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Abstract

In this paper we design a new logical system to explicitly model the different deductive
reasoning steps of a boundedly rational agent. We present an adequate system in line
with experimental findings about an agent’s reasoning limitations and the cognitive
effort that is involved. Inspired by Dynamic Epistemic Logic, we work with dynamic
operators denoting explicit applications of inference rules in our logical language.
Our models are supplemented by (a) impossible worlds (not closed under logical
consequence), suitably structured according to the effect of inference rules, and (b)
quantitative components capturing the agent’s cognitive capacity and the cognitive
costs of rules with respect to certain resources (e.g. memory, time). These ingredi-
ents allow us to avoid problematic logical closure principles, while at the same time
deductive reasoning is reflected in our dynamic truth clauses. We further show that our
models can be reduced to awareness-like plausibility structures that validate the same
formulas and we give a sound and complete axiomatization with respect to them. This
approach to the agent’s internal deductive reasoning is finally combined with actions
of external information.

Keywords Logical omniscience - Bounded rationality - Inference - Dynamic
epistemic logic - Impossible worlds

1 Introduction

We place the work in this paper against the background of investigations in AIl, Game
Theory and Logic on bounded rationality and the problem of logical omniscience
(Fagin et al. 1995). Models of agents with unlimited inferential powers work well
for certain types of distributed systems but are not sufficient to model real human
reasoning and its limitations. A number of empirical studies on human reasoning
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reveal that subjects are systematically fallible in reasoning tasks (Stanovich and West
2000; Stenning and van Lambalgen 2008). These provide us with evidence for the
fact that humans hold very nuanced propositional attitudes and performing deductive
reasoning steps can only be done within a limited time-frame and at the cost of real
cognitive effort. In this context a case can be made for logically competent but not
infallible agents who adhere to a standard of Minimal Rationality (Cherniak 1986).
Such an agent can make some, but not necessarily all, of the apparently appropriate
inferences. In specifying what makes inferences (in)feasible, empirical facts pertaining
to the availability of cognitive resources are crucial; for example, it is natural to take
into account limitations of time and memory, when setting the standard of what the
agent should achieve. As we approach this topic from the context of logic, we design
a normative model, rather than a purely descriptive one.

As an illustration we consider the standard Muddy Children Puzzle (Fagin et al.
1995) which is based on the unrealistic assumption that children are unbounded rea-
soners and perfect logicians, who can perform demanding deductive steps all at once.

Suppose that n children are playing together and k of them get mud on their
foreheads. Each child can see the mud on the others but not on her own forehead.
First their father announces “at least one of you is muddy” and then asks over
and over “does any of you know whether you are muddy?” Assuming that the
kids are unbounded reasoners, the first k¥ — 1 times the father asks, everybody
responds “no” but the k-th time all the muddy children answer “yes”.

We support the argument in Parikh (1987) stating that the limited capacity of humans,
let alone children, can well lead to outcomes of the puzzle that are not in agreement
with the standard textbook analysis. The mixture of reasoning steps a child has to take
needs to be “situated” in specific bounds of time, memory, etc. As such, it is our aim
in this paper to design a cognitively informed model of the dynamics of inference. To
achieve this, we use tools from Dynamic Epistemic Logic (DEL) (Baltag and Renne
2016; Baltag and Smets 2008; van Benthem 2011; van Ditmarsch et al. 2007). DEL
is equipped with dynamic operators, which can be used to denote applications of
inference rules. We give a semantics of these operators via plausibility models (Baltag
and Smets 2008). Our models are supplemented by (a) impossible worlds (not closed
under logical consequence), suitably structured according to the effect of inference
rules, and (b) quantitative components capturing the agent’s cognitive capacity and the
costs of rules with respect to certain resources (e.g. memory, time). Note that our work,
while building further on the early approaches based on impossible worlds (Hintikka
1975) to address logical omniscience, tries to overcome their main criticism of ignoring
the agents’ logical competence and lacking explanatory power in terms of what really
comes into play whenever we reason. In our work, deductive reasoning is reflected in
the dynamic truth clauses. These include resource-sensitive ‘preconditions’ and utilize
a model update mechanism that modifies the set of worlds and their plausibility, but
also reduces cognitive capacity by the appropriate cost. We therefore show that an
epistemic state is not expanded effortlessly, but, instead, via applications of rules, to
the extent that they are cognitively affordable. We illustrate this formal setting on the
above mentioned muddy children scenario for bounded rational children for the case
k = 2. We further show that our models can be reduced to awareness-like plausibility
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structures that validate the same formulas and a sound and complete axiomatization is
given with respect to them. This paper builds further on the main ideas first presented
at the WoLLIC 2018 (Smets and Solaki 2018). More specifically, it expands on Smets
and Solaki (2018) by focusing also on a mixture of different types of reasoning tasks.
Such tasks combine bounded reasoning with the revision of epistemic and doxastic
states that occurs when the agent hears or observes new external information.

An arbitrary syntactic awareness-filter, used to discern explicit attitudes as in Fagin
and Halpern (1987), cannot work for our purposes for it cannot be associated with
logical competence. Even if ad-hoc modifications are imposed on standard awareness
models, by e.g. awareness closure under subformulas, some forms of the problem are
retained. A notable exception where awareness is affected by reasoning is given in
Velazquez-Quesada (2011); we will pursue a similar rule-based approach in this paper.
In relation to other work on tracking a fallible agent’s reasoning and cognitive effort,
we refer to Alechina and Logan (2009), Bjerring and Skipper (2018), and Rasmussen
(2015). The first of these papers accounts for reasoning processes through, among
others, inference-based state-transitions but their composition is not specified. The
second includes operators for the agent’s applications of inference rules, accompanied
by cognitive costs, but no semantic interpretation is given. The third uses operators
standing for a number of reasoning steps, and an impossible-worlds semantics, but it
is not clear how the number of steps can be determined nor what makes reasoning halt
after that. In contrast, our work aims at an elaborate unfolding of reasoning processes,
that is necessary in order to provide more cognitively plausible explanations on why
such processes eventually halt. In doing so, we combine the benefits of plausibility
models and impossible worlds in the realistic modelling of competent but bounded
reasoners. We then suggest how the technical treatment of the resulting framework
can be facilitated, and embed the effect of external information in it.

The paper is structured as follows: in Sect. 2 we introduce our framework and discuss
its contribution to the highlighted topics. The reduction laws (i.e. rewrite-rules) and
the axiomatization are given in Sect. 3. In Sect. 4 we explain how the framework is
combined with the dynamics of interaction and we finally present our conclusions and
directions for further work in Sect. 5.

2 The Logical Framework to Model the Effort of Inference Steps
Our framework has two technical aims: (a) invalidating the closure properties of logical

omniscience, and (b) elucidating the details of agents engaging in a step-wise, orderly,
effortful reasoning process.

2.1 Syntax

Let £, denote a standard propositional language based on a set of atoms @. Using
this notation we first define inference rules:
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Definition 1 (Inference rule) Given ¢1, ..., ¢n, ¥ € L, an inference rule p is a for-
mula of the form {¢y, ..., ¢,} ~> ¥, read as “whenever every formulain {¢1, ..., ¢}
is true, y is also true”.

