs = r t ◦ ru we now obtain
r(s,e) = r(t, f ) ◦ r(u,g). Therefore (M ⊗ E)(s,e) |� ϕ ∗ ψ so that with Ms |� pre(e)
we also have Ms |� 〈Ee〉(ϕ ∗ ψ), as required.

We now show the validity for −∗. Again, let M = (S,∼, r , V ) and s ∈ S be
arbitrary.

(⇒)
Assume Ms |� 〈Ee〉(ϕ −∗ ψ). Then Ms |� pre(e) as well as (M ⊗ E)(s,e) |�

ϕ −∗ ψ . In order to prove the required, let f ∈ E and let t ∈ S be such that rs ◦ r t ↓,
and assume that Mt |� 〈E f 〉ϕ. We now wish to prove that there is a u ∈ S such that
ru = rs ◦ r t andMu |� ∨

g〈Eg〉ψ , where the latter means that there is a g ∈ E such
that Mu |� 〈Eg〉ψ . We prove this as follows.

From Mt |� 〈E f 〉ϕ we obtain that Mt |� pre( f ) and (M ⊗ E)(t, f ) |� ϕ. From
rs ◦ r t ↓ and (s, e), (t, f ) ∈ D(M⊗ E) we obtain that r(s,e) ◦ r(t, f ) ↓. We recall that
t and f were arbitrary and therefore (t, f ) as well. From (M⊗E)(s,e) |� ϕ −∗ ψ and
r(s,e) ◦ r(t, f ) ↓ for arbitrary (t, f )we obtain that there is a (u, g) ∈ D(M⊗E) (which
implies that Mu |� pre(g)) such that r(u,g) = r(s,e) ◦ r(t, f ) and (M ⊗ E)(u,g) |� ψ .
From Mu |� pre(g) and (M ⊗ E)(u,g) |� ψ it follows that Mu |� 〈Eg〉ψ , which
fulfils the proof requirement.

(⇐)
Assume Ms |� pre(e) ∧ ∧

f (〈E f 〉ϕ −∗ ∨
g〈Eg〉ψ). In order to prove Ms |�

〈Ee〉(ϕ −∗ ψ), and given that Ms |� pre(e), it remains to prove (M ⊗ E)(s,e) |�
ϕ −∗ ψ . In order to prove that, let us assume arbitrary (t, f ) ∈ D(M ⊗ E) (such
that Mt |� pre( f )) for which r(s,e) ◦ r(t, f ) ↓, and that M ⊗ E)(t, f ) |� ϕ. From
the assumption Ms |� ∧

f (〈E f 〉ϕ −∗ ∨
g〈Eg〉ψ) we obtain that in particular Ms |�

〈E f 〉ϕ −∗ ∨
g〈Eg〉ψ . From r(s,e) ◦ r(t, f ) ↓ we obtain that rs ◦ r t ↓ (and that t is also

arbitrary). Also, from M ⊗ E)(t, f ) |� ϕ and Mt |� pre( f ) we get Mt |� 〈E f 〉ϕ.
Then, from that, from rs ◦ r t ↓ and from Ms |� 〈E f 〉ϕ −∗ ∨

g〈Eg〉ψ it follows
that there is u ∈ S such that ru = rs ◦ r t and Mu |� ∨

g〈Eg〉ψ . Choose such
g ∈ E . Then Mu |� 〈Eg〉ψ , so that (as before) (M ⊗ E)(u,g) |� ψ . As we also have
r(u,g) = r(s,e) ◦ r(t, f ), this fulfils our requirement. ��

Although the lemma is formulated for the diamond version of the modalities, this
is—nearly, but not quite—irrelevant. There are equivalent versions using the box
version primitive modalities of the logical language. Now to get these box versions
we cannot simply use that 〈Ee〉ϕ is equivalent to ¬[Ee]¬ϕ, thus getting:

¬[Ee]¬(ϕ ∗ ψ) ↔ pre(e) ∧ ∨
f ,g(¬[E f ]¬ϕ ∗ ¬[Eg]¬ψ)

¬[Ee]¬(ϕ −∗ ψ) ↔ pre(e) ∧ ∧
f (¬[E f ]¬ϕ −∗ ∨

g ¬[Eg]¬ψ)

