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Abstract
We introduce Interleave-Disjunction-Lock parallel multiple context-free grammars
(IDL-PMCFG), a novel grammar formalism designed to describe the syntax of free
word order languages that allow for extensive interleaving of grammatical constituents.
Though interleaved constituents, and especially the so-called hyperbaton, are common
in several ancient (Classical Latin and Greek, Sanskrit...) and modern (Hungarian,
Finnish...) languages, these syntactic structures are often difficult to express in exist-
ing formalisms. The IDL-PMCFG formalism combines Seki et al.’s parallel multiple
context-free grammars (PMCFG) with Nederhof and Satta’s IDL expressions. We
define the semantics of IDL-PMCFGs and study their expressivity, proving that
IDL-PMCFG extends both PMCFG and IDL-CFG (context-free grammars equipped
with IDL expressions) and that IDL-PMCFG parsing is NP-hard. We then introduce
COMPĀ, a programming language extending Ranta’s Grammatical Framework (GF)
and built as a high-level front-end formalism to IDL-PMCFG for practical grammar
development. We present a parsing algorithm for IDL-PMCFG inspired by earlier
Earley-style PMCFG parsing algorithms and Nederhof and Satta’s IDL graphs and
give a worst-case estimate of its complexity as a function of several metrics on IDL
expressions, the size of the input and a new notion of the G-density of a language.
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328 F. Hublet

1 Modelling and Parsing FreeWord Order Languages: A Brief State
of Affairs

1.1 The Challenge of FreeWord Order

Since Kashket (1986)’s seminal contribution, developing models and parsing tech-
niques for free word order languages has been an ongoing challenge for computational
linguists. Whilst free word order phenomena are largely absent from modern Western
languages such as English, they are frequent in ancient Indo-European languages such
as Sanskrit (Schaufele 1991), Greek and Latin (Conrad 1965; Devine and Stephens
2006; Spevak 2010), in Finno-Ugric languages such as Hungarian (Kiss 1981) or
Finnish (Kay andKarttunen 1984), but also inAustralian (Kashket 1986;Austin 2001),
Turkic (Hoffman 1995), and, to a certain extent, Slavic (Siewierska andUhlirova 1998)
and Germanic (Reape 1994) idioms. In morphologically rich languages, a certain level
of word order freedom is generally present, which can range from simple relaxation of
linear ordering contraints to genuine non-configurationality. Additionnally, loosening
of common word order constraints is a frequent feature of literary, especially metrical,
texts, in which prosodic, stylistic and expressive factors favor alternative and unusual
word orderings.

At this point, it is worth mentioning that even the notion of free word order is, in
itself, rather imprecise. Three different phenomena are generally qualified as such:
(i) freedom in linear reordering or grammatical constituents as in Today I walk—I
walk today (ii) discontinuous constituents that may span over a whole sentence; this
common feature of e.g. German can also be demonstrated with English phrasal verbs
in sentences such as I checked this out (iii) hyperbaton, i.e. interleaving of grammatical
constituents as they frequently occur for instance in Classical Latin: cetera labuntur
celeri caelestia motu1 (‘the other heavenly [bodies] move quickly’, litt. ‘the-other
move quick heavenly movement’). This last and, by most aspects, most complex
phenomenon produces crossing dependencies between constituents. Classical Latin,
which provides innumerable examples of this, will serve as a reference for further
investigation, but similar patterns can also be exhibited in Ancient Greek, Sanskrit,
Old Norse, Slavic and Finno-Ugric languages, among others.

Context-free grammars (CFGs), introduced byNoamChomsky in the 1950s, can be
considered the de facto baseline of most generative grammar formalisms in both com-
puter science and linguistics. Nevertheless, CFGs, unlike many dependency grammar
formalisms, turned out to be unable to describe certain syntactic phenomena occur-
ing in the grammar of natural languages, especially those involving free constituent
order or discontinuous constituents. These limitations fostered the development of
new, non context-free formalisms better suited to describe natural language: indexed
grammars (Aho 1968), immediate dominance/linear precedence grammars (ID/LP)
(Pullum 1982; Shieber 1984), tree-adjoining grammars (TAG) (Vijayashanker and
Joshi 1988), parallel multiple context-free grammars (PMCFG) (Seki et al. 1991),
affix grammars over a fixed lattice (AGFL) (Koster 1991), positive range concatena-
tion grammars (PRCG) (Boullier 1998), among others. Following Chomsky (1956),

1 Cicero, Aratus, 358, cited by Conrad (1965).
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these formalisms can all be classified as Type-1 grammars, and the languages they
generate are generally referred to as context-sensitive. Most of the effort focussed
on the development of so-called midly context-sensitive formalisms. A complete sur-
vey of the most common non context-free formalisms and their use in computational
linguistics can be found in Kallmeyer (2010).

With rather strict word order languages accounting for a significant part of the
available digital corpora andpotential applicationfields, computational linguists,many
of whom are native speakers of one of these idioms, may have been tempted to address
the grammatical modelling of free word order languages with tools chiefly designed to
describeEnglish or similar languages. These tools rarely integrate an operator allowing
for arbitrary constituent order, let alone for interleaving, since such operators come
with a high computational cost that can and must be avoided when parsing free word
order languages. This is especially true as regards multilingual parsing, translation or
text generation systems thatwould have added support for some of the above languages
at a later stage of their development. From all grammatical formalisms described
above, only ID/LP can easily encode hyperbaton, but does not provide support for
discontinuous constituents.

Note that this paper doesnot make a theoretical claim that noneof the existingmildly
context-sensitive formalisms is expressive enough, from a theoretical viewpoint, to
encode free word order phenomena observed in natural languages. There are in fact
good reasons to think that some of them are. In practice, if we assume that interleaving
phenomena always have a finite depth, we can encode hyperbatic phenomena through
a finite, yet exponential, number of context-free rules; recent theoretical results (Ho
2018) have shown that even without a finite-depth assumption, hyperbaton without
copy is still mildly context-sensitive. What this paper does observe, however, is that
we lack a general grammar description framework with built-in support for free word
order phenomena, in which describing e.g. Classical Latin syntax requires neither an
exponential inflation in the number of rules compared to the fixed word order case nor
a complex conversion process. We lack a framework that would allow us to describe
free word order syntax as linguists or grammarians would do, e.g. by defining single
attachment rules that do not necessarily impose ordering constraints.

Early attempts to design grammatical formalisms for free word order languages
have not led to the development of general-purpose tools; nor were they designed
to provide cross-lingual interoperability with fixed word order languages. Coving-
ton (1990)’s approach, whose applications to parsing a “tiny subset of Latin” were
explored by Koch (1993), relies on dependency rather than phrase structure grammar,
which both authors consider less suited to addressing free word order phenomena.
Dependency- and constraints-based methods have also been implemented by Bharati
and Sangal (1993) for Indian languages, building on notions from Pān. inian grammar.
Thoughunderlying dependency relations betweenwords are indeed the real issuewhile
describing the syntax of free word order languages, we do not believe that this point
of view should be deemed irreconciliable with the traditional structured approaches
to grammar writing, that involve clear-cut constituents.

We are indeed looking for a formalism that would allow us to conveniently
describe the syntax of free word order languages, and that could be used to produce
wide-coverage, modular grammars in the style of the Ressource Grammar Library
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(Ranta et al. 2009). In addition to providing native support for free word order lan-
guage, the new framework would still be able to encode standard fixed order rules;
ideally, it would be built as a “free word order extension” of on existing framework,
in order to capitalize on past efforts and guarantee compatibility with existing fixed
word order grammars. A new formalism fulfilling these requirements, which we will
introduce and study in Sect. 2, is called Interleave-Disjunction-Lock parallel multiple
context-free grammars or IDL-PMCFG.

Another essential factor to take into account when designing a grammatical formal-
ism is its suitability for practical implementation ofwide-coverage grammars.Oneway
to ensure that users can easily define and use their own grammar models is to provide a
complete front-end syntax for grammatical description in the formof a special-purpose
programming language. In these regards, we built on Ranta (2011)’s Grammatical
Framework (GF) and Nederhof and Satta (2004)’s IDL expressions to elaborate our
own grammar description system, COMPĀ, whose syntax extends so-called context-
free GF (Ljunglöf 2004) with some new operators to encode interleaving, disjunction
and locking of constituents. High-level COMPĀ code is compiled into a low-level
IDL-PMCF grammar that can be used directly for parsing. COMPĀ and its compiler
are introduced in Sect. 3; the parsing algorithm itself is presented and studied in Sect. 4.

Before we proceed with the description of our formalism, a short look at precise
linguistic facts behind extensive free word order can help us identify the exact features
we are looking for.

1.2 Towards a Natural Account of FreeWord Order Syntax: The Case of Classical
Latin

A language with considerable freedom of word order, Classical Latin presents many
syntactic phenomena alien to most modern Western European languages. By looking
at the few typical aspects of Latin syntax, we shall see in this section which kind of
features our desired framework should have in order to be able to concisely encode the
syntactic phenomena at play in free word order languages in general, and in Classical
Latin in particular.

1.2.1 Hyperbaton and Interleaved Constituents

As Devine and Stephens (2006) puts it, “[p]hrasal discontinuity, traditionally called
hyperbaton in Classical studies, is perhaps the most distinctively alien feature of Latin
word order”. Hyperbaton is a very general, transcategorial phenomenon that can occur
whenever a syntactic constituent is non-contiguous. Danckaert (2017) emphasizes that
modern research has shifted away from the opposition of regular vs. exceptional word
orders as it is found for example in Marouzeau (1922); still, recent transformational
approaches have relied on some kind of default word order to distinguish non-emphatic
from non-emphatic word orders. This might be totally justified when pragmatic infor-
mation is available, provided that, in the words of Devine and Stephens (2006), “[t]he
syntax is massaged to provide for a simple and direct translation into a pragmatically
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structured meaning”. Unfortunately, such information is generally not available in
usual parsing contexts.

In particular, the ante- or postposition of adjectives and genitive modifiers in Classi-
cal Latin does not obey general syntactic rules (Devine and Stephens 2006). Statistical
patterns may vary from word to word, with patterns rarely uniformly spreading over
whole semantic lexical categories. Not surprisingly, discontinuous adjective and geni-
tive attachement represents an overwhelming majority of all instances of hyperbata. In
verse, where discontinuity is the standard rather than the exception, Conrad (1965) has
shown it to be a characteristic feature of a long Greco-Roman poetic tradition dating
back to the oral tradition of the Homeric times, influenced by the Roman taste for
phenomena such as the clash of ictus and accent on the fourth foot of the hexameter.
Latin poets made such an extensive use of the device that in Horace, we find stanzas
with three crossing attribute dependencies.2

In this context, there is no reason to deny hyperbaton its status as a standard, inde-
pendent feature of Classical Latin; as parsing systems do not have access to pragmatic
information, and since hyperbaton is extremely common even in simple prose,weneed
to be able to formulate general adjective attachment rules that, within the clause,
relaxes all constraints on both linear order and intervention of other constituents.

1.2.2 Locking of Clauses and Prepositional Phrases

One seemingly absolute constraint on word reordering in Classical Latin concerns the
impossibility of so-called ‘long hyperbata’ between finite clauses. ‘Long hyperbata’
are defined in Devine and Stephens (2006) as hyperbata that involve the extraction of
a word from one clause to another; ‘short hyperbata’, on the other hand, are hyperbata
that allow for interleaving words only within the bounds of a given clause. We must
be able to express that finite clauses generally need to be ‘locked’, i.e. protected
against interleaving with other clauses.

We only say ‘generally’, since verse texts provide well-known counter-examples
to this rule,3 showing that mixing of material from different finite clauses was not
altogether impossible in poetic contexts. Moreover, it must be noted that this general
exclusion of long hyperbata in finite clauses does not generalize to non-finite (infinitive
and participial) clauses, which can be freely interleaved.

Another important issue, especially in verse, is that of the position of the subordi-
nator not at the beginning, but within the clause, that has been extensively studied by
Marouzeau (1949). Bortolussi (2006) has emphasized the high occurence frequency
and expressive value of this so-called traiectio, which leads to the subordinator appear-
ing (at least) second in the clause. Yet, an almost absolute rule that opposes rightward
movement of subordinators is that a subordinator cannot stand last within the clause it
introduces. Therefore, we still need to be able to restrict (linear) freedom of word
order in certain cases.

Finally, another instance of locking with an additional constraint on word order
occurs in the context of prepositional phrases: while all but one element of the prepo-

2 See Horace, Carm. 1.9.21-22, cited by Marouzeau (1922).
3 See Horace, Sat., 1.5.72, cited by Marouzeau (1922).
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sitional phrase might be arbitrary interleaved within the clause, at least one element
(not necessarily the head) must be placed directly after the preposition. To account for
this type of syntactic limitation, a combination of mostly free word order with targeted
locking and linear constraints is again required.

1.2.3 Multiple Fields and Features

General-purpose grammar description systems such as Grammatical Framework
(Ranta 2004) make an extensive use of records and fields in order to store the various
forms of a word, parts of discontinuous grammatical constituents or handle redupli-
cation phenomena. As our goal is to be able to describe Classical Latin syntax as
generally as possible and we may want to keep some interoperability with existing
frameworks, records and fields are required in practice.

There is, however, no obvious reasonwhywe should require copying to be available
in order to describe Classical Latin. Allowing copy in our framework can be desirable
in order to account for specific syntactic phenomena in other natural languages (see
below), because copying is a general phenomenon in language (Kobele 2006), or to
preserve compatability with existing tools such asGrammatical Framework. But this is
a design decision independent from the specific characteristics of Latin syntax, whose
goal is not to stick closely to the formal requirements of Latin syntax, but rather to
preverse some general linguistic expressiveness. As it makes sense to think of a new
framework as having to match the needs of free word order languages in general and
not of Classical Latin exclusively, we will want to allow copy operations in our
formalism.

1.2.4 Summary

The above discussion suggests five characteristics that a grammatical formalism
designed to enable a straightforward description of the syntax of free word order
languages such as Classical Latin should have: operators to interleave grammatical
constituents, lock phrases and restrict reorderings of constituents; a record and fields
system; and, finally, and maybe less importantly, a support for copy operations.

Notations We will use the following conventions:

– N
+ denotes N\ {0} = {1, 2, . . . };

– Symbol ε denotes the empty word, while ε and � (‘diamond’) are special symbols;
– All alphabets Σ used in this paper are assumed not to contain the symbols ε and

�;
– For (a, b) ∈ N

2, [[a, b]] denotes the set {a, a + 1, . . . , b − 1, b} and [[a, b[[ the set
{a, a + 1, . . . , b − 1};

– For any set S, P (S) denotes the power set (set of subsets) of S and P f (S) the
set of finite subsets of S;

– For any set S, |S| denotes the cardinal of S;
– For any sets S, T , S⇀T denotes a partial function from S to T ;
– For all f : S⇀T , D ( f ) denotes the domain of f ;
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– Let Σ be an alphabet and t ∈ Σ∗ a word on this alphabet. Then |t | denotes the
length of t . Furthermore, for all p ∈ P ([[1, |t |]]), tp denotes the subword of
t formed by extracting the symbols at positions p in t . For example, on Σ =
{a, . . . , z}:

alphabet{1,8} = at

alphabet{2,5,6} = lab

alphabet{6,7,8} = bet;

– Rules in grammars are written using the following functional notation

A1 → · · · → An → B : a1, . . . , an �→ e

which reads “given an item a1 of category A1, …, an item an of category An , an
item of category B can be produced which is equal to expression e”; expression e
depends on the current formalism but will usually contain instances of a1, …, an ;

2 Introducing IDL Parallel Multiple Context-Free Grammars
(IDL-PMCFG)

2.1 IDL Expressions

IDL (Interleave-Disjunction-Lock) expressions, introduced by Nederhof and Satta
(2004), are a family of regular expressions tailored to describe and parse natural
language sentences. Since they do not allow for the use of nonterminal symbols,
Nederhof and Satta’s original IDL expressions are no grammars and can therefore
only be used to describe specific (finite) families of utterances; a single IDL expression
cannot encode a complex language model. However, they already include everything
needed to account for free constituent order, hyperbata and their respective limitations.
The definitions below closely follow those of the original paper.

Definition 1 (IDL expression) Let Σ be a finite alphabet. An IDL expression e over
Σ is defined inductively as follows:

e := a ∀a ∈ Σ ∪ {ε}
| e′ · e′′

| × (e′)

| ∨ (e1, . . . , en) ∀n ∈ N
+

| || (e1, . . . , en) ∀n ∈ N
+.

