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Abstract
Navigation and planning for unmanned aerial vehicles (UAVs) based on visual-inertial sensors has been a popular research
area in recent years. However, most visual sensors are prone to high error rates when exposed to disturbances such as excessive
brightness and blur, which can lead to catastrophic performance drops in perception and motion planning systems. This study
proposes a novel framework to address the coupled perception-planning problem in high-risk environments. This achieved
by developing algorithms that can automatically adjust the agility of the UAV maneuvers based on the predicted error rate
of the pose estimation system. The fundamental idea behind our work is to demonstrate that highly agile maneuvers become
infeasible to execute when visual measurements are noisy. Thus, agility should be traded-off with safety to enable efficient risk
management. Our study focuses on navigating a quadcopter through a sequence of gates on an unknown map, and we rely on
existing deep learning methods for visual gate-pose estimation. In addition, we develop an architecture for estimating the pose
error under high disturbance visual inputs. We use the estimated pose errors to train a reinforcement learning agent to tune the
parameters of the motion planning algorithm to safely navigate the environment while minimizing the track completion time.
Simulation results demonstrate that our proposed approach yields significantly fewer crashes and higher track completion
rates compared to approaches that do not utilize reinforcement learning.

Keywords Autonomous systems · Deep learning · Reinforcement learning

1 Introduction

Recent developments in artificial intelligence (AI) have led
to a surge in popularity in adopting AI methodologies for the
perception, planning, and control of autonomousvehicles [1].
In particular, unmanned aerial vehicles (UAVs) have greatly
benefited from advances in deep learning [2], as highly accu-
rate perception systems are necessary for solving challenging
UAV navigation tasks [3]. There have been numerous power-
ful demonstrations of how deep learning and reinforcement
learning can enhance UAV perception and planning perfor-
mance in both simulated and real-life experiments [4, 5], and
it canbe asserted that deep learning-basedperception systems
[6] are becoming ubiquitous in this field. However, it should
be noted that the current performance of most systems still
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fall short when compared to their human-controlled counter-
parts [7].

One of the critical shortcomings of modern deep learning-
based perception systems is their decreased prediction accu-
racy under noisy visual inputs. While most networks are
robust to small disturbances in input images, excessive
brightness and blur, which are often present in real-world
environments, can render the perception system useless and
put theUAV in danger. For example, the well-studiedDroNet
architecture [8] yields excellent results under nominal envi-
ronmental conditions and can be used to solve complex
navigation tasks such as drone racing [9, 10]. However, as we
demonstrate in the results section, the performance of such
systems degrades significantly when high-noise visual inputs
are introduced into the system, even for a short duration.

A simple but effective strategy to address such adversar-
ial environments is to reduce the speed and agility of the
UAV whenever excessive noise is detected. By doing so, the
UAVhas a lower risk of crashing when the perception system
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becomes ineffective. However, implementing this strategy in
a heuristic manner, such as manually setting thresholds for
commanding UAV speed based on perceived error levels,
typically results in highly conservative solutions that further
degrade the system’s performance. We view this problem
as a risk management issue since high-speed and high-
agility maneuvers enable completing the navigation task in
a shorter amount of time but also introduce a higher risk
of crashing when the perception system becomes unreliable
under noisy inputs. Conversely, low-speedmaneuvers signif-
icantly decrease this risk but also increase the task completion
time. The main focus of this work is to develop a machine
learning-based solution to this risk management problem by
combining ideas from deep learning-based error estimation
for predicting errors of the perception system under high
noise inputs and reinforcement learning for learning an effec-
tive trade-off strategy between the agility of the maneuvers
and safety from collisions.

Contributions

Our proposed architecture for addressing the risk manage-
ment problem in navigating under high noise conditions is
presented in Fig. 1. Our focus is on the minimum-time
navigation of a quadcopter through a sequence of gates
in an unknown environment, a well-studied scenario that
captures the essential challenges of many UAV naviga-
tion tasks, including collision avoidance, pose estimation,
minimum-time trajectory generation, and agile maneuver

control.We specifically consider scenarios where the percep-
tion system experiences infrequent disturbances from high
brightness/blur inputs. Our contributions are as follows:

• On top of the established DroNet [8] architecture, we
develop an error estimation network PE2Net (Pose
Error Estimation Network), which is specifically tailored
towards predicting the gate pose errors of DroNet under
high disturbance conditions, such as excessive bright-
ness. We validate the effectiveness of this approach in
simulations.

• We have developed a reinforcement learning (RL) agent
that tackles the risk management problem of selecting
an appropriate velocity for the motion controller when
faced with high noise conditions. The agent uses pose
error estimations from PE2Net, pose estimation from
DroNet, and UAV state measurements as inputs, and is
trained using theDeepQNetwork (DQN) algorithm. Our
results show that the velocity profiles set by the RL agent
strike a good balance between low-velocity maneuvers
in high-noise conditions and high-velocity maneuvers in
low-noise conditions. We have validated our approach
across several different tracks with increasing complex-
ity, and have found that our proposed RL approach yields
significantly fewer crashes and higher track completion
rates compared to alternative approaches that stick to low
or high-velocity maneuvers, or approaches that set the
velocity profile based on heuristics.

Fig. 1 The proposed architecture aims to solve the risk management
problem when navigating in high-noise conditions. We utilize the
DroNet architecture [8] to estimate the relative position and orienta-
tion of the gates with respect to the quadcopter, based on input from
the front camera. Additionally, we introduce the PE2Net architecture,
which estimates pose prediction errors based on the same camera input.
The reinforcement learning velocity controller (RLVC) processes these

estimations and quadcopter states to predict a target velocity for the
motion planner, effectively setting a velocity appropriate for the esti-
mated noise conditions. Subsequently, the motion planner generates a
trajectory between the current location and the relative gate pose using
the velocity set by the RLVC. Finally, a model predictive controller
(MPC) computes the control signals required to follow the trajectory
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1.1 Outline

The outline of the paper is as follows: we first review relevant
previous work in UAV perception and planning in Section 2.
Then, we describe the proposed perceptionmethodology and
pose error estimation network (PE2Net) in Section 3. Next,
the motion planning and control algorithms are detailed in
Section 4. In Section 5, we present the training and imple-
mentation of the RL agent. Finally, the simulation results are
provided in Section 6.