There are no axioms in BBI for the interaction between negation and themultiplica-
tive conjunction and implication: ¬(ϕ ∗ ψ) is not equivalent to a formula with main
connective ∗, and ¬(ϕ −∗ ψ) is not equivalent to a formula with main connective −∗.
Therefore, it is also unclear how, for example, [Ee]¬(ϕ ∗ψ) is equivalent to a formula
where [Ee] binds a formula with main connective ∗. And therefore, the iteratively
defined reduction cannot proceed.
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As pointed action models are deterministic programs, like public announcement,
there is however an alternative road leading to our goal.We then use that for any Ee and
ϕ, 〈Ee〉ϕ is equivalent to pre(e) ∧ [Ee]ϕ, and [Ee]ϕ is equivalent to pre(e) → 〈Ee〉ϕ.
Thus we obtain

[Ee](ϕ ∗ ψ) ↔ pre(e) → ∨
f ,g((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ))

[Ee](ϕ −∗ ψ) ↔ pre(e) → ∧
f ((pre( f ) ∧ [E f ]ϕ) −∗ ∨

g(pre(g) ∧ [Eg]ψ))

which have the required shape of reduction axioms. As the diamond formulation is
more elegant, we stick to that. Later proofs by formula induction require us to show that
the right equivalent of the above box version is less complex than the left equivalent,
and we will then use the box formulation again.

Proposition 2 (Reduction axioms for actionmodels)The following schemas are valid.

[Ee]p ↔ pre(e) → post(e)(p)
[Ee]⊥ ↔ pre(e)
[Ee]I ↔ pre(e) → I
[Ee](ϕ ∧ ψ) ↔ [Ee]ϕ ∧ [Ee]ψ
[Ee]¬ϕ ↔ pre(e) → ¬[Ee]ϕ
[Ee]Kaψ ↔ pre(e) → ∧

e∼a f Ka[E f ]ψ
〈Ee〉(ϕ ∗ ψ) ↔ pre(e) ∧ ∨

f ,g(〈E f 〉ϕ ∗ 〈Eg〉ψ)

〈Ee〉(ϕ −∗ ψ) ↔ pre(e) ∧ ∧
f (〈E f 〉ϕ −∗ ∨

g〈Eg〉ψ)

Proof The validities involving ∗ and −∗ were shown in Lemma 1. All the remaining
are well-known validities of action model logic, see for example van Ditmarsch et al.
(2008, Table 6.1, page 165) and van Ditmarsch and Kooi (2008) for the case [Ee]p. ��

We note that the instantiation of the reductions of ∗ and−∗ for public announcement
are therefore those already reported before in Courtault et al. (2019). They are as
follows.

〈χ〉(ϕ ∗ ψ) ↔ χ ∧ (

(〈χ〉ϕ ∗ 〈χ〉ψ) ∨
(〈χ〉ϕ ∗ 〈¬χ〉ψ) ∨
(〈¬χ〉ϕ ∗ 〈χ〉ψ) ∨
(〈¬χ〉ϕ ∗ 〈¬χ〉ψ)

)

〈χ〉(ϕ −∗ ψ) ↔ χ ∧ (

(〈χ〉ϕ −∗ 〈χ〉ψ ∨ 〈¬χ〉ψ) ∧
(〈¬χ〉ϕ −∗ 〈χ〉ψ ∨ 〈¬χ〉ψ)

)
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Next, we define the complexity c : L∗K⊗ → N and the translation t : L∗K⊗ →
L∗K . These extend similarly defined c and t in vanDitmarsch et al. (2008, p. 194–196).

Definition 7 (Translation) The translation t : LK∗⊗ → LK∗ is defined by induction
on the structure of formulas.

t(p) = p
t(⊥) = ⊥
t(I ) = I
t(¬ϕ) = ¬t(ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ)

t(Kaϕ) = Kat(ϕ)

t(ϕ ∗ ψ) = t(ϕ) ∗ t(ψ)

t(ϕ −∗ ψ) = t(ϕ) −∗ t(ψ)

t([Ee]p) = t(pre(e) → post(e)(p))
t([Ee]¬ϕ) = t(pre(e) → ¬[Ee]ϕ)

t([Ee](ϕ ∧ ψ)) = t([Ee]ϕ ∧ [Ee]ψ)

t([Ee]Kaϕ) = t(pre(e) → ∧
e∼a f Ka[E f ]ϕ)

t([Ee](ϕ ∗ ψ)) = t(pre(e) → ∨
f ,g((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ)))

t([Ee](ϕ −∗ ψ)) = t(pre(e) → ∧
f ((pre( f ) ∧ [E f ]ϕ) −∗ ∨

g(pre(g) ∧ [Eg]ψ)))

Note that the translation only meaningfully affects formulas with action model modal-
ities. It is also easy to see that also t(ϕ ∨ ψ) = t(ϕ) ∨ t(ψ) and t(ϕ → ψ) = t(ϕ) →
t(ψ).

