Skip to main content
Log in

Chemically controlled self-assembly behaviors of dibenzo-24-crown-8 bearing ammonium salt moiety

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

A novel [c2] daisy chain was successfully constructed by the hermaphroditic monomer of dibenzo[24]-crown-8 (DB24C8) derivative bearing secondary ammonium salt (1) from the analysis of the solution-phase behavior of parent monomers and single-crystal X-ray analysis. 1H NMR spectroscopy was employed to show that the crown ether moiety and the secondary ammonium salt unit underwent acid–base and alkali metal cation dependent switches. The complexation behavior of this hermaphroditic monomer in the solution was further demonstrated to exhibit the controlled photophysical behavior as a reversible luminescent switch in the presence of acids or bases. Solid morphology was determined by SEM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Fernando, I.R., Bairu, S.G., Ramakrishna, G., Mezei, G.: Single-color pseudorotaxane-based temperature sensing. New J. Chem. 34, 2097–2100 (2010). https://doi.org/10.1039/C0NJ00541J

    Article  CAS  Google Scholar 

  2. Li, Y.-P., Yang, H.-R., Zhao, Q., Song, W.-C., Han, J., Bu, X.-H.: Ratiometric and selective fluorescent sensor for Zn2+ as an “Off− On−Off” switch and logic gate. Inorg. Chem. 51, 9642–9648 (2012). https://doi.org/10.1021/ic300738e

    Article  CAS  PubMed  Google Scholar 

  3. Bren, V.A.: Fluorescent and photochromic chemosensors. Rus. Chem. Rev. 70, 1017–1036 (2001). https://doi.org/10.1070/RC2001v070n12ABEH000667

    Article  CAS  Google Scholar 

  4. Lin, T.-C., Lai, C.-C., Chiu, S.-H.: A guanidinium ion-based anion- and solvent polarity-controllable molecular switch. Org. Lett. 11, 613–616 (2009). https://doi.org/10.1021/ol802638k

    Article  CAS  PubMed  Google Scholar 

  5. Asakawa, M., Iqbal, S., Stoddart, J.F., Tinker, N.D.: Prototype of an optically responsive molecular switch based on pseudorotaxane, Angew. Chem. Int. Ed. 35, 976–978 (1996). https://doi.org/10.1002/anie.199609761

    Article  CAS  Google Scholar 

  6. Muraoka, M., Irie, H., Nakatsuji, Y.: Acid/base controllable molecular switch based on a neutral phenanthroline guest penetrated pseudorotaxane. Org. Bio. Chem. 8, 2408–2413 (2010). https://doi.org/10.1039/B926010B

    Article  CAS  Google Scholar 

  7. Hidekazu, M., Simon, R.C., Ivan, P., Tucker, J.H.R.: A ditopic ferrocene receptor for anions and cations that functions as a chromogenic molecular switch. Chem. Commun. 64–65 (2003). https://doi.org/10.1039/B210227G

    Article  Google Scholar 

  8. Caroline, C., Camille, R., Emile, B., Frederic, C.: A pH-sensitive lasso-based rotaxane molecular switch. Chem. Eur. J. 19, 2982–2989 (2013). https://doi.org/10.1002/chem.201203597

    Article  CAS  Google Scholar 

  9. Cheng, H.-B., Zhang, H.-Y., Liu, Y.: Dual-stimulus luminescent lanthanide molecular switch based on an unsymmetrical diarylperfluorocyclopentene. J. Am. Chem. Soc. 135, 10190–10193 (2013). https://doi.org/10.1021/ja4018804

    Article  CAS  PubMed  Google Scholar 

  10. Sapna, S., Gregory, J.E.D., Stephen, J.L.: Controlling the ON/OFF threading of a terpyridine containing [2]pseudorotaxane ligand via changes in coordination geometry. Chem. Commun. (2008). https://doi.org/10.1039/B716117D

    Article  Google Scholar 

  11. Tokunaga, Y., Nakamura, T., Yoshioka, M., Shimomura, Y.: A molecular switch based on acid and base promoted, cation governed binding in a crown ether threaded rotaxane. Tetra. Lett. 47, 5901–5904 (2006). https://doi.org/10.1016/j.tetlet.2006.06.062

    Article  CAS  Google Scholar 

  12. Coutrot, F., Romuald, C., Busseron, E.: A new pH-switchable dimannosyl[c2]daisy chain molecular machine. Org. Lett. 10, 3741–3744 (2008). https://doi.org/10.1021/ol801390h