2 RelatedWorks

The following two subsections present the previous research
on relevant perception and motion-planning algorithms.

2.1 Perception

Recent robotics applications gained considerable progress
in sensing capabilities due to advances in deep learning.
Despite these outstanding demonstrations, many perception
algorithms do not work well in clustered and complex envi-
ronments [11]. In particular, balancing safety and agility
appears to be an unmet need in research on perception
systems for autonomous vehicles. Previous work on gate
identification and safe navigation via collision avoidance,
which is the focus of our work, also has similar shortcom-
ings. According to Foehn et al. [3], gate pose detection is
a perception problem with uncertainties where the precise
determination of relative gate distance and orientation is cru-
cial for track completion. There are two approaches to this
problem: one that requires an a priori map of the environ-
ment in order to estimate gate pose uncertainty [12], and
another that does not require a map but does not provide
uncertainty estimation, such as snake gate detection [13],
end-to-end learnable visuomotor policies [9], and gap detec-
tion [14].

Additionally, high-precision gate detection is required for
the drone to pass through the gates securely. Along with
relaxing the dependence on GPS, image-based navigation
opens up a large field for neural network-based solutions to
this problem. However, Gal et al. [15] indicate that deep neu-
ral networks can distort data outside the training distribution
in certain instances, producing erroneous predictionswithout
providing a clear measure of certainty. Visual inputs are used
for navigation [16, 17], which are less precise and robust but
quicker and require only a camera.

Due to the low accuracy of the aforementioned system
in high-noise conditions, it is vital to design risk-aware per-
ception systems to provide safe navigation. The visual input
quality is critical for building a high-performance percep-
tion system that enables safe and agile flying. Motion blur

and signal noise are the two most prominent causes of image
quality loss in digital imaging. Motion blur and noise may
have a significant impact on image quality, especially in low-
light circumstances [18].

Since these methods are less accurate, it is necessary to
develop risk-aware perception systems for safe navigation.
In [19], the authors combined both concepts of safety-aware
learning and safety-critical control, which is a strong method
for achieving safe behaviors on complex robotic systems
in practice. Cassel et al. [20] proposed safety standards
for advanced driver assistance systems (ADAS) that enable
autonomous driving with proper perception systems. How-
ever, according to their safety argument, the human driver is
always prepared to take control of the automobile in the case
of a faulty sensor.

Kraus and Dietmyer [21] presented single-stage object
identification using theBayesianYOLOapproach to evaluate
the uncertainty of road users, such as pedestrians, automo-
biles, and bicycles, for risk-aware autonomous vehicles. Our
work follows a similar mindset. By assessing the perception
uncertainty using our proposed PE2Net, we develop a safe
navigation strategy that can avoid potential collisions.

Richter et al. [22] proposed a strategy based on a deep
neural network for a vision-guided robot that can improve its
speed by 50% compared to a safe baseline policy of motion
in similar environments and revert to a safe policy in a dif-
ferent environment. By contrast, PE2Net is a deep neural
network that assesses the accuracy of DroNet predictions.
In this study, we aim to demonstrate that our perception
algorithm can succeed even when DroNet’s predictions are
inaccurate due to high ambient noise. As a result, the PE2Net
structure estimates the accuracy of the DroNet gate pose pre-
dictions, allowing the drone to move more safely by utilizing
PE2Net’s pose error estimate information.

2.2 Motion Planning and Reinforcement Learning

Motion planning algorithms are a crucial part of agile UAV
navigation tasks. According to a review by Gonzalez et al.
[23], motion-planning algorithms fall into four groups: graph
search, interpolating, numerical optimization, and sampling.
In a study by Jin et al. [24], a graph search-based planning
method is proposed to compute feasible smooth, minimum-
time trajectories for a quadcopter. Zhou et al. [25] offer
a decoupled strategy that includes processes for path dis-
covery and trajectory optimization. Tordesillas et al. [26]
suggest a strategy for resolving sluggish and conservative
challenges by allowing the local planner to optimize in both
known and unknown regions. Kayacan et al. [27] use a
sampling-based motion-planning algorithm to solve the for-
mation landing problem of a quadcopter, and Gebhardt et al.
[28] demonstrate an optimization-based trajectory planning
for quadcopters. In contrast, our study uses user-provided
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rough keyframes to generate feasible 3D trajectories via
optimization-based methods. However, all of the algorithms
outlined above share a common vulnerability to environmen-
tal noise.

There are notable results in the area of perception-aware
motion planning. In [29], the authors address localization
uncertainty by combining perception and motion planning.
A recent end-to-end method [30] applies dual neural net-
work structures. The first structure imitates the behaviors of
the controller and motion planner, while the second structure
is a reinforcement learning block to fine-tune the previ-
ously trained model. However, a disadvantage of preceding
end-to-end approaches is that they require the usage of
an expert algorithm. Another study maps neural network
outputs to a motion planner, generating minimum-jerk tra-
jectories to reach the desired goal [7]. In a recent study for
high-speed quadcopter autonomous navigation, a robust and
perception-aware re-planning strategy based on topological
path-finding was proposed [31]. The suggested planner has
been strengthened by the perception-aware method, which
pays extra attention to places that may be hazardous to the
quadcopter. Another alternative, entitled Model-based Rein-
forcement Learning (MBRL) with a latent space method, is
used to decouple the environment from the dynamics [32]. It
was used to teach a drone to fly to the desired location [33].
However, this approach is not efficient in terms of stabil-
ity and safety. In [34], the navigation problem for the drone
is mathematically defined as a Partially Observable Markov
Decision Process (POMDP). Once the POMDP is solved
mid-flight and in real-time utilizing augmented belief trees,
a motion strategy is obtained. Completing the track safely in
autonomous navigation is also a research area in autonomy
where the problem is solved using curriculum learning [35].

