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Abstract
Choice revision is a sort of non-prioritized multiple revision, in which the agent par-
tially accepts the new information represented by a set of sentences. We investigate
the construction of choice revision based on a new approach to belief change called
descriptor revision. We prove that each of two variants of choice revision based on
such construction is axiomatically characterized with a set of plausible postulates,
assuming that the object language is finite. Furthermore, we introduce an alternative
modelling for choice revision, which is based on a type of relation on sets of sentences,
named multiple believability relation. We show without assuming a finite language
that choice revision constructed from such relations is axiomatically characterized
with the same sets of postulates that we proposed for the choice revision based on
descriptor revision, whenever the relations satisfy certain rationality conditions.

Keywords Choice revision · Non-prioritized multiple revision · Belief change ·
Descriptor revision · Multiple believability relation

1 Introduction

Belief change1 theory studies how a rational agent changes her belief state when she
is exposed to new information. Studies in this field have traditionally had a strong
focus on two types of change: contraction in which a specified sentence has to be
removed from the original belief state, and revision in which a specified sentence
has instead to be consistently added. This paper is mainly concerned with the lat-
ter.

Alchourrón, Gärdenfors and Makinson (AGM) performed the pioneering formal
study on these two types of change in their seminal paper (Alchourrn et al. 1985).
In the AGM theory of belief change, the agent’s belief state is represented by a

1 In some literature, the term “belief revision” is used as a synonym for belief change. In what follows, we
use belief revision to refer to a particular kind of belief change.
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set of sentences from some formal language L, usually denoted by K . The new
information is represented by a single sentence in L. Belief revision and contrac-
tion on K are formally represented by two operations ∗ and ÷, mapping from a
sentence ϕ to a new set of sentences K ∗ ϕ and K ÷ ϕ respectively. Alchourrn
et al. (1985) postulated some conditions that a rational revision or contraction
operation should satisfy, which are called AGM postulates on revision and contrac-
tion.2

Furthermore,Alchourrn et al. (1985) showed that contraction and revision satisfying
AGM postulates could be precisely constructed from a model based on partial meet
functions on remainder sets. After that, many alternative models (Alchourrón and
Makinson 1985; Grove 1988; Gärdenfors and Makinson 1988; Hansson 1994, etc.)
have been proposed to construct the operations characterized by these postulates.
Although these models look entirely different on the surface, most of them employ
the same select-and-intersect strategy (Hansson 2017, p. 19). For example, in partial
meet construction for contraction (Alchourrn et al. 1985), a selection is made among
remainders and in sphere modelling for revision (Grove 1988), a selection is made
among possible worlds. The intersection of the selected objects is taken as the outcome
of the operation in both cases.

Although the AGM theory has virtually become a standard model of theory change,
many researchers are unsatisfied with its settings in several aspects and have proposed
several modifications and generalizations to that framework (see Fermé and Hans-
son 2011 for a survey). Here we only point out two inadequatenesses of the AGM
theory.

On the one hand, in the original AGM model, the input is represented by a sin-
gle sentence. This is unrealistic since agents often receive more than one piece of
information at the same time. In order to cover these cases, we can generalize sen-
tential revision to multiple revision, where the input is a finite or infinite set of
sentences. On the other hand, in AGM revision, new information has priority over
original beliefs. This is represented by the success postulate: ϕ ∈ K ∗ ϕ for all ϕ.
The priority means that the new information will always be entirely incorporated,
whereas previous beliefs will be discarded whenever the agent need do so in order
to incorporate the new information consistently. This is a limitation of AGM the-
ory since in real life it is a common phenomenon that agents do not accept the new
information that they receive or only accept it partially. As a modification, we can
drop the success postulate and generalize prioritized revision to non-prioritized belief
revision.

In this contribution, we will put these two generalizations together and consider
the so called non-prioritized multiple belief revision. In Falappa et al. (2012), two
different kinds of such generalized revision are distinguished:

1. Merge: K and A are symmetrically treated, i.e., sentences of K and A could be
accepted or rejected.

2 In the AGM framework, revision and contraction can be mutually defined through the Levi identity (Levi
1977) and Harper identity (Harpen 1976). In this contribution, we only investigate revision solely without
considering its relationship with contraction.
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2. Choice revision3: some sentences of A could be accepted, some others could be
rejected.

We use ∗c to denote a choice revision operation. Falappa et al. (2012) investigated
the formal properties of merge but left the study on choice revision as future work. As
far as we know, little work has been done on this kind of revision in the literature. This
fact can be partly explained by that the operation ∗c has the unusual characteristic that
the standard select-and-intersect approach is not in general applicable. To see why, let
the set K of original beliefs not contain any element of A = {ϕ,¬ϕ}. We are going to
construct a set K ∗c A which incorporates ϕ or its negation. Suppose that we do that
by first selecting a collection X = {X1, X2, X3, . . .} of sets of beliefs, each of which
satisfies the success condition for choice revision with A, i.e. Xi ∩ A �= ∅ for each
Xi . Then it may be the case that ϕ ∈ X1 and ¬ϕ ∈ X2. Given that X1 and X2 are
consistent, it follows that the intersection ∩X cannot satisfy the success condition, i.e.
it contains neither ϕ or ¬ϕ.

Therefore, to develop a modelling for choice revision, we need to choose another
strategy than the select-and-intersect method. Hansson (2013) introduced a new
approach of belief change named “descriptor revision”, which employs a “select-
direct” methodology: it assumes that there is a set of belief sets as potential outcomes
of belief change, and the belief change is performed by a direct choice among these
potential outcomes. Furthermore, this is a very powerful framework for constructing
belief change operations since success conditions for various types of belief changes
are described in a general way with the help of a metalinguistic belief operator B.
For instance, the success condition of contraction by ϕ is ¬Bϕ, that of revision by
ϕ is Bϕ. Descriptor revision on a belief set K is performed with a unified operator
◦ which applies to any success condition that is expressible with B. Hence, choice
revision ∗c with a finite input set can be constructed from descriptor revision in the
way of K ∗c {ϕ1, ϕ2, . . . , ϕn} = K ◦ {Bϕ1 ∨ Bϕ2 ∨ · · · ∨ Bϕn} (Hansson 2017, p.
130).

Although the construction of choice revision in the framework of descriptor revision
has been introduced in Hansson (2017), the formal properties of this type of belief
change are still in need of investigation. The main purpose of this contribution is to
conduct such an investigation.After providing some formal preliminaries in Sect. 2,we
will review how to construct choice revision in the framework of descriptor revision in
Sect. 3. More importantly, in this section, we will investigate the postulates on choice
revision which could axiomatically characterize these constructions. In Sect. 4 we
will propose an alternative modelling for choice revision, which is based on multiple
believability relations, a generalized version of believability relation introduced in

3 Here we use the term “choice revision”, introduced by Fuhrmann (1988), to replace the term “selective
change” used in Falappa et al. (2012), for it is easier for us to distinguish it from the “selective revision”
introduced in Fermé and Hansson (1999), which is a sort of non-prioritized revision with a single sentence
as input. It should be noted that generally choice revision by a finite set A cannot be reduced to selective
revision by the conjunction & A of all elements in A. To see this, let ∗s be some selective revision. It is
assumed that ∗s satisfies extensionality, i.e. if ϕ is logically equivalent to ψ , then K ∗s ϕ = K ∗s ψ . So,
K ∗s &{ϕ,¬ϕ} = K ∗s &{ψ, ¬ψ} for all ϕ and ψ . However, it is implausible that the result of choice
revision by {ϕ,¬ϕ} should always coincide with that by {ψ, ¬ψ} for all ϕ and ψ . Analogously, choice
revision cannot be represented by AGM revision by updating with the disjunction of all the formulas of the
input, since extensionality also holds for the AGM revision.
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Hansson (2014) and further studied in Zhang (2017). We will investigate the formal
properties of this modelling and prove the associated representation theorems. Section
5 concludes and indicates some directions for future work. All proofs of the formal
results are placed in the “Appendix”.

2 Preliminaries

The object language L is defined inductively by a set v of propositional variables
{p0, p1, . . . , pn, . . .} and the truth-functional operations¬,∧,∨ and→ in the usual
way. � is a tautology and ⊥ a contradiction. L is called finite if v is finite. Sentences in
Lwill be denoted by lower-case Greek letters and sets of such sentences by upper-case
Roman letters.

Cn is a consequence operation forL satisfying supraclassicality: if ϕ can be derived
from A by classical truth-functional logic, then ϕ ∈ Cn(A), compactness: if ϕ ∈
Cn(A), then there exists some finite B ⊆ A such that ϕ ∈ Cn(B), and the deduction
property: ϕ ∈ Cn(A ∪ {ψ}) if and only if (henceforth iff for short) ψ → ϕ ∈
Cn(A). X � ϕ and X � ϕ are alternative notations for ϕ ∈ Cn(X) and ϕ /∈ Cn(X)

respectively. {ϕ} � ψ is rewritten as ϕ � ψ for simplicity. And ϕ �� ψ means ϕ � ψ

and ψ � ϕ. A ≡ B holds iff for every ϕ ∈ A, there exists some ψ ∈ B such that
ϕ �� ψ and vice versa.