Definition 8 (Complexity) The complexity measure c : LK∗⊗ → N is defined by
induction on the structure of formulas.

c(x) = 1 for x ∈ P or x = ⊥, I
c(¬ϕ) = 1 + c(ϕ)

c(ϕ@ψ) = 1 + max{c(ϕ), c(ψ)} for @ = ∧, ∗,−∗
c(Kaϕ) = 1 + c(ϕ)

c([Ee]ϕ) = c(E) · c(ϕ)

c(E) = 2 + 2|E |2 + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}

For the connectives that are defined by abbreviation, and that occur in the reduction
axioms, we have to calculate derived complexities byway of their definitional abbrevi-
ations. For disjunctionwe have that c(ϕ∨ψ) = c(¬(¬ϕ∧¬ψ)) = max{c(ϕ), c(ψ)}+
4. For implication we have that c(ϕ → ψ) = c(¬(ϕ ∧¬ψ)) = max{c(ϕ), c(ψ)}+3.
This complicates the calculations somewhat. Below, we may change the names of
the actions and atoms quantified over in the set max{c(pre(e)), c(post(e)(p)) | e ∈
E, p ∈ P}, to clearly distinguish them from already declared actions e and atoms p.
Note that for any E , c(E) ≥ 5 as |E | ≥ 1 and max{c(pre(e)), c(post(e)(p)) | e ∈
E, p ∈ P} ≥ 1.
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Lemma 3 For all p, ϕ, ψ ∈ L∗K :

c([Ee]p) > c(pre(e) → post(e)(p))
c([Ee]¬ϕ) > c(pre(e) → ¬[Ee]ϕ)

c([Ee](ϕ ∧ ψ)) > c([Ee]ϕ ∧ [Ee]ψ)

c([Ee]Kaϕ) > c(pre(e) → ∧
e∼a f Ka[E f ]ϕ)

c([Ee](ϕ ∗ ψ)) > c(pre(e) → ∨
f ,g((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ)))

c([Ee](ϕ −∗ ψ)) > c(pre(e) → ∧
f ((pre( f ) ∧ [E f ]ϕ) −∗ ∨

g(pre(g) ∧ [Eg]ψ)))

Proof We successively show all different cases.

c([Ee]p) = c(E) · c(p)
= c(E)

= 2 + 2|E |2 + max{c(pre( f )), c(post( f )(q)) | f ∈ E, q ∈ P}
> 3 + max{c(pre(e)), c(post(e)(p))}
= c(¬(pre(e) ∧ ¬post(e)(p))
= c(pre(e) → post(e)(p))

c([Ee]⊥) = c(E) · c(⊥) p
= c(E)

> c(pre(e)) as c(pre(e) ≤ max{c(pre( f )), c(post( f )(p)) . . . }
c([Ee]I ) = c(E) · c(I )

= c(E)

= 2 + 2|E |2 + max{c(pre( f )), c(post( f )(p)) | f ∈ E, p ∈ P}
> 3 + c(pre(e))
= c(pre(e) → I )

c([Ee]¬ϕ) = c(E) · c(¬ϕ)

= c(E) · (1 + c(ϕ))

= c(E) + c(E) · c(ϕ) as c(E) > 4
> 4 + c(E) · c(ϕ)

= 3 + max{c(pre(e)), 1 + c(E) · c(ϕ)}
= 3 + max{c(pre(e)), 1 + c([Ee]ϕ)}
= 3 + max{c(pre(e)), c(¬[Ee]ϕ)}
= c(pre(e) → ¬[Ee]ϕ)

c([Ee](ϕ ∧ ψ)) = c(E) · c(ϕ ∧ ψ)

= c(E) · (max{c(ϕ), c(ψ)} + 1)
= c(E) · max{c(ϕ), c(ψ)} + c(E)

> c(E) · max{c(ϕ), c(ψ)} + 1 as c(E) > 1
= max{c(E) · c(ϕ), c(E) · c(ψ)} + 1
= max{c([Ee]ϕ), c([Ee]ψ)} + 1
= c([Ee]ϕ ∧ [Ee]ψ)

c([Ee]Kaϕ) = c(E) · c(Kaϕ)

= c(E) · (1 + c(ϕ))

= c(E) + c(E) · c(ϕ))

> 3 + |E | + c(E) · c(ϕ) as c(E) > 4 + |E |
= 3 + max{c(pre(e)), 1 + |E | − 1 + c(E) · c(ϕ)} as c(pre(e)) < c(E)

= 3 + max{c(pre(e)), 1 + |E | − 1 + c([E f ]ϕ) | f ∈ E} ∀ f : c([E f ]ϕ) = c(E)c(ϕ)