We use pr(p) and con(p) to abbreviate, respectively, the set of premises and the
conclusion of a rule p and Lg to denote the set of all inference rules. To identify the
truth-preserving rules, we define:

Definition 2 (Translation) The translation of arule p is given by the following impli-
cationin L, i.e. tr(p) := /\¢€pr(p) ¢ — con(p)

We introduce the language £, extending £, with two epistemic modalities: K for
conventional knowledge, and [ for defeasible knowledge. As argued in Baltag and
Smets (2008), it is philosophically interesting to include both attitudes in one system.
While K represents an agent’s full introspective and factive attitude, [ is factive but not
fully introspective. This weaker notion satisfies the S4-properties and is inspired by the
defeasibility analysis of knowledge (Lehrer 2000; Stalnaker 2006), while K satisfies
the S5-properties and is considered to be infallible and indefeasible. Regarding the
changes of the agent’s epistemic state, induced by deductive reasoning, we introduce
dynamic operators labelled by inference rules, of the form (p).

Definition 3 (Language L) The set of terms T is definedas T := {c, | p € Lr}U{cp}
with elements for all the cognitive costs ¢, of inference rules p € Lg, and the cognitive
capacity cp. Given a set of propositional atoms @, the language L is defined by:

¢ u=plzist + -+ Zusn = c|mPlp A @K P|UP|Apl{p0)d
where pe @,z1,...,z2y € Z,c€Z ,s1,...,5, € T,and p € Lg.

The language comprises linear inequalities of the form z1s1 + ... + 2,8, > ¢, to
deal with cognitive effort via comparisons of costs and capacity.! The modalities K
and O represent infallible and defeasible knowledge, respectively.? The operator A
indicates the agent’s availability of inference rules, i.e. Ap denotes that the agent has
acknowledged rule p as truth-preserving (and is capable of applying it). The dynamic
operators of the form (p) are such that (p)¢ reads “after applying the inference rule p,
¢ is true”. In £, formulas involving <, =, —, v, — can be defined as usual. Moreover,
a formula of the form s; > s, abbreviates s; — s > 0.

2.2 Plausibility Models

Our semantics is based on plausibility models (Baltag and Smets 2008). In line with
Spohn (1988) we use a mapping from a given set of worlds to the class of ordinals §2 to
derive the plausibility ordering. The model is augmented by impossible worlds, which

I Notice that ¢ is an r-tuple. The choice of r is discussed in the next subsection.

2 We will restrict our attention to K and (] prefixing formulas other than inequalities and (p)-formulas.
This is because the agent’s reflection over her own capabilities and reasoning processes, as instances of
higher-order reasoning, fall outside the scope of this attempt.
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need not be closed under logical consequence. However, while the agent’s fallibility
is not precluded—it is in fact witnessed by the inclusion of impossible worlds—it is
reasoning, i.e. applications of rules, that gradually eliminates the agent’s ignorance.
As a starting point, we adopt a Minimal Consistency requirement, ruling out ‘explicit
contradictions’ that are obvious cases of inconsistency for any (minimally) rational
agent.

In order to capture the increasing cognitive load of deductive reasoning in line
with empirical findings, we first introduce two parameters: (i) the agent’s cognitive
resources, and (ii) the cognitive cost of applying inferential rules. Regarding (i), we will
use Res to denote the set of resources, which can contain memory, time, attention, etc.
and let r := |Res| be the number of resources considered in the modelling. Regarding
(ii), the cognitive effort of the agent with respect to each resource is captured by a
functionc : Lr — N’ thatassigns a cognitive cost to each inference rule. As the results
of experiments show, not all inference rules require equal cognitive effort: Johnson-
Laird etal. (1992), Rips (1994), and Stenning and van Lambalgen (2008) claim that the
asymmetry in performance observed when a subject uses Modus Ponens and Modus
Tollens is suggestive of an increased difficulty to apply the latter.?

Every model comes equipped with the parameters Res and ¢. We also introduce
a cognitive capacity component to capture the agent’s available power with respect
to each resource. As resources are depleted while reasoning evolves, capacity is not
constant, but it changes after each reasoning step. The choice for an agent-specific
capacity that is affected by reasoning steps is in accord with connections between
capacity and performance in deductive reasoning (Bara et al. 1995).

Concrete assignments of the different cognitive costs and capacity rely on empirical
research. We hereby adopt a simple numerical approach to the values of resources
because this seems convenient in terms of capturing the availability and cost of time
and it is also aligned with research on memory (Cowan 2001; Miller 1956).4

Definition 4 (Plausibility model) A plausibility model is a tuple M = (WP,
W!, ord, V, R, cp) consisting of W¥, W!, non-empty sets of possible and impos-
sible worlds respectively. ord is a function from W := (WP U W) to the class of
ordinals £2 assigning an ordinal to each world. V : W — P(L) is a valuation function
mapping each world to a set of formulas. R : W — P(Lg) is a function indicating
the rules the agent has available (i.e. has acknowledged as truth-preserving) at each
world. Cognitive capacity is denoted by cp, i.e. cp € Z", indicating what the agent is
able to afford with regard to each resource.

3 We will focus on sound inference rules, i.e. rules whose translation is a tautology, because (a) the agent’s
state is naturally built on truth-preserving inferences, and (b) it would be infeasible to (empirically) assign a
cost to arbitrary arrays of premises and conclusions. This task is meaningful due to the experimental results
on how humans handle rule-schemas and on how the logical complexity of the formulas involved in their
instantiations relates to their difficulty (although determining the exact relation between the complexity of
formulas and the cognitive difficulty of a rule-application depends on empirical input and is left for future
work). The cost assigned to non-sound rules is thus irrelevant and will not affect our constructions.

4 Numerical assignments might also pertain to the use of pupil assessment and eye-tracking as measures
of attention and indicators of cognitive effort (Kahneman and Beatty 1967; Sears and Pylyshyn 2000; Xu
and Chun 2009).
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Regarding possible worlds, the valuation function assigns the set of atoms that
are true at the world. Regarding impossible worlds, the function assigns all formulas,
atomic or complex, true at the world.” The function ord induces a plausibility ordering,
i.e. a binary relation on W: for w,u € W: w > u iff ord(w) > ord(u); its intended
reading is “w is no more plausible than u”. Hence, the smaller the ordinal, the more
plausible the world. The induced relation > is reflexive, transitive, connected and
conversely well-founded.® We define ~, representing epistemic indistinguishability:
w~ uiff w > uoru > w,ie. >-comparable states are epistemically indistinguish-
able for the agent (Ditmarsch et al. 2015, Chapter 7).

To ensure that the rules available to the agent are truth-preserving, and assuming
that propositional formulas are evaluated as usual in possible worlds, we impose
Soundness of Rules: for every w € WP, if p € R(w) then M, w |= tr(p). We also
need a condition to hardwire the effect of deductive reasoning in the model. To that
end, we take:

Definition 5 (Propositional truths) Let M be a model and w € W a world of the
model. If w € WP its set of propositional truths is V*(w) = {¢ € Ly M,w = ¢).
IfweW/ Viw) ={pel,|¢decVw)

Based on V*, which is determined by V, we impose Succession on the model: for
every w € W, if (i) pr(p) € V*(w), (ii) —con(p) ¢ V*(w), (iii) con(p) # —¢ for all
¢ € V*(w) then there is some u € W such that V*(u) = V*(w) U {con(p)}.