For all finite A, let &A denote the conjunction of all elements in A. For any A and
B, A � B = {ϕ ∧ ψ | ϕ ∈ A and ψ ∈ B}. We write ϕ � ψ and A0 � A1 � · · · � An

instead of {ϕ} � {ψ} and (· · · (A0 � A1) � · · · ) � An for simplicity.
The set of beliefs an agent holds is represented by a belief set, which is a set X ⊆ L

such that X = Cn(X). K is fixed to denote the original beliefs of the agent.We assume
that K is consistent, i.e. K � ⊥, unless stated otherwise.

3 Choice revision based on descriptor revision

Before investigating the properties of choice revision constructed in the framework of
descriptor revision, we first present some formal basics of this framework, which is
mainly based on Hansson (2013).

3.1 Basics of descriptor revision

An atomic belief descriptor is a sentence Bϕ with ϕ ∈ L, which can be interpreted
as “believing proposition ϕ”. A descriptor is a set of truth-functional combinations
of atomic descriptors. Bϕ is satisfied by a belief set X iff ϕ ∈ X . Conditions of
satisfaction for truth-functional combination of atomic descriptors are defined induc-
tively. X satisfies a descriptor Φ (denoted by X � Φ ) iff it satisfies all its elements.
Descriptor revision on a belief set K is performed with a unified operator ◦ such that
K ◦ Φ is an operation with descriptor Φ representing its success condition. Hansson
(2013) introduces several constructions for descriptor revision operations, of which
the relational model defined as follows has a canonical status.
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Choice revision 581

Definition 1 (Hansson 2013) (X,�) is a relational select-direct model (in short: rela-
tional model) with respect to K iff it satisfies4:

(X1) X is a set of belief sets.
(X2) K ∈ X.
(� 1) K � X for every X ∈ X.
(� 2) For any descriptor Φ, if {X ∈ X | X � Φ} (we denote it as X

Φ ) is not
empty, then it has a unique �-minimal element denoted by X

Φ
< .

A descriptor revision ◦ on K is based on (or determined by) some relational model
(X,�) with respect to K iff for any descriptor Φ,

〈� to ◦〉5 K ◦ Φ =
{

X
Φ
< if X

Φ is not empty,

K otherwise.

X is the outcome set which includes all the potential outcomes under various
belief change patterns. The ordering � (with the strict part <) brings out a direct-
selection mechanism, which selects the final outcome among candidates satisfying a
specific success condition. We call descriptor revision constructed in this way rela-
tional descriptor revision. In so far as the selectionmechanism is concerned, descriptor
revision is at a more abstract level in comparison to the AGM revision. In the con-
struction of descriptor revision ◦, “it assumes that there exists an outcome set which
contains all the potential outcomes of the operation ◦, but it says little about what these
outcomes should be like” (Zhang 2017, p. 41). In contrast, in the AGM framework, the
belief change is supposed to satisfy the principle of consistency preservation and the
principle of the informational economy (Gärdenfors 1988). Therefore, the intersection
step in the construction of belief change in the AGM framework becomes dispensable
in the descriptor revision approach.

3.2 Choice revision constructed from descriptor revision

The success condition for choice revision ∗c with a finite input could be easily
expressed by descriptor {Bϕ0 ∨ · · · ∨ Bϕn}. So, it is straightforward to construct
choice revision through descriptor revision as follows.

Definition 2 (Hansson 2017) Let ◦ be some descriptor revision. A choice revision ∗c
on K is based on (or determined by) ◦ iff for any finite set A,

〈◦ to ∗c〉 K ∗c A =
{
K ◦ {Bϕ0 ∨ · · · ∨ Bϕn} if A = {ϕ0, . . . , ϕn} �= ∅,

K otherwise.

4 We will drop the phrase “with respect to K ” if this does not affect the understanding, and write X
ϕ and

X
ϕ
< instead of X

{Bϕ} and X
{Bϕ}
< for simplicity.

5 Provided that (X,�) is a relational model, X is equivalent to the domain of � since K ∈ X and K � X
for all X ∈ X. So � in itself can represent the (X, �) faithfully.
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582 L. Zhang

Henceforth, we say ∗c is based on (or determined by) some relational model if it
is based on the descriptor revision determined by the same model. The main purpose
of this section is to investigate the formal properties of choice revision based on such
models.

3.3 Postulates and representation theorem

It is observed that the choice revision determined by relational models should satisfy
a set of arguably plausible postulates on choice revision.

Observation 1 Let ∗c be a choice revision determined by any relational descriptor
revision (X,�). Then it satisfies the following postulates:

(∗c1) Cn(K ∗c A) = K ∗c A. (∗c-closure)
(∗c2) K ∗c A = K or A ∩ (K ∗c A) �= ∅. (∗c-relative success)
(∗c3) If A ∩ (K ∗c B) �= ∅, then A ∩ (K ∗c A) �= ∅. (∗c-regularity)
(∗c4) If A ∩ K �= ∅, then K ∗c A = K. (∗c-confirmation)

(∗c5) If (K ∗c A) ∩ B �= ∅ and (K ∗c B) ∩ A �= ∅, then K ∗c A = K ∗c B.
(∗c-reciprocity)
Moreover, another plausible condition on choice revision follows from this set of

postulates.

Observation 2 If ∗c satisfies ∗c-closure, relative success, regularity and reciprocity,
then ∗c satisfies:

If A ≡ B, then K ∗c A = K ∗c B. (∗c-syntax irrelevance)
It is easy to see that the postulates in above are natural generalizations of the

following postulates on sentential revision:

(∗1) Cn(K ∗ ϕ) = K ∗ ϕ (∗-closure)
(∗2) If K ∗ ϕ �= K , then ϕ ∈ K ∗ ϕ (∗-relative success)
(∗3) If ϕ ∈ K , then K ∗ ϕ = K (∗-confirmation)
(∗4) If ψ ∈ K ∗ ϕ, then ψ ∈ K ∗ ψ (∗-regularity)
(∗5) If ψ ∈ K ∗ ϕ and ϕ ∈ K ∗ ψ , then K ∗ ϕ = K ∗ ψ (∗-reciprocity6)

and

If ϕ �� ψ , then K ∗ ϕ = K ∗ ψ .7 (∗-extensionality)
The above postulates on choice revision are as intuitively plausible as their corre-

spondents on sentential revision, except that the meaning of ∗c-reciprocity seems not
so transparent as that of ∗-reciprocity. However, given some weak conditions, we can
show that the ∗c-reciprocity postulate is equivalent to amore understandable condition
as follows.

Observation 3 Let choice operation ∗c satisfy ∗c-relative success and ∗c-regularity.
Then it satisfies ∗c-reciprocity iff it satisfies:
6 This postulate is first discussed in Alchourrón andMakinson (1982) in the context of maxichoice revision.
7 It is easy to check that ∗-extensionality is derivable from (∗1), (∗2), (∗3) and (∗5).
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If A ⊆ B and (K ∗c B) ∩ A �= ∅, then K ∗c A = K ∗c B. (∗c-cautiousness)
The postulate ∗c-cautiousness reflects a distinctive characteristic of choice revision
modelled by relational models: the agent who performs this sort of belief change is
cautious in the sense of not doing more than what is necessary to incorporate one
of the elements of the input. It follows immediately from ∗c-relative success and ∗c-
cautiousness that if A ∩ (K ∗c A) �= ∅, then K ∗c A = K ∗c {ϕ} for some ϕ ∈ A.
Thus, it is not surprising that the following postulate follows.

Observation 4 If ∗c satisfies ∗c-relative success, regularity and reciprocity, then ∗c
satisfies:

K ∗c (A ∪ B) = K ∗c A or K ∗c (A ∪ B) = K ∗c B. (∗c-dichotomy)

In contrast to (∗c1) through (∗c5), postulates ∗c-cautiousness and ∗c-dichotomy do
not have directly corresponding postulates in the context of sentential revision. This
suggests that though (∗c1) through (∗c5) naturally generalize (∗1) through (∗5), this
sort of generalization is not so trivial as we may think of. As another evidence for this,
the following observation shows that the properties of (∗1) through (∗5) and those of
their generalizations are not always paralleled.

Observation 5 Let ∗c satisfy ∗c-regularity. Then it satisfies ∗c-reciprocity iff it satisfies
For any n ≥ 1, if (K ∗c A1)∩A0 �= ∅, . . ., (K ∗c An)∩An−1 �= ∅, (K ∗c A0)∩An �=
∅, then K ∗c A0 = K ∗c A1 = · · · = K ∗c An. (∗c-strong reciprocity)

∗-strong reciprocity is a generalizationof the followingpostulate on sentential revision:
For any n ≥ 1, if ϕ0 ∈ K�ϕ1, . . ., ϕn−1 ∈ K ∗ ϕn and ϕn ∈ K�ϕ0, then K�ϕ0 =
K�ϕ2 = · · · = K�ϕn . (∗-strong reciprocity8)

However, in contrast to the result inObservation 5, ∗-strong reciprocity is not derivable
from (∗1) through (∗5).9

After an investigation on the postulates (∗c1) through (∗c5) satisfied by choice
revision based on rational models, the question raises naturally whether the choice
revision could be axiomatically characterized by this set of postulates. We get a partial
answer to this question: a representation theorem is obtainable when L is finite.