> 3 + max{c(pre(e)), c(∧ f ∼ae Ka[E f ]ϕ)}
= c(pre(e) → ∧

f ∼ae Ka[E f ]ϕ)
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For the final two cases, first note that for any action f and formula ϕ, c(pre( f ) ∧
[E f ]ϕ) = 1 + c(E)c(ϕ) (∗), which can be shown as follows:

c(pre( f ) ∧ [E f ]ϕ) = 1 + max{c(pre( f )), c([E f ]ϕ)}
= 1 + max{c(pre( f )), c(E) · c(ϕ)}
= 1 + c(E)c(ϕ) as c(pre( f )) < c(E) and 1 < c(ϕ)

We proceed with case [Ee](ϕ ∗ ψ):

c([Ee](ϕ ∗ ψ))

= c(E) · c(ϕ ∗ ψ)

= c(E) · (1 + max{c(ϕ), c(ψ)})
= c(E) + c(E) · max{c(ϕ), c(ψ)}
> 2 + c(pre(e)) + 2|E |2 + c(E) · max{c(ϕ), c(ψ)}

as c(E) > 2 + c(pre(e)) + 2|E |2
= 2 + c(pre(e)) + 2|E |2 − 1 + max{1 + c(E)c(ϕ), 1 + c(E)c(ψ)}
= 2 + c(pre(e)) + 2|E |2 − 1 + max{1 + c(E)c(ϕ), 1 + c(E)c(ψ) | f , g ∈ E}
= 2 + c(pre(e)) + 2|E |2 − 1 +
max{c((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ))) | f , g ∈ E} (∗)

= 2 + c(pre(e)) + c

⎛

⎝
∨

f ,g

((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ))

⎞

⎠

= c(pre(e) →
∨

f ,g

((pre( f ) ∧ [E f ]ϕ) ∗ (pre(g) ∧ [Eg]ψ)))

The final case [Ee](ϕ −∗ ψ) is very similar to the preceding case [Ee](ϕ ∗ ψ), except
that instead of weight 2|E |2 − 1 apported by

∨
f ,g we have weight 2|E |2 − 3|E | + 1

apported by
∧

f and
∨

g . As the conjunction is a primitive operator, the
∧

f conjuncts
contribute only |E | − 1, this has to be multiplied by the

∨
g disjuncts contributing

2|E |−1, which makes 2|E |2 −3|E |+1. As 2|E |2 −3|E |+1 < 2|E |2 −1, the proof
can then proceed as in the case ∗. ��

The eye-catching weight in the proof is of course

c(E) = 2 + 2|E |2 + max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P}.

It seems appropriate to explain why this seemingly haphazard weight is exactly right,
that is, the minimum needed.

• The 2 is needed to show the cases atoms p, I and negation. We note that 1 would
be insufficient. The minimum weight of an action model is 5, as |E | ≥ 1 and
max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P} ≥ 1.
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• The2|E |2 is needed to show the case∗.Wenote that 2|E |2−1would be insufficient,
a big disjunction with |E | disjuncts, by notational abbreviation, contributes with
2|E |2 − 1 to the weight.

• The max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P} is needed in any case
where a precondition or postcondition occurs (all but the case conjunction),
as we then need that c(pre(e)) < c(E), which is guaranteed by c(pre(e)) ≤
max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P} < c(E); and similarly for
c(post(e)(p). So this is also minimal.

Lemma 4 For all ϕ ∈ L∗K⊗: c(ϕ) ≥ c(t(ϕ).

Proof This is an easy proof by induction on the structure of ϕ. All the clauses of the
translation t that commute with the connectives ensure that c(ϕ) ≥ c(t(ϕ)), for exam-
ple c(ϕ∧ψ) = 1+max{c(ϕ), c(ψ)} ≥ (IH) 1+max{c(t(ϕ)), c(t(ψ))} = c(t(ϕ∧ψ)).
Whereas all the clauses of the translation t involving an action model modality
ensure that c(ϕ) ≤ c(t(ϕ)) because we already have c(ϕ) < c(t(ϕ)) by Lemma 3,
and induction. For example, c([Ee](ϕ ∧ ψ)) = c(E) · (1 + max{c(ϕ), c(ψ)}) ≥
(IH) c(t(E)) · (1 + max{c(t(ϕ)), c(t(ψ))}) = c(t([Ee](ϕ ∧ ψ))), where we note that
c(E) ≥ c(t(E)) is because of the inductive assumption for all preconditions and post-
conditions occurring in E , so that: max{c(pre(e)), c(post(e)(p)) | e ∈ E, p ∈ P} ≥
max{c(t(pre(e))), c(t(post(e)(p))) | e ∈ E, p ∈ P}. ��

We are now fully prepared to show the following proposition.

