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Abstract
Effective interactions between humans and robots are vital to achieving shared tasks in collaborative processes. Robots can 
utilize diverse communication channels to interact with humans, such as hearing, speech, sight, touch, and learning. Our 
focus, amidst the various means of interactions between humans and robots, is on three emerging frontiers that significantly 
impact the future directions of human–robot interaction (HRI): (i) human–robot collaboration inspired by human–human 
collaboration, (ii) brain-computer interfaces, and (iii) emotional intelligent perception. First, we explore advanced techniques 
for human–robot collaboration, covering a range of methods from compliance and performance-based approaches to syn-
ergistic and learning-based strategies, including learning from demonstration, active learning, and learning from complex 
tasks. Then, we examine innovative uses of brain-computer interfaces for enhancing HRI, with a focus on applications in 
rehabilitation, communication, brain state and emotion recognition. Finally, we investigate the emotional intelligence in 
robotics, focusing on translating human emotions to robots via facial expressions, body gestures, and eye-tracking for fluid, 
natural interactions. Recent developments in these emerging frontiers and their impact on HRI were detailed and discussed. 
We highlight contemporary trends and emerging advancements in the field. Ultimately, this paper underscores the necessity 
of a multimodal approach in developing systems capable of adaptive behavior and effective interaction between humans 
and robots, thus offering a thorough understanding of the diverse modalities essential for maximizing the potential of HRI.

Keywords Human–Robot Interaction · Human–Robot Collaboration · Brain-Computer Interface · Emotional Intelligent 
Perception · Computer Vision

1 Introduction

Human–Robot Interaction (HRI) focuses on designing, eval-
uating, and understanding of robotic systems intended for 
interaction with humans. This field overlaps various disci-
plines, such as social sciences, cognitive sciences, robotics, 
engineering, and human–computer interaction, to examine 
the interaction between humans and robots. However, the 
central focus of HRI is on how humans and robots interact, 
whether between one person and one robot or multiple indi-
viduals and multiple robots [1].

This study concentrates on three emerging interaction 
channels between robots and humans. First, we exam-
ine research that enhances our understanding of human 
robot collaboration, specifically by exploring the field of 
human–robot cooperative control, an emerging field in 
robotics that enables interaction through the combination 
of human and robot action. Next, we examine using Brain-
Computer Interfaces (BCI) to enhance interaction between 
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humans and robots by utilizing bio-signals. Finally, we 
explore emotional intelligent perception for transferring 
emotions to a robot. We review some recent advances in the 
above three areas; then, we discuss the future directions of 
these fields and their role in human–robot interaction.

Effective Human–Robot Collaboration (HRC) integrates 
human skills and robotic capabilities for tasks requiring 
joint effort, such as co-manipulation and haptic interaction. 
Advances in this area are leading to more user-friendly 
robots, capable of tasks like assisting with manual labor 
or workspace organization. Additionally, Brain-Computer 
Interfaces (BCI) are evolving as vital tools in HRI, ena-
bling direct communication between humans and machines 
through brain signals [2]. Moreover, according to multiple 
research studies [3, 4], nonverbal elements convey two-thirds 
of human communications. The development of emotional 
intelligence in robots, which involves recognizing human 
emotions through nonverbal cues like facial expressions and 
body language, is crucial for more nuanced and effective 
human–robot interactions. This paper underscores the neces-
sity of a multimodal approach in developing systems capa-
ble of adaptive behavior and effective interaction between 
humans and robots, thus offering a thorough understanding 
of the diverse modalities essential for maximizing the poten-
tial of HRI.

As depicted in Fig. 1, our primary objective in this study 
is to examine recent advances in human–robot collaboration, 
brain-computer interface, and emotional intelligent percep-
tion. In addition, we aim to present a roadmap for future 
Human–Robot Interaction (HRI) advancements by drawing 
upon these three interrelated areas. By thoroughly inves-
tigating these subjects, we strive to gain a comprehensive 
understanding of the underlying principles and challenges 
of human–robot cooperative actions, all viewed from three 
distinct viewpoints. The following Section 2, we elucidate 
the utilization of these three directions while examine their 
potential impact on outcomes. Next, Section  3 explores 
three emerging frontiers in Human–Robot Interaction (HRI).