In [36], reinforcement learning with a meta gradient is
applied for safe navigation under disturbances for quadcopter
motion planning. However, the proposed method does not
involve visual disturbances. Also, there are new works on
the usage of reinforcement learning for motion planning like
double critic RL [37] and MPTD3 [38]. Yet, none of these
works solves navigation under visual disturbances.

Recently, several studies on vision-based teaching-and-
repeat systems [39, 40] have been published to overcome the
challenge of motion planning within a given map. In [40],
a vision-based drone is used to evaluate infrastructure on
a recurring basis. During the training phase, the operator
demonstrates the required trajectory, and some keyframes
from the visual SLAMare captured as checkpoints. Then dur-
ing the repetition phase, local trajectories connecting these
checkpoints are constructed using minimum-snap polyno-
mials [41]. However, these methods require smooth teaching
trajectories and consistent configurations throughout the rep-
etition phase [39].

The presented work on quadrotor control encompasses
various methodologies aimed at enhancing the stability and
tracking performance of UAVs. In [42], the authors explored
a dual-loop single dimension fuzzy-based sliding mode con-
trol , highlighting robust tracking capabilities. Similarly,
they proposed a fuzzy-based backstepping control for sta-
bilization considering unmodeled dynamic factors [43] and
colleagues evaluated the performance of different control
methods, incorporating a position estimator and disturbance
observer [44]. The methodologies discussed above have
significantly contributed to the field of quadrotor control,
emphasizing stability, tracking, and robustness. However,
these existing methods may fall short in addressing the intri-
cate trade-off between safety and agility, whichmay require a
more sophisticated approach to balance safety considerations
with the agility needed for dynamic UAV maneuvers.

In conclusion, while there have been significant advances
in the fields of risk-aware and perception-aware planning,
there is still a considerable research gap when it comes to
establishing a direct connection between the performance
and safety of autonomous systems in terms of agility and
collision avoidance, respectively, based on the level of per-
ception uncertainty.

3 Perception System and Deep Pose Error
Estimation

As emphasized in the Introduction Section, we focus our
attention on navigating a quadcopter through a sequence of
gates, where the layout of the map and gates are not known
beforehand. The central perception problem for this scenario
is gate pose prediction [9, 13]. Figure 2 shows the images
obtained from the drone camera in the simulation environ-
ment.

This subsection develops the architecture of the deep neu-
ral network-based system that predicts, both standard pose
estimates (relative distance andorientationbetween the quad-
copter and the gate), and the errors of each pose prediction.
The error estimations are then utilized to evaluate the per-
ception system’s uncertainty, which in turn is used for online
tuning of the motion controller described in Section 4 using
the RL method developed in Section 5.

3.1 Perception System Architecture

Our proposed perception systemconsists of two architectures
as presented in Fig. 3. First, we utilize DroNet [8], which is
a convolutional neural network (CNN) based network with
eight residual layers, for predicting the gate poses ŷBG from
the individual input images. DroNet takes RGB images with
200 × 200 size as inputs, and predicts a four-dimensional
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Fig. 2 Door views from various angles and orientations captured with the drone’s camera. The perception system determines the distance between
the drone and the closest gate

vector ŷBG = [r̂ , φ̂, θ̂ , ψ̂] ∈ R
4 ∈ SO(3), which represents

the predicted gate pose by DroNet. r̂ denotes the distance
between the drone body frame origin and gate frame origin
whereas φ̂ and θ̂ are the relative orientation of the drone and
the gate in spherical coordinates. ψ̂ is the yaw angle differ-
ence between the drone body frame and the gate frame. After
computing the difference between the gate and body frames
in the Cartesian coordinate system, the result is converted to
spherical coordinates using (see Eq. 1). These angles serve
as reference points for the drone’s trajectory-control system,
which guides the drone to the target gate from its current
location. DroNet is a pre-trained network, we only fine-tune
the last layer of the network to match our simulation data
distribution.

The second section of the perception system is where we
present the Pose Estimation Error Network (PE2Net) as a
novelty to the literature. PE2Net, like DroNet, is a CNN-
based network that employs the same image input format.
The PE2Net output, σ 2

DroNet ∈ R, reflects the target gate’s
pose estimate error based on visual input. The DroNet can
be trained with noisy data as well, but training with high
noise is unsuccessful. We also want the DroNet system to
be thought of as a closed box, that is, a perception system
that is used as is. As a result, a new system is required to
perceive uncertainty. The Pose Error Estimation system can
also be trained to predict ambient noise, but the noise does

Fig. 3 Perception system architecture. DroNet and PE2Net are both
CNN-based networks that take images as inputs. DroNet generates the
target gate’s relative pose and orientation, whereas PE2Net predicts the
error of the DroNet predictions

not always indicate incorrect estimation.

r =
√
x2 + y2 + z2,

φ = arctan
y

x
,

θ = arccos
z

r
.

(1)

3.2 Frame Convention

The inertial frame is represented by I , the body frame is
represented by B and the gate frame is represented by G.
PIB is the drone position with respect to the inertial frame,
and PIG is the position of the gate with respect to the inertial
frame. To calculate the gate located in the inertial frame, our
proposed network takes measurements in PBG , which is the
position of the gate in the drone body frame.