    Article  CAS  PubMed  Google Scholar 

  13. Li, J.J., Zhao, F., Li, J.: Polyrotaxanes for applications in life science and biotechnology. Appl. Microbiol. Biotechnol. 90, 427–443 (2011). https://doi.org/10.1007/s00253-010-3037-x

    Article  CAS  Google Scholar 

  14. Dong, S., Luo, Y., Yan, X., Zheng, B., Ding, X., Yu, Y., Ma, Z., Zhao, Q., Huang, F.: A dual-responsive supramolecular polymer gel formed by crown ether based molecular recognition. Angew. Chem. Int. Ed. 50, 1905–1909 (2011). https://doi.org/10.1002/anie.201006999

    Article  CAS  Google Scholar 

  15. Bissell, R.A., Córdova, E., Kaifer, A.E., Stoddart, J.F.: A chemically and electrochemically switchable molecular shuttle. Nature. 369, 133–137 (1994). https://doi.org/10.1038/369133a0

    Article  CAS  Google Scholar 

  16. Jeppesen, J.O., Vignon, S.A., Stoddart, J.F.: In the twilight zone between [2]pseudorotaxanes and [2]rotaxanes. Chem. Eur. J. 9, 4611–4625 (2003). https://doi.org/10.1002/chem.200304798

    Article  CAS  Google Scholar 

  17. Vignon, S.A., Jarrosson, T., Iijima, T., Tseng, H.-R., Sanders, J.K.M.: Stoddart: switchable neutral bistable rotaxanes. J. Am. Chem. Soc. 126, 9884–9885 (2004). https://doi.org/10.1021/ja048080k

    Article  CAS  PubMed  Google Scholar 

  18. Crowley, J.D., Leigh, D.A., Lusby, P.J., McBurney, R.T., Perret-Aebi, L.-E., Petzold, C., Slawin, A.M.Z., Symes, M.D.: Switchable palladium-complexed molecular shuttle and its metastable positional isomers. J. Am. Chem. Soc. 129, 15085–15090 (2007). https://doi.org/10.1021/ja076570h

    Article  CAS  PubMed  Google Scholar 

  19. Crowley, J.D., Hanni, K.D., Leigh, D.A., Slawin, A.M.Z.: Diels−Alder active-template synthesis of rotaxanes and metal-ion-switchable molecular shuttles. J. Am. Chem. Soc. 132, 5309–5314 (2010). https://doi.org/10.1021/ja101029u

    Article  CAS  PubMed  Google Scholar 

  20. Wang, X., Zhu, J., Smithrud, D.B.: Synthesis and investigation of host-[2]rotaxanes that bind metal cations. J. Org. Chem. 75, 3358–3370 (2010). https://doi.org/10.1021/jo100330e

    Article  CAS  PubMed  Google Scholar 

  21. Badji′c, J.D., Balzani, V., Credi, A., Silvi, S., Stoddart, J.F.: A molecular elevator. Science. 303, 1845–1849 (2004). https://doi.org/10.1126/science.1094791

    Article  CAS  Google Scholar 

  22. Badji′c, J.D., Ronconi, C.M., Stoddart, J.F., Balzani, V., Silvi, S., Credi, A.: Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006). https://doi.org/10.1021/ja0543954

    Article  CAS  Google Scholar 

  23. Jiang, Q., Zhang, H.-Y., Han, M., Ding, Z.-J., Liu, Y.: pH-controlled intramolecular charge-transfer behavior in bistable [3]Rotaxane. Org. Lett. 12, 1728–1731 (2010). https://doi.org/10.1021/ol100321k

    Article  CAS  PubMed  Google Scholar 

  24. Keaveney, C.M., Leigh, D.A.: Shuttling through anion recognition. Angew. Chem Int. Ed. 43, 1222–1224 (2004). https://doi.org/10.1002/anie.200353248

    Article  CAS  Google Scholar 

  25. Serreli, V., Lee, C.-F., Kay, E.R., Leigh, D.A.: A molecular information ratchet. Nature. 445, 523–527 (2007). https://doi.org/10.1038/nature05452

    Article  CAS  PubMed  Google Scholar 

  26. Saha, S., Stoddart, J.F.: Photo-driven molecular devices. Chem. Soc. Rev. 36, 77–92 (2007). https://doi.org/10.1039/B607187B