Theorem 1 Let L be a finite language. Then, ∗c satisfies (∗c1) through (∗c5) iff it is
a choice revision based on some relational model.

8 ∗-strong reciprocity is closely related to a non-monotonic reasoning rule named “loop” which is first
introduced in Kraus et al. (1990). For more discussion on this, see Makinson and Gärdenfors (1991).
9 To see this, let p1, p2 and p3 be pairwise distinct atomic propositions and let K = Cn({�}) and revision
operation ∗ on K defined as: (i) if p0∧ p1 � ϕ and ϕ � p0, then K ∗ϕ = Cn({p0 ∧ p1}); (ii) if p1∧ p2 � ϕ

and ϕ � p1, then K ∗ ϕ = Cn({p1 ∧ p2}); (iii) if p0 ∧ p2 � ϕ and ϕ � p2, then K ∗ ϕ = Cn({p0 ∧ p2});
(iv) otherwise, K ∗ ϕ = Cn({ϕ}). It is easy to check that ∗ satisfies (∗1) through (∗5) but not ∗-strong
reciprocity. Note that ∗ defined in such way cannot be derived from any relational descriptor revision ◦ in
the way of K ∗ ϕ = K ◦Bϕ, since � is linear in every relational model (X, �) (see Theorem 2 in Hansson
2013), which cannot model the circle consisting of K ∗ p1, K ∗ p2 and K ∗ p3.
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3.4 More properties of choice revision

In this subsection, we will study additional properties of choice revision from the
point of view of postulates. The postulates introduced in the previous subsection do
not necessarily cover all the reasonable properties of this operation. In what follows
we are going to investigate some additional ones, in particular, the following:

If A �= ∅, then A ∩ (K ∗c A) �= ∅. (∗c-success)
If A �≡ {⊥}, then K ∗c A � ⊥. (∗c-consistency)
To some extent, ∗c-success is a strengthening of ∗c-relative success and ∗c-

regularity, but it does not say anything about the limiting case in which the input
is empty. To cover this limiting case, we need the following postulate:

If A = ∅, then K ∗c A = K . (∗c-vacuity)
The interrelations among ∗c-success, ∗c-relative success and ∗c-regularity are sum-

marized as follows.

Observation 6 Let ∗c be some choice revision on K .

1. If ∗c satisfies relative success, then it satisfies vacuity.
2. If ∗c satisfies success and vacuity, then it satisfies relative success.
3. If ∗c satisfies success, then it satisfies regularity.

∗c-consistency is a plausible constraint on a rational agent. While accepting ∗c-
success and ∗c-consistency as “supplementary” postulates for choice revision ∗c, the
corresponding relational model on which ∗c is based will also need to satisfy some
additional properties. We use the following representation theorem to conclude this
subsection.

Theorem 2 Let L be a finite language and ∗c some revision operation on K ⊆ L.
Then, ∗c satisfies ∗c-closure, ∗c-success, ∗c-vacuity, ∗c-confirmation, ∗c-reciprocity
and ∗c-consistency iff it is a choice revision determined by some relational model
which satisfies the following two condition:

(X3) Cn({⊥}) ∈ X;
(� 3) X

Bϕ �= ∅ and X
Bϕ
< < Cn({⊥}) for every ϕ such that ϕ � ⊥.

4 An alternativemodelling for choice revision

In this section, we propose an alternative modelling for choice revision, which is
based on so-called multiple believability relations. A believability relation � is a
binary relation on sentences of L. Intuitively, ϕ � ψ means that the subject is at
least as prone to believing ϕ as to believing ψ .10 We can generalize � to a multiple
believability relation �∗ which is a binary relation on the set of all finite subsets of L
satisfying:

10 For more detailed investigation on believability relations, including its relationship with the epistemic
entrenchment relation introduced in Gärdenfors and Makinson (1988), see Hansson (2014) and Zhang
(2017).
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〈�∗ to �〉 ϕ � ψ iff {ϕ} �∗ {ψ}.
This kind of generalization can be done in different ways, and at least two distinct
relations can be obtained, namely package multiple believability relations, denoted by
�p, and choice multiple believability relations, denoted by �c (with symmetric part
�c and strict part ≺c). Intuitively, A �p B means that it is easier for the subject to
believe all propositions in A than to believe all propositions in B and A �c B means
that it is easier for the subject to incorporate the plausible information in A than that
in B.

�p is of little interest since A �p B can be immediately reduced to &A � &B,
given that A and B are finite. Inwhat follows,multiple believability relations (ormulti-
believability relations for short) only refer to choice multiple believability relations
�c. ({ϕ} �c A and A �c {ϕ} will be written as ϕ �c A and A �c ϕ respectively for
simplicity.)

4.1 Postulates onmulti-believability relations

Recall the following postulates on believability relations � introduced in Zhang
(2017):

�-transitivity If ϕ � ψ and ψ � λ, then ϕ � λ.
�-weak coupling If ϕ � ϕ ∧ ψ and ϕ � ϕ ∧ λ, then ϕ � ϕ ∧ (ψ ∧ λ).
�-coupling If ϕ � ψ , then ϕ � ϕ ∧ ψ .
�-counter dominance If ϕ � ψ , then ψ � ϕ.
�-minimality ϕ ∈ K iff ϕ � ψ for all ψ .
�-maximality If ψ � ϕ for all ψ , then ϕ �� ⊥.
�-completeness ϕ � ψ or ψ � ϕ

Transitivity is assumed for almost all orderings. In virtue of the intuitive meaning
of believability relation, ϕ � ϕ ∧ ψ represents that the agent will accept ψ in the
condition of accepting ϕ. Thus, the rationale for �-weak coupling is that if the agent
will consequently add ψ and λ to her beliefs when accepting ϕ, then she also adds the
conjunction of them to her beliefs in this case. This is reasonable if we assume that the
beliefs of the agent are closed under the consequence operation. The justification of
�-counter dominance is that if ϕ logically entails ψ , then it will be a smaller change
and hence easier for the agent to accept ψ rather than to accept ϕ, because then ψ

must be added too, if we assume that the beliefs of the agent are represented by a
belief set. �-coupling is a strengthening of �-weak coupling.11 It says that if ϕ is
equivalent to ψ in believability, then the agent will consequently add ψ to her beliefs
in case of accepting ϕ and vice versa. �c-minimality is justifiable since nothing needs
to be done to add ϕ to K if it is already in K . �-maximality is justifiable since it is
reasonable to assume that it is strictly more difficult for a rational agent to accept ⊥
than to accept any non-falsum.�-completeness seems a little bit strong. It says that all
pairs of sentences are comparable in believability. In accordance with Zhang (2017),
we call relations satisfying all these postulates quasi-linear believability relations.

11 It is easy to see that �-coupling implies �-weak coupling, provided that �-transitivity and �-counter
dominance hold.
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We can generalize these postulates on believability relations in a natural way to
postulates multi-believability relations as follows12:

�c-transitivity If A �c B and B �c C , then A �c C .
�c-weak coupling If A �c A � B and A �c A � C , then A �c A � (B � C).
�c-coupling If A �c B, then A �c A � B.
�c-counter dominance If for every ϕ ∈ B there exists ψ ∈ A such that ϕ � ψ ,
then A �c B.
�c-minimality A �c B for all B iff A ∩ K �= ∅.
�c-maximality If B is not empty and A �c B for all non-empty A, then B ≡ {⊥}.
�c-completeness A �c B or B �c A.

These postulates on multi-believability relations can be understood in a similar way
that their correspondents on believability relations are understood.

Furthermore, we propose the following two additional postulates on multi-
believability relations:

�c-determination A ≺c ∅ for every non-empty A.
�c-union A � A ∪ B or B � A ∪ B.

At least on the surface, these two could not be generalizations of any postulate on
believability relation. In some sense themeaning of�c-determination is correspondent
to that of ∗c-success, since if it is a strictly smaller change for the agent to accept
some sentences from a non-empty A rather than to take some sentences from the
empty set, which is obviously impossible, then it seems to follow that the agent will
successfully add some sentences in A to her original beliefs when exposed to the
new information represented by A, and vice versa. Similarly, there is an obvious
correspondence between the forms and meanings of �c-union and ∗c-dichotomy.
They both suggest that to partially accept a non-empty A is equivalent to accept some
single sentence in A. This is plausible if we assume that the agent is extremely cautious
to the new information.

Observation 7 Let �c be some multi-believability relation satisfying �c-transitivity
and �c-counter dominance. If it satisfies �c-union in addition, then

1. It satisfies �c-completeness.
2. It satisfies �c-weak coupling iff it �c-satisfies coupling.

Observation 7 indicates that�c-union is strong. It should be noted that for a believabil-
ity relation, neither�-completeness nor�-coupling can be derived from�-transitivity,
�-counter dominance and �-weak coupling.13

In what follows, we name multi-believability relations satisfying all the above
postulates standard multi-believability relations.

12 In what follows, it is always assumed that all sets A and B and C mentioned in postulates on multi-
believability relations are finite sets.
13 See Zhang (2017).
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4.2 Translations between believability relations andmultiple believability
relations

In this subsection, we will show that although it is impossible to find a postulate
on believability relations that corresponds to �c-determination or �c-union, there
exists a translation between quasi-linear believability relations and standard multi-
believability relations.