PIB and PIG are parameterized as Cartesian coordinate
system, with variables (x, y, z). For the training, PIB data are
provided as ground truth in the simulation and estimatedwith
the flight control unit, whereas PIG data are computed by the
onboard system based on perception system data and flight
control data. Ps

GB is parameterized in spherical coordinates
in the body frame: (r , θ, φ).

x = r sin θ cosφ,

y = r sin θ sin φ,

z = r cos θ.

(2)

3.3 Pose Error Estimation with PE2Net

PE2Net (Fig. 4) is a CNN-based network that makes use of
the ResNet8 [45] architecture, which is similar to the residual
layers used inDroNet. The 200x200-pixel input picture is fed
into the network and encoded using convolutional and fully
connected layers. PE2Net produces a one-dimensional vec-
tor that contains the total of the squared differences between
the ground truth values and DroNet outputs. This design is
motivated by the fact that anytime the camera is subjected to
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Fig. 4 PE2Net architecture for estimating the error of DroNet predic-
tions. 200x200x3 input image passes through the 3x32 convolutional
layer and the pooling layer whose kernel size is 2. The network contin-
ues with ResNet-8 architecture with three residual layers with a stride

of 2 whose output channels are 32, 64, and 128 respectively, followed
by the ReLu activation function. The image is encoded with these layers
and the network outputs the error of the DroNet after a fully connected
layer

high amounts of noise, such as excessive or inadequate light
exposure, the output of the PE2Net σ 2

DroNet , which reflects
the uncertainty of the predicted gate pose, should increase
as expected. Thus, abnormalities observed by PE2Net in
DroNet outputs can be utilized for quantifying the uncer-
tainty in perception estimations.

3.4 Data Generation and Training Procedure
for the Perception System

We use the AirSim [46] simulator to generate the training
data for the DroNet and PE2Net networks. 175000 images
were captured in AirSim utilizing a variety of gate and drone
location setups to train and test DroNet (95% for the train
and 5% for the test). The gates were located randomly in the
area that can reside in the drone front camera’s field of view.

First, we train the DroNet in isolation, using the loss func-
tion in Eq. 3, which is the mean squared error between the
true and predicted gate pose values. To train the network, we
utilized stochastic gradient descent with a learning rate of
10−4, a batch size set of 16, a weight decay of 10−2, and a
training epoch length of 100.

L (θDroNet ) = 1

N

N∑
n=0

||ysBGn
− ŷsBGn

||2 (3)

In the second training phase, we train PE2Net using a
separate data generation procedure and outputs of theDroNet
trained in the first phase. The input visuals for PE2Net were
captured using the drone’s onboard camera in the simulator,

as seen inFig. 5.Gaussiannoisewith ameanof 0 and standard
deviation of 0.8 was used to modify the brightness of the
picture in order to obtain noisy measurements. 25000 noisy
images of the target gates at various distances and angles
were captured and the ground truth position of each gate
with respect to the drone was recorded in the simulation. As
expected, DroNet’s predictions diverge from the ground truth
values under these noisy images.

The labels of PE2Net are the pose estimation errors of
DroNet. The output of the DroNet with respect to drone
is ŷBGn = [x̂, ŷ, ẑ, ψ̂] and the ground truth is yBGn =
[x, y, z, ψ]. The pose estimation error is defined as,

en = (yBGn − ŷBGn )H(yBGn − ŷBGn )
T (4)

H in Eq. 4 is the coefficient matrix to normalize each squared
error due to the metrics of [x, y, z] and the metric of ψ are
not the same. Mean square error is used as a loss function to
train PE2Net.

L (θPE2Net ) = 1

N

N∑
n=0

(en − ên)
2 (5)

The learning rate, batch size, and weight decay parame-
ters for PE2Net were manually tuned at 10−3, 16, and 10−3,
respectively, by comparing several combinations. In order to
minimize overfitting, dropout and weight decay regulariza-
tion approaches were also used. The prediction performance
of the perception system is presented in Section 6.
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Fig. 5 Noisy images captured by the drone’s onboard camera in the AirSim simulator. Noise impairs the accuracy of DroNet’s outputs. PE2Net
estimates the accuracy of DroNet’s image-based predictions

4 Motion Planning and Control

In this section, we present the details of the motion plan-
ning/trajectory generation methodology, as well as the low-
level control approach.

4.1 Motion Planning

Although computationally heavy optimization-based app-
roaches can be used for the drone navigation problems [47,
48], we employ a simple polynomial trajectory generation
algorithm [49] that does not require intense computations,
while still providing agile trajectories that are sufficient for
completing the navigation task. The location and orientation
of the gate relative to the drone camera are the outputs of
the DroNet module discussed in Section 3. The Cartesian
coordinates as well as the yaw angle of the gate relative to
the drone camera are obtained after converting the gate pose
from the spherical frame to the Cartesian frame. The trajec-
tory’s time is determined by dividing the gap between the
current and target positions by the desired velocity estimated
via reinforcement learning.

4.2 Controller Design

Model Predictive Control (MPC) has grown in popular-
ity as a paradigm for quadcopter control due to its ability
to optimize actuation restrictions and performance objec-
tives concurrently [50]. Model Predictive Control (MPC) is
selected as the preferred control methodology over alterna-
tive approaches, owing to its heightened efficacy inmanaging
intricate and nonlinear systems characterized by inherent
uncertainties. Furthermore, MPC demonstrates superior pre-
dictive control capabilities. Notably, the proposed system is
versatile, as it can seamlessly integrate with alternative con-
trollers, provided they adhere to the designated trajectory.
MPC’s success is dependent on the availability of an accurate
dynamics model of the underlying system since the approach
involves online model-based online optimization.