We first delve into human–robot collaboration in Sec-
tion 3.2, highlighting the various methods used, includ-
ing compliance control-based, human performance-based, 
model learning-based, synergy-based methods, and newer 
techniques such as learning from demonstration, active 
learning, and learning from complex tasks. Next, in Sec-
tion 3.3, we examine the brain-computer interface (BCI) 
field, focusing on its applications in rehabilitation, robotics, 
brain state detection, communication, and emotion recogni-
tion. We then delve into emotional intelligent perception in 
Section 3.4, explicitly focusing on facial expression recogni-
tion and emotion recognition through body gestures and eye-
tracking. Finally, in Section 3.5, we bring these three areas 
together to offer insights into the future directions of HRI.

2  Converging Humanity and Robots

There are different diversions such as Human–Robot Interac-
tion (HRI), Brain computer interface (BCI) and Emotional 
intelligence (EI), these framework stands at the forefront of 
technological advancement, holding the potential to revolu-
tionize the dynamics between humans and robots. By delv-
ing into the depths of HRI, researchers and engineers are 
paving the way for a future where robots become indispen-
sable companions, assistants, and collaborators, seamlessly 
integrated into the fabric of our lives.

In our research, Mitra [5], a humanoid robot, has been 
chosen as our foundational framework, driven by the 
vision of enhancing its capabilities to encompass Emotion 
Detection, Brain-Computer Interface (BCI), and advanced 
Human–Robot Collaboration, with a specific focus on cre-
ating an emotionally intelligent robot. While Mitra’s cur-
rent capabilities may not include these facets, our goal is to 
propel Mitra towards a future where it becomes proficient 
in understanding emotions, interacting through BCI, and 
engaging in nuanced human–robot partnerships. By imbu-
ing Mitra with these advanced attributes, we aim to forge 

Fig. 1  Three Emerging Fron-
tiers in Human–Robot Interac-
tion (HRI): Human–Robot 
Collaboration, Brain-Computer 
Interface, and Emotional Intel-
ligence Perception
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a path towards the realization of an emotionally intelligent 
robot that excels in perceiving, responding to, and collabo-
rating with humans on a deeper level. A compelling facet of 
our work involves crafting responses based on users’ emo-
tional cues. By discerning and interpreting these cues, Mitra 
adjusts its interactions coherently, exhibiting empathy and 
synchronizing with the user’s emotional state. This multifac-
eted approach epitomizes our dynamic utilization of Mitra’s 
potential within our research, paving the way for a future 
where human–robot interactions seamlessly blend complex-
ity with intuition. Instead of starting the learning process 
from scratch, the artificial intelligence learns from the com-
plex nuances of behavior demonstrated by the”teacher,” 
allowing it to skillfully repeat and achieve relatively suc-
cessful results. As depicted in Fig. 1, our research trajectory 
aligns harmoniously with these innovations.

The use of HRI to develop intuitive robots capable of 
understanding human gestures and facial expressions has 
been transformative. Consider, a situation where a Mitra 
robot equipped with an advanced HRI mechanism can 
understand users’ subtle movements and accurately interpret 
their intentions. This feat allows the Mitra robot to seam-
lessly adapt to the user’s movements, creating an effort-
less and natural experience. With the progression towards 
increasingly intuitive interactions, users experience a reduc-
tion in their learning curve, enabling seamless utilization of 
the complete capabilities offered by Mitra’s robotic systems.

However, the range of possibilities extends far beyond 
simple gestures and expressions. Emotional intelligence 
(EI) emerged as a cornerstone, giving robots like Mitra the 
ability to recognize and respond to a wide range of human 
emotions. In this case, we plan to make Mitra robot emotion-
ally intelligent by using eye tracking or by face recognition. 
Suppose a person is happy Mitra makes it movement fast 
or slows down when a person is sad. Recent research dis-
cusses the advances in emotional intelligence in robotics by 
being able to allow robots with empathetic behavior and its 
capabilities of human [6]. This type of emotional intelligent 
information helps robot better understand the human and 
make it more interactive. The integration of EI helps robots 
gain the ability to connect with humans on a deeper level 
and move beyond their utilitarian role to become empathetic 
companions. This dimension of empathy created through EI 
not only enhances Mitra’s social abilities, but also allows it 
to understand and respond to the user’s needs, from assis-
tance to companionship.