Observation 8 Let �c satisfy �c-determination, �c-transitivity and �c-counter dom-
inance. Then, for any non-empty finite sets A and B,

1. A �c B iff there exists ϕ ∈ A such that ϕ �c B.
2. A �c B iff A �c ϕ for all ϕ ∈ B.

This observation suggests that � and �c can be linked through the following two
transitions:

〈�c to �〉 ϕ � ψ iff {ϕ} �c {ψ}.
〈� to �c〉 A �c B iff B = ∅ or there exists ϕ ∈ A such that ϕ � ψ for every
ψ ∈ B.

This is confirmed by the following theorem.

Theorem 3 1. If� is a quasi-linear believability relation and�c is constructed from
� through the way of 〈� to �c〉, then �c is a standard multi-believability relation
and � can be retrieved from �c in the way of 〈�c to �〉.

2. If �c is a standard multi-believability relation and � is constructed from �c

through 〈�c to �〉, then � is a quasi-linear believability relation and �c can be
retrieved from � through 〈� to �c〉.

4.3 Choice revision constructed frommulti-believability relations

Now we turn to the construction of choice revision through multi-believability rela-
tions. Recall that a sentential revision ∗ can be constructed from a believability relation
� in this way (Zhang 2017):

〈� to ∗〉 K ∗ ϕ = {ψ | ϕ � ϕ ∧ ψ}

As we have explained, ϕ � ϕ ∧ ψ could be understood as that the agent will con-
sequently accept ψ in case of accepting ϕ. So, the set {ψ | ϕ � ϕ ∧ ψ} is just the
agent’s new set of beliefs after she performed belief revisionwith inputϕ. Thus, we can
similarly construct choice revision from multi-believability relations in the following
way.

Definition 3 Let �c be some multi-believability relation. A choice revision ∗c on K
is based on (or determined by) �c iff: for any finite A,

〈�c to ∗c〉 K ∗c A =
{

{ϕ | A �c A � ϕ} If A ≺c ∅,

K otherwise.
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The primary results of this section are the following two representation theorems.
In comparison with Theorems 1 and 2, these two theorems are applicable to more
general cases since they do not assume that the language L is finite. These two theo-
rems demonstrate that multi-believability relations provide a fair modelling for choice
revision characterized by the set of postulates mentioned in Sect. 3.

Theorem 4 Let ∗c be some choice revision on K . Then, ∗c satisfies (∗c1) through (∗c5)
iff it is determined by some multi-believability relation �c satisfying �c-transitivity,
�c-weak coupling, �c-counter-dominance, �c-minimality and �c-union.

Theorem 5 Let ∗c be some choice revision on K . Then, ∗c satisfies ∗c-closure, ∗c- suc-
cess, ∗c-vacuity, ∗c-confirmation, ∗c-reciprocity and ∗c-consistency iff it is determined
by some standard multi-believability relation.

Considering the translation between multi-believability relations and believability
relations (Theorem3), it seems that these results can be easily transferred to the context
of believability relations. However, if we drop some postulates on multi-believability
relation such as�c-determination, the translation between multi-believability relation
and believability relation will not be so transparent, at least it will not be so straightfor-
ward as 〈� to �c〉 and 〈�c to �〉. As a consequence, the result in Theorem 4 may not
be possible to transfer to believability relations in a straightforward way. Moreover,
compared with postulates on believability relations, postulates on multi-believability
relations such as �c-determination and �c-union can present our intuitions on choice
revision in a more direct way. Thus, the multi-believability relation is still worth to be
studied in its own right.

5 Conclusion and future work

As a generalization of traditional belief revision, choice revision has more realistic
characteristics. The new information is represented by a set of sentences and the agent
could partially accept these sentences as well as reject the others. From the point of
technical view, choice revision is interesting since the standard “select-and-intersect”
methodology in modellings for belief change is not suitable for it. But instead, it can
be modelled by a newly developed framework of descriptor revision, which employs
a “select-direct” approach. After reviewing the construction of choice revision in the
framework of descriptor revision, under the assumption that the language is finite, we
provided two sets of postulates as the axiomatic characterizations for two variants of
choice revision based on such constructions (in Theorems 1 and 2). These postulates, in
particular, ∗c-cautiousness and ∗c-dichotomy, point out that choice revision modelled
by descriptor revision has the special characteristic that the agent who performs this
sort of belief change is cautious in the sense that she only accepts the new information
to the smallest possible extent.

For AGM revision and contraction, there are various independently motivated
modellings which are equivalent in terms of expressive power. In this contribu-
tion, we also propose an alternative modelling for choice revision. We showed that
multi-believability relations can also construct the choice revision axiomatically char-
acterized by the sets of postulates proposed for choice revision based on descriptor
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revision (Theorems 4 and 5). Moreover, these results are obtainable without assuming
that the language is finite. This may indicate that multi-believability relations are an
even more suitable modelling for choice revision.

The study in this contribution can be developed in at least three directions. First,
the cautiousness constraint on choice revision, reflected by ∗c-cautiousness, certainly
could be loosened. We think it is an interesting topic for future work to investigate
the modeling and axiomatic characterization of more “reckless” variants of choice
revision. Secondly, as it was showed in Zhang (2017) that AGM revision could be
reconstructed from believability relations satisfying certain conditions, it is interest-
ing to ask which conditions a multi-believability relation should satisfy so that its
generated choice revision coincides with an AGM revision when the inputs are lim-
ited to singletons. Finally, it is technically interesting to investigate choice revisions
with an infinite input set, though they are epistemologically unrealistic.
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Appendix: Proofs

Lemma 1 Let �c be some multiple believability relation which satisfies �c-counter-
dominance and �c-transitivity. Then,

1. If�c satisfies�c-union, then for every non-empty A, there exists some ϕ ∈ A such
that ϕ �c A.

2. For every ϕ ∈ A, A �c A � ϕ iff ϕ �c A.

Proof (For Lemma 1)

1. We prove this by mathematical induction on the size n (n ≥ 1) of A. Let n = 1,
then it follows immediately. Suppose hypothetically that it holds for n = k (k ≥ 1).
Let n = k + 1. Since k ≥ 1, there exists a non-empty set B containing k elements
and a sentence ϕ such that A = B∪{ϕ}. By�c-counter dominance and�c-union,
(i) A �c {ϕ} or (ii) A �c B. The case of (i) is trivial. In the case of (ii), by the
hypothetical supposition, there exists some ψ ∈ B ⊆ A such that A �c B �c ψ .
So, by �c-transitivity, A �c ϕ. To sum up (i) and (ii), there always exists some
ϕ ∈ A such that ϕ �c A.

2. From left to right Let ϕ ∈ A and A � ϕ �c A. By �c-counter dominance, A �c ϕ

and ϕ �c A � ϕ. And it follows from ϕ �c A � ϕ and A � ϕ �c A that ϕ �c A
by �c-transitivity. Thus, ϕ �c A. From right to left Let ϕ ∈ A and ϕ � A. By
�c-counter-dominance, A�ϕ �c ϕ. So A�ϕ �c A by�c-transitivity. Moreover,
A �c A � ϕ by �c-counter-dominance. Thus, A � ϕ �c A. ��

Proof (For Observation 1)

123

http://creativecommons.org/licenses/by/4.0/


590 L. Zhang

It is easy to see that ∗c satisfies ∗c-closure and ∗c-relative success. We only check the
remaining three postulates. We let B∨A denote the descriptor {Bϕ0 ∨ · · · ∨ Bϕn}
when A = {ϕ0, . . . , ϕn} �= ∅.
∗c-regularity Let (K ∗c B) ∩ A �= ∅. It follows that A �= ∅ and X

B∨A �= ∅. So
K ∗c A = X

B∨A
< by the definition of ∗c. Thus, (K ∗c A) ∩ A �= ∅.

∗c-confirmation Let A ∩ K �= ∅. Then A �= ∅ and K ∈ X
B∨A. It follows from (� 1)

and (� 2) that K is the unique�-minimal element inX
B∨A. Thus, K ∗c A = X

B∨A
< =

K .
*c-reciprocity Let (K ∗c A0) ∩ A1 �= ∅ and (K ∗c A1) ∩ A0 �= ∅. Let i ∈ {0, 1}. It
follows that Ai �= ∅ andX

B∨(Ai ) �= ∅ and hence K ∗c Ai = X
B∨(Ai )
< by the definition

of ∗c. So it follows fromX
B∨A0
< ∩A1 �= ∅ andX

B∨A1
< ∩A0 �= ∅ thatXB∨A0

< ∈ X
B∨A1

and X
B∨A1
< ∈ X

B∨A0 and hence X
B∨A0
< � X

B∨A1
< � X

B∨A0
< by (� 2). Since the

minimal element in X
B∨(A0) is unique by (� 2), it follows that X

B∨A0
< = X

B∨A1
< ,

i.e. K ∗c A0 = K ∗c A1. ��
Proof (For Observation 2)
Let A ≡ B. Suppose A ∩ (K ∗c A) = ∅, then A ∩ (K ∗c B) = ∅ due to ∗c-regularity.
Hence, B ∩ (K ∗c B) = ∅ by ∗c-closure. It follows that K ∗c A = K ∗c B = K by
∗c-relative success. Suppose A∩ (K ∗c A) �= ∅, then B∩ (K ∗c A) �= ∅ by ∗c-closure,
so B ∩ (K ∗c B) �= ∅ by ∗c-regularity, and hence A ∩ (K ∗c B) �= ∅ by ∗c-closure. It
follows that K ∗c A = K ∗c B by ∗c-reciprocity. Thus, ∗c satisfies syntax irrelevance
in any case. ��
Proof (For Observation 3)
From left to right Let A ⊆ B and (K ∗c B) ∩ A �= ∅. Then, A �= ∅ and hence
(K ∗c A) ∩ A �= ∅ by ∗c-regularity. Since A ⊆ B, it follows that (K ∗c A) ∩ B �= ∅.
Thus, K ∗c A = K ∗c B by ∗c-reciprocity.