The optimization problem for NonlinearModel Predictive
Control (NMPC) to control the quadcopter is defined as,

minimize
X ,U

N−1∑
k=0

(xre fk+1− xk+1)
T Qx (x

re f
k+1− xk+1) + �uTk R�uk

subject to xmin ≤ xk ≤ xmax, xk ∈ R
12

umin ≤ uk ≤ umax, uk ∈ R
4

xk+1 = fdyn(xk, uk)

Here N is the prediction horizon and xk is the states,
xre fk ∈ R

12 is the reference trajectory, uk is the control input,
�uk is the change in u all at kth time step. R ∈ R

4×4 is
a coefficient matrix that penalizes relative big changes in u
and Qx ∈ R

12×12 is the coefficient matrix that reflects the
relative importance of x . fdyn() is the dynamic model of the
quadcopter in which the model defined in [51] is used with
RK4.

The solution of the nonlinear optimization problem gives
the necessary control inputs for the quadcopter. The IPOPT
[52] is used for solving the optimization problem for the
quadcopter control.

5 Reinforcement Learning for Trading-Off
Safety with Agility

The perception, motion planning, and control systems pre-
sented in Sections 3 and 4 usually provide sufficient per-
formance under nominal conditions, where there are no high
amplitude noises present in the environment. However, when
noise levels become excessive, the integrated perception-
planning systemmay fail catastrophically (see Section 6). As
sensing errors can only be compensated up to a certain level
bymodifying the perception system, the only viable option is
tomodify the trajectories and control signals generated by the
planning subsystem. For example, decreasing the reference
velocity of the computed trajectory for high-noise events can
enable UAVs to bypass these events with relative safety. In
this section, we design an algorithm that continuously alters
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the reference velocities based on the error estimations of the
perception system. To minimize the number of manually set
parameters and remove domain expertise bias, we design this
algorithm as a reinforcement learning (RL) agent and allow
the algorithm to learn a good policy for mapping estimated
noise to reference velocity from interactions with simulated
events. The RL agent’s primary objective is to change the
required velocity of the quadcopter and ensure task comple-
tion in the presence of various disturbances on the camera.

5.1 State and Action Space of the RL Agent

During both training and testing, the agent has access to
input data, which includes previously trained PE2Net error
estimations yPE2Net , DroNet gate estimations yDroNet , and
quadcopter states. These inputs are given in Eq. 6. The out-
put/action of the agent is to either increase or decrease the
velocity or maintain it constantly. We use the Deep Q Net-
work (DQN) [53] method to train our agent because of its
simple yet efficient structure. The complete architecture of
the system is illustrated in Fig. 6.

yDroNet = [r̂ , θ̂ , φ̂, ψ̂],
yPE2Net = [σ 2

DroNet ],
x = [vx ,vy, vz, φ, θ, ψ]. (6)

The policy network of the agent is represented by four
fully connected layers with ReLU activations in the middle
layers and linear output at the last layer. The output of the
policy is mapped to a discrete action a ∈ [0, 1, 2]. Here,
a = 0 denotes decrease in the velocity (V ↓), a = 1 indicates
that the velocity (V ) should remain constant, while a = 2
indicates that the velocity should increase (V ↑) as shown in
Eq. 7.

vdest+1 =

⎧
⎪⎨
⎪⎩

vdest − �v , if a = 0

vdest , if a = 1

vdest + �v , if a = 2

(7)

Fig. 6 Reinforcement Learning (RL) agent architecture. The network
is a fully connected neural network that takes eleven inputs and outputs
three values. There are three hidden layers, each of which has 64, 128,
and 64 neurons

In Eq. 7, �v is a constant whose value is dictated by the
frequency of policy runs (≈ 10Hz) and the physical restric-
tions of our real-world quadcopter. As a result, whereas
large-valued �v is viable in simulation, it is not practical
in physical applications. It is possible to consider a finer res-
olution action space by decreasing �v and increasing the
number of actions, however in our experiments, wewere able
to get the desired performance by just using three actions (see
Section 6).

As is the case with many other learning-based algorithms,
the definition of the reward function is critical to the agent’s
performance. The agent’s ultimate objective is to maximize
agility while maintaining safety measures.With this in mind,
the reward function is set as shown in Eq. 8,

R =

⎧
⎪⎨
⎪⎩

−1000 , if drone crashes or leaves the track

+1000 , if drone completes the track

V , Otherwise

(8)

When the agent crashes the quadcopter or leaves the track,
the agent receives a large negative reward. On the other hand,
when the agent completes the track, it receives a positive
reward. In other circumstances, the agent receives current
velocity as a positive reward during the flight. As a result,
the agent receives the maximum cumulative reward when it

Fig. 7 Representation of a gate used in the simulation for vision-based
UAV navigation. The dimensions of the gate are the same as the ones
used in [9]
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flies the track with high velocity while avoiding crashing.
Hence the reward function motivates selecting actions that
lead to safe and agile trajectories.

5.1.1 Terminal States

The terminal states are the states inwhich an episode comes to
a conclusion if the agent’s actions bring it to these specified
states. There are two primary methods for concluding an
episode in this scenario. The first is if the drone successfully
completes the track, while the second is if it crashes. When
the drone goes through all of the track’s gates, an episode
is completed. An accident can occur in one of two ways:
the first is when the drone collides with a gate on the track,
and the second is when the drone goes out of the track zone,
which is the cubic area that includes all the gates.

5.2 RL Agent Training Procedure

Trainingof theRLagent is completely executed in theAirSim
environment described in Section 3. The output of previ-
ously trained and frozen networks (DroNet, PE2Net), in
conjunction with the interactions between the agent and the
simulation, defines the agents’ essential transitions (state,
action, reward, next state, terminal). The track utilized for
training purposes in the Airsim environment is displayed in
Fig. 10 and consists of three gates (Fig. 7). The network
parameters are updated using the following Eq. 9.