Definition 6 (p-radius) The p-radius of a world w is given by:’

{w}, if pr(p) € V*(w)
@, if pr(p) C V*(w) and (—con(p) € V*(w) or con(p) = —¢
w” := { for some ¢ € V*(w))
{u | u is the successor of w}, if pr(p) € V*(w) and —con(p) ¢ V*(w)
and con(p) # —¢ forall p € V*(w)

The p-radius, inspired by Bjerring and Skipper (2018), represents how the rule p
triggers an informational change and its element, if it exists, is called p-expansion. A
rule whose premises are not true at a world does not trigger any change, this is why
the only expansion is the world itself. A rule that leads to an explicit contradiction
forms the empty radius as is arguably the case for minimally rational agents. If the
conditions of Succession are met, the radius contains the new “enriched” world. Due
to the injectiveness of V), and V;, a world’s p-expansion is unique. As p-expansions

5 We will assume that worlds are valuation-wise unique, i.e. we view the valuation as V := VUV, where
the functions V), and V; taking care of possible and impossible worlds are injective. This assumption is not
vital but it serves the simplicity of the setting because we avoid a multiplicity of worlds unnecessary for
our purposes.

6 These properties, which follow from the definition of ord, will not force unnecessarily strong (introspec-
tive) validities for non-ideal agents because of the presence of impossible worlds.

7 Note that = between formulas stands for syntactic identity. It is used due to Minimal Consistency and the
fact that V* is given directly by V in impossible worlds.
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expand the state from which they originate, inferences are not defeated as reasoning
steps are taken, hence Succession warrants monotonicity, to the extent that Minimal
Consistency is respected. Note that w’s p-expansion amounts toitself forw € W (due
to the deductive closure of possible worlds) while an impossible world’s p-expansion
is another impossible world.

2.3 Model Transformations and Semantic Clauses

To evaluate (p)¢, we have to examine the truth value of ¢ in a transformed model,
defined in such a way to capture the effect of applying p. Roughly, a pointed plausibility
model (M’, w) (which consists of a plausibility model and a point indicating the real
world) is the p-update of a given pointed plausibility model, whenever the set of worlds
is replaced by the worlds reachable by an application of p on them, while the ordering
is accordingly adapted. That is, if a world u# was initially entertained by the agent, but
after an application of p does not “survive”, then it is eliminated. This world must have
been an impossible world and a deductive step uncovered its impossibility. Once such
worlds are ruled out, the initial ordering is preserved to the extent that it is unaffected
by the application of the rule. More concretely, let M = (WP, W! ord, V, R, cp)
be a plausibility model and (M, w) the pointed model based on w. The updated M”
model is given via the following:

Step 1 Given arule p, WF := UveW v”. In words, W# consists of the p-expansions
of the worlds initially entertained by the agent. So the p-updated pointed model
(M?, w) should be such that its set of worlds is W*. As observed above, any
elimination of worlds is in fact an elimination affecting the set W'.

Step 2 We now develop the new ordering ord” following the application of the infer-
ence rule. Take u € W?. This means that there is at least one v € W such
that {u} = v”. Denote the set of such v’s by N. Then ord” (u) = ord(z) for
z € min(N). Therefore, if a world is in W#, then it takes the position of the
most plausible of the worlds from which it originated.

Step3 V and R are simply restricted to the worlds in W# and cp” := cp — c(p).
Again, for u, v € WP, we say: u >* v iff ord®(u) > ord”(v). It is easy to
check that all the required properties are preserved.

Prior to defining the truth clauses we need to assign interpretations to the terms in
T. Their intended reading is that those of the form ¢, correspond to the cognitive costs
of inference rules whereas those of the form cp correspond to the agent’s cognitive
capacity. This is why cp is used both as a model component and as a term of our
language. The use can be understood from the context.

Definition 7 (Interpretation of terms) Given a model M, the terms of T are interpreted
as follows: cp™ = cp and ¢} = c(p).

Our intended reading of > is that s > ¢ iff every i-th component of s is greater or
equal than the i-th component of 7. The semantic clause for a rule-application should
reflect that the rule must be “affordable” to be executable; the agent’s cognitive capacity
must endure the resource consumption caused by firing the rule. The semantics is
finally given by:
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Definition 8 (Plausibility semantic clauses) The following clauses inductively define
when a formula ¢ is true at w in M (notation: M, w = ¢) and when ¢ is false at w in
M (notation: M, w = ¢). Forw € W!: M, w = ¢ iff ¢ € V(w), and M, w = ¢ iff
—¢ € V(w). Forw € wP, given that the boolean cases are standard:

M,w = piff p € V(w), where p € @ M, wa¢iff M,w [~ ¢
M,wEKpift M,u =¢ forallu e W M,w = Apiff p € R(w)
M,w =O¢iff M,u = ¢ forall u € W such that w > u
M,wE(p)piff M,wl=(cp>=cp), M, w = Apand MP, w = ¢
M, w = 7151 +--~+z,,sn>ciffz]s{w+...+zns,11w >c

Validity is defined with respect to possible worlds only. The truth clause for knowl-
edge is standard, except that it also quantifies over impossible worlds. The truth of
rule-availability is determined by the corresponding model function. It is then evident
that the truth conditions for epistemic assertions prefixed by a rule p are sensitive
to the idea of resource-boundedness, unlike plain assertions. The latter require that
¢ is the case throughout the quantification set, even at worlds representing incon-
sistent/incomplete scenarios. The former ask that the rule is affordable, available to
the agent, and that ¢ follows from the accessible worlds via p. Since the agent also
entertains impossible worlds, she has to take a step in order to gradually minimize her
ignorance.

2.4 Discussion

These constructions overcome logical omniscience, while still accounting for how
we perform inferences lying within suitable applications of rules. In particular, the
argument of impossible worlds suffices to invalidate the closure principles. Moreover,
the truth conditions for (f)®¢, where (&) abbreviates a sequence of inference rules
and & stands for a propositional attitude such as K or [J, demonstrate that an agent
can come to know ¢ via following an affordable and available reasoning track. In
fact, the rule-sensitivity, the measure on cognitive capacity and the way it is updated
allow us to practically witness to what extent reasoning evolves. Besides, running out
of resources depends not only on the number but also on the kind and chronology
of rules. Our approach takes these factors into account and explains how the agent
exhausts her resources while reasoning.

Unlike (Bjerring and Skipper 2018; Duc 1997) we abstain from a generic notion
of reasoning process and we do not presuppose the existence of an arbitrary cutoff
on reasoning. Instead, we account explicitly for (a) specific rules available to the
agent, (b) their individual applications, (c) their chronology, and (d) their cognitive
consumption. This elaborate analysis is crucial in bridging epistemic frameworks
with empirical facts for it exploits studies in psychology of reasoning that usually
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study individual inference rules in terms of cognitive difficulty.® Furthermore, the
enterprise of providing a semantics contributes to Rasmussen (2015)’s attempt, who
tracks reasoning processes, but lacks a principled way to defend his selection of axioms.
Constructing a semantic model that captures the change triggered by rule-applications
allows for a definition of validity important in assessing the adequacy of the solution.

We will illustrate our framework on the Muddy Children Puzzle, highlighted in the
introduction. We analyze the failure of applying a sequence of rules in the k = 2
scenario, attributed to the fact that the first rule applied is so cognitively costly for a
child that her available time expires before she can apply the next. It thus becomes
clear why in even more complex cases (e.g. for k > 2) human agents are likely to
fail, contrary to predictions of standard logics, whereby demanding reasoning steps
are performed at once and without effort. Our framework models the dynamics of
inference and the resource consumption each step induces.