However, advances in human–computer interaction con-
tinue to push past current boundaries, reflecting the ever-
changing nature of the field. Brain-computer interface (BCI) 
technology is becoming a channel through which people can 
seamlessly connect intentions and actions. This research are 
being done in order to make Mitra interact with human by 
using brain signals. Different studies are done where an EEG 

signal extracted from human brain are used to interact with 
robots by passing these extracted brain signals to the robots. 
EEG-based Brain-Computer Interfaces (BCIs) for locomo-
tion and mobility rehabilitation, focusing on applications 
like wearable exoskeletons, orthosis, prosthesis, and assis-
tive robots [7]. It is expected that robots respond accord-
ingly as the passed signals. This makes a deeper connection 
between a robot and a human with disabilities reaching new 
levels of autonomy by mind-controlling the movements of 
the Mitra robot. BCI is changing the concept of interaction 
and ushering in an era where human–robot interaction goes 
beyond traditional methods, opening up possibilities like 
never before. Mitra robots can be an extension of user intent, 
building the foundation not only for accessibility, but for 
deep intuitive engagement driven by the power of the mind.

In addition to these remarkable advances, the conver-
gence of artificial intelligence (AI), virtual reality (VR), 
and augmented reality (AR) facilitates the transformation 
of the Mitra robot into an autonomous, immersive, and 
information-rich device. Artificial intelligence allows the 
Mitra robot to learn from experience, adapting its behavior 
and actions based on the accumulated knowledge. VR puts 
a robot in an immersive environment that allows it to hone 
skills and navigate complex scenarios in virtual space before 
performing real-world tasks. AR overlays a layer of digital 
information on the physical world, allowing Mitra’s robots 
to help users identify objects, provide navigational advice 
or provide context-sensitive data.

These three directions when combined, bridges the 
gap between human desires and technological capabili-
ties. Humans can directly translate mental commands into 
actions performed by robots, allowing for personal control 
and management of the technology. The synergy between 
human–robot interaction, brain-computer interfaces, and 
emotional intelligence has the capacity to create a more 
harmonious and productive integration of technology into 
our lives, bridging the gap between human desires and 
technological capabilities. It shows the potential of human 
ingenuity, giving us a glimpse of a future where machines 
seamlessly fit into our lives, empowering us, enriching our 
experiences, and creating connections that redefine the 
boundaries between the artificial and the human.

3  Emerging Frontiers in HRI

This section presents an overview of popular approaches 
in human–robot collaboration, brain-computer interfaces 
(BCI), and emotional intelligent perception. Our investiga-
tion begins with a comprehensive examination of various 
methods used for human–robot collaboration. Subsequently, 
we analyze the potential for improving interactions between 
robots and humans, emphasizing the utilization of brain 
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signals. Finally, we review the current methods for emo-
tion recognition, including the state-of-the-art techniques for 
extracting human emotions from vision interfaces.

3.1  Human–Robot Collaboration

In general, humans teach robots to assist in solving a com-
plex problem leading to a goal. The underlying impression 
of this interaction is considered as the relationship between 
the master and his apprentice. Ideally, the robot must adapt 
to different needs based on the context. Traditionally, human 
engineers predicted all these probable interaction param-
eters and implemented routines to generate appropriate 
robot responses. But with the advances in human–robot 
interaction (HRI), systems are now being developed based 
on spatiotemporal adaptations of recorded human–human 
interaction such as learning from demonstration (LfD) [8] 
or programming by demonstration (PbD). These methods 
allow the natural and intuitive transfer of human knowl-
edge about a task to a collaborative robot [9]. For exam-
ple, multi-agent imitation learning leads to a responsive 
robot that learns to react to human movements and gestures 
[10]. Research studies on human–robot collaboration have 
been under investigation as early as the 1980s. Since then, 
the field has undergone rapid developments based on the 
following approaches. Broadly, one can categorize these 
approaches as control-based, human performance-based, 
learning-based, and synergy-based. Table 1 presents dif-
ferent methods for controlling human–robot collaboration, 
along with their descriptions and references to the research 
for each approach.