ŷ = rt + γmaxa Q̂(st+1, a, θ̂ )(1 − dt )

L(θ) = (ŷ − Q(st , at , θ))2

θ = θ − α∇θ L(θ) (9)

Where (st , at , rt , st+1, dt ) denote state, action, reward,
next state, and terminal respectively, Q indicates the value-
action network, θ denotes weights of value-action network
and Q̂, θ̂ represent target network and its weights. ŷ is target
value, γ is discount factor and α is learning rate. The entire
training procedure is detailed in Algorithm 1.

6 Results

In this section, we present the performance results of the
isolated perception system and the integrated perception-
planning system.

Algorithm 1 Training DQN algorithm.
Input: randomly initialized action-value network Qθ (s, a) and target
action-value network Q̂θ (s, a), replay buffer D, pre-trained DroNet,
pre-trained PE2Net

Parameters: learning rate α = 0.003, number of episodes E =25000,
εini tial = 1, ε f inal = 0.05, εdecay = 0.999, batch size is 256, dis-
count factor γ = 0.99, ε = εini tial .
for episode = 1, E do

Update ε according to ε = max(ε f inal , ε × εdecay)

Initialize a random normal distribution N
Retrieve image img1 and quadcopter state x1 from the environment
Add noise n1 ∈ N to img1
Feed image img1 into DroNet and PE2Net and obtain

yDroNet1 , yPE2Net1
Construct current state s1 = [yDroNet1 , yPE2Net1 , x1]
for t = 1, T do

With probability of ε select a random action at
otherwise at = argmaxaQθ (st , at )
Execute action at and observe image imgt+1 and quadcopter

state xt+1
Add noise nt+1 ∈ N to imgt+1
Feed new imgt+1 into DroNet and PE2Net and obtain

yDroNett+1 , yPE2Nett+1

Calculate reward rt with respect to Eq. 8
Construct next state st+1 = [yDroNett+1 , yPE2Nett+1 , xt+1]
Check whether the episode ends w.r.t Section 5.1.1
Store transition (st , at , rt , st+1, dt ) in buffer D
Sample a random minibatch of transitions from buffer D
Perform gradient descent update according to Eq. 9
Every K steps Q̂θ (s, a) ← Qθ (s, a)

end for
end for

6.1 Isolated Performance of the PE2Net Percepton
System

PE2Net is evaluated in the Airsim environment by intro-
ducing brightness and blur to the input picture. DroNet and
PE2Net are provided with the image received from the Air-
sim test environment after it has been altered by adjusting the
brightness of the image. Brightness noise is used to picture
the one-third period of the whole test procedure, as seen in
Fig. 8. The green region depicts the image’s brightness noise,
while the orange line reflects themean squared error between
the DroNet prediction and the ground truth values. The blue
line depicts the anticipated error of the gate posture using
PE2Net. The initial and final stages of the test method are
noise-free, resulting in the lowest possible error values for
both the ground truth and the PE2Net model. When Gaus-
sian noise is applied to an image, DroNet is quite likely to
begin to fail by producing more mistakes on target gate pose
predictions. In this situation, the output of the PE2Net also
increases, suggesting that prediction error has increased and
that, in order to ensure a safe flight, the reinforcement learn-
ing strategy may favor a drop in velocity. It should be noted
that the output of the PE2Net is mainly used for quantifying
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Fig. 8 PE2Net results under brightness noise. Plots of estimated errors
produced by PE2Net (blue) and real errors of DroNet predictions
(orange) where the input image is exposed to noise in the green region

are shown in the figure. It can be seen that outputs of the PE2Net are
correlated with noise level on images. Error in this plot is a unitless
quantity, computed as the sum of normalized values in different units

Fig. 9 PE2Net results for both bright and blurred noise. Plots of esti-
mated errors produced by PE2Net (blue) and real errors of DroNet
predictions (orange) where the input image is exposed to noise in the
green region are shown in the figure. It can be seen that outputs of the

PE2Net are correlated with noise level on images. Error in this plot is a
unitless quantity, computed as the sum of normalized values in different
units
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Table 1 PE2Net prediction and
pose estimation error (ground
truth) are compared

Image Number 1 2 3 4

Image

Pose Estimation Error 0.003440 0.04456 0.4156 0.02500

PE2Net Prediction 0.003217 0.04732 0.3978 0.02089

The gates are positioned and oriented differently. The predicted gate poses are subjected to a variety of noises,
including changing lighting conditions andmotion blurring. Error in this figure is a unitless quantity, computed
as the sum of normalized values in different units

Fig. 10 Track 1 - On this track,
our proposed RL velocity
adjusting agent is trained. The
relative gate location with
respect to the first gate is given
in the figure in (x,y,z) format in
meters. The episode begins with
the quadcopter in position
(-10,0,0), with the objective of
passing through all gates
sequentially

Table 2 Heuristic velocity
adjusting techniques

Strategy Features

NVC f ast Throughout the episode, the target velocity always increases until it reaches the maximum
velocity of 10 m/s.

NVCmean The target velocity rises continually, but the maximum velocity is limited to 6 m/s.

NVCslow The target velocity increases constantly, but the maximum is 3 m/s.

AVC f ast The target velocity is determined by the estimated error from PE2Net. vdest+1 ={
vdest − �v if σ 2

DroNet > τAVC f ast

vdest + �v if σ 2
DroNet < τAVC f ast

(10) The upper limit for the desired velocity is the

same with NVC f ast and τAVC f ast is 0.1.