Note that, unlike usual regular expressions dealing with character strings, IDL
expressions used in typical computational linguistics applications use an alphabet Σ

composed of full words (tokens), that are to be combined into grammatical constituents
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and sentences. Therefore, throughout this document, the word string should be under-
stood as a shortcut for ‘token list’, an the word set of strings as a shortcut for ‘set of
token lists’. The informal semantics of the constructors, that all act on sets of strings,
is as follows:

– The dot represents standard concatenation;
– Disjunction has its usual semantics as set union;
– The interleave operator || allows for arbitrarily mixing tokens contained in n
strings, as long as the relative ordering within each initial string is preserved in the
final string.

– The lock operator × prevents a string from being divided into several substrings
by an instance of the interleave operator.

This can be illustrated by the following variations on the Latin sentence ciuis
Romanus sum (‘I am a Roman citizen’, litt. ‘citizen Roman am’):

ciuis · Romanus · sum −→ { "ciuis Romanus sum" }
∨ (ciuis,Romanus,sum) −→ { "ciuis","Romanus","sum" }
|| (ciuis,Romanus,sum) −→ { "ciuis Romanus sum","ciuis sum Romanus",

"Romanus ciuis sum","Romanus sum ciuis"

"sum ciuis Romanus","sum Romanus ciuis" }
|| (ciuis · Romanus,sum) −→ { "ciuis Romanus sum","ciuis sum Romanus",

"sum ciuis Romanus" }
|| (× (ciuis · Romanus) ,sum) −→ { "ciuis Romanus sum","sum ciuis Romanus" }

To formally define the language of an IDL expression, we first need to introduce
the primitives lock and comb as done in Nederhof and Satta (2004):

Definition 2 (Primitives lock and comb)

1. Let lock be the only monoid homomorphism over ((Σ ∪ {�}))∗, ·) such that
lock|Σ = id|Σ and lock (�) = ε.

2. Let comb and comb′ be functions from
(
(Σ ∪ {�})∗)2 toP (

(Σ ∪ {�})∗) defined
inductively by:

comb (x, y) = comb′ (x, y) ∪ comb′ (y, x)

comb′ (x, y) =
{ {x � y} if there is no � in x{

x ′ � y′ | y′ ∈ comb
(
x ′′, y

)}
if x is of the form x ′ � x ′′ with no � in x ′ .

Informally, the symbol � represents positions at which words can be interleaved
into the current substring. Such � symbols are inserted into the current string by each
concatenation or interleave operation: by default, every word boundary is a place
where a new word can be inserted. The lock primitive erases such symbols in each
string of the input set, thus preventing any interleaving within the enclosed substrings.
The comb primitive produces the set of all strings that can be obtained by interleaving
contiguous substrings of the two input string at positions marked by a �.

Since comb produces all possible interleavings of two input strings, it is clearly
associative and commutative. We can see comb as an nary operator for all n, and write
combn

i=1ai := comb (a1, comb (a2, . . . comb (an−1, an) . . . )).
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We can now define the language of an IDL expression, which exactly matches the
mechanics exposed and demonstrated above:

Definition 3 (Language of an IDL expression) Let Σ be an alphabet. For any IDL
expression e over Σ , language L (e) is given by

L (e) = σ (× (e))

where for any IDL expression e over Σ , σ (e) is a subset of P
(
(Σ ∪ {�})∗) that is

defined inductively as follows:

σ
(
ε
) = {ε}

σ (a) = {a} ∀a ∈ Σ

σ
(
e′ · e′′

) = {
w′ � w′′ | (w′, w′′) ∈ σ

(
e′
)× σ

(
e′′
)}

σ
(× (e′)) = lock

(
σ
(
e′
))

σ (∨ (e1, . . . , en)) =
n⋃

i=1

σ (ei )

σ (|| (e1, . . . , en)) = combn
i=1σ (ei ) .

To seewhy IDLexpressions arewell-suited to describe grammatically valid reorder-
ings of utterances in free word order languages, consider the following example from
Latin: Marcus cum amico caro ambulat (‘Marcus walks with his dear friend’, litt.
‘Marcus with friend dear walks’). For a permutation of the five above words to be
considered valid in Classical Latin verse, the only condition to be met is that cum
(‘with’) must stand immediately before either amico (‘friend’, ablative singular) or
caro (‘dear’, ablative singular masculine). Besides this single constraint, the order
of constituents is free, and the verb modifier cum amico suo might even be disjoint.
This means that even heavily reordered utterances such as amico Marcus ambulat
cum caro should be considered grammatical, as similar structures are, indeed, well
documented. Now, this seemingly unusual syntactic constraint is surprisingly easy to
express in terms of an IDL expression:

|| (Marcus,∨ (|| (× (cum · amico) ,caro) , || (× (cum · caro) ,amico)) ,ambulat) .

Of course, IDL expressions alone cannot provide much more than ad-hoc solutions
for a set of specific utterances. In order for their expressive power to be used for general
language description, they must be integrated into a complete grammatical formalism.

2.2 Parallel Multiple Context-Free Grammars

Itwas already to dealwith discontinuous constituents in natural language that Seki et al.
(1991) defined parallel multiple context-free grammars (PMCFG), whose definition is
given below. Parallel multiple context-free grammars extend context-free grammars
by manipulating tuples of strings instead of strings. Each category of a PMCFG is
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assigned a dimension (a tuple size). Every production consumes a number of named
argument tuples of fixed categories and produces a new tuple. Each element of this
tuple is the concatenation of an arbitrary number of terminals and (nonterminal, index)
pairs, which uniquely identify a field of one the arguments. The start category, usually
denoted by S, defines the grammar’s language, and has therefore dimension 1.

We have the following typical example:

Lemma 1 Language L3n = {anbncn | n ∈ N} on Σ3 = {a, b, c} is in PMCFL.

Proof The following PMCFG grammar matches L3n

T → S : t �→ 〈t [0] · t [1] · t [2]〉
T → T : t �→ 〈a · t [0] , b · t [1] , c · t [2]〉

T : 〈ε, ε, ε〉

where, following usual programming conventions, we start indexing at 0 and write
(nonterminal, index) pairs as nonterminal[index]. 
�

How does this grammar define the above language? First, it states that a (one-
dimensional) tuple of type S can be produced from a (three-dimensional) tuple t of
type T by concatenating the three fields of t ; then, that a tuple of type T can be
produced in either of two ways: either it is generated from another tuple t of type T
by appending a, b and c respectively at the beginning of each of the fields, or is equal
to 〈ε, ε, ε〉. It is straightforward to see that T matches L3n , thus yielding the expected
behavior for S.

The formal definition of PMCFG, slightly adapted from Seki et al. (1991), is as
follows:

Definition 4 (PMCF grammar) A PMCF grammar (or PMCFG) is a sextuple

G = (N , δ,Σ, F, P, S)

where

1. N is a finite set of nonterminal symbols (also called categories);
2. δ : N → N maps each nonterminal symbol A to its dimension δ (A);
3. Σ is a finite set of terminal symbols disjoint with N ;
4. F is a finite set of functions such that for all f ∈ F , there exists a ( f ) ∈ N, called

arity of f , as well as a( f ) integers d1( f ), . . . , da( f )( f ) encoding the dimensions
of the a( f ) arguments of f , and an integer r( f ) encoding the dimension of the
image of f , such that the signature of f is

(
Σ∗)d1( f ) × · · · × (Σ∗)da( f )( f ) → (

Σ∗)r( f ) ;

5. For any f ∈ F , letting ρ := r ( f ), f is of the form

s1, . . . , sa( f ) �→
〈
α11sβ11γ11α12sβ12γ12 . . . α1δ1, . . . , αρ1sβρ1γρ1αρ2sβρ2γρ2 . . . αργρ

〉

123



IDL-PMCFG, a Grammar Formalism for Describing Free Word… 337

where all δi , βi j and γi j are integers with βi j ≤ a ( f ) and γi j ≤ dβi j ( f ), and
αi j ∈ Σ∗ for all i, j . In other terms, every component of the tuple produced by
f is obtained via arbitrary concatenation of symbols from Σ and components of
f ’s arguments;

6. For q ∈ N, let Fq denote the subset of all functions of arity q in F ;
7. P , called the set of productions or rules, is a finite subset of

⋃
q∈N

(
Fq × N q+1

)

such that for all q ∈ N and
(

f , A1, . . . , Aq+1
) ∈ P , we have dk ( f ) = δ (Ak)

for every k ∈ {1, . . . , q} as well as r( f ) = δ
(

Aq+1
)
, i.e. the dimensions of the

arguments (resp. of the image) of f match the dimensions of the categories on the
left (resp. right) side of the production;

8. S ∈ N is the start symbol, of dimension δ (S) = 1.

Note that according to the previous definition, a PMCFG G = (N , δ,Σ, F, P, S)

such that δ (N ) = {1} (i.e. a PMCFG whose categories have dimension as most 1) is
exactly a CFG.

Finally, we define the language of a parallel multiple context-free grammar as
follows:

Definition 5 (Language of a PMCFG) Let G = (N , δ,Σ, F, P, S) be a PMCF
grammar. Let m = maxA∈N δ (A). We define a big-step derivation relation →̂ on
N ×⋃m

i=0 (Σ∗)i inductively as follows:
For all

(
A,
〈
t1, . . . , tδ(A)

〉) ∈ N × (Σ∗)δ(A), we have A→̂ 〈
t1, . . . , tδ(A)

〉
if, and only

if, there exists a production
(

f , A1, . . . , Aa( f ), A
) ∈ P and strings

(
si j
)

i≤a( f ), j≤di ( f )

such that the two following conditions are met:

1. For all integers i ≤ a ( f ), j ≤ di ( f ), Ai j→̂si j ;
2. f

(
s1, . . . , sa( f )

) = 〈
t1, . . . , tδ(A)

〉
.

The language recognized by G is defined as

L(G) = {
s ∈ Σ∗ | S→̂s

}

and call PMCFL (resp. CFL) the set of all languages that are recognized by at least
one PMCFG (resp. CFG).

Let us give an example of how PMCFG extends the expressivity of CFG. We will
use the following well-known example:

Lemma 2 Language L3n defined in Lemma 5 is not context-free.

Proof This is a classical result whose proof (usually using the pumping lemma) can
be found e.g. in Hopcroft et al. (2013). 
�

This lemma, combined with Lemma 5, results in the following strict inclusion:

Proposition 1 CFL � PMCFL.

Through its use of tuples, PMCFG provides a handy way to handle discontinuous
constituents. Various parts of the linearization of a constituent can be stored in differ-
ent fields, and later on integrated into a larger phrase. Since the same argument can
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appear an arbitrary number of times in the right hand side of any production, general
PMCFGs can also define reduplication phenomena as encountered e.g. in short Swiss
German verbs (Lötscher 1993), Indonesian plurals (Dalrymple and Mofu 2011) or
Telugu distributives (Balusu 2006). The formalism has proved efficient as a parsing
front-end for context-free GF (Ljunglöf 2004; Angelov et al. 2009; Ljunglöf 2012).
Nevertheless, expressing free order of constituents or interleaving of constituents is
not easy in PMCFG. Until 2018, it was not even known whether this was possible.
Although the answer is now known to be positive (Ho 2018), there is still no convenient
way to concisely express the interleaving of groups, since PMCFG lacks a specific
operator for this type of reordering. One way to overcome this difficulty is to define
all legal orderings manually and pass them as arguments to the corresponding rule;
this technique has been demonstrated by Lange (2017) in the case of Latin.

2.3 Bringing Together IDL Expressions and PMCFG: IDL-PMCFG

The conclusions of the last two subsections suggest that we combine IDL expressions
and parallel multiple context-free grammars into a single formalism that can han-
dle discontinuous constituents and copy (as did PMCFG) as well as free constituent
order and hyperbaton (as did IDL expressions). This formalism is IDL-PMCF gram-
mars (IDL-PMCFG), whose definition is given below. Although the complexity of the
membership problem of both IDL expressions and PMCF grammars is polynomial,
this is not the case of their combination: wewill see in this subsection that parsing IDL-
PMCF grammars is NP-hard, which as an important corrolary (Theorem 1) implies
that IDL-PMCF provides a strict extension of PMCFG unless P = NP.

In IDL-PMCF grammars, productions are defined not as concatenations, but as IDL
expressions of terminals and (nonterminal, index) pairs. Instead of tuples of strings,
tuples of sets of strings are now the basic data type manipulated by the various rules.
The � symbol, which marks positions at which new words can be interleaved into the
current string, is added to the alphabet.

Definition 6 (IDL-PMCF grammar) An IDL-MCF grammar (or IDL-PMCFG) is a
sextuple

G = (N , δ,Σ, F, P, S)

where

1. N is a finite set of nonterminal symbols (also called categories);
2. δ : N → N maps each nonterminal symbol A to its dimension δ (A);
3. Σ is a finite set of terminal symbols disjoint with N ;
4. F is a finite set of functions such that for all f ∈ F , there exists a ( f ) ∈ N, called

arity of f , as well as a( f ) integers d1( f ), . . . , da( f )( f ) encoding the dimensions
of the a( f ) arguments of f , and an integer r( f ) encoding the dimension of the
image of f , such that the signature of f is
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(
P
(
Σ
))d1( f ) × · · · × (P (

Σ
))da( f )( f ) → (

P
(
Σ
))r( f )

where Σ = (Σ ∪ {�})∗;
5. For any f ∈ F , there exist IDL expressions e1, . . . , er( f ) over Σ ∪ {Xi j | i ≤

a ( f ) , j ≤ di ( f )}, where the Xi j are fresh variable symbols, such that f is of the
form

s1, . . . , sa( f ) �→
⋃

(w1,...,wa( f ))∈s1×···×sa( f )

{〈
x1
[
Xi j := wi j ∀i, j

]
, . . . , xr( f )

[
Xi j := wi j ∀i, j

]〉

| (x1, . . . , xr( f )) ∈ σ (e1) × · · · × σ
(
er( f )

)}
.

Function f now produces a set of tuples of length r ( f ), which are derived in three
steps: (1) for each i ≤ a ( f ), choose one tuple wi in each set si (2) for k ≤ r ( f ),
choose an xk in each σ (ek) (3) for all i, j , substitute wi j for Xi j in each xk .

6. For q ∈ N, let Fq denote the subset of all functions of arity q in F ;
7. P , called the set of productions or rules, if a finite subset of

⋃
q∈N

(
Fq × N q+1

)

such that for all q ∈ N, for all function f ∈ F and categories A1, . . . , Aq+1 ∈
N such that

(
f , A1, . . . , Aq+1

) ∈ P , we have dk ( f ) = δ (Ak) for every k ∈
{1, . . . , q} as well as r( f ) = δ

(
Aq+1

)
, i.e. the dimensions of the arguments (resp.

of the image) of f match those of the categories on the left (resp. right) side of the
production;

8. S ∈ N is the start symbol, of dimension δ (S) = 1.

Just as a parallel multiple context free grammar with δ (N ) = {1} is a context-free
grammar, we define IDL-CFGs as follows:

Definition 7 (IDL-CF grammar) An IDL-MCF grammar G = (N , δ,Σ, F, P, S)

such that δ (N ) = {1} is called an IDL-CF grammar (or IDL-CFG).

IDL context-free grammars are of essential theoretical interest. As we will come
to evaluate the expressivity gain obtained by replacing simple concatenation by IDL
expressions, it will be important to single out the contributions of both the PMCFG
formalism and IDL expressions to the extension of the class of languages can that can
be described by IDL-PMCFGs. Hence, comparing the expressivity of PMCFG to that
of IDL-(PM)CFG, as we will do it in Sect. 2.4, shall inform us more thoroughly about
the complementarity of the two approaches we combined.

Finally, the language matched by a given IDL-PMCFG can now be defined:

Definition 8 (Language of an IDL-PMCFG) Let G = (N , δ,Σ, F, P, S) be an IDL-
PMCF grammar. Let m = maxA∈N δ (A). We define a big-step derivation relation→
on N ×⋃m

i=0

(
P
(
Σ
))i

inductively as follows:

For all
(

A,
〈
t1, . . . , tδ(A)

〉) ∈ N × (
P
(
Σ
))δ(A)

, we have A → 〈
t1, . . . , tδ(A)

〉
if,

and only if, there exists a production
(

f , A1, . . . , Aa( f ), A
) ∈ P and sets of strings(

si j
)

i≤a( f ), j≤di ( f )
such that the two following conditions are met:
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1. For all integers i ≤ a ( f ), j ≤ di ( f ), Ai j → si j ;
2. f

(
s1, . . . , sa( f )

) = 〈
t1, . . . , tδ(A)

〉
.