    Article  CAS  PubMed  Google Scholar 

  27. Coskun, A., Friedman, D.C., Li, H., Patel, K., Khatib, H.A., Stoddart, J.F.: A Light-gated stop−go molecular shuttle. J. Am. Chem. Soc. 131, 2493–2495 (2009). https://doi.org/10.1021/ja809225e

    Article  CAS  PubMed  Google Scholar 

  28. Li, S.J., Taura, D., Hashidzume, A., Harada, A.: Light-switchable janus [2]rotaxanes based on α-cyclodextrin derivatives bearing two recognition sites linked with oligo(ethylene glycol). Chem. Asian J. 5, 2281–2289 (2010). https://doi.org/10.1002/asia.201000169

    Article  CAS  PubMed  Google Scholar 

  29. Balzani, V., Credi, A., Venturi, M.: Light powered molecular machines. Chem. Soc. Rev. 38, 1542–1550 (2009). https://doi.org/10.1039/B806328C

    Article  CAS  PubMed  Google Scholar 

  30. Wang, C., Olson, M.A., Fang, L., Ben’itez, D., Tkatchouk, E., Basu, S., Basuray, A.N., Zhang, D., Zhu, D., Goddard, W.A., Stoddart, J.F.: Isolation by crystallization of translational isomers of a bistable donor-acceptor [2]catenane. Proc. Natl. Acad. Sci. U. S. A. 107, 13991–13996 (2010). https://doi.org/10.1073/pnas.100930210

    Article  CAS  Google Scholar 

  31. Farrell, A.A., Kay, E.R., Bottari, G., Leigh, D.A., Jarvis, S.P.: The effect of solvent upon molecularly thin rotaxane film formation. Appl. Surf. Sci. 253, 6090–6095 (2007). https://doi.org/10.1016/j.apsusc.2007.01.006

    Article  CAS  Google Scholar 

  32. Ashton, P.R., Baxter, I., Cantrill, S.J., Fyfe, M.C.T., Glink, P.T., Stoddart, J.F., White, A.J.P., Williams, D.J.: Supramolecular daisy chains Angew. Chem Int. Ed. 37, 1294–1297 (1998). https://doi.org/10.1002/(SICI)1521-3773

    Article  CAS  Google Scholar 

  33. Cantrill, S.J., Youn, G.J., Stoddart, J.F., Williams, D.J.: Supramolecular daisy chains. J. Org. Chem. 66, 6857–6872 (2001). https://doi.org/10.1021/jo010405h

    Article  CAS  PubMed  Google Scholar 

  34. Fang, L., Hmadeh, M., Wu, J., Olson, M.A., Spruell, J.M., Trabolsi, A., Yang, Y.-W., Elhabiri, M., Albrecht-Gary, A.-M., Stoddart, J.F.: Acid−base actuation of [c2]daisy chains. J. Am. Chem. Soc. 131, 7126–7134 (2009). https://doi.org/10.1021/ja900859d

    Article  CAS  PubMed  Google Scholar 

  35. Hmadeh, M., Fang, L., Trabolsi, A., Elhabiri, M., Albrecht- Gary, A.-M., Stoddart, J.F.: On the thermodynamic and kinetic investigations of a [c2]daisy chain polymer. J. Mater. Chem. 20, 3422–3430 (2010). https://doi.org/10.1039/B924273B

    Article  CAS  Google Scholar 

  36. Yamaguchi, N., Nagvekar, D.S., Gibson, H.W.: Self-organization of a heteroditopic molecule to linear polymolecular arrays in solution. Angew. Chem Int. Ed. 37, 2361–2364 (1998). https://doi.org/10.1002/(SICI)1521-3773(19980918)

    Article  CAS  Google Scholar 

  37. Wu, J., Leung, K.C.-F., Beni’tez, D., Han, J.-Y., Cantrill, S.J., Fang, L., Stoddart, J.F.: An acid–base-controllable [c2]daisy Chain. Angew. Chem. Int. Ed. 47, 7470–7474 (2008). https://doi.org/10.1002/anie.200803036

    Article  CAS  Google Scholar 

  38. Zheng, B., Zhang, M., Dong, S., Liu, J., Huang, F.-H.: A benzo-21-crown-7/secondary ammonium salt [c2]Daisy Chain. Org. Lett. 14, 306–309 (2012). https://doi.org/10.1021/ol203062w