AVCmean Identical to AVC f ast , but with an extra threshold parameter. vdest+1 =⎧⎪⎨
⎪⎩

vdest − �v if σ 2
DroNet > τAVC f ast

vdest if τAVCslow < σ 2
DroNet < τNVC f ast

vdest + �v if σ 2
DroNet < τAVCslow

(11) The upper limit for the target

velocity is the same as NVCmean .

AVCslow Identical to AVC f ast , but with a lower tau threshold. vdest+1 ={
vdest − �v if σ 2

DroNet > τAVCslow

vdest + �v if σ 2
DroNet < τAVCslow

(12) The target velocity upper limit is the same for

NVCslow and τAVCslow is 0.03.

RLVC The target velocity in this approach is determined by the actions of the RL agent as
described in Eq. 7.

These methods are crafted based on domain expertise and compared against our data-driven RL-based
approach that does not require manually crafted thresholds
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Table 3 Performance Evaluation Results on Track 1 across different
velocity adjusting approaches

Track 1 (Training Track)
Algorithm Agility(%) Success rate

(With noise)
Success rate
(No noise)

NVC f ast 91 ± 8% 11% 50%

NVCmean 58 ± 8% 57% 80%

NVCslow 9 ± 7% 91% 100%

AVC f ast 75 ± 8% 40% 60%

AVCmean 52 ± 7% 58% 70%

AVCslow 8 ± 7% 91% 100%

RLVC 35 ± 7% 90% 100%

This track is also used for training the proposed RL algorithm. The
agility metric measures the mean speed of the quadcopter, while the
success rate indicates the number of successfully completed tracks. It is
observed that the proposed approach yields the highest track completion
rates

the magnitude of the error, rather than getting a precise esti-
mate to correct DroNet outputs, which might be infeasible
due to the magnitude of noise levels. Similar test results are
seen in Fig. 9 images distorted with both brightness and blur.
The only distinction is the noise,which in this case is a combi-
nation of brightness and blur. In comparison to Fig. 8, DroNet
predictions become less dependable as the noise level grows,
whereas the error estimation provided by PE2Net increases
in accordance.

Table 1 illustrates the PE2Netmodel’s test results in a sim-
ulation setting on some sample pictures. The table compares

both ground truth and PE2Net estimated error for noise-free
and noisy pictures. The first image (index 1) is completely
noise-free. The related PE2Net output and the actual error
are on a 10−3 scale with a precision of 6.5 percent. When the
second image is compared to the fourth image, it is evident
that the error estimation is not just reliant on noise, but also
on features such as the distance and orientation of the gate.
Even when the camera is subjected to noise, DroNet can pro-
vide accurate findings, and the PE2Net model can provide a
high degree of assurance regarding the error estimation. The
third picture produces a result that is distinct from the rest.
The third image was subjected to high-intensity noise, and
both the genuine error value and the PE2Net error estimation
revealed an uncertainty of around 0.4 (unitless). As a result,
it can be said that the PE2Net model is capable of predicting
the uncertainty associated with DroNet forecasts.

6.2 Comparative Performance Results
of the RL-Based Integrated Perception-Planning
System

In this section, we evaluate the performance of the main
contribution of this work, an integrated perception-planning
system that can adjust the reference velocity to mitigate the
risk in high-noise events.

Three distinct tracks were used to evaluate the proposed
structure. Only the first track was used to train the RL algo-
rithm. The training track can be viewed in Fig. 10. We
trained the algorithmon the training track for 25000 episodes.

Fig. 11 The velocity profiles of
the compared strategies are
plotted under the same noise
distribution. In this case,
NVC f ast and AVC f ast crash
to the first gate, whereas
NVCmean and AVCmean crash
immediately after the second
gate. NVCslow , AVCslow , and
RLVC successfully finishes the
track. The noise area is the time
interval where the quadcopter is
subject to noise
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Table 4 PE2Net pose error
estimations and the actions of
the RL agent in track 1

Trajectory

Locations A B C D E

Image

Estimated Error .021 .023 .231 .175 .0149

DQN Action V↑ V V↓ V↑ V↑
V↑ indicates speed increase, V↓ indicates speed decrease, and V indicates steady speed

The track is designed to be not overtly challenging, how-
ever, with added perception noise, even the most cautious
planner might struggle to complete the track successfully.
Six distinct heuristic velocity-adjusting systems were tested
and compared to our RL-based system. The whole list of
these adjusters, together with their attributes, can be seen
in Table 2. The objective here is to show that data-driven
approaches such as RL, can show better performance com-
pared to handcrafted heuristic solutions.

All methods were evaluated 100 times on each track to
compute mean performance under uncertain navigation con-
ditions. At every episode, the position and the yaw angle of
the quadrotor are kept constant. However, during an episode
when, how long and how big the noise will be is determined
randomly.All results in this section are themeanperformance
metrics that are averaged over these 100 runs. To imitate

Fig. 12 Overview of the geometry of Track 2, one of the test tracks.
This track consists of three gates that are close in proximity to one
another on the x-axis but farther apart on the y and z-axes, making it
more difficult than the training track in Fig. 10. The illustration depicts
the relative gate location in relation to the first gate in (x,y,z) format, in
meters

changing lighting conditions, Gaussian noise is introduced
into the newly collected image to imitate shifting illumina-
tion conditions. For all techniques, the initial conditions at
the start of each episode (see Section 5.1.1) are identical. All
solutions were compared on a basis of two primary perfor-
mance indicators: mean agility and mean success rate. The
mean agility term refers to the average velocity magnitude
throughout all episodes. Each run from initialization until
a crash occurs or the quadcopter completes the track is an
episode, whereas the mean success rate term refers to the
average of all episodic success rates expressed in percent-
age. The drone is considered successful if it passes through
all gates and completes the track.