Finally, we use the lock function introduced in Definition 3 to define the language
recognized by G as

L(G) =
⋃

t∈P(
Σ
)

S→t

{lock (s) | s ∈ t}

and call IDLPMCFL (resp. IDLCFL) the set of all languages that are recognized by
at least one IDL-PMCFG (resp. IDL-CFG).

Note that the � symbols are only erased from the output in the last step of the defi-
nition of L (G), after the set all strings that can be derived from the start symbol S has
been retrieved. If they had been erased each time a production was used, interleaving
constituents that are not arguments of the same rule would have been impossible, and
constituents obtained from any production would have been locked.

Let us give an example of this. Consider the following IDL-CFG Gabcd on
Σ = {a, b, c, d} (when describing IDL-CFG grammars, we shall omit the [0] indexes
identifying the first field of every argument):

Q → R → S : q, r �→ || (q, r)

Q : a · b

R : c · d.

Clearly, L (Gabcd) = {abcd, acbd, acdb, cabd, cadb, cdab}. Consider the deriva-
tion tree for acbd:

Q → {a � b} R → {c � d}
a � c � b � d ∈ comb (a � b, c � d)∃s � a � c � b � d s.t. S → s lock (a � c � b � d) = acbd

acbd ∈ L (G).

For the first derivation to be possible, the diamonds in a � b and c � d are still
required; otherwise, we would have comb ({ab} , {cd}) = {abcd, cdab}, which does
not contain acbd. Keeping the diamonds in place until the end of the derivation process
is therefore essential.

The following result comes “for free”:

Proposition 2 PMCFL ⊂ IDLPMCFL.

We finally give a simple example of how this can be used to implement a very simple
grammar. Suppose that we want to encode a small subset of Latin that contains sen-
tences composed of a final verb and an optional subject. This subject is a noun phrase,
i.e. a noun to which an arbitrary number of optional adjectives may be attached. The
following IDL-CFG describes exactly this:

N P → V → S : np, v �→ np · v
V → S : v �→ v
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N → N P : n �→ n

N P → A → N P : np, a �→ || (np, a) .

Remark that while we used the || operator for building a new NP from an NP and an
adjective (meaning that the adjective is allowed to appear either before, within or after
the NP it is appended to), we resorted to simple concatenation for building a sentence
from an NP and a verb, as we want the verb to appear at the end of the sentence, after
the subject NP.

2.4 Expressivity

We shall now investigate the expressivity of IDL-(PM)CFGs and try to locate the
corresponding class of languageswithin the hierarchy of polynomial languages. Recall
the following series of inclusions

CFL � TAL � PMCFL � PRCL = P

where

– CFL is the class of context-free languages;
– TAL is the class of tree-adjoining languages (Vijayashanker and Joshi 1988);
– PMCFL is the class of parallel multiple context-free languages;
– PRCL is the class of positive range concatenation languages (Boullier 1998);
– P is the class of languages recognizable in polynomial time.

The important equality PRCL = P is proved in Boullier (1998).
Themain contribution of this subsection is a proof that IDL-PMCFGs can be located

strictly above PRCGs in the hierarchy (Theorem 1). We also show that IDL-CFGs are
strictlymore expressive thanTAGs and notmore expressive than PMCFGs and suggest
the question of whether IDLCFL ⊂ PMCFL as a natural generalization of a recently
solved classification problem.

We first observe that IDL-CFG allows us to define in a very compact manner the
nMIX language family:

Proposition 3 For all n ∈ N
+, the nMIX language defined as

nMIX = {
x ∈ {a1, . . . , an}∗ | |x |a1 = · · · = |x |an

}

is in IDLCFL.

Proof Let n ∈ N
+. The following IDL-CFG

S : ε

S → S : s �→ || (s, a1, . . . , an)

defines nMIX. 
�

123



342 F. Hublet

The position of the nMIX languages within the hierarchy has been intensively
studiedwithin the last decade. Language 2MIX is context-free. For n ≥ 3, the problem
turns out to be much more difficult. The original MIX language (or Bach language),
i.e. 3MIX, has been proven a PMCFL by Salvati (2015). Makoto and Salvati (2012)
also proved that MIX is not a tree-adjoining language. Together with the fact that
IDL-CFGs generate all nMIX languages, this results provides us with the following
corollary:

Proposition 4 IDLCFL �⊂ TAL.

For many years, no general classification results were available for n > 3. Only
very recently did Ho (2018) prove that for all n, the word problem of Z

n is in PMCFL.
Since the word problem of Z

n and nMIX are rationally equivalent (Salvati 2015), this
yields the inclusion of the whole nMIX family within PMCFL.

Proving that IDLCFL ⊂ PMCFL would be an even stronger result, given that
nMIX ∈ IDLCFL for all n; the inclusion might even appear likely in the light of
Ho’s proof. Nevertheless, the amount of work needed to address the “specific” case
of nMIX languages suggests that this will be anything but easy, and we will leave this
for future work.

On the other hand, it is clear that IDL-CFG does not contain PMCFG.

Proposition 5 Language L3n above is not in IDLCFL.

Proof By contradiction, let G be an IDL-CFG matching L. Consider the context-free
grammar G ′ that is obtained from G by replacing every IDL expression e over some
alphabet Σ ′ in the right-hand side of a rule by a string s (e) defined inductively as
follows:

s (a) = a ∀a ∈ Σ ′ ∪ {ε}

s
(
e · e′

) = s (e) · s
(
e′
)

s (× (e)) = s (e)

s (∨ (e1, . . . , en)) = ∨ (s (e1) · · · · · s (en)) ∀n ∈ N

s (|| (e1, . . . , en)) = s (e1) · · · · · s (en) ∀n ∈ N.

Note that an equivalent CFG grammar in a more canonical form can be easily obtained
by removing the disjunction nodes in exchange of an increase in the number of rules.
Now, it is straightforward that the language L′ generated by G ′ is a subset of L.
Moreover, for any string w generated by G, there exists a string w′ ∈ L′ ⊂ L such
that |w| = ∣∣w′∣∣, and such that w′ is obtained by applying the same rules in G ′ that
were used to produce w in G. By construction, w′ is a permutation of w. Let x ∈ L,
and n = |x |. By definition of L, x is the only word of length n in L. As a consequence,
x ∈ L′. This means that L′ = L and that the CFG grammar G ′ recognizes L, which is
impossible since L is not context-free. 
�
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Again, this results in a classification result:

Proposition 6 PMCFL �⊂ IDLCFL.

We have this corollary:

Proposition 7 IDLCFL � IDLPMCFL.

Proof By Propositions 2 and 6. 
�
An essential result is that unless P = NP, IDL-PMCFGs can define some non-

polynomial languages. This is in line with Kirman and Salvati (2013)’s findings that
even classes of grammars that are “close to [...] mildly context sensitive” may have
NP-hard membership problems as soon as commutation is allowed. In the case of
IDL-PMCFG, we will prove this in three steps. First, we will recall the definition of
the NP-complete problem 3SAT and suggest a polynomial encoding of it on a simple
finite alphabet. Second, we will construct an IDL-PMCFG grammar that recognizes
the language of satisfiable 3-CNF formulae in the previous encoding. A final step will
then lead us to the result.

The 3SAT problem is one of Karp (1972)’s 21 NP-complete problems. It asks for
determining whether a finite boolean formula on a potentially infinite set of variables
{xn}n∈N, input in conjunctive normal form (CNF) with at most three literals per clause,
is satisfiable. Consider for example the 3-CNF formulae

f1 = (x1 ∨ x2 ∨ ¬x3) ∧ (¬x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3)

f2 = (x1 ∨ ¬x2) ∧ (x2 ∨ ¬x3) ∧ ¬x1 ∧ ¬x3.

Formula f1 is satisfiable because the valuation x1 �→ �, x2 �→ ⊥, x3 �→ � results
in the formula reducing to �. Formula f2 is not satisfiable: the last two unary clauses
impose x1 �→ ⊥, x3 �→ ⊥, but then the first clause requires x2 �→ ⊥ to be satisfied
whereas the second one needs x2 �→ �, a contradiction.

The size of 3-CNFs is measured by the number of their clauses, without regard to
the number of variables. In the two instances above, this gives | f1| = 3, | f2| = 4.

So far, our description of 3-CNF formulae, unlike the grammars we study in this
paper, used an infinite alphabet to encode variables. We now introduce an encoding
of 3-CNF logical formulae on an finite alphabet.

Definition 9 Let Σ = {[,],(,),1,!}. Let V = (xn)n∈N+ the set of variables and
SV = V ∪ ¬V the set of optionally negated variables. We define

– A mapping ν : V → Σ∗ encoding variables as the unary representation of their
index:

∀n ∈ N, ν (xn) = 1n;

– A mapping μ : SV → Σ∗ encoding optionally negated variables by appending
the character ! in front of negated variables:

∀v ∈ V ,

{
μ (v) = ν (v)

μ (¬v) = ! · ν (v)
;
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– A mapping π : SV 3 → Σ∗ encoding ternary clauses in the following way:

∀ (u, v, w) ∈ SV 3, π (u ∨ v ∨ w) = ( · μ (u) · ) · ( · μ (v) · ) · ( · μ (w) · );

– A mapping τ :⋃n∈N

(
SV 3

)n → Σ∗ encoding 3-CNF formulae as follows:

∀n ∈ N,∀ (C1, . . . , Cn) ∈
(

SV 3
)n

,

τ (C1 ∧ · · · ∧ Cn) = [ · π (C1) · ] · · · · · [ · π (Cn) · ].

Mappings ν, μ, π and τ are clearly bijective.

The above encoding is only applicable to formulae in 3-CNF where every clause
contains exactly three literals. A straightforward observation makes this restriction
largely irrelevant and will simplify the discussion later on:

Proposition 8 Let f be a logical formula in 3-CNF. There exists another logical for-
mula f̂ in 3-CNF such that:

1. Formulae f and f̂ are equivalent and
∣∣∣ f̂
∣∣∣ = | f |;

2. All clauses in f̂ have exactly three literals;
3. The set Ŵ of variables used in f̂ is equal to (xn)n∈[[1,N ]] for some N ∈ N such

that N ≤ 3 | f |.
Moreover, for all such f , a formula f̂ matching the three above conditions can com-
puted from f in time O (| f |).

Proof Let f be a logical formula in 3-CNF and W the set of its variables. We derive
f̂ from f as follows:

1. Rename the variables in f to produce a new formula g with variable set X such
that X = (xn)n∈[[1,|W |]]. One convenient way to achieve this is to process the
formula from left to right, keeping in mind the index of the smallest currently
unused variable in the new (partial) formula, aswell as the correspondance between
variables in f that have already been renamed in g. This is done in time linear
in | f | and would e.g. convert f3 = (x3 ∨ x1 ∨ x17) ∧ (x4 ∨ ¬x3 ∨ ¬x16) into
g3 = (x1 ∨ x2 ∨ x3) ∧ (x4 ∨ ¬x1 ∨ ¬x5).

2. Now, for every clause that has only one (resp. two) literals, duplicate (resp. trip-
licate) the first literal of the clause. This can be done in linear time scanning the
input from left to right. For instance, formula f2 would be converted into g2 =
(x1 ∨ ¬x2 ∨ x1)∧ (x2 ∨ ¬x3 ∨ x2)∧ (¬x1 ∨ ¬x1 ∨ ¬x1)∧ (¬x3 ∨ ¬x3 ∨ ¬x3).

Since the total number of variables in a 3-CNF formula cannot exceed 3 times the
number of clauses, the resulting formula f̂ clearly satisfies the above conditions. 
�

Applying the operations described in Proposition 8 followed by the mapping τ

described in Definition 9 leads to the following encoding of formulae f1 and f2:
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τ
(

f̂1
)
= [(1)(11)(!111)][(!11)(!111)(!11)][(!1)(11)(111)]

τ
(

f̂2
)
= [(1)(!11)(1)][(11)(!111)(11)][(!1)(!1)(!1)]

× [(!111)(!111)(!111)].

The following lemma provides the key argument:

Lemma 3 Let 3SATL be the language of satisfiable 3-CNF formulae. There exists
some IDL-PMCF grammar G such that, for all 3-CNF formula f , f ∈ 3SATL iff

τ
(

f̂
)
∈ L (G).

Proof Webuild an IDL-PMCF grammar G that recognizes satisfiable 3-CNF formulae
encoded as in Definition 9. First, we define variables (of category V and arity 1) as
sequences of 1s:

V : 〈1〉
V → V : v �→ 〈v[0] · 1〉 .

We proceed by defining literals (of category L , arity 1) as variables preceded by the
optional negation symbol !:

V → L : v �→ 〈∨ (ε,!) · v[0]〉 .

A satisfiable formula and the valuation satisfying it are produced in parallel through
a number of double-steps, each of them consisting of:

1. A selection step where a new variable xi ′ := xi+1 is selected and its boolean value
vi in the valuation is chosen;

2. An insertion step where an arbitrary number of ternary clauses containing xi (if
v = �) or ¬xi (if v = ⊥) is added at arbitrary positions in the already produced
formula.

Each double-step uses a category F of arity 3 that stores the current formula fi as well
as the current litteral σi xi (where σi ∈ {ε,!} and σi = ε ⇔ vi = �) as 〈 fi , xi , σi 〉.4

The selection step retrieves the next variable and chooses its value by

F → F : f �→ 〈
f [0], f [1] · 1, ε

〉

F → F : f �→ 〈 f [0], f [1] · 1,!〉 .

The insertion step adds arbitrary clauses containing the current litteral to the current
formula:

L → L → F → F : v,w, f �→ 〈||( f [0],×([ · ||(×(( · v[0] · )),

× (( · w[0] · )),×(( · f [2] · f [1] · ))) · ])), f [1], f [2]〉.

4 We thank Peter Ljunglöf for suggesting this simpler expression of the grammar.
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This rule can be described informally as follows: interleave into the current formula
a (locked) clause consisting of three interleaved (locked) literals, the first two of which
are arbitrary while the third one is equal to the current litteral; literals are enclosed in
parentheses while clauses are enclosed in square brackets.

Finally, we have to indicate that the start category can be produced from any F and
that the empty formula is satisfiable (with 1 as first variable to consider):

F : 〈ε,1, ε
〉

F : 〈ε,1,!
〉

F → S : f �→ 〈 f [0]〉 .

Let f be a 3-CNF formula such that f ∈ 3SATL. As f and f̂ are equivalent,
f̂ ∈ 3SATL. Let N such that the set Ŵ of variables of f̂ is equal to (xn)n∈[[1,N ]]. Let v
be a valuation of Ŵ satisfying f̂ =: (C1, . . . , C| f |

)
. Let (Ei )i∈[[1,N ]] ∈ P ([[1, | f |]])N

such that �N
i=1Ei = [[1, | f |]] and for all i ∈ [[1, N ]], n ∈ [[1, | f |]],

n ∈ Ei ⇒ (v (xi ) = �∧ xi ∈ Cn) ∨ (v (xi ) = ⊥∧ ¬xi ∈ Cn) .

In other words, Ei is a set of clauses such that the current value of xi in v makes all
clauses in the set reduce to true. Let κ (�) = ε and κ (⊥) = !. This decomposition

necessarily exists since f̂ is satisfiable, but it is in general not unique. The string τ
(

f̂
)

is recognized by G using the following derivations for i = 1 up to N , starting with〈
ε,1, κ (v (x1))

〉
of category F :

• Consider the available item φ = 〈
f ,1i , κ (v (xi ))

〉
of category F ;

• For all n ∈ Ei :

– Without loss of generality, suppose v (xi ) = � and therefore κ (v (xi )) = ε,
– Up to reordering of i , j and k, Cn = xi ∨ σ j x j ∨ σk xk ,
– Produce two literals of category L containing σ j x j and σk xk respectively,
– Use them along with φ to produce φ′ = 〈

f ′,1i , ε
〉
where f ′ is equal to f up

to a clause

[(1i)(κ
(
σ j
)
1 j)(κ (σk)1

k)]

that has been added at a position compatible with the final reordering in τ
(

f̂
)
,

– Do φ := φ′, f := f ′;

• If i < N , produce an item φ := 〈
f ,1i+1, v (xi+1)

〉
of category F ;

• Else, i = N : produce 〈 f 〉 of category S; terminate.