Theorem 5 Every formula in L∗K⊗ is equivalent to a formula in L∗K .

Proof Let ϕ ∈ L∗K⊗.
Consider an innermost dynamic modality in ϕ, that is, a formula of shape [Ee]ψ

that is a subformula of ϕ and such that ψ ∈ L∗K and also all preconditions and
postconditions inE are inL∗K . Using the reduction axiomswe obtain t([Ee]ψ) ∈ L∗K .
Lemmas 3 and 4 guarantee that the translation is a terminating procedure: either the
translation clause uses subformula structure, which is obviously terminating as the
number of subformulas is limited (also note that c(ξ) > c(η) if some η is a strict
subformula of some ξ ), or the translation clause involves an action model modality in
which case we have that c(ξ) > c(η) because of Lemma 3. This race to the bottom is
bounded by 0.

Repeat the procedure on the formula ϕ′ wherein subformula [Ee]ψ of ϕ is replaced
by t([Ee]ψ). Note that this formula ϕ′ contains one less dynamic modality, and that it
is equivalent to ϕ. We continue to repeat the procedure for all of the (remaining) finite
number of action model modalities originally in ϕ.

Let the resulting formula be ϕ′′. It is clear that ϕ′′ is equivalent to ϕ, and that the
construction terminates. ��
The above proof is a bit sneaky, as the translation is defined outside-in whereas the
proof finds the dynamic modalities inside-out. So it is unclear (and even unlikely)
that the ϕ′′ we find is identical to t(ϕ), although it will of course be equivalent to
it. We can get away with this, because our result is in semantics and not in proof
theory. We are not proving the completeness of a Hilbert-style axiomatization of a
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logic. In that case we would be obliged to have an outside-in proof which requires an
additional reduction axiom [Ee][E ′′e]ϕ ↔ [Ee ◦ E ′′e]ϕ. That would have been possible
but would have resulted in a technically more complex proof. Our inside-out proof
assumes ‘replacement of equivalents’ (from ϕ ↔ ψ , infer χ [p/ϕ] ↔ χ [p/ψ]), by all
means validity preserving, but required as an additional derivation rule for inside-out
proof theoretical arguments.

Despite the main result of Theorem 5 that every formula with action model modal-
ities is equivalent to a formula without action model modalities, in the language of
ESL, a puzzling observation remains. A sound and complete tableau system for PASL
is a main result of Courtault et al. (2019). It is therefore also sound and complete for
its fragment ESL. Does this mean we could contemplate a tableau system for AMSL
that is a direct extension of the tableau system for ESL? Not really. Here we recall
that the ESL and PASL semantics are with respect to a class of models X where states
exactly correspond to resources: the resource function is a bijection. But our reduction
of AMSL to ESL is with respect to a class of models Y where the resource function is
a surjection. As an X model is also a Y model, it is clear that ESL-valid with respect
to Y implies ESL-valid with respect to X . But it is unclear to us if ESL-valid with
respect to X always implies ESL-valid with respect to Y .3

5 Other Semantics for ∗ and−∗
So far our results were for ∗∃∃ and −∗∃∃. We recall that for each connective we could
choose between no less than four different semantics. In this section we argue that
there are sound modelling reasons for the above combination and for (only) one other
combination, namely ∗∀∀ and −∗∀∀, but not for any other of the 16 different combina-
tions. We also give a reduction for this ∀∀ version of the multiplicative connectives,
merely to demonstrate the complex interactions when quantifying over states as well
as resources.

5.1 Semantics for ∗∀∀ and−∗∀∀

We first recall the semantics for the ∃∃ version (Definition 5 on page 6), now using
the prior semi-formal notation again.

Ms |� ϕ ∗∃∃ ψ iff ∃tu : rs = r t ◦ ru & Mt |� ϕ & Mu |� ψ

Ms |� ϕ −∗∃∃ ψ iff ∀t : (rs ◦ r t ↓ & Mt |� ϕ) ⇒ (∃u : ru = rs ◦ r t & Mu |� ψ)

We get the following for the ∀∀ version.