3.1.1  Compliance Control‑based Approaches

Compliance control-based approaches were widely used 
during the early stages of human–robot collaboration stud-
ies. In this category, we group those works that utilize 
impedance and admittance control to interact with the 
robot. In impedance-controlled robots, the robot's behavior 
is characterized by an impedance matrix, which describes 
the relationship between applied forces/torque and the 
resulting motion of the robot. Typically, a spring-damper 

system analogy is used where the "spring" denotes the 
robot's stiffness. This indicates the robot resistance to 
deformation when subjected to external forces whereas 
the "damper" represents damping, signifying the robot 
resistance to motion in response to external forces. Thus, 
by modulating the impedance matrix, the robot can dis-
play compliance similar to a physical spring, enabling it 
to absorb and respond to external forces in a controlled 
manner. In the case of admittance-controlled robots, the 
focus shifts to the robot's response to external displace-
ment. An admittance matrix is used to characterize the 
behavior of the robot that represents the relationship 
between the external displacements applied to the robot's 
end effector and the resulting forces/torques produced by 
the robot. Using the same spring-damper system analogy, 
in this case, the "spring" represents the robot's compli-
ance to external displacements while the "damper" repre-
sents the damping, indicating how the robot resists abrupt 
changes in positions. Therefore, by adjusting the admit-
tance matrix, the robot tends to exhibit compliance when 
an external force displaces the robot's end effectors similar 
to a physical spring-damper system.

Generally, in compliance control-based research stud-
ies, the human performed the role of a master, whereas 
the robot acted as a follower. In [11, 12], the robot’s con-
trollers received the force applied by the master, allowing 
the human to direct the object’s motion while the robot 
worked as a follower. Hence, it was proposed to adopt an 
admittance control approach that focuses on the mechani-
cal impedance or resistance of the object manipulated by 
the human and robot. [13, 14] used a variable impedance 
control to model human–robot cooperation. This study 
used force information to estimate human intention and 
modified the robot to act cooperatively. [15] proposed to 
use the equilibrium trajectory hypothesis to control the 
robot action in a cooperative environment. Similar to this 
approach, [16] developed a model based on the task and 
visual feedback to an admittance controller. The authors 
reported that a force-based controller might not be suf-
ficient for human–robot collaboration; as a result, they 
included visual information to improve the robot’s per-
formance in a cooperative environment.

Table 1  Human–Robot 
Collaboration Approaches

Approach Description

Compliance control-based Uses impedance control and admittance control for HRI. [11–16]
Human performance-based Studies human–human collaboration to design robots. [13, 17–20]
Model learning-based Uses algorithms like Gaussian Mixture Models and Regression and 

Dynamic Movement Primitives to train robots to perform tasks. 
[21–23]

Synergy-based Uses human interaction as an inherent part of designing the
HRI. [24–31]



Journal of Intelligent & Robotic Systems          (2024) 110:45  Page 5 of 26    45 

3.1.2  Human Performance‑based Approaches

Human performance-based approaches involved 
human–human collaboration, which was initially studied to 
understand the intrinsic details during assistive experiments 
and then designed to translate that into robot controllers. 
Through the use of a variable admittance control, [13] pro-
posed to estimate human cooperation from data collected 
through experimental trials. The experiments included two 
humans jointly carrying an object. A minimum jerk model 
[32] has been an inspiration for much research. [17] used 
the minimum jerk model as a reference and modeled an 
admittance-controlled robotic assistant. Similarly, the mini-
mum jerk model was used in [18] to approximate the human 
hand position during a human–robot collaboration experi-
ment of transporting an object. This approximation of hand 
position was used as a reference for the robot controller. 
Tsumugiwa et al. proposed an admittance controller by vary-
ing the damping according to the approximation of human 
arm stiffness. Moreover, a similar approach by varying the 
robot’s damping according to the human arm stiffness, at a 
low velocity, was also developed [19]. Yang et al., in [20] 
proposed a robot controller that reproduced how humans 
adapt to interaction forces and instability. The robot control-
ler learned to adjust to unaccounted deviations using feed-
back and feedforward parameters and minimized the motion 
errors achieving a variable impedance behavior.