Conversely, let f be a 3-CNF formula such that τ
(

f̂
)

∈ L (G). As f and f̂ are

equivalent, it suffices to prove that f̂ ∈ 3SATL. Now, it is straightforward to see that
subsets Ei of [[1, | f |]] verifying the same properties as in the first half of the proof can
be constructed by considering the clauses added in f at iteration i . The existence of
these subsets guarantees that f̂ ∈ 3SATL, which concludes the proof. 
�
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Our main classification result follows:

Theorem 1 Unless P = NP, IDLPMCFL �⊂ PRCL = P.

Proof By contradiction, suppose that IDLPMCFL ⊂ P. We will now prove that
3SATL ∈ P.

Let G be the grammar defined in Lemma 3. Thanks to our hypothesis that
IDLPMCFL ⊂ P, the language L (G) recognized by G is in P. Let T be a (deter-
ministic) Turing machine that recognizes L (G) in polynomial time. Consider the
following procedure Poly3SAT:

Algorithm 1
1: procedure Poly3SAT( f : 3-CNF formula)
2: g := f̂
3: h := τ (g)

4: return T (h)

First, this procedure runs in polynomial time in the size | f | of the input:
1. Computing f̂ takes time O (| f |) according to Proposition 8, and

∣∣∣ f̂
∣∣∣ = | f |.

2. Computing τ (g) is also clearly linear in the size |g| = | f | of its input. The size of
τ (g) ∈ Σ∗ is given by its length. The set W of variables appearing in g is included
in (xi )i∈[[1,3|g|]] according to Proposition 8. Therefore, |ν (w)| ≤ 3 |g| = 3 | f | for
all w ∈ W . Following Definition 9, we get

|τ (g)| ≤ |g| (8+ 3× (1+ 3 | f |)) = | f | (8+ 3× (1+ 3 | f |)) = O
(
| f |2

)
;

3. Finally, computing T (h) is by assumption a O (|h|α) for some α ∈ N
+. As

|h| = |τ (g)| = O
(| f |2), computing T (h) is a O

(| f |2α).
Second, it recognizes 3SATL.This is a direct consequence ofLemma3: f ∈ 3SATL

iff h = τ
(

f̂
)
∈ L (G) = L (T ), iff Poly3SAT returns true when applied to f .

We have proved that Poly3SAT recognizes 3SATL in polynomial time. Hence,
3SATL ∈ P. As 3SAT is NP-complete, this yields P = NP. 
�

This theorem, combined with results obtained by Ljunglöf (2005), admits a useful
corollary:

Theorem 2 Unless P = NP, PMCFL � IDLPMCFL.

Proof Ljunglöf (2005) proves that PMCFL � PRCL = P. According to Theorem 1,
unless P = NP,we have IDLPCMFL �⊂ P. Clearly, PMCFL ⊂ IDLPMCFL, so unless
P = NP, PMCFL � IDLPMCFL. 
�
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Fig. 1 PMCFL, IDLCFL and IDLPMCFL, unless P = NP

Our results are summarized on Fig. 1. The following questions remain open:

1. Is IDLCFL ⊂ PMCFL? We have suggested above that the answer is likely to be
positive. This is displayed on Fig. 1 by the interrogation mark and the fact that

language τ
(
3̂SATL

)
∈ IDLPMCFL ⊂ PMCFL is placed at the border between

IDLCFL\ (PMCFL ∪ IDLCFL) and IDLCFL ∩ (IDLPMCFL\PMCFL).
2. Is IDLPMCFL ⊂ CSL, i.e., are all IDLPMCFLs recognized by some linear

bounded automaton?

Independently from the answers to the previous questions, it is already clear that
the presence in a CFL-based formalism of all three ||, · and × operators as well as of
tuples of size at least 2 and copying, is sufficient to leave the realm of P. As noted in
Sect. 1.2, interleaving, linear constraints, locking, records and copying are reasonable
requirements for a grammatical formalism designed to describe the syntax of freeword
order languages in general, and of Classical Latin in particular. This, of course, does
not mean that Classical Latin itself would be non-polynomial, since the reduction
presented is not linguistically relevant, and involves copying which Latin does not
require. It simply means that a grammatical formalism for free word order languages
containing the features above leads to worst-case non-polynomial scenarios which
might not necessarily be linguistically relevant.

3 COMPĀ: A Programming Language for Describing FreeWord Order
Syntax

3.1 Grammatical Framework and COMPĀ

Grammatical Framework (GF) (Ranta 2004), developed by Ranta et al. since 1998,
is a special-purpose programming language aimed at writing grammars of natural
languages. Practically, GF serves as the natural-language counterpart of tools such
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as YACC (Johnson et al. 1975) or Menhir (Pottier and Régis-Gianas 2016) for pro-
gramming languages. From a logical point of view, Grammatical Framework is a
logical framework relying on Martin-Löf type theory (Martin-Löf and Sambin 1984).
A functional programming language, GF also has a large support for modularity and
enforces conventions and standards simplifying the development ofmultilingual appli-
cations. Its community actively contributes to the Resource Grammar Library (Ranta
et al. 2009), that unites ‘concrete’ wide-coverage grammars for over 30 individual
languages around a common ‘abstract’ grammar. Over the course of the last 20 years,
GF, which remains fully open-source, has been used in several experimental as well
as industrial contexts, for applications ranging from morphological generation to nat-
ural language transcription of formal (mathematical, proof, technical) language, from
multilingual translation of ‘controlled language’ to language learning tools.

This chapter describes COMPĀ, a GF-like programming language tailored to
encode the grammatical syntax of free word order languages. Though it has been pri-
marily conceived tomodel and study the syntax of the Latin language, its design aswell
as the description we will give are both language-agnostic. The name COMPĀ stands
forCOMPĀgēs Grammaticālis Latı̄na, which means ‘Latin Grammatical Framework’
in Latin.

The syntax and semantics of COMPĀ are largely borrowed from standard GF:
it is a functional programming language in Haskell-style manipulating sets of
words/terminals, and providing records and tables over finite types, as well as finite
lambda functions (Ranta 2011). As an experimental language focussing on the syn-
tactic description of individual languages, COMPĀ does not implement structures
and operators mainly directed at handling morphology, semantics and multilingual-
ism or providing additional modularity, such as abstract grammars, dependent types,
token-level gluing or general lambda functions. More precisely, COMPĀ’s extends a
subset of GF so-called context-free GF (Ljunglöf 2004). In turn, it provides 3 operators
absent from standard GF, viz. the interleave (||), disjunction (∨) and lock (×) oper-
ators. While standard GF compiles (mostly for parsing purposes) into Angelov et al.
(2009)’s PMCFG-equivalent PGF, COMPĀ can be transcompiled into IDL-PMCFG.

In this section, we will focus on aspects of COMPĀ’s design that differ from
standard GF, and show how it can be used as an efficient front-end for writing practical
grammars of free word order languages. For a detailed presentation of the syntax of
standard GF, the reader can refer to the GF reference manual (Ranta 2011).

3.2 Operations and Types

3.2.1 Data Types

As a language designed to model free word order languages, COMPĀ relies one
fundamental data type Set, the type of sets of token lists (short: ‘sets’), that replaces
the standard GF Str. The basic operators described below take as input, and return,
only data of type Set.
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Besides the fundamental type Set, each grammar may define an arbitrary number
of parameter types. These finite types are often used to encode specific grammatical
features (e.g. case, number or gender).

Record types can be built from a list of (distinct) identifier names and a list of
types, each of which might be either the type Set or any finite type. Records store
structured information and allow for an accurate representation of grammatical con-
stituents (storing some of their features as well of one or several sets that represent
their linearization).

Tables are finite functions that map every value of a finite type to a value of some
(unique) other type.

Given a set of finite (i.e. enumerated) types Π and the set of admissible string
identifiers S, the syntax of admissible types is formally defined as follows (Fig. 2):

Fig. 2 COMPĀ’s types

3.2.2 Operations on Sets

Sets are introduced by means of the standard syntax for strings. Thus, in COMPĀ, the
expression consul does not represent the singleton token list [consul] as in GF,
but it instead stands for the singleton set {[consul]}. Similarly, COMPĀ’s [] does
not stand as in GF for the empty list of tokens (the empty string), but for the singleton
containing the empty list of tokens. Another more practical way to put it is to see this
set as the set of possible phrases that can be derived from the expression consul:
there is only one, containing one word, the word consul, hence the singleton set
above. Note that the empty set of strings has its own syntax, variants {}, that is
also borrowed from standard GF.

COMPĀ define four basic operations on sets, that are the exact counterparts of
those defined in Nederhof and al.’s IDL expressions formalism (Fig. 3):

Fig. 3 Operations on sets in COMPĀ
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3.3 Syntax

3.3.1 Structure of Programs

Each COMPĀ program, called a grammar, is enclosed in a file, with each COMPĀ
file defining exactly one such grammar. Standard extension for COMPĀ files is .cp.
The syntax of programs is as follows (note that all whitespace and line breaks are
ignored) (Fig. 4):

The identifier following the concrete keyword is an (arbitrary) name. We will
now go through each of the four sections of the grammar and consider their individual
syntaxes.

Fig. 4 Syntax of COMPĀ
identifiers and grammars

3.3.2 Including GF Lexica

The first section is used to import already extant standard GF lexica into COMPĀ. Its
syntax is extremely simple (Fig. 5):

where filename is the name of a concrete GF file functioning as a lexicon. When
an include is read, the corresponding GF file is retrieved and all words it defines
are automatically extracted. The include section thus provides some compatibility
with standard GF as well as a support (through the use of GF itself) for efficient
morphological analysis.

Fig. 5 Syntax of include

3.3.3 Parameters

Parameters are declared as follows (Fig. 6):
In the above description, ident0 is the name of the new finite type, and (identk)k≥1

its values. Both type and value parameter identifiers must be unique throughout the
whole grammar, and are usually (but not necessarily) capitalized.

Fig. 6 Syntax of param

3.3.4 Categories

Categories are introduced in the lincat section according to the syntax below, where
paramType is any parameter type defined in the param section (Fig. 7):
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Fig. 7 Syntax of lincat

3.3.5 Linearization Functions

The lin section collects the functional rules that are the heart of any GF or COMPĀ
grammar. Each linearization rule describes a way to combine several arguments (of
given input categories) into a new item (of a given output category). Unlike GF, which
separates the type-annotated declaration of linearization functions in abstract syntax
files from the non-type-annotated definition of linearization functions in concrete syn-
tax files, COMPĀ uses only a single (concrete) syntax, which is directly annotated
with types. COMPĀ includes a complete type-checker.

Let us first formally describe the syntax of linearization functions. In this fig-
ure, the non-terminals paramType and paramValue match parameter types and values
introduced in the param section, whereas the non-terminal licatName matches the
name of any category defined in the lincat section. In the definition of lin, ident0 and
lincatName0 are respectively the name of the linearization function and its output
category, while

(identk, lincatNamek)k≥1

are the names and categories of the function’s arguments (Fig. 8).

Fig. 8 Syntax of lin
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3.3.6 Iterating over Finite Types with for

To handle those cases where similar rules must be constructed for all possible values of
a given parameter, a loop structure absent from standard GF is proposed. This structure
is available in COMPĀ through a for-do construction.

Suppose that verb category V has type {s : Tense ⇒ Set} where Tense is a finite
type enumerating the available tenses in the language, and that we want to write a rule
that takes a verb of category V and produces a conjugated verb of category ConjugV
and type {s : Set; tense : Tense} that stores a conjugated verb and keeps trace of its
tense. This can be achieved in COMPĀ like this:

conjugateVerb (v : V) : ConjugV

= for t : Tense do { s = v.s ! t; tense = t };

When translated into low-level IDL-PMCFG, this results into several parallel rules
being constructed, one for each available value of the bound variable. This is especially
useful when a parameter (e.g. a verb tense or mode) provides different linearizations
without playing any part in the syntactic structure itself, or when another parameter
(e.g. number) can be arbitrarily chosen at some syntactic level before being propagated
downwards into the tree.

3.4 The COMPĀ (Trans)Compiler

Just as standard GFmust be compiled into low-level PMCFG for parsing purposes, the
COMPĀ language is used as a grammar description front-end that has to be translated
into IDL-PMCFG before parsing.

Using OCaml, we implemented a lightweight transcompiler that type-checks and
converts a COMPĀ grammar into an equivalent IDL-PMCFG grammar. The essential
conversion step employs finite function resolution techniques similar to those pre-
sented by Ljunglöf (2004): tables and parameter fields are replaced by new fields and
categories, and new rules are finally created between new categories.

The compiler’s source code can be found in the corresponding GitHub repository.5

4 A Parsing Algorithm for COMPĀ

In this section, we present a parsing algorithm for IDL-PMCF grammars and provide
an analysis of its complexity. This algorithm, for which we also provide a complete
OCaml implementation, is inspired by the works of Ljunglöf (2012) and Angelov
(2009) on GF parsing, while building on techniques introduced by Nederhof and Satta
(2004) to parse IDL expressions. We extend Nederhof and Satta’s graph-based finite
state approach, enriching it by decorating active nodes by sets of word positions.

5 See https://github.com/Streichholzschaechtelchen/l2ud.
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4.1 Parsing COMPĀ’s IDL Expressions

Nederhof and Satta (2004) present a parsing algorithm for IDL expressions relying on
left-to-right scanning of the input and a representation of the current parsing state as
a cut (a set of nodes verifying certain properties, that does not necessarily match the
traditional graph-theoretical definition of a cut—see below) within a so-called IDL
graph. Each IDL expression is compiled to a single IDL graph. Transitions from one
state/cut to another state/cut are encoded in the IDL graph; edges are labelled with
words that must be read to transition from one cut to another. The input is parsed
successfully if and only if the final state is reached after all characters have been read.

Unlike in the original publication, where IDL expressions were used as autonomous
regular expressions rather than within a grammar, the edges of COMPĀ’s IDL expres-
sions may be annotated both by terminals, i.e. words, and by (nonterminal, index)
pairs. The latter labelling corresponds to the case where we want to match a field of
one of the arguments of the current rule.

Let us now define the IDL graph associated to a given IDL expression. Note that
this definition, though closely following along the lines of Nederhof and Satta’s con-
tribution, does not encode the lock operator in the same way. This different encoding
has been found more practical for parsing of full IDL-PMCF grammars, as will be
overt when we will discuss our algorithm.

Definition 10 (IDL graph) Let G = (N , δ,Σ, F, P, S) be an IDL-PMCFG.
Let

(
f , A1, . . . , Aq , A

) ∈ P . Let e be an IDL expression over Σ ′ = Σ ∪{
Xi j | i ≤ a ( f ) , j ≤ di ( f )

}
.

The IDL graph γe associated with e is defined by induction as follows:

– If e = a ∈ Σ ′ ∪ {ε} , γe = se fe
a

;

– If e = e′ · e′′, γe = se se′

γe′

fe′ se′′

γe′′

fe′ fe
ε ε ε

;

– If e = × (e′) , γe = se se′

γe′

fe′ fe
↑ ↓

;
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– If e = ∨ (e1, . . . , en) , γe = se

se1

γe1

fe1

sen

γen

fen

. . . fe .

– If e = || (e1, . . . , en) , γe = se

se1

γe1

fe1

sen

γen

fen

. . . fe

�n �n

�n �n

�n �n .

As an exemple, the IDL graph associated with the IDL expression describing the
valid permutations of Marcus cum amico caro ambulat is:6

The parsing process of sentence Caro cum amico Marcus ambulat with the IDL
graph presented in Fig. 9 is given in Fig. 10.

Given an IDL expression and its IDL graph, we also define the set of its cuts, that
will serve as states in the parsing algorithm.

Definition 11 (Cuts of an IDL expression) Let G = (N , δ,Σ, F, P, S) be an IDL-
PMCFG.

Let
(

f , A1, . . . , Aq , A
) ∈ P . Let e be an IDL expression over Σ ′ = Σ ∪{

Xi j | i ≤ a ( f ) , j ≤ di ( f )
}
, and γe its IDL graph.

The set of cuts of e, Ce ⊂ P (V (γe)), where V (γe) denotes the set of vertices of
γe, is defined by induction as follows:

6 Transitions labelled by ε are kept unmarked.
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Fig. 9 IDL graph for Marcus cum amico caro ambulat

– If e = a ∈ Σ ′ ∪ {ε}, Ce = {{se} , { fe}};
– If e = e′ · e′′, Ce = {{se} , { fe}} ∪ Ce′ ∪ Ce′′ ;
– If e = × (e′), Ce = {{se} , { fe}} ∪ Ce′ ;
– If e = ∨ (e1, . . . , en), Ce = {{se} , { fe}} ∪⋃n

k=1 Cek ;
– If e = || (e1, . . . , en), Ce = {{se} , { fe}} ∪ ∏n

k=1 Cek , where
∏

denotes nary
Cartesian product.