The evaluation results on Track 1 indicate that flying
slowly in a noisy environment leads to a higher success
rate. As seen in Table 3, the fastest velocity tuning approach
NVC f ast is only 11 percent successful at completing the
track. In comparison to NVC f ast , NVCmean as a veloc-
ity adjuster achieves a higher success rate (57%), but not
high enough to compete with NVCslow (91%), and RLVC .
(90%).

Table 5 Comparative performance evaluation results for Track 2

Track 2 (Test Track)
Algorithm Agility(%) Success

rate(With noise)
Success rate(No
noise)

NVC f ast 73 ± 9% 0% 40%

NVCmean 36 ± 9% 28% 60%

NVCslow 7 ± 3% 72% 100%

AVC f ast 72 ± 4% 0% 50%

AVC f ast 26 ± 5% 34% 70%

AVCslow 7 ± 3% 72% 100%

RLVC 16±3% 70% 100%
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Fig. 13 Track 3, the final test
track. This track has six gates
and the same gate placement as
Track 2. Due to the number of
gates, this course is difficult to
complete in a noisy
environment. The graphic
depicts the relative gate location
in relation to the first gate in
(x,y,z) format, with the metric
meter

Given the presence of unexpected and extreme noise,
even in a simulation environment, a 100 percent success rate
is implausible. When comparing NVC techniques to their
adaptive counterparts AVC , it becomes clear that utilizing a
rule-based approach as the velocity adjuster is often safer but
not more agile. The proposed solution RLVC successfully
completes the track at a rate of 90%, which is extremely sim-
ilar to the rates of NVCslow and AVCslow. Our technique,
on the other hand, is 25% more agile than its competitors on
average. Hence for the training track, the proposed approach
outperforms the other methods in terms of both agility and
safety.

The velocity profiles for the compared methods are
depicted in Fig. 11. NVC approaches to maintain a steady
speed for the quadcopter regardless of whether there is noise
in the visual input. The AVC algorithms alter the quad-
copter’s speed in response to estimated errors from PE2Net
and predefined thresholds.

As seen in Fig. 11 and Table 4, our approach has a unique
velocity profile. For example, despite the absence of noise in
the B frame and the low predicted error, the agent elected to
retain its pace. Similarly, the RL agent recommends accel-
erating despite the harsh illumination circumstances and the
estimated high error. This is the anticipated behavior of our
proposed method since it takes into account not just the
estimated error but also the quadcopter’s current states and
DroNet predictions. The algorithm’s architecture enables the
quadcopter to be securely controlled in challenging circum-
stances, as demonstrated in Table 4.

The earlier findings presented in Table 3 demonstrate the
algorithms’ performance on the same track where the agent
was trained. In order to demonstrate the generalization capa-
bility of the proposed approach, we evaluate the results on
two test tracks, which were not available to the RL agent
during the training phase. The proposed velocity adjusters
are evaluated on another test track, Fig. 12, which presents a
greater challenge for planners due to the placement of gate
locations. Even the slowest but most cautious planner could
only complete the track with a success percentage of 72%
as depicted in Table 3. Planners with greater agility, such as
NVC f ast and AVC f ast , were unable to complete the track
at all. Our approach RLVC has a success rate of 70%, which

is comparable to NVCslow and AVCslow, however, the pro-
posed method outperforms the other strategies in terms of
agility. Table 5 provides a consolidated view of the perfor-
mance of all algorithms.

Finally, we present another test track, displayed in Fig. 13.
This track is even more challenging and it is designed to
assess how the algorithms perform in a larger area and more
demanding setting. Although this track is more difficult to
complete, the algorithms’ performances are relatively similar
to the track in Fig. 12. As a consequence, it can be concluded
that our algorithm performs much better than the other algo-
rithms in terms of overall performance, as it is capable of
balancing the trade-off between agility and safety by learn-
ing a data-driven risk-management strategy (Table 6).

7 Conclusion

As UAV navigation tasks become increasingly demand-
ing and the number of autonomous operations in the real
world increases, UAVs are exposed to more adversarial
environmental conditions that can seriously degrade percep-
tion performance, leading to weak planning performance. In
this work, we propose a novel reinforcement learning-based
architecture that utilizes pose error estimation under high-
noise conditions and learns to adjust the reference velocity for
motion planners tomanage the risk of crashing by trading-off
agility with safety based on the perceived noise levels. Our

Table 6 Comparative performance evaluation results for Track 3

Track 3 (Test track)
Algorithm Agility(%) Success

rate(With noise)
Success rate(No
noise)

NVC f ast 74 ± 7% 0% 30%

NVCmean 46 ± 7% 30% 60%

NVCslow 8 ± 6% 69% 100%

AVC f ast 57 ± 8% 0% 30%

AVCmean 29 ± 8% 32% 60%

AVCslow 8 ± 7% 68% 100%

RLVC 18±7% 68% 100%
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results show that the pose error estimation system works
well, and the simulation results demonstrate that the inte-
grated system outperforms heuristic approaches that rely
on manually crafted rule sets in terms of both agility and
track completion rates. In comparison to the most secure
heuristic methodologies, the algorithm under consideration
demonstrates a noteworthy enhancement in agility, with an
approximate mean increase of 15 percent. Concurrently, this
augmentation in agility is accompanied by a marginal reduc-
tion in safety, amounting to only 1 percent. Therefore, it can
be concluded that the reinforcement learning approach has
the potential to discover unique risk-management strategies
that cannot be easily obtained by using domain expertise
and/or manual tuning.

For future work, we recommend conducting real-world
experiments on the integrated system for further validation
of the reinforcement learning methodology. Additionally, it
is worth noting that although this work focused on UAV nav-
igation, the framework is actually platform agnostic and can
be easily adapted to any autonomous system that requires
tight coupling between perception and planning modules.
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