3.1.3  Model Learning‑based Approaches

We aim to categorize those research studies that use 
different algorithms to achieve interactive robots. [21] 
demonstrated master and apprentice roles in a coopera-
tive task where Gaussian Mixture Models (GMM) and 
Gaussian Mixture Regression (GMR) encode and recre-
ate collaborative behaviors in robots. The GMM captures 
the robot motion and the different forces and the GMR 
generates the reference force during replication. In [22], a 
new framework was presented to recognize human inten-
tions as early as possible in order to generate safe robot 
motions when human and robot are working together in 
close proximity. In this study, GMM representations simu-
late human coworker’s motion and GMR predicts the cow-
orker’s future motions. [33] proposed a hybrid structure 
built on programing by demonstration (PbD) and adaptive 
control. Some researchers employ the interaction forces 
using dynamic movement primitives (DMP) introduced 
by Schaal et al. [34–36]. DMPs combine optimal control 
theory and nonlinear dynamical systems for trajectory con-
trol and planning. A probabilistic encoding of the DMP 
parameters that let the robot’s movements be adapted and 
correlated depending on the assumptions about human 
intentions made from partial observations was proposed 

in [23]. Ben Amor et al. suggest the use of dynamic time 
warping for structuring future robot movements in accord-
ance with the human partner’s timing. [37] took this idea 
one step further by modeling the collaborative interaction 
using the probabilistic motion primitives that were intro-
duced by [38]. In this model, the correlation between the 
trajectories of the human and the robot is used to carry 
out coordinated tasks in which the action of the robot is 
completely conditioned by the human partner’s motion. 
Recently, Rozo et al., [39] proposed an approach that com-
bined probabilistic learning, dynamical systems and stiff-
ness estimates to encode the robot’s behavior from human 
demonstrations. Their method allowed the robot partner 
to learn both trajectories following skill and impedance 
behaviors.

3.1.4  Synergy Model‑based Approaches

Synergy model-based approaches have recently been 
explored toward a human-inspired solution where the robot 
performs with human dexterity and flexibility. Generally, 
a synergy-based approach involves human-in-the-loop 
integration where human interaction is an inherent part of 
designing the HRI framework. One key limitation of this 
approach is that for a natural interaction between human 
and robot, neural signals generated from the human should 
communicate with the machine. Recent studies [40] demon-
strated that human motion intentions can be detected with 
good accuracy through surface electromyography (sEMG). 
Several research studies [24–26] have implemented sEMG 
based motion intention recognition for human lower limb 
and gait recognition and their corresponding prediction 
model. With the introduction of the concept of synergies by 
Bernstein in 1966 [41], which hypothesized the human brain 
controls the human hand from a lower dimensional space, 
several attempts have been made to extend it in HRI. A 3D 
printed soft hand exoskeleton was introduced that provided 
5 degrees of freedom (DoF) [30]. The goal of this Hand 
Exoskeleton with Embedded Synergies (HEXOES) was to 
train subjects in executing kinematic synergy-based grasping 
motions during rehabilitation. In a later version, the system 
enabled 10 DoF of the metacarpophalangeal joints (MCP) 
and proximal interphalangeal joints (PIP) and interphalan-
geal joints (IP) of each finger and thumb [31]. In this study, 
muscular control of three functional synergies were used in 
control of 10 DoF HEXOES, thus demonstrating low dimen-
sional control imposed on a high dimensional system. Multi 
modal data fusion techniques that involve combining sEMG 
signals with finger joints kinematics were implemented 
recently in the studies [27–29] to improve the decoding per-
formance. These fusion models have the potential to enhance 
synergy-based grasping movements.
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3.2  Human–Robot Collaboration by Learning 
Methods

Robots must possess the ability to react to changes in their 
environment and exhibit adaptive behavior in response 
to unknown objects and circumstances while working 
in collaboration with human partners. To address these 
challenges, various interactive machine learning tech-
niques such as”imitation learning”, “learning from dem-
onstrations”, “learning from critique”,”programming by 
demonstration”,”teaching by showing”, and “active learn-
ing” have been proposed to imitate human skills through 
demonstration. In this section, we provide an exploration 
of various learning techniques that have been developed to 
enable effective human–robot collaboration. Our discussion 
covers a range of research in this area, including Learning 
from Demonstration (LfD), as well as active learning and 
learning from complex tasks. Table 2 provides an overview 
of learning-based techniques for human–robot collabora-
tion, accompanied by descriptions and examples for each 
approach.