IDL graphs can be regarded as automata recognizing a given regular expression by
reading it left-to-right, allowing for parallel reading of several interleaved substrings.
The initial and final cuts are composed of a single node. Split edges marked by �n

cause several branches to be explored in parallel (thus increasing the cardinality of the
current cut by n − 1 elements) while merge edges marked by �n allow n nodes in the
old cut to be replaced by one single node in the new cut. Labelled edges can be used to
replace the node on the left-hand-side of the edge by the node on the right-hand-side
of the edge in the current cut, provided that the terminal or nonterminal labelling the
edge can be read at the current position. Epsilon-labelled edges (aka ε-transitions)
can be taken under no specific assumption, provided that the left-hand-side node of
the edge is in the current cut. They are especially used to encode disjunction nodes,
which do not result in several branches being taken at the same time, but in only one
of them to be chosen. The special lock edges, which were absent from Nederhof and
Satta’s original publication, will be discussed later.

An additional degree of complexity has to be dealt with in the context of IDL-
PMCFG: we have to check that the substrings matched by the various nonterminals
previously read are compatible with the constraints imposed on word order or inter-
leaving. Therefore, throughout the execution of the algorithm, the current state of the
parsing process within each IDL graph must be cautiously saved. Any field of any
input category can match an arbitrary (and non necessarily contiguous) substring of
the input. Moreover, given the ability of the formalism to encode nested lock construc-
tions, an arbitrary number of such position sets must be remembered. This suggests
the state space presented in Definition 13.

We first formally define a notion of stacks above an arbitrary set.
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Fig. 10 Example of parsing Caro cum amico Marcus ambulat with the IDL graph from Fig. 9
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Fig. 10 continued
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Fig. 10 continued

Definition 12 (Stack over a set) For any set S, Stack (S) is the set of stacks over S
endowed with the two canonical primitives

pop : Stack (S) → (Stack (S) × S) ,

h :: t �→ (t, h)

push : (Stack (S) × S) → Stack (S)

(s, e) �→ e :: s

and an additional primitive defined only on non-empty stacks (see also Fig. 11).

applyHead : (Stack (S) × (S → S)) → Stack (S)

(h :: t, f ) �→ f (h) :: t

The state space of an IDL expression can now be defined.

Fig. 11 Effect of primitive
applyHead
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Definition 13 (State space of an IDL expression) Let G = (N , δ,Σ, F, P, S) be an
IDL-PMCFG.

Let
(

f , A1, . . . , Aq , A
) ∈ P . Let e be an IDL expression over Σ ′ = Σ ∪{

Ai j | i ≤ a ( f ) , j ≤ di ( f )
}
and Ce its cuts.

The general state space of e is defined as

Se :=
⋃

c∈Ce

{
(c,  s) |  s ∈ (Stack (P f (N)

))c}

and, for t ∈ Σ∗, the t-specific state space of e as

Se,t :=
⋃

c∈Ce

{
(c,  s) |  s ∈ (Stack (P f ([[1, |t |]])))c}

where P f (N) denotes the set of finite subsets of N.

Informally, each state of an IDL parsing item is a pair (c,  σ) where c is a cut and
σ is a map from the nodes of this cut to stacks of position sets. These stacks store the
position of the terminals (words) that have already been read by the automaton when
the current state is reached. Using a stack allows us to distinguish word positions that
were matched in the current branch or at the current level of nested locks, as opposed
to words matched before the last split or outside of the current level of nested locks.
When a set of split transitions are taken, each of the new nodes added to the cut will
store an independent copy of the previous stack, extended with an ∅ head. During the
processing of the current branch, positions matched in the same branch will be added
to the head of the stack, while non-head elements will store information from previous
branches. When a set of merge transitions are taken, the heads of the various stacks
will be first merged together (ensuring that no contradiction occurs) and then with the
second element of all stacks (to take into account the closing of the current parallel
processing and check, again, that no impossibility arises). With this technique, we can
also give a simple semantics to the ↑ and ↓ edges: when an ↑ transition is taken, an ∅
is added to the current stack; when an ↓ transition is taken, we check whether the head
element of the current stack is an interval and, if it is the case (and no incompatibility
arises), we merge it with the second element.

The incompatibilities we evoked can be of two sorts: either the same positions have
been read in two different branches, which can therefore not be merged; or what has
been parsed does not respect the principle that an IDL graph, within the same branch,
parses its input from left to right.

To formalize this, we introduce a partial order on sets of positions as well as some
useful predicate:

Definition 14 The relation ≺⊂ P f (N)2 is defined by

∀ (A, B) ∈ P f (N)2 , A ≺ B ⇔ ∀ (a, b) ∈ A × B, a < b.

Note that for any A ∈ P f (N) and ∅ ≺ A, A ≺ ∅, and that moreover ∅ ≺ ∅.
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Definition 15 The predicate interval ⊂ P f (N) is defined by

∀A ∈ P f (N) , interval (A) ⇔ ∃ (a, b) ∈ N, A = {a, . . . , a + b} .

We can finally define a transition relation between states:

Definition 16 (Transition relation of an IDL expression) Let G = (N , δ,Σ, F, P, S)

be an IDL-PMCFG.

Let
(

f , A1, . . . , Aq , A
) ∈ P . Let e be an IDL expression over Σ ′ = Σ ∪{

Xi j | i ≤ a ( f ) , j ≤ di ( f )
}
, γe = (Ve, Ee) its IDL graph, Ce its cuts and Se its

states. The relation Δe ⊂ Se ×Σ ′ ×P f (N)× Se =: Ω × Se is the smallest relation
verifying the following axioms:

1. For all (s = (c,  s) , a, π) ∈ Ω , if there exists (v1, v2, r) ∈ V 2
e × P (Ve)

such that c = r � {v1}, v1
a−→ v2 ∈ Ee and pop ( s (v1))1 ≺ π , then

Δe
(
s, a, π,

(
r ∪ {v2} ,  s′)) where  s′ ∈ Stack

(
P f (N)

)r∪{v2},  s′ |r=  s |r and
 s (v2) = applyHead

( s (v1) , π ′ �→ π ∪ π ′); graphically:

. . .
π ′

v1 v2

a

c

and π ′ ≺ π $⇒
. . .

π ∪ π ′

v1 v2

a

c′

;

this axiom encodes the fact that, when reading the (non)terminal a at position set
π % π ′ (meaning that π is located right of the previously read position set π ′), we
can update the current cut by replacing the node on the LHS of any edge labelled
with a by the node on its RHS and appending the position set π to the positions
stored on the top of the stack.

2. For all
(
s = (c,  s) , ε,∅) ∈ Ω , if there exists (v1, v2, r) ∈ V 2

e × P (Ve) such

that c = r � {v1} and v1
↑−→ v2 ∈ Ee, then Δe

(
s, a, π,

(
r ∪ {v2} ,  s′)) where

 s′ ∈ Stack
(
P f (N)

)r∪{v2},  s′ |r=  s |r and  s (v2) = push ( s (v1) ,∅); graphically:

. . .
π ′

v1 v2

↑

c

$⇒
. . .
π ′
∅

v1 v2

↑

c′

;

an ↑-edge can always be used to replace the node on the LHS of the edge by the
node on its RHS, pushing an empty position set on the top of the corresponding
stack —this is used to isolate the parsing of locked subexpressions, which are
finally tested for connexity through a ↓-edge;
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3. For all
(
s = (c,  s) , ε,∅) ∈ Ω , if there exists (v1, v2, r) ∈ V 2

e ×P (Ve) such that

c = r�{v1}, v1 ↓−→ v2 ∈ Ee, interval (pop ( s (v1))1) andpop (pop ( s (v1))0)1 ≺
pop ( s (v1))1, then Δe

(
s, a, π,

(
r ∪ {v2} ,  s′)) where  s′ ∈ Stack

(
P f (N)

)r∪{v2},
 s′ |r=  s |r and

 s (v2) = push
(
pop (pop ( s (v1))0)0 ,pop (pop ( s (v1))0)1 ∪ pop ( s (v1))1

) ;

graphically:

. . .
π ′′
π ′

v1 v2

↓

c

and

{
interval

(
π ′)

π ′′ ≺ π ′ $⇒
. . .

π ′ ∪ π ′′

v1 v2

↓

c′

;

the ↓-edges are used at the end of locked subexpressions: the position set on the
top of the stack, which stores the positions used in the current locked branch, is
tested for connexity (with the interval primitive) and linear precedence (the newly
closed locked branch at positions π must be located right of the previously read
positions π ′′), which, if both tests succeed, leads to the node on the LHS of the
edge to be replaced on its RHS and to both position sets to be merged;

4. For all
(
s = (c,  s) , ε,∅) ∈ Ω , if there exists n ∈ N, (v0, v1, . . . , vn, r) ∈

V n+1
e × P (Ve) such that the vi are distinct, c = r � {v0} and ∀i ∈

{1, . . . , n} , v0
�n−→ vi ∈ Ee, then Δe

(
s, a, π,

(
r ∪ {v1, . . . , vn} ,  s′)) where

 s′ ∈ Stack
(
P f (N)

)r∪{v1,...,vn},  s′ |r=  s |r and ∀i ∈ {1, . . . , n} ,  s (v2) =
push ( s (v0) ,∅); graphically:

. . .
π ′

v0

v1

. . .

vn

�n

�n

�n

c

$⇒

. . .
π ′
∅

. . .
π ′
∅

v0

v1

. . .

vn

�n

�n

�n

c′

;

as soon as the current cut contains the LHS of a set of split (i.e. �n) edges, this
axiom opens n parallel (interleaved) branches, replacing the LHS node by n RHS
nodes, all of which comewith the same stack as previously, except for an additional
empty position set on top, which will later isolate the positions read in the various
parallel branches;
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5. For all
(
s = (c,  s) , ε,∅) ∈ Ω , if there exists n ∈ N, (v0, v1, . . . , vn, r) ∈ V n+1

e ×
P (Ve) such that:

– The vi are distinct,
– We have c = r � {v1, . . . , vn},
– For all i ∈ {1, . . . , n}, vi

�n−→ v0 ∈ Ee,
– For all (i, j) ∈ {1, . . . , n}2, i �= j ⇒ pop ( s (vi ))1 ∩ pop

( s (v j
))

1 = ∅,
– We have pop (pop ( s (v1))0)1 ≺⊔n

i=1 pop ( s (vi ))1 =: m;

thenΔe
(
s, a, π,

(
r ∪ {v0} ,  s′))where  s′ ∈ Stack

(
P f (N)

)r∪{v0},  s′ |r=  s |r and

 s (v0) = applyHead (pop ( s (v1))0 , π �→ π ∪ m) ;

graphically:

. . .
π ′
π1

. . .
π ′
πn

v0

v1

. . .

vn

�n
�n

�n

c′

and

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∀i �= j, πi ∩ π j = ∅
π ′ ≺

n⊔

i=1

πi

︸ ︷︷ ︸
m

$⇒

. . .
π ′ ∪ m

v0

v1

. . .

vn

�n
�n

�n

c′

;

at the end of a series of parallel branchesmarkedwithmerge (i.e.�n) edges (closing
the parsing of an || node), this axiom checks that the position sets matched by the
various parallel branches are compatible (disjunct) and that these positions, when
merged, are compatible with previously matched positions (i.e. located right of
them), and, in this case, it replaces the set of nodes on the LHS by the single RHS
of merge edges.

Although these ruleswould essentially suffice to describe the parsing algorithm if all
non-terminals appearing in a rule appeared exactly once, the fact that the same non-
terminal may appear several times (copy) or not appear at all (erasement) requires
us to keep trace of partial parsing contexts in which each argument may or may
not have been already identified. We do this by introducing so-called context tables.
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A context table is a partial function that associates to some arguments of the rule a
partial mapping between some fields of these arguments and positions sets. It helps
us remember which arguments have already been fixed and which ones can still be
chosen freely. For each argument that has already been fixed, it retains which of its
fields are available and what positions in the input string are matched by each available
field.

Definition 17 (Context table) Let G = (N , δ,Σ, F, P, S) be an IDL-PMCFG.
Let

(
f , A1, . . . , Aq , A

) ∈ P . Let e be an IDL expression over Σ ′ = Σ ∪{
Xi j | i ≤ a ( f ) , j ≤ di ( f )

}
, γe = (Ve, Ee) its IDL graph, Ce its cuts and Se its

states.
We call context table for e any Γ ∈ [[1, q]]⇀ (

N⇀P f (N)
)
such that for all

i ∈ [[1, q]], D (Γ (i)) ⊂ [[1, δ (Aq
)]]. The set of context tables for e is denoted by Ge.

The set of context tables is equipped with three primitives defined as follows:

– For any input string s, compats ⊂ Ge × N
2 × (N⇀P f (N)

) =: Ξ is such that

∀ (Γ , k, �,  r) ∈ Ξ, compats (Γ , k, �,  r)

⇔
{ ∀u ∈ D ( r) , ∀v ∈ D (Γ ) ,∀w ∈ D (Γ (v)) ,  ru ∩ Γ (v)w = ∅ if k /∈ D (Γ )

� ∈ D (Γ (k)) ∩D ( r) and sΓ (k)�
= s r� otherwise ;

in other terms, compat checks that the current context table Γ is compatible with
mapping field � of argument k to position set  r� =: π , which is the case iff either (i)
[new nonterminal (k, �) matched] k is not in the context and π does not intersect
any of the position sets stored in Γ or (ii) [copy of already matched nonterminal]
k is already in the context, mapped to a partial function Γ (k), which itself maps
field index � to a position set Γ (k)� =: π ′ such that substring sπ is the same as
sπ ′ ;

– The map reserve ∈ Ψ := Ge × N × (N⇀P f (N)
)→ Ge is defined as

∀ (Γ , k,  r) ∈ Ψ , reserve (Γ , k,  r)

=
{[⋃

u∈D(Γ ) {u �→ Γ (u)}
]
∪ {k �→  r} if k /∈ D (Γ )

Γ otherwise
;

this map registers k in Γ , mapping it to  r , iff k is not yet in the context;
– For any input string s, unifys ⊂ G 3

e is such that

∀ (Γ , Γ ′, Γ ′′) ∈ G3, unifys

(
Γ , Γ ′, Γ ′′)

⇔ ∀k ∈ D (Γ ) ,∀� ∈ D (Γ (k)) , compats
(
Γ ′, k, �, Γ (k)

)

∧
⎡

⎣Γ ′′ =
⋃

k∈D(Γ ′)
reserve

(
Γ , k, Γ ′ (k)

)
⎤

⎦ ;

primitive unify identifies triplets of contexts Γ , Γ ′ and Γ ′′ such that Γ ′′ can be
obtained from Γ and Γ ′ by first (i) adding to Γ all matchings k �→  r from Γ ′ for
which k is outside of the domain of Γ and then (ii) checking that for all k such
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that there exists k �→  r ∈ Γ and k �→  r ′ ∈ Γ ′,  r and  r ′ define the same fields and
maps them to identical substrings.

The semantics of the three primitives are rather natural. First, compat indicates
whether the assertion “the �th field of argument k can be identified in the input string
at position set  r�” is compatible with all prior decision stored in the current context.
This is possible iff either the kth argument has never been matched before, or the �th
field of the already detected kth argument in the current context is identical to the
one matched by position set  r�. Once a compatibility is detected, reserve is used to
update the context table according to the newly matched item. Finally, unify allows
us to compute the union of two contexts that do not interfere with each other.

4.2 Parsing COMPĀ Grammars

Our algorithm is inspired by Earley-style parsers designed to parse context-free GF
or PMCFG grammars (Angelov et al. 2009; Ljunglöf 2012). The input is read from
left to right and three different kinds of items are build bottom-up. The structure of
the above context tables, that contain all essential information about the arguments of
each rule and their position, makes it easier to recursively reconstruct all valid parse
trees of a given input.

The three types of items we use are:

Definition 18 (Parsing items) Let G = (N , δ,Σ, F, P, S) be an IDL-PMCFG.