3 We are grateful to a reviewer observing this discrepancy.
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Ms |� ϕ ∗∀∀ ψ

iff ∃r ′r ′′ : rs = r ′ ◦ r ′′ & (∀t ′ : r t ′ = r ′ ⇒ Mt ′ |� ϕ) & (∀u′ : ru′ = r ′′ ⇒ Mu′ |� ψ)

iff ∃tu : rs = r t ◦ ru & (∀t ′ : r t ′ = r t ⇒ Mt ′ |� ϕ) & (∀u′ : ru′ = ru ⇒ Mu′ |� ψ)

Ms |� ϕ −∗∀∀ ψ

iff ∀r ′ : (rs ◦ r ′ ↓ & (∀t ′ : r t ′ = r ′ ⇒ Mt ′ |� ϕ)) ⇒ (∀u : ru = rs ◦ r ′ ⇒ Mu |� ψ)

iff ∀t : (rs ◦ r t ↓ & (∀t ′ : r t ′ = r t ⇒ Mt ′ |� ϕ)) ⇒ (∀u : ru = rs ◦ r t ⇒ Mu |� ψ)

Intuitively the difference between the ∃∃ and the∀∀ versions is clear. The reductions
for ∗∀∀ also display the perfect duality with −∗∃∃ one might expect:

Proposition 6 The following schemas are valid in AMSL:

[Ee](ϕ ∗∀∀ ψ) ↔ pre(e) → ∧
f ,g([E f ]ϕ ∗∀∀ [Eg]ψ)

[Ee](ϕ −∗∀∀ ψ) ↔ pre(e) → ∨
f ([E f ]ϕ −∗∀∀ ∧

g[Eg]ψ)

Proof We first show the validity for ∗∀∀. Let M = (S,∼, r ,V ) and s ∈ S be given.
On the assumption that Ms |� pre(e), it is sufficient to prove:

M ⊗ E(s,e) |� ϕ ∗∀∀ ψ iff for all f , g ∈ E,Ms |� [E f ]ϕ ∗∀∀ [Eg]ψ

By definition, M ⊗ E(s,e) |� ϕ ∗∀∀ ψ is equivalent to:

1. there are (t, f ), (u, g) ∈ D(M ⊗ E) such that r(s,e) = r(t, f ) ◦ r(u,g);
2. for all (t ′, f ′) ∈ D(M ⊗ E), if r(t ′, f ′) = r(t, f ) then M(t ′, f ′) |� ϕ;
3. for all (u′, g′) ∈ D(M ⊗ E), if r(u′,g′) = r(u,g) then M(u′,g′) |� ψ .

Concerning item 1, we recall that for any t, f , u, g: r(s,e) = r(t, f ) ◦ r(u,g) iff
rs = r t ◦ ru , where from the right to the left equivalent it is implicit that (t, f ) and
(u, g) are in the domain ofM ⊗ E (where we note that it was a given that (s, e) is in
that domain). Therefore, 1 is equivalent to

There are t, u ∈ S such that rs = r t ◦ ru and there are f , g ∈ E such that
Mt |� pre( f ) and Mu |� pre(g).

As action models are required to be covering (the disjunction of all preconditions of
actions in the domain is a validity) there always are such f and g. As this part of the
requirement is therefore always fulfilled in our semantics it can be removed from the
above formulation, we thus we have shown that item 1 is equivalent to

1. there are t, u ∈ S such that rs = r t ◦ ru .

Item 2 is equivalent to

For all f ′ ∈ E , for all t ′ ∈ S, if r t ′ = r t then Mt ′ |� pre( f ′) implies M ⊗
E(t ′, f ′) |� ϕ.

and therefore also to—where for convenience we renamed f ′ as f

For all f ∈ E , for all t ′ ∈ S, if r t ′ = r t then Mt ′ |� [E f ]ϕ.
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Similarly to item 2, item 3 can be rephrased as

For all g ∈ E , for all u′ ∈ S, if ru′ = ru then Mu′ |� [Eg]ϕ.
Combining the three items again, and moving the quantification over f ∈ E and

over g ∈ E to the beginning of the statement, we obtain

For all f , g ∈ E :

1. there are t, u ∈ S such that rs = r t ◦ ru ;
2. for all t ′ ∈ S, if r t ′ = r t then Mt ′ |� [E f ]ϕ;
3. for all u′ ∈ S, if ru′ = ru then Mu′ |� [Eg]ψ .