From right to left Let A ∩ (K ∗c B) �= ∅ and B ∩ (K ∗c A) �= ∅. It follows that
(A∪B)∩(K ∗c B) �= ∅. By ∗c-regularity, it follows that (A∪B)∩(K ∗c (A∪B)) �= ∅.
So A∩ (K ∗c (A∪ B)) �= ∅ or B ∩ (K ∗c (A∪ B)) �= ∅. Without loss of generality, let
A∩ (K ∗c (A∪ B)) �= ∅, then K ∗c A = K ∗c (A∪ B) by ∗c-cautiousness. It follows
that B ∩ (K ∗c (A ∪ B)) = B ∩ (K ∗c A) �= ∅ and hence K ∗c B = K ∗c (A ∪ B) by
∗c-cautiousness. So K ∗c A = K ∗c (A ∪ B) = K ∗c B. ��
Proof (For Observation 4)
Suppose (A∪B)∩(K∗c(A∪B)) = ∅, then (A∪B)∩(K∗c A) = (A∪B)∩(K∗c B) = ∅
by ∗c-regularity. So A ∩ (K ∗c A) = B ∩ (K ∗c B) = ∅ and hence K ∗c (A ∪ B) =
K ∗c A = K ∗c B = K by ∗c-relative success. Suppose (A∪B)∩(K ∗c (A∪B)) �= ∅,
then A∩ (K ∗c (A∪ B)) �= ∅ or B∩ (K ∗c (A∪ B)) �= ∅. Let A∩ (K ∗c (A∪ B)) �= ∅,
then A ∩ (K ∗c A) �= ∅ by ∗c-regularity and hence (A ∪ B) ∩ (K ∗c A) �= ∅. It
follows that K ∗c (A ∪ B) = K ∗c A by ∗c-reciprocity. Similarly, we can show that
K ∗c (A∪ B) = K ∗c B holds in the case of B∩ (K ∗c (A∪ B)) �= ∅. Thus, ∗c satisfies
∗c-dichotomy in any case. ��
Proof (For Observation 5)
From right to left It follows immediately.

123



Choice revision 591

From left to right Assume (�) that (K ∗c A1)∩ A0 �= ∅, . . ., (K ∗c An)∩ An−1 �= ∅
and (K ∗c A0) ∩ An �= ∅ for some n ≥ 1. We prove that K ∗c A0 = K ∗c A1 = · · · =
K ∗c An by mathematical induction on n. For n = 1, this follows immediately from
∗c-reciprocity. Let us hypothetically suppose that it holds for n = k (k ≥ 1), then we
should show that it also holds for n = k + 1.

Let A = ⋃
0≤i≤k+1 Ai .14 It follows from (�) that A ∩ (K ∗c Ai ) �= ∅ for every

0 ≤ i ≤ k+1. So A∩(K ∗c A) �= ∅ by ∗c-regularity. It follows that there exists some j
with 0 ≤ j ≤ k+1 such that A j ∩ (K ∗c A) �= ∅. Moreover, according to (�), if j = 0
then Ak+1∩(K∗c A j ) �= ∅ else A j−1∩(K∗c A j ) �= ∅. It follows that A∩(K∗c A j ) �= ∅
in any case. So K ∗c A j = K ∗c A by ∗c-reciprocity. Hence, as A ∩ (K ∗c Ai ) �= ∅
for every 0 ≤ i ≤ k + 1, it follows from (�) and ∗c-reciprocity that if 0 < j ≤ k + 1,
then K ∗c A j = K ∗c A = K ∗c A j−1 else K ∗c A j = K ∗c A = K ∗c Ak+1. In
each case, the length of the loop is reduced to k. So, it follows from the hypothetical
supposition that K ∗c A0 = K ∗c A1 = · · · = K ∗c Ak+1. Thus, ∗c satisfies strong
reciprocity. ��
Proof (For Theorem 1)

From construction to postulates See Observation 1.
From postulates to construction Let X = {K ∗c A | A ⊆ L and A is finite}. Let �′ be
a relation on X defined as X �′ Y iff there exist elements A0, . . ., An of L such that
X = K ∗c A0, Y = K ∗c An and (K ∗c A1) ∩ A0 �= ∅, . . ., (K ∗c An) ∩ An−1 �= ∅.
We first show that �′ is a partial order:
Reflexivity Let X = K ∗c A. If X = K , since K is belief set, X = K ∗c {�} by
∗c-confirmation. Moreover, by ∗c-closure, � ∈ K ∗c {�}. So X �′ X . If X �= K , then
A ∩ (K ∗c A) �= ∅ by relative success. It follows immediately that X �′ X . Thus,
X �′ X holds for every X ∈ X.
Transitivity It follows immediately from the definition of �′.
Anti-symmetryByObservation 5, ∗c satisfies ∗c-strong reciprocity. It follows immedi-
ately from this and the definition of �′ that �′ is anti-symmetric. So, given the axiom
of choice, there exists a linear order � such that �′⊆�.15 We will show that (X,�)

is the relational model we are looking for.
(X1): It is immediate from ∗c-closure.
(X2): It is immediate from that K ∗c ∅ ∈ X and ∗c satisfies ∗c-relative success.
(� 1): Since K is a belief set, K = K ∗c {�} by ∗c-confirmation. Moreover, by ∗c-
closure, � ∈ X for every X ∈ X. So K �′ X for for every X ∈ X. Thus, as �′⊆�,
K � X for every X ∈ X.
(� 2): Since L is finite, it is easy to see that the quotient of its power set under
the equivalence relation ≡ is finite. Moreover, by Observation 2, ∗c satisfies syntax-
irrelevance. It follows that X is finite. And as we have proved, � is a linear order. So
� is well-ordered and hence (� 2) holds.
In order to show that ∗c is based on (X,�), we need to consider two cases:

14 Note that if we try to reproduce this proof in the sentential revision case, it is impossible to find a
counterpart of the set A = ⋃

0≤i≤k+1 Ai there. In particular, neither ϕ0 ∧ · · · ∧ ϕn nor ϕ0 ∨ · · · ∨ ϕn is
workable.
15 See Jech (2008).
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(i) K ∗c A = K : In this case, we just need to prove that if A �= ∅ and X
B∨A �= ∅,

then K ∈ X
B∨A. It follows from A �= ∅ and X

B∨A �= ∅ that there exists some B
such that A ∩ (K ∗c B) �= ∅. So A ∩ (K ∗c A) �= ∅ by ∗c-regularity. So, A ∩ K �= ∅
and hence K ∈ X

B∨A.
(ii) K ∗c A �= K : In this case, we only need to show that X

B∨A �= ∅ and K ∗c A =
X
B∨A
< . Since K ∗c A �= K , (K ∗c A) ∩ A �= ∅ by ∗c-relative success. So X

B∨A �= ∅
and K ∗c A �′ X for every X ∈ X

B∨A. This means that K ∗c A � X for every
X ∈ B∨Φ(A) since �′⊆�. Moreover, as we have shown, � is a linear order. Thus,
K ∗c A = X

B∨A
< .

To sum up (i) and (ii), ∗c is based on (X,�). ��
Proof (For Observation 6)

1. Let A �= ∅, then A ∩ (K ∗c A) = ∅. So, by ∗c-relative success, K ∗c A = K .
2. Let A∩ (K ∗c A) = ∅. Then, by ∗c-success, it follows that A = ∅. So, by vacuity,

K ∗c A = K .
3. Let A ∩ (K ∗c B) �= ∅, then A �= ∅. So, by ∗c-success, A ∩ (K ∗c A) �= ∅.

��
Proof (For Theorem 2)

From right to left We only need to check success, vacuity and consistency.
∗c-success: It follows immediately from (X3).
∗c-vacuity: It follows immediately from 〈� to ◦〉 and 〈◦ to ∗c〉.
∗c-consistency: It follows immediately from (� 3).
From left to right Let (X,�) be defined in the same way as the relational model
constructed in the proof of Theorem 1. By Observation 6, ∗c satisfies all postulates
listed in Theorem 1. So it is also true that (X,�) constructed in this way is indeed a
relational model from which a choice revision ∗c can be derived. In order to complete
the proof, we only need to check that (X,�) satisfies (X3) and (� 3): Since ∗c
satisfies ∗c-success and ∗c-closure, K ∗c {⊥} = Cn({⊥}) ∈ X, i.e. (X3) holds of
(X,�). Moreover, since ∗c satisfies ∗c-consistency, K ∗c {ϕ} �= Cn({⊥}) for every
ϕ �≡ ⊥. It follows that K ∗c {ϕ} = X

Bϕ
< < Cn({⊥}). So, (� 3) also holds of (X,�).