– Active items are items of the form [φ; e; s;Γ ] where φ = (
f , A1, . . . , Aq , A

) ∈
P , e is an IDL expression over Σ ′ = Σ ∪ ⋃q

i=1

{
Ai j | j ∈ {1, . . . , di ( f )}},

s ∈ Se and Γ ∈ Ge;
– Passive items are items of the form [φ; Ai ; r;Γ ]P where φ = (

f , A1, . . . , Aq , A
)

∈ P and Γ ∈ Ge, with e any IDL expression over Σ ′ = Σ ∪⋃q
i=1

{
Ai j | j ∈ {1,

. . . , di ( f )}};
– Completed items are items of the form

[
φ; A;  r;Γ ]C where φ = (

f , A1, . . . , Aq ,

A) ∈ P ,  r ∈ [[1, q]]⇀P f (N) and Γ ∈ Ge, with e any IDL expression over
Σ ′ = Σ ∪⋃q

i=1

{
Ai j | j ∈ {1, . . . , di ( f )}}.

While active items store the current parsing status of a given IDL expression and
passive itemsmemorize successful parsing of a given IDL expression, completed items
unify parsing results for different fields of the same category, checking that the various
contexts are compatible with each other. Passive items are not absolutely essential;
they are essentially syntactic sugar for active items where the current cut is reduced
to the final node.

The deduction-style rules that make up the core of our algorithm are presented
in Fig. 12. Predict, Scan and Combine have their usual semantics from bottom-
up parsing algorithms, and make extensive use of the context tables and transition
relations defined in Sect. 4.1. Step explores ε-transitions. Save produces a passive
item from an active item that has reached it final state; this passive item is immediately
converted into a completed item with only one activated field by Singleton. Finally,
when a passive item can be used to extend the domain of a preexisting completed item,
Unify performs this operation and returns a new completed item.
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Fig. 12 Parsing rules

Fig. 13 Item types and rules

Practical implementation of the parsing algorithm requires that an (efficient) order-
ing be defined on the rules to apply. This ordering must guarantee correctness (i.e. that
all possible syntax trees can be output) as well as an acceptable running time.

The graph from Fig. 13 displays the seven deduction rules from Fig. 12 as functions
from and to the sets of active (A), passive (P) and completed items (C), as well as
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products thereof. Dashed arrows are added between two sets X and Y whenever there
exists Z such that Y = X × Z (red) or Y = Z × X (green).

This graph can be viewed as a kind of “recursive control flow diagram” for our
algorithm. Each edge labelled with a rule name corresponds to a recursive call to a
corresponding function, that will try to apply the rule using the item output by the
previous successful function call; each dashed edge corresponds to a fold operation
through the item set matching the right-hand-side of the destination type (for red
arrows) or the left-hand side of the destination type (for green arrows). The rule
Predict is applied only at the first iteration. At each iteration, the parameters j and
a = t j used by Scan are updated, reading the input from left to right, and a sequence
of recursive calls takes place, building new rules that are appended to the existing
parsing environment.

In fact, due to the structure of our parsing system, one of the arrows above is redun-
dant: the red arrow r from C to C × P can be removed without altering the correctness
of the algorithm, as long as, when handling a passive item, the fold operation suggested
by the green arrow g from P to C × P is executed before the recursive call encoded
in the Singleton arrow. Let us consider the first iteration where the red arrow r is
taken. This can only occur when a new completed item c has just been created; this
completed item has been itself generated by either of the Singleton or Unify rules.
If it has been generated by Singleton, say from a passive item p, a recursive fold
through the set C has already taken place via the green arrow g. That fold has added
to the environment all completed elements that can be computed from p and any other
available completed item. Now, for any available passive item p′, a completed item c′
has been derived from p′ at some point of time in the past. The fold operation triggered
by g has already, if possible, derived a new complete item from p and c′ that would
contain exactly the same information as the item to be created from c and p′. If c has
been created by Unify, a fold has already been triggered through g (the only possible
path to reach C × P has been through g, because of our hypothesis that we have not
taken r before) and the same reasoning applies by considering the items c′ and p used
to produce c.

The resulting pseudocode is presented in Algorithm 2.

4.3 Complexity

The goal of the final part of this paper is to provide an upper bound of the com-
plexity of our parsing algorithm under some practically reasonable assumptions, that
will be obtained as Theorem 4. The detailed proof of this theorem can be found in
Appendix A.1.

Before addressing the actual complexity problem, three remarks must be made.
First,∨ nodes are not absolutely needed in the IDL-PMCFG formalism. By creating

some new rules and introducing intermediate categories, it is easy to transform any
grammar into an equivalent one without any ∨ node. In the following discussion,
we will often exclude the case of ∨ nodes, and give upper bounds only for the case
where those∨ nodes are not used. Practical experience showed that disjunction, being
redundant with the creation of two separate rules, are a useful, but less frequently used
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Algorithm 2 COMPĀ’s parsing algorithm
1: function Parse(t)
2: E ← ∅
3: PredictAll (E)

4: for j ∈ [[0, |t | [[ do
5: for I = [φ; e; s;Γ ] ∈ E do
6: TryScan

(
I , a j , j , E

)

7: function PredictAll(E)

8: for
((

e1, . . . , eδ(A)

)
, A, A1, . . . , Aa(n)

)
∈ F do

9: for i ∈ [[1, δ (A)]] do
10: I ←

[
φ; ei ;

{
sei �→ [∅]

}
; init (ei

)]

11: E ← E ∪ {I } ' Apply rule Predict
12: TryRec (I , E)

13: function TryScan([φ; e; s;Γ ] , a, j , E)
14: for s′ ∈ Se s.t. Δe

(
s, a, [[ j , j + 1[[, s′) do

15: I ← [
φ; e; s′;Γ ]

16: E ← E ∪ {I } ' Apply rule Scan
17: TryRec (I , E)

18: function TrySave([φ; e; s;Γ ] , E)
19: if s = {

fe′ �→ [r ]
}
then

20: for φ =
((

e1, . . . , eδ(A)

)
, A, A1, . . . , Aa(n)

)
∈ F, i ∈ [[1, δ (A)]], ei = e′ do

21: I ← [
φ; Ai ; r;Γ ]P

22: E ← E ∪ {I } ' Apply rule Save
23: I ′ ← [φ; A; {i �→ r} ;Γ ]C
24: E ← E ∪ {I ′} ' Apply rule Singleton
25: TryUnify (I , E)

26: function TryStep([φ; e; s;Γ ] , E)
27: for s′ ∈ Se s.t. Δe

(
s, ε, ∅, s′) do

28: I ← [
φ; e; s′;Γ ]

29: E ← E ∪ {I } ' Apply rule Step
30: TryRec (I , E)

31: function TryCombineLHS([φ; e; s;Γ ] , E)

32: for
[
φ′; Ak ;  r

]

C
∈ E do

33: for � ∈ D ( r) , s′ ∈ Se s.t. Δe
(
s, (k, �) ,  r [�] , s′) do

34: if compatt (Γ , k, �,  r) then
35: I ← [

φ; e; s′; reserve (Γ , k,  r)
]

36: E ← E ∪ {I } ' Apply rule Combine
37: TryRec (I , E)

38: function TryCombineRHS(
[
φ′; Ak ;  r;Γ ′]

C
, E)

39: for [φ; e; s;Γ ] ∈ E do
40: for � ∈ D ( r) , s′ ∈ Se s.t. Δe

(
s, (k, �) ,  r [�] , s′) do

41: if compatt (Γ , k, �,  r) then
42: I ← [

φ; e; s′; reserve (Γ , k,  r)
]

43: E ← E ∪ {I } ' Apply rule Combine
44: TryRec (I , E)

45: function TryUnify(
[
φ; Ak

�
; r;Γ

]

P
, E)

46: for
[
φ; Ak ;  r ′;Γ ′]

C
∈ E do

47: if � /∈ D
( r ′) and ∃Γ ′′ ∈ Ge,unifyt

(
Γ , Γ ′, Γ ′′) then

48: I ←
[
φ; Ak ;  r ′ ∪ {� �→ r} ;Γ ′′]

C
49: E ← E ∪ {I } ' Apply rule Unify
50: TryCombineRHS (I , E)

51: function TryRec(I , E)
52: TrySave (I , E)

53: TryStep (I , E)

54: TryCombineLHS (I , E)
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feature of the formalism. Nevertheless, we shall give some insights in Appendix A.1.3
about how to take into account disjunction in the final estimate.

Second, we introduce a notion of G-density of a language:

Definition 19 (G-density of a language) Let m ∈ N. Let G = (N , δ,Σ, F, P, S) be
an m-parallel IDL-MCF grammar. Let T ⊂ Σ∗ such that ε /∈ T . The G-density of T
is defined as

ρT ,G = sup
A∈N

sup
i∈[[1,δ(A)]]

sup
t∈T

∣∣{p ∈ P ([[1, |t |]]) \ {∅} | A→̂ 〈
α1, . . . , αi−1, tp, αi+1, . . . , αδ(A)

〉}∣∣

|t |
∈ R+ ∪ {+∞}

where tp denotes the substring of t composed of the tokens at positions p in t (see
notations).

The G-density of a language serves as a proxy for the amount of ambiguity that this
language contains from the point of view of grammar G. It answers the question: ‘How
many different substrings of any string in the language can be matched by the same
field of the same category?’. This ‘howmany’ is quantified as a quotient of the number
of different matches over the length of any input string. Introducing G-density will
allow us to discuss the worst-case complexity of parsing on reasonable sets of inputs,
i.e. those for which ρT is finite, or, equivalently, for which the number of matched
substrings grows at most linearly in the size of the string.

Consider the case where we want to describe adjective-noun attachment in a natural
language where adjectives can be placed arbitrarily before or after the noun they
modify. We are given an (arbitrary large) lexicon with a number of terminal rules
producing adjectives (of category A) and nouns (of category N ). These terminals are
stored in an alphabet we denote by Σ . The part of the grammar building noun phrases
(of category S) in our toy IDL-CF grammar looks like this:

N → S : n �→ n

S → A → S : np, a �→ || (np, a) .

Now, how ambiguous can noun phrases be? If we take T = Ω := P (Σ∗), then
considering a string with a noun and n arbitrary adjectives in any order results in all
substrings containing the noun to be valid noun phrases; in this case, ρT ,G ≥ 2n

n+1 for
all n ∈ N

+, and therefore ρT ,G = +∞. But if we now consider the (more practical)
case where the number of adjectives to be attached to the same noun is less than some
reasonable constant M , and call U the corresponding sublanguage of Ω , then we get
no more than 2min(k−1,M) different matching substrings for any input of length k ≥ 1;

as a consequence, ρU ,G = supk∈N+ 2min(k−1,M)

k = 2M

M+1 < +∞.
Third, we need to keep inmind the following fact, that is an immediate consequence

of Theorem 1:

Theorem 3 IDL-PMCFG parsing is N P-complete. Therefore, unlessP = NP, general
IDL-PMCFG parsing is not polynomial in the size of the input string.
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Proof Theorem1provides a reduction from theNP-complete problem3SAT to parsing
IDL-PMCF the grammar G from Lemma 3 
�

4.3.1 Measuring IDL Graphs

We now introduce two measures of the complexity of IDL graphs, encoded in two
primitives height and width. While height was already defined in Nederhof and
Satta’s paper (though it was there called width, and defined in a slightly different
manner), width plays a new and complementary role that we shall emphasize later.
The informal interpretation of these metrics is simple: height measures the maximal
number of branches that can be traversed in parallel, while width quantifies the max-
imal number of edges labelled with a terminal or ε on any left-to-right path from the
start to the end node.

Definition 20 (Height and width of an IDL expression graph) LetΣ be a set of symbols
that does not contain ε and � and E the set of IDL expressions over Σ . The height and
width of an IDL expression e ∈ E are defined inductively as follows:

height (a) = 1 ∀a ∈ Σ ∪ {ε}

height
(
e′ · e′′

) = max
(
height

(
e′
)
,height

(
e′′
))

height (× (e)) = height (e)

height (∨ (e1, . . . , en)) =
n∑

i=1

height (ei )

height (|| (e1, . . . , en)) =
n∑

i=1

height (ei )

height
(|| (e′)) = height

(
e′
) ;

width (a) = 1 ∀a ∈ Σ ∪ {ε}

width
(
e′ · e′′

) = width
(
e′
)+ width

(
e′′
)

width (× (e)) = width (e)

width (∨ (e1, . . . , en)) = n
max
i=0

width (ei )

width (|| (e1, . . . , en)) = n
max
i=0

width (ei ) .

In the graph γ of Fig. 9, we have width (γ ) = 3 (a path from left to right in the
graph contains at most two edges labelled by terminals) and height (γ ) = 6 (there
are at most six nodes in a cut, or equivalently six branches traversed in parallel).

4.3.2 Final Complexity Estimate

Based on the previous definitions of height and width, we can prove
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Theorem 4 Let m ∈ N. Let G = (N , δ,Σ, F, P, S) be an m-parallel IDL-MCF gram-
mar. Let E be the set of IDL expressions used in G. Assume that for all e ∈ E, e does
not contain any ∨ node. Let T ⊂ Σ∗ and put ρ := ρT . Let w := maxe∈E width (e),
h := maxe∈E height (e), R = |P|, α = max f ∈F a ( f ), M = maxe∈E |e|. Finally, let
t ∈ T and n := |t |. Assume that w ≥ 6 and n ≥ w. An upper bound of the complexity
of the parsing algorithm described in Algorithm 2 is given by

O

⎛

⎝αm2Rhρm

((
ρw2

h2

)w
1

(w − 1)!

)h

hnn2hw+m+2

⎞

⎠ .

Proof See A.1. 
�

5 Conclusion

In this paper, we have presented and studied IDL-PMCFG, a new grammatical formal-
ism that extends PMCFG with Nederhof and Satta’s IDL expression. This formalism,
along with its GF-like experimental front-end COMPĀ, was designed as a tool to
formally encode the syntax of free word order languages. COMPĀ, its IDL-PMCFG
backbone and the associated parsing algorithm have been implemented in an exper-
imental setup, focussing on the parsing of Classical Latin. The corresponding code
can be found in our GitHub repository. To our knowledge, this formalism is the only
one to this day to allow for a straightforward, wide-coverage syntactic description of
Classical Latin and similar languages for rule-based parsing purposes. The fact that
IDL-PMCFG extends PMCFG with only two new operators should make extending
existing tools for support of hyperbatic constructions comparatively smoother than if
an ad hoc approach to Latin syntax had been chosen.

In order to be able to easily encode the kind of extensive free word order encoun-
tered in the case of Classical Latin, an operator allowing for grammatical constituents
to be swapped and intertwined, the || operator, is required; no less required for concise-
ness is the ability, in particular instances, to impose fixed constituent order (through
the · operator) or non-interleaving, or locking, of constituents (through the × oper-
ator). Since these operators are virtually anavoidable when it comes to providing a
linguistically intuitive description of the actual syntactic constraints in the language,
it is reasonable to think of IDL-PMCFG as the “smallest extention of PMCFG with
built-in support for free word order as observed in Classical Latin”. Note that this does
not mean that IDL-PMCFG would be the smallest extension of CFG with this same
property, since copying is not required to encode hyperbatic constructions. Besides the
design and analysis of the formalism itself, one of the main contributions of this paper
is the classification result of Theorem 1. This theorem has two main consequences.

The first one ismainly theoretical: whenever aCFG-derived grammatical formalism
is coupled with IDL expressions and includes a record system that does not restrict
copying, parsing in this formalism must, in the worst case, be non-polynomial in
the size of the input. As an immediate corollary, such formalisms cannot be mildly
context-sensitive. In fact, even if we disallowed copying, there is no way a formalism
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able to generate Latin hyperbatic structures in a linguistically meaningful way could
be mildly context sensitive: Becker et al. (1992) showed that scrambling as it occurs in
German—akind of freeword order that is strictly less general thanLatin hyperbata—is
not mildly context-sensitive.

The second, more practical consequence is that the corresponding parsing algo-
rithms will not be polynomial, which does of course not mean that parsing will be
intractable altogether, since pratical linguistic settings rarely present the level of ambi-
guity that leads to theoretical worst cases. Our first experiments would rather suggest
the opposite. Studying the complexity of the IDL-PMCFG parsing algorithm in the
particular case of IDL-MCF grammars without copy would be an interesting path for
further research.

While a majority of works in formal NLP draw most of their examples from fixed
word order languages (most notablyEnglish, but also to certain extentGerman, French,
or Chinese) in which hyperbata are almost always ungrammatical, it might be tempt-
ing to think that mild context sensitivity, and in particular polynomial-time parsing,
is sufficiently expressive to account for syntactic phenomena in a vast majority of
instances and for almost all natural languages. This view indeed seems to widely
accepted,7 and it has proved practical in many cases, often preventing unnecessary
computational explosion.