By definition of the semantics of ∗∀∀ this is equivalent to

For all f , g ∈ E , Ms |� [E f ]ϕ ∗∀∀ [Eg]ψ .

as required to fulfil the proof obligation.
We now show the validity for −∗∀∀ (wherein we use somewhat more succinct nota-

tion on the meta-level). On the assumption of Ms |� pre(e), this time we have to
show that: M ⊗ E(s,e) |� ϕ −∗∀∀ ψ iff Ms |� ∨

f ([E f ]ϕ −∗∀∀ ∧
g[Eg]ψ). By

definition, the first is equivalent to:

• ∀(t, f ) : r(s,e) ◦ r(t, f ) ↓ and
• ∀(t ′, f ′) : r(t ′, f ′) = r(t, f ) ⇒ M ⊗ E(t ′, f ′) |� ϕ, implies
• ∀(u, g) : r(u,g) = r(s,e) ◦ r(t, f ) ⇒ M ⊗ E(u,g) |� ψ

The second is equivalent to:

There is f ∈ E such that:

• ∀t : rs ◦ r t ↓ and
• ∀t ′ : r t ′ = r t ⇒ Mt ′ |� [E f ]ϕ, imply
• ∀g, u : ru = rs ◦ r t ⇒ Mu |� [Eg]ψ .

and therefore, internalizing f into the antecedent of the second item and replacing f
for f ′, to:

• ∀t : rs ◦ r t ↓ and
• ∀ f ′, t ′ : r t ′ = r t ⇒ Mt ′ |� [E f ′ ]ϕ, imply
• ∀g, u : ru = rs ◦ r t ⇒ Mu |� [Eg]ψ .

Similarly to the proof of the previous validity, the second and third items of these
transcriptions are equivalent (on the implicit assumption that Mt |� pre( f )), and
concerning the first item we note that

∀(t, f ) : r(s,e) ◦ r(t, f ) ↓

is equivalent to

∀ f , t : Mt |� pre( f ) & rs ◦ r t ↓
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where the part ∀ f : Mt |� pre( f ) can just as well be an explicit assumption in the
second item, so that we can replace the above by

∀t : rs ◦ r t ↓

and we again obtain equivalent descriptions, as required to close the proof. ��

5.2 Comparing the ∃∃ Semantics to the ∀∀ Semantics

The remainder of this section compares the modelling advantages of the ∃∃ and ∀∀
versions, illustrated by the library example from Sect. 3.

All versions of the multiplicative connectives ∗ and −∗ go beyond the original
BI semantics, as they combine aspects of separation of resources with aspects of
uncertainty about resources. It seems that the ∃∃ version emphasizes the epistemic
aspect of the semantics whereas the ∀∀ version emphasizes the separation aspect of
the semantics. For example, consider ∗∀∀.

A formula ϕ ∗∀∀ ψ is true in a state s mapped to resource r if r can be decomposed
in resources r ′ and r ′′ such that all states mapped to r ′ satisfy ϕ and all states mapped
to r ′′ satisfy ψ , disregarding their possibly different epistemic properties. As (really)
different states mapped to the same resource typically differ in epistemic properties,
the requirements to satisfyϕ∗∀∀ψ are stronger than the requirements to satisfyϕ∗∃∃ψ .
Given s and t both mapped to r ′, maybe s satisfies that agent a knows that the resource
is r ′, exemplified in Ka p for some p interpreted as r ′, whereas in t the same agent does
not know that. In that case, a separation in a given state (world) u such that Ka p ∗∀∀ ψ

cannot be satisfied, nor ¬Ka p ∗∀∀ ψ . The left multiplicative conjunct must be satsfied
in s and in t . Whereas neither Ka p ∗∃∃ ψ nor ¬Ka p ∗∃∃ ψ are problematic. In the first
case we choose s and in the second case we choose t , and p is true because both map
to r ′.

Dually, in order to satisfy some ϕ ∗∃∃ ψ we focus on the epistemic differences
between states, while satisfying the resource separation requirements. In applications
focussing on ‘epistemic’ safety requirements the ∀∀ version seems more appropriate
whereas ‘epistemic’ liveness appears to favour the liberty from the ∃∃ version. This is
illustrated in the further developed library example below.

For any other of the 16 semantic variations we could not think of obvious modelling
advantages. However, their might be certain technical logical advantages, for example
if the reductions for the different versions are most elegantly formulated in axioms
combining several versions. However, this is not born out by our experience so far.

For restricted language fragments the difference between the semantic variations
vanishes.Wemake two observations on that count, in the form of propositions without
(elementary) proof. As we need to be explicit on the syntax, let for any ϕ ∈ L∗K⊗ the
formula ϕ∃ be ϕ wherein all ∗ and −∗ are substituted for ∗∃∃ and −∗∃∃ and let ϕ∀ be ϕ

wherein all ∗ and −∗ are substituted for ∗∀∀ and −∗∀∀.
The first observation is that for non-epistemic formulas, it does not matter which

version we use.

Proposition 7 Let ϕ ∈ L∗. Then ϕ∃ is equivalent to ϕ∀.
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The second observation concerns public announcements. In the semantics of PASL,
if we restrict the language to action models that are public announcements, and if
we restrict the models to those where the domain of the epistemic resource model
corresponds to the domain of the resource monoid, there is no difference between ∃∃
and ∀∀ (or any other version). Let us call an epistemic resource model with a one–one
correspondence between states and resources rigid.