Example 1 (Bounded muddy children) Take m,, my, as the atoms for “child a (resp.
b) is muddy” and n,, n, for “child a (resp. b) answers no to the first question”. Let
M = (WP W!, ord, VR, cp) be as depicted in Fig. 1. For simplicity, take two rules,
transposition of the implication and modus ponens, so that R = {TR, MP} where TR =
{—-mg, — —np} ~> np - my, MP = {np, np — my} ~» my, Res = {time, memory},
c(TR) = (5,2),c(MP) = (2,2),cp = (5, 7).

Analyzing the reasoning of child a (see Fig. 1) after the father’s announcement and
after child b answered “no” to the first question, we verify that LJ(—m, — —np) and
Uny, are valid, i.e. child a initially knows that if she is not muddy, then child 5 should
answer “yes” (as in that case only b is muddy), and that b said “no”. Following a T'R-
application, the world wy is eliminated and its position is taken by its 7R-expansion,
ie. wy and cp™® = (5,7) — (5,2) = (0,5). In addition, A(TR), and cp > c7x.
Therefore (TR)U(n, — my) is also valid. But now the cost of the next step is too
high, i.e. M TR w, = cp > cyp (compare cpTR and c¢(MP)), so overall the formula
(TR)—(MP)m, is indeed valid.

3 Reduction and Axiomatization

Work in Wansing (1990) shows how various models for knowledge and belief,
including structures for awareness (Fagin and Halpern 1987), can be viewed as
impossible-worlds models (more specifically, Rantala models, Rantala 1982), that
validate precisely the same formulas (given a fixed background language). In the
remainder, we explore the other direction and show that our impossible-worlds frame-
work can be reduced to an awareness-like one, that only involves possible worlds. In
the absence of impossible worlds, standard techniques used in axiomatizing DEL set-
tings (via reduction axioms) can be used. This reduction is a technical contribution;

8 See, for example, Cherniak (1986), Johnson-Laird et al. (1992), Rips (1994), and Schroyens and Schaeken
(2003); Schroyens et al. (2001). In fact, different schools in psychology of reasoning attribute inferential
asymmetries to different causes. However, the very observation that not all inferences require equal cognitive
effort is common ground.
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Mg — MNp,
Mp, Nb,
Ny —> Ma, Ma

mg — Ny, —mg — Ny,
my, ny, My, N,
ny — Mg, Mg ny — me

Fig. 1 The reasoning of boundedly rational child a. Thicker borders are used for deductively closed pos-
sible worlds. In impossible worlds, we write all propositional formulas satisfied and indicate (non-trivial)
expansions via dashed arrows.

the components of the reduced model lack the intuitive readings of the original frame-
work, but allow us to prove completeness. Further, this method has the advantage of
combining the benefits of impossible worlds in modelling non-ideal agents and the
technical treatment facilitated by awareness-like DEL structures.

First, we show how the static part of the impossible-worlds setting can be
transformed into one that merely involves possible worlds and captures the effect
of impossible worlds via the introduction of auxiliary modalities and syntactic,
awareness-like functions. Second, we obtain a sound and complete axiomatization for
the static part through the construction of a suitable canonical model. Third, we give
DEL-style reduction axioms thatreduce formulas involving the dynamic rule-operators
to formulas that contain no such operator. In this way, we use the completeness of the
static part to get a complete axiomatization for the dynamic setting.

3.1 The (Static) Language for the Reduction

We first fix an appropriate language £, as the “common ground” needed to show that
the reduction is successful, i.e. that the same formulas are valid under the original and
the reduced models. As before, let # stand for K or [ and take the quantification
set Oq(w) tobe W if ® = K, and Qg(w) := {u | w > u}, if @& = O (to denote
the set that the truth clauses for K and [] quantify over). Auxiliary operators are then
introduced to the static fragment of £, in order to capture (syntactically) the effect of
impossible worlds in the interpretations of propositional attitudes. For w € W*:

—~ M, w=Lapiff M,u =¢forallu e WP N Qa(w)
— M, wE g iff M, u=¢ forallu € W/ N Qa(w)

That is, L provides the standard quantification over the possible worlds while /¢
isolates the impossible words, for each # = K, L. In addition, we introduce operators
to encode the model’s structure:

- M,w I:f.gbiffM,u = ¢ forsome u € W/ N Qq(w)
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- M, w = (RAD),¢ iff for some u € w”: M, u |= ¢

The operators (RAD),, labelled by inference rules are such to ensure that there
is some ¢-satisfying p-expansion. To express that all p-expansions are ¢-satisfying,
we use [RAD],¢ := (RAD), T — (RAD),¢, because once an expansion exists, it is
unique. Indexed operators of this form provide information on the model’s structure;
they are introduced syntactically only as temporal-style projections of connections
induced by inference rules on the model. This is why their interpretation should be
independent of the distinction between possible and impossible worlds. For example,
forwe Wi: M, w k= (RAD) ¢ iff for some u € w”: M,u |= ¢. We also use the
following abbreviation: if ¢ is of the form —, for some formula ¥/, then Tqu = IAMD,
else Ta¢p := L.

3.2 Building the Reduced Model

Towards interpreting the auxiliary operators in the reduced model, we construct
awareness-like functions. Take VY(w) = {¢ € L, | M,w = ¢} forw € W/
and:

— Ia: WP = P(L,) such that Ig(w) = MNvew!noaw) VT (v). Intuitively, I takes
apossible world w and yields the set of those formulas that are true at all impossible
worlds in its quantification set.

- i‘ : WP — P(L,) such that i‘(w) = UvewlmQ‘(w) V¥ (v). Intuitively, i. takes
a possible world w and yields the set of those formulas that are true at some
impossible world in its quantification set.

The function ord captures plausibility and the “world-swapping” effect of rule-
applications. Since the latter will be treated via reduction axioms, we provide a
reduced model equipped with a standard binary plausibility relation (to serve as an
awareness-like plausibility structure (ALPS), with respect to which the static logic
will be developed). Given the original model M = (WP W!. ord, V,R, cp), our
reduced model is the tuple M = (W, >, ~ VR, cp, Iq, i,) where:

w=w?f V(w) = V(w)forw e W
u > w iff ord(u) > ord(w), forw,u e W R(w) = R(w) forw e W
u~wiffu >worw >u, forw,u e W la, i‘ as explained before

The clauses based on the reduced model are such that the auxiliary operators
are interpreted via the awareness-like functions. They are presented in detail in the
Appendix, along with the proof that the reduction is indeed successful:

Theorem 1 (Reduction) Given a model M, let M be its (candidate) reduced model.
Then M is indeed a reduction of M, i.e. for any w € W and formula ¢ € L,:

M. w k= ¢iff M,w = ¢.
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Table 1 The static axioms

AXIOMS
PC All instances of classical propositional tautologies
Ineq All instances of valid formulas about linear inequalities
Lk The S5 axioms for L g Soundness of Rules Ap — tr(p)
Lo The S4 axioms for L Minimal Consistency —(IO¢ A IO—¢)
Successiony (/\WEpr(,a) Iay A —-I}—-con(p) A —-T‘con(p)) —

Ia{RAD)ycon(p) A (Iqp — Iq(RAD) @), for ¢ € L)
Successiony) Ia(RAD) ¢ — Ig¢, for ¢ € L and ¢ # con(p)
Successiony = /\wepr(p) IaV — (Ia® < Ia(RAD),¢),for ¢ € L)
Successiony /\wepr(p) Iay A (i.—-con(p) \% TQcon(p)) — Ig[RAD], L
Local Connectedness Lg(@VLOoy) ALk Vv LOg) = (LxkoV Lgy)
Red g N < (Lad N Igd) Indefeasibility Lx¢ — LOo
Radius (RAD) pp <> ¢ Ik — Inqg
Radiusy Iq[RAD],¢ — (Ig(RAD), T — Ig(RAD),¢)

3.3 Axiomatization

We have reduced plausibility models to ALPSs. We now develop the (static) logic A,
showing that it is sound and complete with respect to them.