Becker et al. (1992) showed that its theoretical accurateness should be questioned.
Indeed, in the light of this study, the alleged minimality of mildly context-sensitive
languages, while not contradicted by the grammar of English and similar languages,
appears to have somewhat underestimated the complexity of (very) free word order:
Classical Latin and Greek, Sanskrit etc. present hyperbatic constructions that are
considerably more complex that German scrambling. These may well be specific
languages, and, in one sense, they are: Classical Latin and Greek, as well as Sanskrit,
belong to a rather extremal subset in the (somewhat imprecise) galaxy of so-called
free word order languages. In these languages, audacious interleaves and permutations
have become part of a canon of refined rhetorical and prosodic effects, thus enhancing
even more the natural syntactic flexibility of a morphologically rich linguistic system.
Many other idioms, such as English, are not concerned by this kind of phenomena,
and it would be equally unsatisfying to impose free word order formalisms upon them.
What is at stake is not so much the pertinence of mild context sentivity for the vast
majority of formal NLP applications, but rather its universality throughout natural
languages.

Two import questions remain open. On the formal side, the position of IDL-CFGs
and IDL-MCFGs (without copy) in the hierarchy are still unclear, and so is the com-
plexity of their respective parsing algorithms. On the linguistic side, the level of
expressivity needed to account for hyperbaton and locking of clauses is not precisely
known. Answering these two questions would provide a more complete insight into
the level of syntactic complexity of free word order in natural language, while paving
the way for the development of more efficient description and parsing systems.

7 Following Joshi, Kallmeyer (2010) writes “there is still good reason to assume that natural languages are
mildly context-sensitive” (p. 25).
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A Appendix

A.1 Complexity Estimate

In the next subsections, we estimate the complexity of Algorithm 2 building on the
notions of height and width introduced in Sect. 4.3.1; we shall

A.1.1 Define relaxation of IDL expressions and prove that every IDL expression can
be relaxed in such a way that height and width are preserved while the number
of so-called stable states can only increase;

A.1.2 Give an upper bound for parsing with relaxed IDL expressions;
A.1.3 Finally, derive an upper bound of the complexity of the algorithm under some

practical assumptions.

A few combinatorial lemmas that will be used in A.1.2 can be found in A.2.

A.1.1 Relaxed IDL Expressions and Stable States

We first introduce a primitive that sorts a list of IDL expressions not containing any
||, ∨ or × node by order of descreasing width.

Definition 21 (sort primitive) Let Σ be a set of symbols that does not contain ε and
�. Let F be the set of IDL expressions over Σ that do not contain any ||, ∨ or× node.

Let n ∈ N
+ and (e1, . . . , en) ∈ Fn . For i ∈ [[1, n]], it is clear that expression ei is

of the form ai1 · · · · · aiki for some ki = width (ei ) ≥ 1, where ai ∈ Σ ∪ {ε} for all
i ∈ [[1, ki ]]. Therefore, we can easily choose a permutation σ(e1,...,en) ∈ Sk such that

∀ (i, j) ∈ [[1, n]]2, i < j ⇒ kσ(e1,...,en)(i) ≥ kσ(e1,...,en)( j).
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Let m ∈ N
+. Given a choice of σ(e1,...,em ) for all (e1, . . . , em) ∈ Fm , we define sortm

as

sortm : Fm → Fm, (e1, . . . , em) �→
(

eσe1,...,em (1), . . . , eσe1,...,em (m)

)
.

Finally,we define sort as the only function from�k∈N+Fk into itself such that sort |Fk=
sortk for all k ∈ N

+.

Now, it is time for us to introduce relaxed IDL expressions.

Definition 22 (Relaxed IDL expression) LetΣ be a set of symbols that does not contain
ε and � and E∗ the set of IDL expressions over Σ that do not contain any ∨ node. The
relaxation ẽ of an IDL expression e ∈ E∗ is defined inductively as follows:

ã = || (a) ∀a ∈ Σ ∪ {E }
ẽ1 · e2 = ||

(
sort

(
e′11 · e′21, . . . , e′1k1

· e′2k1
, e′2(k1+1), . . . , e′2k2

))
where ∀i ∈ {1, 2} ,

ẽi = ||
(

e′i1, . . . , e′iki

)
, k1 ≤ k2

ẽ1 · e2 = ||
(
sort

(
e′11 · e′21, . . . , e′1k2

· e′2k2
, e′2(k2+1), . . . , e′2k1

))
where ∀i ∈ {1, 2} ,

ẽi = ||
(

e′i1, . . . , e′iki

)
, k1 ≥ k2

˜× (e′) = ẽ′

˜|| (e1, . . . , en) = ||
(
sort

(
e′11, . . . , e′nkn

))
where ∀i ∈ [[1, n]],

ẽi = ||
(

e′i1, . . . , e′iki

)
.

Relaxed IDL expressions over Σ are of the form

e = || (a11 · · · · · a1k1 , . . . , an1 · · · · · ankn

)

where ∀i ∈ [[1, n]]∀ j ∈ [[1, ki ]], ai j ∈ Σ ∪ {E } and k1 ≥ · · · ≥ kn ; in particular,
height (e) = n and width (e) = k1.

A simple simultaneous induction is sufficient to prove both this fact and the well-
definedness of relaxation.

Relaxation increases the number of substrings of the input that can be matched by
an expression:

Lemma 4 Let Σ be a set of symbols that does not contain ε and � and E∗ the set
of IDL expressions over Σ that do not contain any ∨ node. Let t ∈ Σ∗. For all
p ∈ P ([[1, |t |]]), if tp is recognized by e, then tp is also recognized by ẽ.

Proof By immediate induction on e ∈ E∗. 
�
We can now check that relaxation keeps height and width invariant:

Proposition 9 Let Σ be a set of symbols that does not contain ε and � and e an
IDL expression over Σ that does not contain ∨. We have width (̃e) = width (e) and
height (̃e) = height (e).
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Proof We prove this by induction on e ∈ E∗:
– If e = a ∈ Σ ∪ {ε}, we check that width (e) = height (e) = 1, width (̃e) =
width (|| (a)) = width (a) = 1 and height (̃e) = height (|| (a)) = height (a)

= 1.
– If e = e1 · e2, then let (k1, k2) ∈ (N+)2,

(
e′11, . . . , e′1k1

, e′21, . . . , e′2k2

)
∈ E

k1+k2∗
such that ẽi = ||

(
e′i1, . . . , e′iki

)
for i ∈ {1, 2}. Without loss of generality, assume

k2 ≥ k1.

By definition of relaxation, we have ẽ = ||
(
sort

(
e′11 · e′21, . . . , e′1k1

· e′2k1
,

e′2(k1+1), . . . , e′2k2

))
.

For i ∈ {1, 2}, we know that:

1. By Definition 22, width (ẽi ) = width
(
e′i1
)
and height (ẽi ) = ki ;

2. By induction hypothesis, width (ẽi ) = width (ei ) and height (ẽi ) =
height (ei ).

There follows:

width (̃e) = max
(
width

(
e′11 · e′21

)
, . . . ,width

(
e′1k1 · e′2k1

)
,

width
(

e′2(k1+1)

)
, . . . ,width

(
e′2k2

))

= max
(
width

(
e′11
)+ width

(
e′21
)
, . . . ,width

(
e′1k1

)

+width
(
e′2k1

)
,width

(
e′2(k1+1)

)
, . . . ,width

(
e′2k2

))

= width
(
e′11
)+ width

(
e′21
)

= width (ẽ1) + width (ẽ2)

= width (e) ;
height (̃e) = k2

= max (k1, k2)

= max (height (ẽ1) ,height (ẽ2))

= max (height (e1) ,height (e2))

= height (e) .

– If e = × (e′), then by induction hypothesis width (̃e) = width
(
ẽ′
) =

width
(
e′
) = width (e) and height (̃e) = height

(
ẽ′
) = height

(
e′
) = height (e).

– If e = || (e1, . . . , en), let (k1, . . . , kn) ∈ (
N

+)n and
(

e′i1, . . . , e′iki

)
∈ E

ki∗
for i ∈ [[1, n]] such that for all i ∈ [[1, n]], ẽi = ||

(
e′i1, . . . , e′iki

)
. Then

ẽ = ||
(

e′11, . . . , e′nkn

)
.

For all i ∈ [[1, n]], we have:
1. By Definition 22, width (ẽi ) = width

(
e′i1
)
and height (ẽi ) = ki ;

2. By induction hypothesis, width (ẽi ) = width (ei ) and height (ẽi ) =
height (ei ).
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Therefore,

width (̃e) = max
(
width

(
e′11
)
, . . . ,width

(
e′nkn

))

= n
max
i=1

width
(
e′i1
)

= n
max
i=1

width (ẽi )

= width (e) ;

height (̃e) =
n∑

i=1

ki

=
n∑

i=1

height (ẽi )

=
n∑

i=1

height (ei )

= width (e) .


�
The other important result that we need to prove is, essentially, that relaxation can

only increase the number of states in the IDL graph. Unfortunately, this is not true
when all states are taken into account: relaxation sometimes leads tomerging interleave
branches, resulting in disappearing split and merge nodes. But the failing argument
can be fixed by considering those states that actually matter in the complexity analysis,
i.e. those from which no ε-transition is available. This is captured by the following
definition of so-called stable states; states, that have no outgoing ε-transition.

Definition 23 (Stable states) Let Σ be a set of symbols that does not contain ε and �
and e an IDL expression over Σ that does not contain ∨. LetSe be the state space of
e. The set of general stable states of e is defined as

S̃e = {
s ∈ Se | ∀s′ ∈ Se,¬Δe

(
s, ε,∅, s′

)}
,

the set of t-specific stable states of e as

S̃e,t =
{
s ∈ Se,t | ∀s′ ∈ Se,t ,¬Δe

(
s, ε,∅, s′

)}
.

We can now prove that through relaxation, the number of (specific) stable states
can only increase.

Proposition 10 Let Σ be a set of symbols that does not contain ε and � and e an IDL

expression over Σ that does not contain ∨. For t ∈ Σ∗, we have
∣∣∣S̃e,t

∣∣∣ ≤
∣∣∣S̃ẽ,t

∣∣∣.

Proof We prove this by induction on e ∈ E.
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• If e = a, ẽ = e and there is nothing to prove.
• If e = e1 · e2, assume without loss of generality that k2 ≥ k1.
The situation is as follows (implicit �i and �i labels have been omitted):

ẽ1 · ẽ2 =

ẽ1

. . .
v1

vk1

ẽ2

. . .
w1

wk2

ε

e′11

e′1k1

ε

e′21

e′2k2

ε

ẽ1 · e2 =

. . .

. . .
xk1+1

xk2

x1

xk1

y1

yk1

yk1+1

yk2

ε

ε

ε

ε

e′11

e′1k1

e′
2
(
k1+1

)

e′2k2

ε

ε

ε

ε

e′21

e′2k1

ε

ε

.

Red vertices and sets denote unstable (non-stable) states. Purple vertices denote
vertices that cannot belong to any stable state because they have the left end of an
ε-transition.
We first prove that for all t ∈ T ,

∣∣∣S̃ẽ1·ẽ2,t
∣∣∣ ≤

∣∣∣S̃ẽ1·e2,t
∣∣∣. This can be done by

identifying, for each t ∈ T , an injective map S̃ẽ1·ẽ2,t → S̃ẽ1·e2,t .
Let t ∈ T . We build a map f as follows:

– Each stable state whose cut is in ẽ1 is mapped to its natural counterpart in
ẽ1 · e2, where vi is replaced by xi for all i ∈ [[1, k1]] and all (xi )i∈[[k1+1,k2]] are
added with stack [∅,∅];

– Each stable state whose cut is in ẽ2 is mapped to its natural counterpart in
ẽ1 · e2, where wi is replaced by yi for all i ∈ [[1, k2]];

– The final state of ẽ1 · ẽ2 is mapped to the final state of ẽ1 · e2.

It is easy to see that f is injective. Therefore,
∣∣∣S̃ẽ1·ẽ2,t

∣∣∣ ≤
∣∣∣S̃ẽ1·e2,t

∣∣∣.

We then have to check that for all t ∈ T ,
∣∣∣S̃e1·e2,t

∣∣∣ ≤
∣∣∣S̃ẽ1·ẽ2,t

∣∣∣.
Let t ∈ T . We build an injective map f as before. Note that cuts internal to either
ẽ1 or ẽ2 are easy to handle: the top of the stack is used independently in every
branch to decide whether a given state can be accessed or not. The only difficulty
thus concerns the final cut. Now, the states provided by the final cut of any IDL
expression e′ are in bijection with the sets of positions p ∈ P ([[1, |t |]]) such that
tp is matched by e′. Lemma 4 then concludes the proof.
Now, we have

∣∣∣S̃ẽ,t

∣∣∣ =
∣∣∣S̃ẽ1·e2,t

∣∣∣ ≥
∣∣∣S̃ẽ1·ẽ2,t

∣∣∣ ≥
∣∣∣S̃e1·e2,t

∣∣∣ =
∣∣∣S̃e,t

∣∣∣ .
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• If e = × (e′) , × (e′) =

e′

. . .
↑ ↓

(with the same color-

coding as above); the rest of the proof is straightforward.
• If e = || (e1, . . . , en), the situation is as follows (with the same conventions as
before) up to a reordering of the branches triggered by sort:

|| (ẽ1, . . . , ẽn) =

ẽ1

. . .
v1

ẽn

. . .
vn

. . .

e′11

e′1k1

e′n1

e′nkn

; ẽ =

. . .
x11

x1k1

. . .
xn1

xnkn

. . .

e′11

e′1k1

e′n1

e′nkn

.

We build a bijective map f : S̃||(ẽ1,...,ẽn),t → S̃ẽ,t as follows:

– Let s ∈ S̃||(ẽ1,...,ẽn),t . If s is not the final node, write s as s1 ⊗ · · · ⊗ sn with
si ∈ S̃ẽi ,t for i ∈ [[1, n]]. For i ∈ [[1, n]], define s′i as the natural counterpart
of si in ẽ, except for si = {(v1, z)} which has no counterpart in ẽ and is
associatedwith

{
(xi1, z1) , . . . ,

(
xiki , zki

)}
where z1, . . . , zki are stacks chosen

to replicate the non-stable state leading to (v1, z). Put f (s) = s′1 ⊗ · · · ⊗ s′n .
– If s is the final node, map it to the final node of ẽ; associativity of interleave
guarantees that themapping between states based on the final nodes is bijective.

This ensures that
∣∣∣S̃||(ẽ1,...,ẽn),t

∣∣∣ =
∣∣∣S̃ẽ,t

∣∣∣. The rest of the proof exploits the same

arguments as for concatenation.


�

A.1.2 Counting Parse States in Relaxed IDL Graphs

Notations and assumptions In the remaining part of this subsection, we fix a set of
symbols Σ that does not contain ε and � and call E∗ the set of IDL expressions over
Σ that do not contain ∨; we further denote by Ẽ the set of relaxed IDL expressions
over Σ . We consider e ∈ Ẽ and define w := width (e), h := height (e). We choose a
set T ⊂ Σ∗, an IDL-PMCF grammar G, and put ρ := ρT ,G .

We finally choose t ∈ T , let n := |t |, Qt := {
p ⊂ P ([[1, |t |]]) | tp ∈ L (e)

}
and

assume w ≥ h.
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The goal of this subsection is to prove Theorem 5 below, that provides an upper

bound for
∣∣∣S̃e,t

∣∣∣ as a function ofw, h and ρ, as well as of the size n of t . The definition

of E�,n and associated combinatorial results can be found in the appendix.

Proposition 11 If h = 1, we have

|Qt | ≤ ρw
( n

w

)w (n + w − 1)w−1

(w − 1)! .

Proof Assume that h = 1. For t to be matched by e, which has the form
|| (a11 · · · · · a1w), the string t must be decomposed in h (possibly empty) substrings
tp1 , . . . , tpw such that p1 ≺ · · · ≺ pw, p = �w

i=1 pi and for all i ∈ [[1, w]], there
exists qi ⊂ pi such that a1i→̂tqi . Such pi are uniquely dermined by their sizes
(ki := |pi |)i∈[[1,w]]. For each such decomposition (k1, . . . , kw), for all i ∈ [[1, w]], we
have

∣∣{qi ⊂ pi | a1i→̂tqi

}∣∣ ≤ ρ |pi | = ρki

by definition of ρ. Therefore,

|Qi | ≤
∑

k1+···+kw=n

w∏

i=1

(ρki )

≤ ρw
∑

k1+···+kw=n

(∑w
i=1 ki

w

)w

= ρw
( n

w

)w ∣∣Ew,n
∣∣

≤ ρw
( n

w

)w (n + w − 1)w−1

(w − 1)! .