��
Proof (For Observation 7)

1. It follows from �c-counter dominance that A ∪ B �c A and A ∪ B �c B.
Moreover, by �c-union, A �c A ∪ B or B �c A ∪ B. So A �c B or B �c A by
�c-transitivity.

2. From left to right: We first prove that �c-coupling holds for all singletons, i.e. if
ϕ �c ψ , then ϕ �c ϕ ∧ ψ . Let ϕ �c ψ and A = {ϕ,ψ}. Since it is immediate
from �c-counter dominance that ϕ �c ϕ ∧ ψ , we only need to show ϕ ∧ ψ �c ϕ.
By the first item of Lemma 1 and �c-transitivity, A �c ϕ and A �c ψ . So, by
the second item of Lemma 1, A �c A � ϕ and A �c A � ψ . So, by �c-weak
coupling, A �c A � (ϕ ∧ ψ). By �c-counter dominance, ϕ ∧ ψ �c A � (ϕ ∧ ψ).
So ϕ ∧ ψ �c A � (ϕ ∧ ψ) �c A �c ϕ and hence ϕ ∧ ψ �c ϕ by �c-transitivity.
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Now we prove that �c-coupling holds in general. Let A �c B. If A = ∅, it follows
immediately from �c-counter-dominance that ∅ = A �c A � B = ∅. If B = ∅, it
follows from A �c B = ∅ that A �c A � B = ∅. If A �= ∅ and B �= ∅, then there
exist ϕ ∈ A and ψ ∈ B such that ϕ �c A and ψ �c B by the first item of Lemma 1.
So, by �c-transitivity, ϕ �c ψ . So ϕ �c ϕ ∧ ψ as we have shown that �c-coupling
holds for all singletons. Moreover, A � B �c ϕ ∧ ψ by �c-counter-dominance. So
A � B �c ϕ ∧ ψ �c ϕ �c A and hence A � B �c A by �c-transitivity. Moreover,
A �c A � B by �c-counter-dominance. Thus, A �c A � B.

From right to left Let A �c A � B and A �c A � C . By �c-transitivity, A �
B �c A � C . So A � B �c (A � B) � (A � C) by �c-coupling and hence A �c

(A � B) � (A � C) by �c-transitivity. In order to complete the proof, we only need
to show that (A � B) � (A � C) �c A � (B � C). If A = ∅ or B = ∅ or C = ∅,
then ∅ = (A � B) � (A � C) �c A � (B � C) = ∅ by �c-counter-dominance. If
they are all non-empty, it also follows immediately from �c-counter-dominance that
(A � B) � (A � C) �c A � B � C . ��
Proof (For Observation 8)

1. From left to right Let A �c B. By the first item of Lemma 1, there exists some ϕ in
A such that ϕ �c A. Thus, ϕ �c B by �c-transitivity. From right to left Suppose
there exists some ϕ ∈ A such that ϕ �c B. By �c-counter dominance, A �c ϕ.
Thus, A �c B by �c-transitivity.

2. From left to right Let A �c B. By �c-counter dominance, B �c ϕ for every
ϕ ∈ B. Thus, by �c-transitivity, A �c ϕ for all ϕ ∈ B. From right to left Let
A �c ϕ for all ϕ ∈ B. By the first item of Lemma 1, there exists some ψ in B
such that ψ �c B. So A �c ψ �c B and hence A �c B by �c-transitivity.

��
Proof (For Theorem 3)

1. Let � be a quasi-linear believability relation and �c constructed from � through
〈� to �c〉. We first check that �c is a standard multiple believability relation.

�c-determination It follows immediately from 〈� to�c〉 that ∅ ��c A and A �c ∅
for every non-empty A. Thus, ∅ ≺c A for every non-empty A.
�c-union If A = ∅ and B = ∅, then it follows immediately from 〈� to �c〉 that
�c-union holds for �c. If A �= ∅ or B �= ∅, then A ∪ B �= ∅. Since both A and
B are finite and � satisfies �-completeness, there exists some ϕ ∈ A ∪ B such
that ϕ � λ for every λ ∈ A∪ B. It follows that there exists some ϕ ∈ A such that
ϕ � λ for every λ ∈ A ∪ B or there exists some ϕ ∈ B such that ϕ � λ for every
λ ∈ A ∪ B. So, by 〈� to �c〉, A �c A ∪ B or B �c A ∪ B.
�c-transitivity Let A �c B and B �c C . If C = ∅, then it follows immediately
from 〈� to �c〉 that A �c C . If C �= ∅, then A �= ∅ and B �= ∅ since A �c B,
B �c C and �c satisfies �c-determination as we have shown. So, by 〈� to �c〉,
there exists some ϕ ∈ A such that ϕ � ψ for every ψ ∈ B and there exists some
ψ ∈ B such that ψ � λ for every λ ∈ C . So, by �-transitivity, there exists some
ϕ ∈ A such that ϕ � λ for every λ ∈ C . Thus, A �c C by 〈� to �c〉.
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�c-counter-dominanceAssume (�) that for everyϕ ∈ B, there exists someψ ∈ A
such that ϕ � ψ . If B = ∅, then it follows directly from 〈� to�c〉 that A �c B. If
B �= ∅, since B is finite and � satisfies �-completeness, there exists some ϕ ∈ B
such that ϕ � λ for every λ ∈ B. Moreover, by (�), there exists someψ ∈ A such
that ϕ � ψ , and hence ψ � ϕ by �-counter dominance. So, by �-transitivity,
ψ � λ for every λ ∈ B. Thus, A �c B by 〈� to �c〉.
�c-coupling Let A �c B. If A = ∅, then it follows directly from 〈� to �c〉
that A �c A � B. If B = ∅, then it follows immediately from A �c B = ∅
that A �c A � B = ∅. If A �= ∅ and B �= ∅, since �c satisfies �c-union,
�c-transitivity and �c-counter dominance as we have shown, by the first item of
Lemma 1, there exist ϕ ∈ A and ψ ∈ B such that ϕ �c A and ψ �c B. So, by
�c-transitivity, ϕ �c ψ and hence ϕ � ψ by 〈� to�c〉. It follows that ϕ � ϕ∧ψ

by �-coupling. So ϕ �c ϕ ∧ ψ by 〈� to �c〉. Moreover, A � B �c ϕ ∧ ψ by
�c-counter dominance. So, A � B �c ϕ ∧ ψ �c ϕ �c A and hence A � B �c A
by �c-transitivity. It is immediate from �c-counter dominance that A �c A � B.
Thus, A �c A � B.
�c-minimality From left to right Suppose A �c B for all B. It follows that A �c �.
So there exists some ϕ ∈ A such that ϕ � � by 〈� to �c〉. So ϕ � ψ for all ψ

by �-counter dominance and �-transitivity. So, by �-minimality, ϕ ∈ K . Thus,
A ∩ K �= ∅. From right to left Let A ∩ K �= ∅, i.e. there exists some ϕ ∈ A ∩ K .
Since ϕ ∈ K , ϕ � ψ for all ψ by �-minimality. So A �c B for all B by 〈� to
�c〉.
�c-maximality Let A be non-empty and B �c A for all non-empty B. Then,
⊥�c A and hence by 〈� to �c〉 ⊥ � ϕ for every ϕ ∈ A. So, due to �-counter
dominance and �-transitivity, for every ϕ ∈ A, ψ � ϕ for all ϕ ∈ L. Hence, for
every ϕ ∈ A, ϕ �� ⊥ due to �-maximality. Thus, A ≡ {⊥}.
Let �′ be the believability relation derived from �c through 〈�c to �〉. It is easy
to see that ϕ � ψ iff ϕ �c ψ iff ϕ �′ ψ . Thus, � can be retrieved from �c

through 〈�c to �〉.
2. It is easy to see that � satisfies �-transitivity, �-counter dominance, �-coupling

and �-completeness. In what follows we only check �-minimality and �-
maximality.