Definition 9 (Axiomatization of A) A is axiomatized by Table 1 and the rules Modus
Ponens, Necessitationg (from ¢, infer L x ¢) and Necessitation (from ¢, infer L¢).

Ineq, described in Fagin and Halpern (1994), is introduced to accommodate the lin-
ear inequalities.” The S5 axioms for L and S4 axioms for L mimic the behaviour
of K and [J in the usual plausibility models: these operators quantify over possible
worlds only. The (clusters of) axioms about Soundness of Rules, Minimal Consis-
tency and Succession take care of the respective model conditions (to the extent that
these affect our language, given its expressiveness). The same holds for Indefeasibility
and Local Connectedness, which also mimic their usual plausibility counterparts. To
capture the behaviour of radius, we also introduce the Radius axioms. Finally, Red g
expresses K and [ in terms of the corresponding auxiliary operators. We now move
to the following theorems; the proofs can be found in the Appendix.

Theorem 2 (Soundness) A is sound with respect to ALPSs.
Theorem 3 (Completeness) A is complete with respect to non-standard'® ALPSs.

Given the static logic, it suffices to reduce formulas involving (p) in order to get
a dynamic axiomatization. It is useful to abbreviate updated terms in our language as
follows: cp” := cp — ¢, and cﬁ =Cp.

9 Ineq is of course slightly adapted as terms are interpreted as r-tuples. This makes no difference for the
axioms in Fagin and Halpern (1994), with the exception of dichotomy which is not needed given our reading
of inequality.

10" More on this terminology can be found in the Appendix.
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Theorem 4 (Reducing (p)) The following are valid in the class of our models:

(PY(Z1S1 4+ 4 2uSn =€) < (cp = ¢p) NAp A(Z1S] + -+ + zush > ©)
(0)(RAD), <> (cp > cp) NAp A{p)¢

(p)p <> (cp = cp) NAp A p (0)=¢ <> (cp = cp) NAp A —{p)d

(P) (P AY) < (p)p A (p) (0)La@ <> (cp = cp) NAp A Lg(p)¢
(p)lap < (cp = cp) NAp N Ia[RAD]pd | (0)8¢ < (p)Lad A (0)Ia¢

(p)Ao <> (cp > cp) ANAp A Ao (o) 4P <> (cp = cp) A Ap N I§{RAD) ¢

Theorem 5 (Dynamic axiomatization) The axiomatic system given by Definition 9 and
the reduction axioms of Theorem 4 is sound and complete with respect to non-standard
ALPSs.

4 Bounded Inference and the Dynamics of interaction

In the previous sections, we have focused on how deductive reasoning, and the bounds
imposed on it by cognitive fatigue, affect the agent’s epistemic state. As observed in van
Benthem (2008b), apart from “internal elucidation”, external actions such as public
announcements (Baltag et al. 1998; Plaza 2007) can also enhance the agent’s epistemic
state. The mixed tasks involved in bounded reasoning and in revising epistemic and
doxastic states (also discussed in Wassermann 1999) require an account of both sorts of
actions and of the ways they are intertwined. The various policies of dynamic change
triggered by interaction (public announcement, radical or conservative upgrades, etc.,
Baltag and Smets 2008; van Benthem 2007) fit in our framework, provided that suitable
dynamic operators and model transformations are defined.

4.1 Public Announcements

To supplement the account of a boundedly rational agent who reasons deductively in
order to come to know more, we first introduce public announcements. These public
communication actions can facilitate the agent’s knowledge gain, in this case not
because of her own reasoning, but because information was provided to her. For now we
assume that the incoming external information was provided to the agent for free (i.e.
no cognitive costs are assigned). One common assumption is that such announcements
are always truthful and completely trustworthy; the announced sentence is therefore
always true and a rational agent always adopts its content.

Extending the syntax We introduce operators of the form [yr!] to £, where [¢/!]¢
stands for “after announcing v, ¢ is true”. We focus on cases where v is a propositional
formula.!" Let the language extended with public announcements be called Lp,.

T The case for higher-order announced sentences should be tackled in combination with an account of
bounded higher-order reasoning to match the spirit of our framework. More comments on this can be found
in Sect. 5.
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Extending the semantics Lpy is interpreted in the plausibility models of Definition 4.
The new clause concerns public announcements. Semantically, the formula [¢/!]¢ is
taken to be true in case: whenever ¥ is true, ¢ is true after we eliminate all non-yr
possibilities from W. This is because the public announcement of i is completely
trustworthy, so non-1» worlds, possible or impossible, are not entertained by the agent
any more.'2 The other components of the model, namely ord, V, R, are restricted
accordingly, while cp does not change as we view the announcement as provided to
the agent externally without any effort on her side. More formally, the update induced
by a public announcement is:

Definition 10 (Model transformation by public announcement) Given plausibility
model M = (WP W/ ord, V, R, cp), its transformation by the public announcement
of Y € L, is the model MV* given by:

WOV ' ={weW | M wiEy)| WHT =(weW | M wE vy}
ord:“ = ord|yw V‘/’"z Ve
RV' = Ry cp¥t =cp

The conditions of the class M are preserved by this definition. The properties of
the ordering induced by ord are guaranteed, just as the public announcement updates
preserve the conversely well-founded relation > of the usual plausibility models.
Minimal Consistency and Soundness of Rules still hold, because the worlds surviving
the announcement still adhere to these restrictions. Succession is preserved because
of the way WY and VY! are defined; if the conditions of Succession are met in the
updated model, the successor world satisfies ¥ and is therefore included in W¥"*.

We give the truth clause for public announcements, which follows the standard
DEL fashion, only now adapted to the impossible-worlds model we devised to deal
with deductive reasoning. In particular, for w € W:

M, w = [Y!]¢ iff M, w = ¢ implies MY', w = ¢

Notice that the formula [v/!]¢ is vacuously true if ¥ is not true. The same clause
applies to both possible and impossible worlds. This is because of the intuitive interpre-
tation of public announcements. The only worlds surviving the public announcement
of i are the ones satisfying v, possible or not, because arguably any non-y» world
will be dropped as a possibility.

Under this extended setting, we can bring together external information and the
agent’s internal reasoning processes. For instance, suppose that the agent knows ¢ —
Y and has MP available as a rule, and then she comes to know that ¢ from an external
source. She may then apply the rule (if affordable) and finally come to know . It is
therefore the combination of interaction and internal deductive reasoning that allowed
her to know . To illustrate the workings of such combinations, we come back to

12 Notice that in the possible-worlds models of DEL, keeping only the y-satisfying worlds and deleting
all the —/-satisfying worlds amounts to the same thing due to possible worlds being complete. This is not
the case in impossible worlds.
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Wo

Fig.2 The initial model for child a, before the announcement of child b. As before, thicker borders are used
for deductively closed possible worlds. In impossible worlds, we write all propositional formulas satisfied
and indicate (non-trivial) expansions via dashed arrows. Notice that the plausibility model continues from
w3 to wy.