�
The following result immediately follows:

Proposition 12 If h = 1, we have

∣∣∣S̃e,t

∣∣∣ ≤ 2wρw
( n

w

)w (n + w − 1)w−1

(w − 1)! .

Proof Assume h = 1. Given the form of e, the number of cuts of e that can be the
base of a stable state is w + 1:

e = . . .
�1 ε a11 ε a12 a1w ε �1

.
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Each of these cuts contains exactly one vertex that can be viewed as the end state
of the IDL graph of some e′ ∈ Ê such that e′ = || (a11 · · · · · a1k′) with k′ ≤ w. As our
bound on |Qt ′ |, t ′ ∈ T , depends only on

∣∣t ′
∣∣ andw and is decreasing in both variables,

there follows:

∣∣∣S̃e,t

∣∣∣ ≤ (w + 1) |Qt | ≤ 2w |Qt | ≤ 2wρw
( n

w

)w (n + w − 1)w−1

(w − 1)! .


�
Building on the result for h = 1, we can handle the general case.

Proposition 13 We have

|Qt | ≤
(( ρ

w

)w 1

(w − 1)!
)h (n

h
+ w − 1

)2hw

hn .

Proof For t to be matched by e, which has the form || (e1, . . . , eh), the string t must
be decomposed in w (possibly empty) substrings tp1 , . . . , tph such that p = �h

i=1 pi

and for all i ∈ [[1, h]], there exists qi ⊂ pi such that a1i→̂tqi . For each choice of
(ki := |pi |)i∈[[1,h]], there are

( n
k1,...,kh

)
possible choices of (pi )i∈[[1,h]] such that the

above condition holds. This yields:

|Qt | ≤
∑

k1+···+kh=n

(
n

k1, . . . , kh

) h∏

i=1

[

ρw

(
ki

w

)w
(ki + w − 1)w−1

(w − 1)!

]

≤
(( ρ

w

)w 1

(w − 1)!
)h ∑

k1+···+kh=n

(
n

k1, . . . , kh

)

×
(

h∏

i=1

(ki + w − 1)

)w−1 ( h∏

i=1

ki

)w

≤
(( ρ

w

)w 1

(w − 1)!
)h (n

h
+ w − 1

)h(w−1) (n

h

)hw ∑

k1+···+kh=n

(
n

k1, . . . , kh

)

≤
(( ρ

w

)w 1

(w − 1)!
)h (n

h
+ w − 1

)h(w−1) (n

h

)hw

hn

≤
(( ρ

w

)w 1

(w − 1)!
)h (n

h
+ w − 1

)2hw

hn .


�
Theorem 5 We have

∣∣∣S̃e,t

∣∣∣ ≤
(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw

.

123



IDL-PMCFG, a Grammar Formalism for Describing Free Word… 381

Proof As e ∈ Ê, the number of cuts of e that can be the base of a stable state is
|Ce| = (w + 1)h + 2. Except the start and end cuts se and fe, that contain exactly
one vertex, every other cut contains exactly h vertices. The start cut se is unstable.
The final cut has |Qt | possible states (its stack has depth 1). For any other cut c, for
all v ∈ c, v can be regarded as the end state of the IDL graph of some relaxed IDL
expression e′ corresponding to the branch of e containing v. All stacks on this branch
contain two elements : (i) a head (ii) a head-of-tail that is equal to the empty set. By

constructionwidth
(
e′
) ≤ width (e) = w. Therefore, vertex v provides at most

∣∣∣S̃e′,t
∣∣∣

stack choices. Let S be the supremum of all such
∣∣∣S̃e′,t

∣∣∣. Finally

∣∣∣S̃e,t

∣∣∣ ≤ (w + 1)h Sh + |Qt |

≤ (w + 1)h

[

2wρw
( n

w

)w (n + w − 1)w−1

(w − 1)!

]h

+
(( ρ

w

)w 1

(w − 1)!
)h (n

h
+ w − 1

)2hw

hn

≤
(( ρ

w

)w 1

(w − 1)!
)h

×
[
(2w (w + 1))h nw (n + w − 1)w−1 +

(n

h
+ w − 1

)2hw

hn
]

≤
(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h

(n + w)2w +
(n

h
+ w

)2hw

hn
]

.

As w ≥ h,

(n

h
+ w

)h = (n + hw)h

hh
= (n + hw)h−2

hh−2

(n + hw)2

h2

≥ (n + hw)2

h2 = n2

h2 + 2nw

h︸︷︷︸
≥n

+ w2
︸︷︷︸
≥w

≥ n + w;

hence

∣∣∣S̃e,t

∣∣∣ ≤
(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw

.


�

A.1.3 Final Complexity Estimate

We now discuss the complexity of each of the functions presented in Algorithm 2 in
the case where none of the IDL expressions used in the grammar uses any ∨ node.
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As every IDL-PMCFgrammar can be easily translated into an equivalent IDL-PMCFG
without ∨ node by adding new rules, this does not restrict the set of languages that
can be matched. At the end of this section, we will briefly address the role of the ∨
node in the complexity of our algorithm and propose a simple approach to efficiently
measuring it.

Complexity of the algorithm is measured in terms of number of elementary opera-
tions. Creating and adding an item to the current environment is considered a O (1).
Listing available transitions to new states given a state, a (non)terminal and an asso-
ciated set of positions is an O (hn): the size of a cut is at most h and operations on
set positions have a complexity of O (n). The constant is improved in practice by
pre-computing all available transitions for every new active item to be added to the
environment. Denoting by α the maximal arity of any rule in G (G := max f ∈F a ( f )),
we find that reserve is anO (αm), whereas compat andunify areO (αmn). Initializing
a context is also an O (αm).

To simplify the analysis, the contributionof anyof the 8mutually recursive functions
is evaluated bymultiplying an upper bound of the total number of times it will be called
by the cost of the elementary operations it uses, excluding recursive calls. The number
of rules in G is defined as R = |P| and the maximal number of nodes in any IDL
expression in G is denoted by M . We will show that the number of times each function
is called can be easily bounded by a function of the maximal (or, equivalently, final)
number of:

– Active items in E , which we denote by A;
– Passive items in E , which we denote by P;
– Complete items in E , which we denote by C .

We can now inspect the complexity of each of the nine functions presented in
Algorithm 2.

Parse The two for loops have a complexity of O (n A).

PredictAll The function itself is called only once by Parse. The internal code is
executed m R times at most. The internal code consists of a context initialization
(O (αm)), and an item creation (O (1)). The contribution of PredictAll is therefore
an O

(
m2Rα

)
.

TryScan The function is called at most O (n A) times by Parse. Computing available
transitions is an O (hn) (see above). For each transition, the cost of operations is
constant. This results in an overall O

(
Ahn2

)
.

TrySave The function is called exactly P times. After a constant-cost test and iden-
tification of the production at stake, new items are added to the environment in time
O (1), resulting in an O (P).

TryStep The function is called at most m AM R times: each node is processed at most
once for each new active item. Its cost is an O (hn). Its overall contribution to com-
plexity is therefore O (hm AM Rn).

TryCombineLHS The function is called exactly A times. Each of the O (C) iterations
of the outer loop causes O (hn) iterations of the inner loop, each of which has cost
O (αmn). This yields an O

(
ACαhmn2

)
.
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TryCombineRHS The function is called exactly C times. Each of the O (A) iterations
of the outer loop costs O

(
αhmn2

)
as above. This yields another O

(
ACαhmn2

)
.

TryUnify The function is called exactly P times. The total number of complete items
of a given category in the environment is (ρn + 1)m (each field provides at most ρn
matches from which at most one must be selected). At most that many items must be
checked by the outer loop; the inner loop then has costO (αmn). The final complexity
is O

(
Pαmn (ρn)m).

The total complexity of the algorithm is now

O
(

n A + m2Rα + Ahn2 + P + hm AM Rn + ACαhmn2 + Pαmn (ρn)m
)

= O
(

m2Rα + hm AM Rn + ACαhmn2 + Pαmn (ρn)m
)

= O
(

m
(

m Rα + AM Rh2n + ACαhn2 + Pαn (ρn)m
))

.

Using the results of the previous part and the remarks above, we can now complete
simple upper bounds for A, C and P as follows:

– P = O (ρn);
– C = O

(
(ρn)m);

– A = O (RmS) where S is an upper bound of all
∣∣∣S̃e,t

∣∣∣ for e in G.

Our final theorem follows:

Theorem 4 Let m ∈ N. Let G = (N , δ,Σ, F, P, S) be an m-parallel IDL-MCF gram-
mar. Let E be the set of IDL expressions used in G. Assume that for all e ∈ E, e does
not contain any ∨ node. Let T ⊂ Σ∗ and put ρ := ρT . Let w := maxe∈E width (e),
h := maxe∈E height (e), R = |P|, α = max f ∈F a ( f ), M = maxe∈E |e|. Finally,

let t ∈ T and n := |t |; let A, P and C as above and S = maxe∈E

∣∣∣S̃e,t

∣∣∣. Assume

that w ≥ 6 and n ≥ w. An upper bound of the complexity of the parsing algorithm
described in Algorithm 2 is given by

O

⎛

⎝αm2Rhρm

((
ρw2

h2

)w
1

(w − 1)!

)h

hnn2hw+m+2

⎞

⎠ .

Proof According to the above discussion, the complexity of parsing t with grammar
G, denoted by c (G, t), is such that

c (G, t) = O
(

m
(

m Rα + AM Rh2n + ACαhn2 + Pαn (ρn)m
))

= O
(

m
(
αn (ρn)m+1 + αSm Rhn2 (ρn)m

))
.

Let E ′ be the image of E by e �→ ẽ and S′ = maxe′∈E ′
∣∣∣S̃e′,t

∣∣∣.
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Let e ∈ E , ŵ := width (e), ĥ := height (e), w′ := width (̃e), h′ := height (̃e).
By Proposition 9, w′ = ŵ ≤ w and h′ = ĥ ≤ h. According to Proposition 10,∣∣∣S̃e,t

∣∣∣ ≤
∣∣∣S̃ẽ,t

∣∣∣ and by Theorem 5,

∣∣∣S̃ẽ,t

∣∣∣ ≤
(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw

.

Hence

S ≤
(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw

and

c (G, t) = O

(

m

(

αn (ρn)m+1

+
{(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw
}

×αm Rhn2 (ρn)m

))

= O

([(( ρ

w

)w 1

(w − 1)!
)h [(

2 (w + 1)2
)h + hn

] (n

h
+ w

)2hw
]

×αm2Rhn2 (ρn)m

)

= O

((( ρ

w

)w 1

(w − 1)!
)h

hn
(n

h
+ w

)2hw

αm2Rhn2 (ρn)m

)

= O

⎛

⎝αm2Rhρm

((
ρw2

h2

)w
1

(w − 1)!

)h

hnn2hw+m+2

⎞

⎠


�

When some IDL expressions found in the grammar are making use of the ∨ node,
it is always possible to rewrite it to produce an equivalent grammar with more rules
that does not contain any ∨ node. It seems reasonable to conjecture that the parsing
complexity with the rewritten grammar can only be worse than with the original
grammar. In this case, the complexity of parsing the original grammar can be bounded
by V times the above complexity, while V is an upper bound of the number of new
rules produced for each old rule in the grammar.
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A.2 A Few Combinatorial Results

We thank Pierre-Alain Sallard for suggesting the expression of Lemma 7.
For (�, n) ∈ N

2, define

E�,n =
{
(k1, . . . , k�) ∈ N

� | k1 + · · · + k� = n
}

F�,n =
{
(k1, . . . , k�) ∈ N

� | k1 + · · · + k� ≤ n
}

.

Lemma 5 For (�, n) ∈ N
+ × N,

∣∣E�,n
∣∣ = ∣∣F�−1,n

∣∣.

Proof Let (�, n) ∈ N
+ × N. Let

Φ : E�,n → F�−1,n, (k1, . . . , k�) �→ (k1, . . . , k�−1)

Ψ : F�−1,n → E�,n, (k1, . . . , k�−1) �→
(

k1, . . . , k�−1, n −
�−1∑

i=1

ki

)

.

WehaveΦ◦Ψ = idE�,n ,Ψ ◦Φ = idF�−1,n ;Φ andΨ are therefore reciprocal bijections,
which concludes the proof. 
�
Lemma 6 For (�, n) ∈ N

2. We have

∣∣F�,n
∣∣ =

(
n + �

�

)
.

Proof Let (�, n) ∈ N
2. Define predicates (Ai )i∈[[1,�]] and

(
B j
)

j∈[[1,n]] as follows:

∀i ∈ [[1, �]], Ai : F�,n → {�,⊥} , k �→ ki = 0

∀p ∈ [[1, n]], Bp : F�,n → {�,⊥} , ∃m ∈ [[1, �]],
m∑

i=1

ki = p.

Now, let ω =⋃�
i=1 Ai ∪⋃n

j=1 B j and Ω = {
α ∈ ω� | ∀ (β1, β2) ∈ α2, β1 �= β2

}
.

Clearly, |ω| = n + � and |Ω| = (n+�
�

)
. We now prove that |Ω| = ∣∣F�,n

∣∣.
More precisely, be prove that for all α ∈ Ω , there exists one and only one k ∈ F�,n

such that ∀β ∈ α, β (k) = �.
Let α ∈ Ω and δ = α ∩ (Bp

)
p∈[[1,n]]. Let I = {i ∈ [[1, �]] | Ai ∈ α} and J =

[[1, �]]\I .
We build a k ∈ N

� as follows:

– For all i ∈ I , we set ki := 0;
– Let J =: {i1, . . . , i|δ|

}
such that i1 < · · · < i|δ|;

– Let δ =: {Bp1 , . . . , Bp|δ|
}
such that p1 < · · · < p|δ|;

– Set ki1 := p1;
– For j ∈ [[2, |δ|]], set ki j := p j − p j−1.
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We have

�∑

i=1

ki =
∑

i∈I

ki +
∑

i∈J

ki

=
∑

i∈I

0+
∑

j∈[[1,|δ|]]
ki j

= p1 +
∑

j∈[[2,|δ|]]

(
p j − p j−1

)

= p|δ| ≤ n;

hence, k ∈ F�,n .
Now, let k ∈ F�,n , (α1, α2) ∈ Ω2 such that the above procedure applied to α1 and

α2 produces the same output k. Let δ1, δ2, I1, I2, J1, J2 as above. First, note that for
q ∈ {1, 2}, i ∈ [[1, �]], Ai ∈ αq ⇔ ki = 0. This means that for i ∈ [[1, �]], Ai ∈
α1 ⇔ Ai = α2, i.e. I1 = I2 and therefore J1 = J2. Let J1 = J2 =: {i1, . . . , i|δ1|

}

such that i1 < · · · < i|δ1|. Both α1 and α2 contain γ := |δ1| = |δ2| elements of(
B j
)

j∈[[1,n]]. Let
(
m1

1, . . . , mγ
1

) ∈ [[1, �]]γ and
(
m1

2, . . . , mγ
2

) ∈ [[1, �]]γ such that

δ1 =
{

B∑m
j
1

i=1 ki

| j ∈ [[1, γ ]]
}

and δ2 =
{

B∑m
j
2

i=1 ki

| j ∈ [[1, γ ]]
}

. Without loss of

generality, we can assume m j
1 ∈ J1 and m j

2 ∈ J2 = J1 for all j ∈ [[1, γ ]]. As
|δ1| = |δ2| = |J1|, we have δ1 = δ2, and finally α1 = α2.

Therefore, for all α ∈ Ω , there exists one and only one k ∈ F�,n such that ∀β ∈
α, β (k) = �, which concludes the proof. 
�

Lemma 7 For (�, n) ∈ N
2,
∣∣E�,n

∣∣ =
{
0 if � = 0(n+�−1

�−1

)
otherwise

and if � ≥ 1,
∣∣E�,n

∣∣ ≤
(n+�−1)�−1

(�−1)! .

Proof For n ∈ N,
∣∣E�,n

∣∣ = |∅| = 0.
For (�, n) ∈ N

+ × N, we have
∣∣E�,n

∣∣ = ∣∣F�−1,n
∣∣ by Lemma 5 and

∣∣F�−1,n
∣∣ =

(n+�−1
�−1

)
by Lemma 6. Finally,

∣∣E�,n
∣∣ = (n + � − 1)!

n! (� − 1)! ≤ (n + � − 1)�−1

(� − 1)! .


�
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