�-minimality From left to right Let ϕ ∈ K . Then, ϕ �c ψ for all ψ due to �c-
minimality. Thus, ϕ � ψ for all ψ by 〈�c to �〉. From right to left Let ϕ � ψ for
allψ . Then ϕ �c ψ for allψ by 〈�c to�〉. So, by the second item of Observation
8, ϕ �c B for all non-empty B. Moreover, due to�c-counter-dominance, ϕ �c ∅.
Thus, by �c-minimality, ϕ ∈ K .
�-maximality Let ψ � ϕ for all ψ . Then ψ �c ϕ for all ψ by 〈�c to �〉. So,
by the first item of Observation 8, B �c ϕ for all non-empty B. So, due to �c-
maximality, ϕ �� ⊥.
In order to prove that �c can be retrieved from � through 〈� to �c〉, let �′

c be the
multi-believability relation derived from � through 〈� to �c〉. We need to show
that A �c B iff A �′

c B.
From left to right Let A �c B. If B = ∅, it follows directly from 〈� to �c〉 that
A �′

c B. If A = ∅, then B = ∅ by �c-determination. It also follows immediately
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from 〈� to �c〉 that A �′
c B. If A �= ∅ and B �= ∅, then, by Observation 8, there

exists some ϕ ∈ A such that ϕ �c ψ for all ψ ∈ B. So, by 〈�c to �〉, there exists
some ϕ ∈ A such that ϕ � ψ for all ψ ∈ B. Hence, by 〈� to �c〉, A �′

c B.
From right to left Let A �′

c B. If B = ∅, then it follows directly from �c-counter
dominance that A �c B. If B �= ∅, then there exists some ϕ ∈ A such that ϕ � ψ

for all ψ ∈ B by 〈� to �c〉. So there exists some ϕ ∈ A such that ϕ �c ψ for all
ψ ∈ B by 〈�c to �〉. Hence, by Observation 8, A �c B. ��

Proof (For Theorem 4)

From construction to postulates
∗c-closureWeneed to prove that K ∗c A is a belief set for every A. If ∅ �c A, it follows
from 〈�c to ∗c〉 that K ∗c A = K . So K ∗c A is belief set since K is belief set. If∅ ��c A,
then A ≺c ∅ by �c-counter dominance and hence K ∗c A = {ϕ | A �c A � ϕ} by
〈�c to ∗c〉. Moreover, it follows from ∅ ��c A and �c-counter dominance that A �= ∅.
So, by Lemma 1, K ∗c A = {ϕ | A �c A � ϕ} �= ∅. Let ϕ ∈ K ∗c A, ψ ∈ K ∗c A
and ϕ ∧ ψ � λ, in order to complete the proof, we need to show that λ ∈ K ∗c A. By
�c-weak coupling, it follows from A �c A�ϕ and A �c A�ψ that A �c A�ϕ ∧ψ .
By �c-counter dominance and ϕ ∧ ψ � λ, A � λ �c A � ϕ ∧ ψ . So A � λ �c A by
�c-transitivity. Moreover, A �c A � λ by �c-counter dominance. Thus, A �c A � λ,
i.e. λ ∈ K ∗c A.
∗c-relative success Let K ∗c A �= K . Then, by 〈�c to ∗c〉, A ≺c ∅. So, by �c-counter
dominance, A �= ∅ and hence, by Lemma 1, there exists some ϕ ∈ A such that
A �c A � ϕ. Moreover, by 〈�c to ∗c〉, K ∗c A = {ϕ | A �c A � ϕ} when A ≺c ∅.
Thus, A ∩ K ∗c A �= ∅.
�c-confirmation Let A∩ K �= ∅, i.e. there exists some ψ ∈ A∩ K . Suppose A �≺c ∅,
then it follows immediately from 〈�c to ∗c〉 that K ∗c A = K . Suppose A ≺ ∅, then,
by 〈�c to ∗c〉, we only need to show that K = {ϕ | A �c A � ϕ}. From left to right
inclusion direction Let λ ∈ K . By �c-counter dominance, A � λ �c λ ∧ ψ . Since K
is a belief set, it follows from λ ∈ K and ψ ∈ K that λ ∧ ψ ∈ K . Hence, λ ∧ ψ �c A
by �c-minimality. So A � λ �c A by �c-transitivity. Moreover, A �c A � λ by �c-
counter dominance. So, λ ∈ {ϕ | A �c A � ϕ}. From right to left inclusion direction
Let λ ∈ {ϕ | A �c A � ϕ}. By �c-counter dominance, λ �c A � λ and A �c ψ . So,
λ �c A � λ �c A �c ψ and hence λ �c ψ by �c-transitivity. Since ψ ∈ K , ψ �c B
for all B by �c-minimality. So, by �c-transitivity, λ �c B for all B and hence λ ∈ K
by �c-minimality. To sum up (i) and (ii), K = {ϕ | A �c A � ϕ} = K ∗c A when
A ≺c ∅.
∗c-regularityLet A∩(K∗c B) �= ∅. (i) Let K∗c B = K , then A∩K = A∩(K∗c B) �= ∅.
As we have shown that ∗c-confirmation holds of ∗c, it follows that K ∗c A = K . So
A ∩ (K ∗c A) = A ∩ K = A ∩ (K ∗c B) �= ∅. (ii) Let K ∗c B �= K , then B ≺c ∅ and
K ∗c B = {ϕ | B �c B � ϕ} by 〈�c to ∗c〉. It follows from A ∩ (K ∗c B) �= ∅ and
K ∗c B = {ϕ | B �c B � ϕ} that there exists some ψ ∈ A such that B �c B � ψ .
By �c-counter dominance, A �c ψ and ψ �c B � ψ . So, A �c ψ �c B � ψ �c B
and hence A �c B by �c-transitivity. Moreover, it follows from B ≺c ∅ that ∅ ��c B.
So, by �c-transitivity, ∅ ��c A. By �c-counter dominance, A �c ∅. So, A ≺c ∅ and
hence A = {ϕ | A �c A � ϕ} by 〈�c to ∗c〉. Also, A �= ∅ since A ∩ (K ∗c B) �= ∅.
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So, by Lemma 1, A ∩ (K ∗c A) = A ∩ {ϕ | A �c A � ϕ} �= ∅. To sum up (i) and (ii),
∗c-regularity holds of ∗c.
∗c-reciprocity Let A ∩ (K ∗c B) �= ∅ and B ∩ (K ∗c A) �= ∅. (i) Let K ∗c A = K or
K ∗c B = K , then it follows immediately from A∩(K ∗c B) �= ∅ and B∩(K ∗c A) �= ∅
that K ∗c A = K ∗c B = K by ∗c-confirmation, which has been proved. Suppose
K ∗c A �= K and K ∗c B �= K , then K ∗c A = {ϕ | A �c A � ϕ} and K ∗c B =
{ϕ | B �c B � ϕ} by 〈�c to ∗c〉. Next we show that K ∗c A ⊆ K ∗c B. (The converse
direction can be proved in the same way.) Let ϕ ∈ K ∗c A = {ϕ | A �c A � ϕ}.
As it is immediate from �c-counter dominance that B �c B � ϕ, we only need to
show that B � ϕ �c B. Since B ∩ (K ∗c A) �= ∅, there exists some ψ ∈ B such that
A �c A � ψ . By the second item of Observation 7, �c satisfies �c-weak coupling,
so A �c A � ϕ ∧ ψ . Due to �c-counter dominance, ϕ ∧ ψ �c A � (ϕ ∧ ψ). So
ϕ ∧ ψ �c A by �c-transitivity. Furthermore, since A ∩ (K ∗c B) �= ∅, there exists
some λ ∈ A such that B �c B � λ. By �c-counter dominance, A �c λ �c B � λ.
So ϕ ∧ ψ �c B by �c-transitivity. Moreover, due to ψ ∈ B, B � ϕ �c ϕ ∧ ψ by
�c-counter dominance. So, by �c-transitivity, B � ϕ �c B. To sum up (i) and (ii),
∗c-reciprocity holds of ∗c.
From postulates to construction Let ∗c be a choice revision operation satisfying (∗c1)
through (∗c5). Let �c be a relation derived from ∗c in the following way:

〈∗c to �c〉 A �c B iff either (i) B ∩ (K ∗c B) = ∅ or (ii) A ∩ (K ∗c A) �= ∅
and there exists A0, . . . , An such that K ∗c A = K ∗c A0, K ∗c B = K ∗c An and
A0 ∩ (K ∗c A1) �= ∅, . . . , An−1 ∩ (K ∗c An) �= ∅.

Let us first prove the following proposition:

(�) Let ∗c be a operation satisfying basic postulates on choice revision and �c

constructed from ∗c in the way of 〈∗c to �c〉, then K ∗c A = K ∗c B whenever
A �c B.

Proof of Proposition (�): Let A �c B. There are two cases. (i) B∩(K ∗c B) = ∅. Then it
follows from B �c A and 〈∗c to�c〉 that A∩(K∗c A) = ∅. So K∗c A = K∗c B = K by
∗c-relative success. (ii) B∩(K ∗c B) �= ∅. Then it follows from A �c B and 〈∗c to�c〉
that A∩(K ∗c A) �= ∅ and there exist A0, . . . , An such that K ∗c A = K ∗c A0, K ∗c B =
K ∗c An and A0∩(K ∗c A1) �= ∅, . . . , An−1∩(K ∗c An) �= ∅. Since A∩(K ∗c A) �= ∅,
it follows from B �c A and 〈∗c to�c〉 that there exist B0, . . . , Bm such that K ∗c B =
K ∗c B0, K ∗c A = K ∗c Bm and B0 ∩ (K ∗c B1) �= ∅, . . . , Bm−1 ∩ (K ∗c Bm) �= ∅.
So, it holds that A ∩ (K ∗c A0) �= ∅, A0 ∩ (K ∗c A1) �= ∅, . . . , An−1 ∩ (K ∗c B) �=
∅, B ∩ (K ∗c B0) �= ∅, B0 ∩ (K ∗c B1) �= ∅, . . . , and Bm−1 ∩ (K ∗c A) �= ∅. By
Observation 5, ∗c satisfies ∗c-strong reciprocity. So it follows that K ∗c A = K ∗c B.

Now we turn back to check the properties of the derived �c.