Fig.3 The model for child a after child »’s announcement.

our bounded version of the Muddy Children Puzzle and explicitly account for the
interaction taking place.

Example 2 (Bounded muddy children and public announcements) In this example, we
incorporate the public announcement of child b saying no to the question of the father
into child a’s reasoning process. In particular, a before the announcement of b cannot
tell if she is muddy or not, nor can she figure it out using deductive reasoning alone
because her reasoning process depends on the announcement of b. We further suppose
that the child initially considers it more plausible to be clean. The development of the
scenario is presented in Figs. 2, 3, and 4.

Effortful announcements We have so far assumed that public announcements are
cost-free. However, it can be that adopting a piece of external information requires
effort. van Benthem (2008a) and van Benthem (2008b), it is proposed that there are
two different kinds of such informational events, presented as “implicit” and “explicit”
observations. In our terms, there can be effortless announcements (like the ones defined
before) and effortful announcements.'> The latter are just like those in Definition 10,
but they also incur a cost of accepting the announced information. This presupposes

13 This also corresponds to a genuine distinction in the philosophical and linguistic literature (Barwise and
Perry 1983) between bare seeing (‘“naked infinitives”) and seeing-that, which additionally implies epistemic
awareness of the fact described.
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7

MP;
Fig. 4 The final model for child a after she performs the 7R inference (as in Example 1), using the
information provided by child b.

that costs of announcements are also fixed, next to the costs of rules. More specifi-
cally, the cost-assigning function ¢ should be extended as follows: ¢ : LrRUL, — N".
A simplifying assumption is that announcements of propositional facts always incur
the same cost, regardless of the logical structure of the announced sentence. It is
nonetheless plausible that the cost of an “explicit” announcement is related to logical
complexity, and research on the cognitive difficulty of boolean concepts (Feldman
2000, 2003) might assist in determining these costs. For now we abstain from impos-
ing strict restrictions on ¢ as the details require empirical evidence and a systematic
generalization of it; this is left for further work. In any case, the definition of an effortful
announcement is:

Definition 11 (Model transformation by an effortful public announcement) Take plau-
sibility model M = (WP W! ord, V,R, cp). Its transformation by the effortful
public announcement of ¥ € £, is the model M V! given by:

WAV ' =weW | MwEyl| WHY'={weW|M wkEy)
ord:”! = ord| V‘”!': Vi
RV! = Ry pr' =cp—c(¥)

The truth clause of an effortful announcement much resembles that of rule-
applications. Given that we have terms of the form cy to express the cost of :
M,w = [ iff M, w = ¢ implies (M, w = cp > ¢y and MV, w |= ¢)

Reduction In Sect. 3, we introduced a method to extract a sound and complete
axiomatization for our basic framework. This also involved giving reduction axioms
for applications of rules. The axiomatization of the Logic of Public Announcement
(PAL) (without common knowledge) (Baltag et al. 1998; Baltag and Renne 2016; Plaza
2007) usually involves reduction axioms that allow for replacing formulas with pub-
lic announcements with—eventually—formulas of the static language. Completeness
then follows from the respective complete static base logics. However, the standard
reduction axioms (Baltag and Renne 2016; van Benthem 2007; van Ditmarsch et al.
2007) would not work for our purposes. Notice that [V/!|#¢ < (v — @[Y!]p),
where # = K, [, is valid due to our clause for [¢!]¢. This maintains its intuitive
interpretation, also at impossible worlds. Despite this validity, a replacement of [{/!]¢
in accord with the other reduction axioms would not necessarily go through. Both the
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truth clauses for K and [J range over impossible worlds too, to avoid closure under
logical equivalence.

In order to reduce formulas with public announcements, we have to follow a proce-
dure similar to the one adopted for rule-applications. That is, we need an auxiliary static
operator encoding that [¢/!]¢ is not evaluated arbitrarily when under the scope of an
operator that quantifies over W/, instead following the regular public announcement
clause.'*

The addition of a special static operator acting as implicationat w € W' is necessary
for the reduction of this extended setting. The need for a more expressive language
is justified in light of the intuitive readings of K and [, and their interpretations in
Definition 8. Asking that K ¢ and (¢ are true iff ¢ is true throughout the suitable set of
possible and impossible worlds captures the fallibility of the agent and breaks the forms
of logical omniscience. The effect of a truthful public announcement in the agent’s
epistemic state involves the external information (hence the deletion of worlds), but the
prefixed formula is evaluated in the resulting model, which still encodes the limitations
of our agent. This is why reducing announcements deviates from the procedure of
successive replacements based on the standard reduction axioms. For example, [p!]K p
(where p is an atom) is valid because after deleting the non-p worlds, K p becomes
true. This is equivalent to p — K[p!]p butnotto p — K(p — p): the agent does
not necessarily know p — p. According to the rationale of our framework, a fallible
but bounded agent might have to reason to reach p — p too; this piece of knowledge
should not be taken for granted.

4.2 Other Policies of Integrating External Information

Public announcements are not the only operations for integrating external informa-
tion. Plausibility models allow us to encode more nuanced notions of knowledge and
belief, thus more nuanced policies of integrating external information. For example,
the agent might get information coming from a reliable, but not absolutely trustwor-
thy source. This “soft” information, contrary to the “hard” information of a public
announcement, triggers a re-arrangement of plausibility, and not an elimination of
worlds. Examples of such operations include radical (or lexicographic) upgrades and
conservative upgrades (Baltag and Renne 2016; Baltag and Smets 2008; van Benthem
2007, 2008b, 2011; Rott 1989). A radical upgrade with ¥y changes the plausibility as
follows: yr-worlds are ranked over the non-1 worlds but the ranking of worlds within
the two zones remains intact. Regarding conservative upgrades: the most plausible of
the -worlds are ranked over all other worlds and the rest remain unchanged.!” In

14 por example, consider a static operator [v/] such that M, w = [y ]¢ iff M, w = ¢ implies M, w = ¢,
for any w € W—this simply amounts to implication if w € W ¥, but for w € W/, this operator forces us to
evaluate the formula classically. Therefore the formula [/!]Ig¢ < (Y — Ig[¥]¢) is valid and captures
the special reading of [y!], when combined with a w! -quantifying operator. It is in terms of this formula,
and the one concerning L g, which behaves normally, that [1/!]#¢ can be reduced. An alternative procedure
to this is mentioned in Sect. 5.

15 1n fact, a conservative upgrade with ¢ amounts to a radical upgrade with best () where best () is true
at a world iff ¥ is true there, and not true at all worlds strictly more plausible than that (van Benthem 2011).
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what follows, we spell out how radical upgrades can be incorporated in our framework,
and we notice that more conservative policies can be dealt with along similar lines.

Extending the syntax We further expand the language Lps, using operators of the
form [ {t], where ¢ € L, to denote radical upgrades with . More specifically,
[V 1+]¢ reads “after the radical upgrade with v, ¢ is true”.