3.2.1  Learning from Demonstration

Learning from Demonstration (LfD) approach is particularly 
useful as it does not require expert knowledge of robotics 
technology, enabling end-users to instruct the robots accord-
ing to their specific requirements and workflows. Further-
more, from a human–robot interaction perspective, this 
method effectively allows robots to learn impractical tasks 
to automate through other means, resulting in a more effi-
cient learning process.

Rather than developing a technique to transfer knowledge 
from a human to a robot for replicating certain motion, [42] 
focuses on designing to help a human coworker understand 

their robotic partner. Several studies [10, 43, 44] suggest 
detecting social cues of human coworkers such as facial 
expression, the direction of gaze, verbal cues, and body 
postures to understand the human’s mental states. [45] cat-
egorizes learning from demonstration (LfD) based on the 
technique by which demonstrations are performed as kin-
esthetic teaching, teleoperation, and passive observation. In 
kinesthetic teaching [39, 46, 47], the user can demonstrate 
by physically moving the robot through the desired move-
ments. The onboard sensors capture the robot’s state during 
the interaction such as joint angles and torques providing 
the machine-learning models with training data. Due to the 
intuitive approach and minimal user training requirements, 
kinesthetic teaching is popular for manipulative robots.

Teleoperation has been used in trajectory learning, task 
learning, grasping and high-level tasks as a commonly used 
demonstration input [48–51]. It uses a joystick, a graphi-
cal user interface, or other external inputs from the robot. 
Using interfaces through haptic devices and virtual-reality 
interfaces is currently the subject of ongoing research. One 
key advantage of teleoperation over kinesthetic learning is 
that this demonstration technique does not require the user 
to be present alongside the robot. In the passive observation 
technique the robot learns by passively observing the user 
[10, 52–54]. The user performs the task equipped with addi-
tional sensors to make tracking easier. The robot only acts as 
a passive observer and takes no part in the demonstration. 
This technique is suitable for applications with robots with a 
very large number of degrees of freedom where kinesthetic 
teaching is difficult.

3.2.2  Active Learning

Active learning is a machine learning methodology that 
enables a robot to solicit information from a human user 

Table 2  Learning techniques for enhancing human–robot collaboration, with the goal of adapting to changes in the environment and responding 
appropriately to unknown circumstances

Learning Technique Description Examples

Learning from Demonstration (LfD) Kinesthetic teaching User physically moves robot through desired movements. [39, 46, 47]
Teleoperation Robot is controlled by a joystick, GUI or other external inputs. [48–51]
Passive observation Robot learns by observing the user perform a task. [10, 52–54]

Active Learning Active Learning Solicit information from a human user when uncertain about the next task 
during its learning process. [55]

Learning from Critique A technique that enables the robot to learn from feedback provided by a 
human. [56]

Learning from Complex Tasks BP-AR-HMM and DMPs Offer four essential requirements for learning complex tasks from unstruc-
tured demonstrations. [57]

BP-AR-HMM, GTW, and
DMP

Incorporate alignment phase to improve learning and generalization of 
complex tasks. [58]

BP-HMM Segment and identify action primitives for complex sequential tasks, evalu-
ated on pizza dough rolling task. [59]
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when uncertain about the next task during its learning pro-
cess. Cakmak and Thomas [55], for example, used three 
types of queries were used during both human–human and 
human–robot collaboration scenarios, including label que-
ries, demonstration queries, and feature queries. The results 
indicated that, similarly to humans, robots can effectively 
learn by inquiring in uncertain situations and were perceived 
as most intelligent when they utilized feature queries.