    Article  CAS  PubMed  Google Scholar 

  39. Badjic, J.D., Ronconi, C.M., Stoddart, J.F., Balzani, V., Silvi, S., Credi, A.: Operating molecular elevators. J. Am. Chem. Soc. 128, 1489–1499 (2006). https://doi.org/10.1021/ja0543954

    Article  CAS  PubMed  Google Scholar 

  40. Nguyen, T., Tseng, H.-R., Celestre, P.C., Flood, A.H., Liu, Y., Zink, J.I., Stoddart, J.F.: A reversible molecular valve. Proc. Natl. Acad. Sci. U. S. A. 102, 10029–10034 (2005). https://doi.org/10.1073/pnas.0504109102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ashton, P.R., Balzani, V., Kocian, O., Prodi, L., Spencer, N., Stoddart, J.F.: A light-fueled, “piston cylinder” molecular-level machine. J. Am. Chem. Soc. 120, 11190–11191 (1998). https://doi.org/10.1021/ja981889a

    Article  CAS  Google Scholar 

  42. Credi, A.: Artificial molecular motors powered by light. Aust. J. Chem. 59, 157–169 (2006). https://doi.org/10.1071/CH06025

    Article  CAS  Google Scholar 

  43. Collin, J.P., Heitz, V., Bonnet, S., Sauvage, J.P.: Transition metal-complexed catenanes and rotaxanes in motion: Towards molecular machines. Inorg. Chem. Commun. 8, 1063–1074 (2005). https://doi.org/10.1016/j.inoche.2005.07.016

    Article  CAS  Google Scholar 

  44. Chuang, C.-J., Li, W.-S., Lai, C.-C., Liu, Y.-H., Peng, S.-M., Chao, I., Chiu, S.-H.: A molecular cage-based [2]rotaxane that behaves as a molecular muscle. Org. Lett. 11, 385–388 (2009). https://doi.org/10.1021/ol802648h

    Article  CAS  PubMed  Google Scholar 

  45. Jimene, M.C., Buchecker, C.D., Sauvage, J.P.: Towards synthetic molecular muscles: contraction and stretching of a linear rotaxane dimer. Angew. Chem Int. Ed. 39, 3284–3287 (2000)

    Google Scholar 

  46. Takeda, Y.: Thermodynamic study for dibenzo-24-crown-8 complexes with Alkali metal ions in nonaqueous solvents. Bull. Chem. Soc. Jpn 56, 3600–3602 (1983). https://doi.org/10.1246/bcsj.56.3600

    Article  CAS  Google Scholar 

  47. Takeda, Y., Kudo, Y., Fujiwara, S.: Thermodynamic study for complexation reactions of dibenzo-24-crown-8 with alkali metal ions in acetonitrile. Bull. Chem. Soc. Jpn 58, 1315–1316 (1985). https://doi.org/10.1246/bcsj.58.1315

    Article  CAS  Google Scholar 

  48. Tawarah, K.M., Mizyed, S.A.: A conductance study of the association of alkali cations with 1,13-dibenzo-24-crown-8 in acetonitrile. J. Solut. Chem. 18, 387–401 (1989). https://doi.org/10.1007/BF00656776

    Article  CAS  Google Scholar 

  49. Frensdorff, H.K.: Stability constants of cyclic polyether complexes with univalent cations. J. Am. Chem. Soc. 93, 600–606 (1971). https://doi.org/10.1021/ja00732a007

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant No. 21978067), Natural Science Foundation of Hebei Province (Grant No. C2021208024, B2020208085) and Program of Introducing Talents and Wisdom of Hebei Province.

Author information

Authors and Affiliations

Authors

Contributions

Xia Tian ,shengwei Zhou, Yupeng Wang , Yuting Li, Chengbin Wang, Wei Su , these authors participated in the preparation, separation and property testing of the experimental compounds in the thesis. Jianrong Han and Shouxin Liu were involved in the writing and revision of the manuscript 。

Corresponding authors

Correspondence to Jianrong Han or Shouxin Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 743 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Han, J., Zhou, S.w. et al. Chemically controlled self-assembly behaviors of dibenzo-24-crown-8 bearing ammonium salt moiety. J Incl Phenom Macrocycl Chem 103, 441–450 (2023). https://doi.org/10.1007/s10847-023-01208-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-023-01208-y

Keywords

Navigation