Extending the semantics We hereby present the model transformation by a radical
upgrade—again, assuming it amounts to an effortless process.'® As an auxiliary step
take: >V T= (= N(W x [[¥1D) U (= N[ 1] x W) U (~ N[ x [[¥]1D), where
[[¥]] denotes the set of worlds where 1 is not satisfied. Then:

Definition 12 (Model transformation by a radical upgrade) Take plausibility model
M = (WP, Wl ord, V,R, cp). Its transformation by a radical upgrade with ¢ € £,
is the model M¥ T = (WP, wl, ord‘m, V., R, cp), where ord? T is any function from
theset {f: W — 2| foranyw,u € W: f(w) > f(u)iffw =¥" u)}.

Notice that any ordinal-assigning function that preserves the ordering of >V
works. This is because we are solely interested in the upgrade having its usual qual-
itative effect: prioritizing 1r-worlds over non-iyr ones. The properties of our models
are clearly preserved. Then for w € W, the truth clause for [ {}]¢ is given by:
M.w [y pleiff MU, w = ¢.

Therefore, our plausibility models also facilitate the study of more nuanced attitudes
and softer update policies. As an example, we consider an alternative version of the
Muddy Children Puzzle found in Baltag and Smets (2009). It treats the incoming
information not as “hard” information, but as “soft” information (the sources are
considered reliable but not absolutely trustworthy).!”

Example 3 (Bounded muddy children and radical upgrades) We now approach the
aforementioned scenario of Example 2, taking child b as a reliable, but not infallible,
source of information. Therefore, the incoming information that n;, is treated as an
upgrade, that alters the plausibility ordering, and not as a public announcement, that
deletes non-n; worlds altogether (Fig. 5).

5 Conclusions and Further Research

By combining DEL and an impossible-wolds semantics, we modelled fallible but
boundedly rational agents who can in principle eliminate their ignorance as long as
the task lies within cognitively allowed applications of inference rules. We discussed
how this framework accommodates epistemic scenarios realistically and how it fits in
the landscape of similar attempts put against logical omniscience. It was shown that
this combination can be reduced to a syntactic, possible-worlds structure that allows

16 Defining effortful upgrades, in the spirit explained before regarding public announcements, is also
possible.

17 Other variants of the Puzzle, where two children stand in line, therefore one cannot see the other, also
show how “softer” notions are better accommodated by plausibility orderings. This, in combination with
the focus on boundedly rational agents, demonstrates the salient use of our plausibility models.
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Fig. 5 The model of Fig. 2 after the upgrade with ny. Clearly, Ony, is satisfied at the actual world (wyg),
unlike Knj. Provided that TR and MPy are affordable and available, (TR)(MP)[m, is also satisfied,
unlike (TR)(MP1)Kmy.

for useful formal results. We finally furnished this framework with actions for external
information to better account for the fine and mixed nature of reasoning processes.

Note that while factivity of knowledge is indeed warranted by the reflexivity of our
models, the correspondence between other properties (such as transitivity) and forms of
introspection is disrupted by the impossible worlds. Avoiding unlimited introspection
falls within our wider project to model non-ideal agents. Just as with factual reasoning
though, we propose a principle of moderation, achieved via the introduction of effortful
introspective rules whose semantic effect is similarly projected on the structure of the
model. Furthermore, it is precisely along these lines that a multi-agent extension of
this setting can be pursued.

Moreover, it is interesting to search for alternatives to the use of special opera-
tors in providing reduction axioms for rule-applications and announcements. This
might be especially useful for multi-agent frameworks. In particular, there are other
tools from DEL that allow uniform treatment of (communicative) actions, such as
action models (Baltag et al. 1998). Given ongoing work, we believe that action mod-
els with postconditions (van Benthem et al. 2006), along with the set-expressions
used in Veldzquez-Quesada (2011, Chapter 5) to embed these into awareness frame-
works, could help in obtaining simpler reduction axioms for both rule applications
and communicative actions.

Apart from extending the logical machinery in order to capture richer reasoning
processes, another natural development is towards fine-tuning elements of the model
hitherto discussed, in order to better align it with the experimental findings in the
literature on rule-based human reasoning. We have already indicated that the function
¢, which is responsible for the assignment of cognitive costs, should be sensitive to both
the rule-schemas in question and the complexity of their particular instances. The well-
ordering of inferences that Cherniak (1986) suggests, is supported by the literature we
referred to so far, but, at this stage, the evidence fits a qualitative ordering of schemas
while a precise quantitative assignment calls for more empirical input. Specifying the
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intuitive assumption that the more complex an instance, the more cognitively costly it
is, breaks into two tasks (i) choosing some appropriate measure of logical complexity:
number of literals, (different) atoms, connectives, etc., (ii) using experimental data to
fix coefficients that associate the measure with the performance of agents (with respect
to our selected resources). Such a procedure will be pursued in a future paper and it
can illuminate whether there are classes of inferences, sharing properties in terms of
our measure, that should be assigned equal cognitive costs, as one might intuitively
expect.
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Appendix

Due to the construction of awareness-like functions, properties of the original model,
concerning Soundness of Rules, Minimal Consistency, and Succession are inherited
by the reduced model. Clearly, the new quantification sets are Qg (w) = W and
Qo(w) = {u € W | w > u}. The semantic clauses, based on M, are standard for the
boolean connectives; the remaining are given below:

- M,w E piff p e V(w)
-M,wEzisi+...4+ 205, >
M, w = La¢ iff M, u = ¢ for all u € Qq(w)
M, w = Ia¢ iff ¢ € Ig(w)

MwpE®piff M,w = Lap and M, w = Ig¢
- M,w E Apiff p € R(w)

M, w = Iad iff ¢ € Ia(w)

M, w = (RAD),¢ ifft M, w |= ¢

Proof for Theorem 1:

cifles%w+...+zns,1)/lzc

Proof The proof goes by induction on the complexity of ¢. Recall that validity is
defined with respect to the possible worlds in the original model.

—Forg:=pM,wEpiff pe V(w)iff p e V(w) iff M, w = p.
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— For inequalities, —, A and A, the claim is straightforward.

— For Lay: M, w |= Lo iffforallu € WP N Qa(w): M, u |= v iff (by LH.) for
allu e WNQa(w): M, u = v iff M, w = L.

— For¢p = IqV: M, w |= Iy iff forall u € W N Qa(w): M, u =  iff for all
ueWhnQaw): e Vi) iff ¢ € Ig(w) iff M, w = Igr.

— For ¢ := ®&y: M,w = &Y iff for all u € Qg(w): M,u = . Since u €
WP U W/, this is the case iff M, w = Lq¥ and M,w = IqV. Given the
previous steps of the proof, this is the case iff M, w |= Loy and M, w = Ia ¥,
iff M, w = @y

— For ¢ := f,xp: M,w = I}l// iff for some u € W/ N Qa(w): M, u =  iff for
someu € W' N Qa(w): ¥ € VH(u) iff ¢ € Ia(w) iff M, w = Ia V.

— For ¢ := (RAD),: M, w = (RAD) ¥ iff for some u € w”: M, u =  iff (by
LH. and w” = {w} sincew € WF)M, w = ¢ iff M, w |= (RAD) . o

Proof for Theorem 2:

Proof Standard arguments suffice regarding PC, Ineq, Lk, Ly and Modus Ponens,
Necessitationg , Necessitation preserve validity as usual. The axioms for Soundness
of Rules, Minimal Consistency, Succession are valid due to the respective conditions
placed on the model. The validity of Local Connectedness is due to the connectedness
of the model. The validity of Indefeasibility, Red ¢, Radius; is a direct consequence
of the semantic clauses for ®, Lg, Ia. Radius; is valid due to the deductive closure
of possible worlds. '3 O

Proof for Theorem 3:

Towards showing completeness, we use a suitable canonical model. Taking (max-
imal) A-consistent sets and showing Lindenbaum’s lemma follow the standard
paradigm.