Proposition 8 LetM be a rigid epistemic resource model, let state s be in the domain
ofM, and let ϕ ∈ L∗K⊗ only contain dynamic modalities for public announcements.
Then Ms |� ϕ∃ iffMs |� ϕ∀.

This is because the PASL semantics required a one–one correspondence between
states and resources. So if there is one state satisfying a given formula, all states
mapped to that resource satisfy that formula, and if all states mapped to a certain
resource satisfy a certain formula, there must be at least one because the carrier set
of the resource monoid is the entire domain of the model. As long as this property of
‘rigidity’ is preserved after update, any ϕ∃ is equivalent to ϕ∀.

This does not imply that in AMSL there is no difference between the ∃∃ and ∀∀
semantics for public announcements, not even in the comforting presence of public
announcement, because in general its models need not be rigid.

We now continue by demonstrating these issues in the library example. We recall
that

M1
21 |� 〈¬c〉+a (pa ∗∃∃ Kac)

as well as

M1
21 |� 〈¬c〉+a (pa ∗∃∃ ¬Kac)

and in both cases we now have made explicit that ∗ means ∗∃∃. We further recall
that the former is justified by M4

(21,¬c+
a )

|� Kac whereas the latter is justified by

M4
(21,¬c−

a )
|� ¬Kac.

As a consequence, this plays out differently for ∗∀∀. We then have, for example:

M1
21 �|� 〈¬c〉+a (pb ∗∀∀ Kac)

M1
21 �|� 〈¬c〉+a (pb ∗∀∀ ¬Kac)

The truth of that would require both states mapping to (2, 0) inM4 to satisfy Kac,
or both to satisfy ¬Kac.

For a different example, considerM4 (themodel resulting from the suspected semi-
private announcementof c) once more. For the convenience of the reader this example
is quite dual to the previous one, but formulated in terms of resource update instead
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of resource separation. We now have:

M4
(01,c+

a )
|� (pa ∗∃∃ pa) −∗∃∃ Kac

M4
(01,c+

a )
|� (pa ∗∃∃ pa) −∗∃∃ ¬Kac

M4
(01,c+

a )
�|� (pa ∗∀∀ pa) −∗∀∀ Kac

M4
(01,c+

a )
�|� (pa ∗∀∀ pa) −∗∀∀ ¬Kac

The first is true because

M4
(21,¬c+

a )
|� Kac

Whereas the second is false because

M4
(21,¬c−

a )
|� ¬Kac

Therefore neither is true in the ∀∀ semantics for −∗, and the third and fourth are
both false. As a point of evaluation in M4, instead of (01, c+

a ) we could also have
chosen (01, c−

a ): for any of the ∗ and−∗ versions, it does not matter for their truth what
the epistemic properties are of the state of evaluation s, it only matters what resource
it maps to, in this case: (0, 1).

6 Conclusion and Further Research

We proposed a dynamic epistemic separation logic with action models, AMSL,
containing modalities to reason about knowledge, multiplicative conjunctions and
implications as in separation logic, as well as dynamic modalities (parameterized by
action models) for uncertainty about knowledge and resources. We have shown that
the dynamic modalities can be eliminated from the logical language: every formula
containing them is equivalent to a formula not containing them. Our proposal is the
expected generalization of public announcement separation logic, PASL (Courtault et
al., 2019), that indeed now is a special case in our logic.

In our proposal the separation aspects are completely orthogonal to the dynamic
aspects: we only model uncertainty about resources and their composition and update.
A very different approach to combining change of knowledgewith change of resources
is to let the resource update correspond to the information update (the action model
execution). In that case,while updating states,we can simultaneously update resources,
that is, map the resulting states in the modal product to different resources. We expect
to pursue this in subsequent research.

Another perspective consists in designing a tableaux calculus with labels and con-
straints for AMSL from the semantics, in the spirit of the labelled calculi developed
for Modal BI and PASL (Courtault & Galmiche, 2018; Courtault et al., 2019), with
a study of its soundness and completeness from a countermodel extraction method.
It could be also interesting to define a Hilbert-style axiomatization of BBI and its
modal extensions, including AMSL, and to relate them to the existing proof calculi.
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Finally, even if BBI has been proved undecidable (Larchey-Wendling & Galmiche,
2010, 2013), a complementary perspective is the study of some sublogics of AMSL
that would be expressive enough to model systems, but that would still be decidable.
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