�c-transitivity Let A �c B and B �c C . There are two cases. (i) C ∩ (K ∗c C) = ∅.
Then, it follows immediately from 〈∗c to �c〉 that A �c C . (ii) C ∩ (K ∗c C) �= ∅.
Then it follows from B �c C and 〈∗c to �c〉 that B ∩ (K ∗c B) �= ∅ and there exist
B0, . . . , Bn such that K ∗c B = K ∗c B0, K ∗c C = K ∗c Bn and B0 ∩ (K ∗c B1) �=
∅, . . . , Bn−1∩(K ∗c Bn) �= ∅. Since B∩(K ∗c B) �= ∅, it follows from A �c B and 〈∗c
to�c〉 that A∩ (K ∗c A) �= ∅ and there exist A0, . . . , Am such that K ∗c A = K ∗c A0,
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K ∗c B = K ∗c Am and A0 ∩ (K ∗c A1) �= ∅, . . . , Am−1 ∩ (K ∗c Am) �= ∅. So, by
〈∗c to �c〉, A �c C .
�c-coupling Let A �c B. There are three cases. (i) A ∩ (K ∗c A) = ∅. Then,
(A�B)∩(K ∗c (A�B)) = ∅. Otherwise, it follows from (A�B)∩(K ∗c (A�B)) �= ∅
that A ∩ (K ∗c (A � B)) �= ∅ by ∗c-closure, and hence A ∩ (K ∗c A) �= ∅ by ∗c-
regularity, which contradicts that A∩(K ∗c A) = ∅. So, by 〈∗c to�c〉, A �c A�B. (ii)
B∩(K ∗c B) = ∅. Then, it follows from B �c A and 〈∗c to�c〉 that A∩(K ∗c A) = ∅.
So, this case is reducible to (i). (iii) A ∩ (K ∗c A) �= ∅ and B ∩ (K ∗c B) �= ∅. By
Proposition (�), it follows from A �c B that K ∗c A = K ∗c B. So B ∩ (K ∗c A) =
B ∩ (K ∗c B) �= ∅. It follows from A ∩ (K ∗c A) �= ∅ and B ∩ (K ∗c A) �= ∅ that
(A � B) ∩ (K ∗c A) �= ∅ by ∗c-closure. So, (A � B) ∩ (K ∗c (A � B)) �= ∅ by
∗c-regularity, and hence A ∩ (K ∗c (A � B)) �= ∅ by ∗c-closure. So, by 〈∗c to �c〉,
A �c A � B.
�c-counter dominance Let A and B satisfy (†): for every ϕ ∈ B there exists ψ ∈ A
such that ϕ � ψ . Suppose B ∩ (K ∗c B) = ∅, then it follows directly from 〈∗c to �c〉
that A �c B. Suppose B ∩ (K ∗c B) �= ∅, then A∩ (K ∗c B) �= ∅ by † and ∗c-closure.
Furthermore, A ∩ (K ∗c A) �= ∅ by ∗c-regularity. So, by 〈∗c to �c〉, A �c B.
�c-minimality From left to right Let A �c B for all B. Then, A �c �. Since� ∈ K ∗c�
by ∗c-closure, it follows from A �c � and 〈∗c to �c〉 that A ∩ (K ∗c A) �= ∅
and there exist A0, . . . , An such that K ∗c A = K ∗c A0, K ∗c � = K ∗c An and
A0∩(K ∗c A1) �= ∅, . . . , An−1∩(K ∗c An) �= ∅.Moreover, by∗c-closure,� ∈ K ∗c A0.
ByObservation 5,∗c-strong reciprocity holds of∗c, so K∗c A = K∗c�.As K is a belief
set, by ∗c-confirmation, K ∗c � = K . So, A∩K = A∩ (K ∗c �) = A∩ (K ∗c A) �= ∅.
From right to left Let A ∩ K �= ∅. Then K ∗c A = K by ∗c-confirmation. So
A ∩ (K ∗c A) = A ∩ K �= ∅. Moreover, since K is a belief set, by ∗c-confirmation,
K ∗c � = K = K ∗c A. By ∗c-closure, � ∈ K ∗c B for all B. So, by 〈∗c to �c〉,
A �c B for all B.
�c-union Suppose (A∪ B)∩ (K ∗c (A∪ B)) = ∅, then�c-union follows immediately
from 〈∗c to�c〉. Suppose (A∪ B)∩ (K ∗c (A∪ B)) �= ∅, then A∩ (K ∗c (A∪ B)) �= ∅
or B ∩ (K ∗c (A ∪ B)) �= ∅. Let A ∩ (K ∗c (A ∪ B)) �= ∅, then A ∩ (K ∗c A) �= ∅ by
∗c-regularity. So, by 〈∗c to �c〉, A �c A ∪ B. Similarly, B �c A ∪ B follows from
B ∩ (K ∗c (A ∪ B)) �= ∅. So, it holds that A �c A ∪ B or B �c A ∪ B.

Finally, we show that ∗c can be retrieved from �c through 〈�c to ∗c〉. Let ∗′
c be the

operation constructed from �c by 〈�c to ∗c〉. We will show that ∗c = ∗′
c.

Suppose A ≺ ∅, then A∩(K∗c A) �= ∅by 〈∗c to�c〉 and K∗c A′ = {ϕ | A �c A�ϕ}
by 〈�c to ∗c〉. (i) Let ϕ ∈ K ∗c A, then (A � ϕ) ∩ (K ∗c A) �= ∅ by ∗c-closure. So
(A�ϕ)∩ (K ∗c (A�ϕ)) �= ∅ by ∗c-regularity, and hence A∩ (K ∗c (A�ϕ)) �= ∅ by
∗c-closure. So, by 〈∗c to �c〉, A �c A � ϕ, i.e. ϕ ∈ K ∗′

c A. (ii) Let ϕ ∈ K ∗′
c A, then

A �c A�ϕ. It follows from this and A ≺c ∅ that A�ϕ ≺c ∅ by �-transitivity. So, by
〈∗c to�c〉, (A�ϕ)∩(K ∗c(A�ϕ)) �= ∅. It follows thatϕ ∈ (K ∗c(A�ϕ)) by∗c-closure.
Moreover, by Proposition (�), it follows from A �c A�ϕ that K ∗c A = K ∗c (A�ϕ).
So, ϕ ∈ K ∗c A. To sum up (i) and (ii), K ∗c A = K ∗′

c A.
Suppose A �≺c ∅, then K ∗′

c A = K by 〈�c to ∗c〉. Moreover, due to �c-counter
dominance, it follows from A �≺c ∅ that A �c ∅. So, by Proposition (�), K ∗c A =
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K ∗c ∅. Since ∅ ∩ (K ∗c ∅) = ∅, K ∗c ∅ = K by ∗c-relative success. So, K ∗c A =
K ∗c ∅ = K = K ∗′

c A.
Thus, K ∗c A = K ∗′

c A for all A. ��
Proof (For Theorem 5)

From construction to postulates As we have proved Theorem 4, here we only check
∗c-vacuity, ∗c-success and ∗c-consistency.
∗c-vacuity It is immediate from Observation 6.
∗c-success Let A �= ∅. By �c-determination, A ≺c ∅. So, by 〈�c to ∗c〉, K ∗c A =
{ϕ | A �c A � ϕ}. Hence, by Lemma 1, A ∩ (K ∗c A) �= ∅.
∗c-consistency Let A �≡ {⊥}. There are two cases. (i) A = ∅. Then K ∗c A = K by
∗c-vacuity which has been shown holding of ∗c. That K ∗c A is consistent follows
immediately from our assumption that K is consistent. (ii) A �= ∅. Then A ≺c ∅ by
�c-determination. So, K ∗c A = {ϕ | A �c A � ϕ}. Suppose towards contradiction
that K ∗c A � ⊥. It follows from K ∗c A � ⊥ and ∗c-closure that A �c A�⊥. So, by�c

counter dominance and �c-transitivity, ⊥ �c A and hence B �c A for all non-empty
B. So, by �c-maximality, it follows that A ≡ {⊥}, which contradicts A �≡ {⊥}. Thus,
∗c-consistency holds of ∗c.
2. From postulates to construction Let �c be derived from ∗c in the way of 〈∗c to
�c〉. Given Theorem 4, in order to show that �c is a standard multiple believability
relation, we only need to check �c-maximality and �c-determination.

�c-maximality Let B �= ∅ and A �c B for all non-empty A. Then, {⊥} �c B.
Moreover, by ∗c-success, B ∩ (K ∗c B) �= ∅ and ⊥ ∈ K ∗c {⊥}. So, by 〈∗c to
�c〉, there exist A0, . . . , An such that K ∗c {⊥} = K ∗c A0, K ∗c B = K ∗c An

and A0 ∩ (K ∗c A1) �= ∅, . . . , An−1 ∩ (K ∗c An) �= ∅. By ∗c-success and closure,
K ∗c {⊥} = L, so B ∩ K ∗c {⊥} �= ∅. It follows that K ∗c B = K ∗c {⊥} since ∗c
satisfies ∗c-strong reciprocity according to Observation 5. So, K ∗c B � ⊥. Hence, by
∗c-consistency, B ≡ {⊥}.
�c-determination Let A �= ∅. It follows immediately from ∗c-success and 〈∗c to �c〉
that ∅ ��c A. Moreover, A �c ∅ by �c-counter dominance. So A ≺c ∅.
Furthermore, by the same argument that was presented in the proof of Theorem 4, it
follows that ∗c can be retrieved from �c through 〈�c to ∗c〉. ��
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