Definition 13 (Canonical model) The canonical model for the logic A is M :=
W, >, ~V,R,cp,Le, la) Where:

— Wis the set of all maximal A-consistent sets.

— >1is such that for w,u e W w>u iff {¢ | Lo¢ € w} C u.
— ~issuch that for w,u e W: w~u iff {¢ | Lx¢p € w} C u.
- V(w) ={p|pew}withw e W.

- Rw)={p| Ap € w}, withw € W.

— Ta(w) ={0 | Ia¢p € w}, withw € W.

— Ia(w) = {¢ | Ia¢ € w}, with w € W.

Due to Lk, L, Indefeasibility, Local Connectedness and modal logic results on
correspondence (Blackburn et al. 2001) the canonical model is reflexive, transitive
and (locally) connected (with respect to >) and ~ is the symmetric extension of >
(these properties yield the so-called non-standard plausibility models). The axioms on
Soundness of Rules, Minimal Consistency, Succession and Radius are such to ensure
that the model has the desired properties.

18 Notice that the fact that the interpretations of (RAD) , and [RAD], are not arbitrary in impossible worlds
is important in this proof.
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We then perform induction on the complexity of ¢ to show the truth lemma:
M, w = ¢ iff ¢ € w. The claim for propositional atoms, the boolean cases, lin-
ear inequalities, and A holds, due to the construction of the canonical model (namely,
V and R), Ineq, the properties of maximal consistent sets and I.H.. The claim for
(RAD) , follows by the I.H. and Radius;. The claims for L and Lk follow with the
help of the I.H. as usual in Modal Logic, because these operators behave as normal
normal operators (Blackburn et al. 2001). For I, Ik, fD and Tx we rely on the con-
struction of the awareness-like functions and then the result is immediate. For K ¢ and
O¢, we make use of Red g and Red, the .H. and the results of the previous steps on
L, Ix and L0y, I."?

Proof for Theorem 4:

Proof — The claim is easy for the atoms, the boolean cases, the inequalities, A,

~

(RAD),, Lk and L. We will only show why the claim holds for /g and I, Ig

and fD because the claims involving K, [ will then follow from the clause for ®
and the distribution of (p) over conjunction.

— Let M be an arbitrary model and w an arbitrary possible world of the model.
Suppose M, w = (p)Ix¢. Therefore M, w = (cp > cp), M, w = Ap and
M?, w = Ix¢. Recall that WP = [,y u”. Therefore for all v € W* N wi,
MP v = ¢ (1). Take arbitrary u € W/ and arbitrary v € u”. Then,v € WP N W/,
and by (1) and the definitions of V and radius: M,v = ¢. Overall, M, w =
Ix[RAD],¢p and by M, w = (cp = ¢p), M, w = Ap, we finally get M, w =
(cp = cp) N Ap A Ik[RAD],¢. For the other direction, suppose that M, w =
(cp = cp) N Ap A Igk[RAD],¢. Take arbitrary v € WP N W/, i.e. there is some
u € W! such that v € u”. By the truth conditions of M, w = Ix[RAD],¢, for
allu € W, M, u = [RAD],¢, ie. forall v € u”: M,v |= ¢. Therefore, for
our arbitrary v, it is the case that M, v = ¢, and by definitions of V and radius,
MP v = ¢. Overall, MP, w |= Ix ¢ and finally M, w = (p) Ik ¢.

— Let M be an arbitrary model and w an arbitrary possible world of the model.
Suppose M, w = (p)Ig¢. Therefore M, w = (cp > ¢,), M, w = Ap and
MP,w = Iq¢. Since WP = UueW uP, forallv € WP N W/! such that w >* v:
MP v = ¢ (1). Then, take arbitrary u € W/ N Qp(w) and arbitrary v € u”. Since
ord® (v) < ord(u) (by Step 2 of transformation) and w > u, we get that w >* v.
Therefore v € WPNW/!, and by (1) and the definitions of V and radius: M, v = ¢.
Hence M, w = Ig[RAD],¢ andby M, w = (cp > ¢p), M, w = Ap, we finally
get M, w = (cp > ¢,) A Ap A Ig[RAD],¢. For the other direction, suppose that
M,w = (cp = cp) A Ap A Ig[RAD],¢. Take arbitrary v € WP N W such that
w >P v, ie. there is some u € W' such that v € u”. Take the most plausible
of these worlds (from which v originated). For this u, since ord” (v) = ord(u)
and w > v then w > u. By the truth conditions of M, w = Ig[RAD],¢, for
allu € W' such that w > u: M, u |= [RAD],¢, i.e. forall v € u”: M,v = ¢.

19 In fact, we can claim that this logic is weakly complete with respect to ALPSs where > is conversely
well-founded. This is because our structures have the finite model property (as the established plausibility
models, e.g. in Baltag and Smets (2008); Veldzquez-Quesada (2011)), so there are no infinite > chains of
more and more plausible worlds.
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Therefore, for our arbitrary v, it is the case that M, v = ¢, and by definitions of V
and radius, M”, v = ¢ too. Overall, M?, w = Iq¢ and finally M, w = (p)Iq¢.
— Let M be an arbitrary model and w an arbitrary possible world of the model.
Suppose M, w = (p)fK¢. Therefore M, w = (cp > ¢p), M, w = Ap and
MP,w = fK(ib. Since W* = |J,cy u”, for some v € WP N Wi MP v = ¢.
That is, there is some u € W/ such that v € u” and M?, v = ¢. Therefore,
for some u € W/ there is some v € u” such that (by definitions of V and
radius) M, v |= ¢. This amounts to M, w = I Kk (RAD) ¢, and overall M, w =
(cp = cp) NAp A fK (RAD) ,¢. For the other direction, suppose M, w = (cp >
Cp) NAp A fK (RAD),¢. From M, w = fK (RAD) ¢, we get that there is some
u € W! such that for some v € u?: M,v = ¢.Butthenv € WP N W' and by
definitions of V and radius, M”, w = iKczS. Sooverall M, w = (p)fK¢>.

— Let M be an arbitrary model and w an arbitrary possible world of the model.
Suppose M, w = (p)fg(ﬁ. Therefore M, w = (cp > ¢p), M,w = Ap and
MP,w = Iq¢. Since WP = Uyew u?, for some v € WP N W! withw > v
MP v = ¢. That is, there is u € W' such that v € u”, and w >” v and
MP, v = ¢. Take the most plausible such u. Since ord(u) = ord” (v), w > u. By
these, and definitions of V and radius: thereis u € W/ N Q(w) and v € u” with
M,v = ¢, which is precisely M, w &= fg (RAD),¢. Overall: M, w = (cp >
cp) NAp A iD (RAD) ,¢. For the other direction, suppose M, w = (cp = ¢,),
M, w E= Ap A fg (RAD) ,¢. This means that there is some u € win On(w)
and some v € u” with M, v = ¢. It suffices to show that M°, w = fD¢. But
from w > u and v € u”, we obtain that w >° v, and v € W*. Due to this and
definitions of V and radius: M”, v = ¢ and then M, w = fgg&. Overall indeed

M. w = (p)ie. o
Proof for Theorem 5:

Proof The proof follows from Theorems 2, 3, and 4. O
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