3.2.3  Learning from Complex Tasks

The focus of much of the learning from demonstration (LfD) 
research has been on scenarios in which a robot learns a 
policy by performing simple tasks with clear start and end 
points. As tasks become more complex, it becomes increas-
ingly more work to model a policy, and such methods often 
fail. Subsequently, structured LfD studies often employ a 
decomposition technique, which involves breaking down 
the simple task into more minor sequences of skills. These 
sequences or subtasks are easier to learn and generalize, and 
solutions to these subtasks are combined to teach the col-
laborative robot to interact with humans in a smooth manner 
[60]. In the field of Learning from Demonstration (LfD), 
learning complex tasks has proven to be a difficult challenge. 
Consequently, limited studies have explored using LfD for 
the purpose of facilitating human–robot collaboration in 
such complex scenarios [61]. Niekum et al., proposed a 
novel framework that combines the benefits of Beta Process 
Autoregressive Hidden Markov Model (BP-AR-HMM) and 
DMPs [57]. This approach suggests segmenting the tasks, 
recognize repeated skills and generalize complex tasks from 
unstructured demonstrations. Through this framework the 
robot is enabled to learn complex demonstrations from mul-
tiple subtasks. The authors offer four essential requirements 
for the robust learning of complex tasks from unstructured 
demonstrations: The robot must (i) possess the ability to 
identify recurring skills and apply them in new environ-
ments; (ii) be capable of segmentation without prior knowl-
edge; (iii) be able to recognize a general class of skills; and, 
(iv) the skill policies of the robot must be represented in a 
manner that allows for easy generalization and improvement 
through practice. The framework addresses these require-
ments and enables the robot to learn a multi-step task from 
unstructured demonstrations. A recent study by [58] aimed 
to enhance the BP-AR-HMM framework by incorporating 
an alignment phase along with the demonstration, segmenta-
tion, and generalization phases. To align the demonstration 
profiles with the key requirements, the authors utilized the 
generalized time warping (GTW) algorithm. By integrating 
BP-AR-HMM, GTW and DMP into a unified framework, the 
robot was able to effectively regulate each segment of the 
demonstrated profiles and learn a vast collection of skills, 
encompassing both movement and stiffness primitives. In a 

separate study by [59], an extension of the BP-HMM model 
was utilized to segment and identify action primitives, 
allowing the robot to learn a complex sequential task, specif-
ically pizza dough rolling, through human demonstrations. 
The authors extracted action primitives and the transition 
probabilities of these action primitives and then trained the 
model on human demonstrations. The proposed framework 
was evaluated with a robot on a pizza dough rolling task and 
the robot was able to make the pizza dough with consist-
ent shapes and desired size. Over the past decade, there has 
been a steady increase in the number of publications in the 
areas of human–robot collaboration, imitation learning, and 
learning from demonstration (LfD), demonstrating a grow-
ing research interest in teaching robots through example. The 
significant growth in publications within the last five years 
further highlights the growing emphasis on this approach to 
robot learning.

3.2.4  Metrics in Human Robot Collaboration

As depicted in Table 3, in the realm of robotic learning 
approaches, diverse algorithms rely on specific metrics to 
evaluate their performance and effectiveness. In the com-
pliance control-based approach, key metrics such as the 
difference between reference and achieved frames, stiffness 
estimation, force-torque correlations, and motion accuracy 
against desired trajectories are used to gauge the algorithm’s 
ability to interact safely and accurately within its environ-
ment. In the human performance-based approach, metrics 
include motion estimations for effective human–robot col-
laboration, the evaluation of recursive least square methods 
for continuous improvement, and the accuracy of stiffness 
estimation for adaptive interactions. The model-learning 
approach employs metrics like component correlations, 
motion recognition rates, and mean squared error to assess 
the cohesion, adaptability, and predictive accuracy of the 
algorithm. The synergy-based approach utilizes metrics such 
as Mean Squared Error (MSE), cepstrum distance-based 
endpoint detection, recognition accuracy, and cancellation 
index to evaluate the algorithm’s proficiency in pattern rec-
ognition and control. In the learning from demonstrations 
approach, metrics revolve around skill reproduction and imi-
tation, ensuring that robots can successfully replicate human 
actions. Teleoperation’s likelihood of movement metric 
quantifies the accuracy of operator-guided actions. Active 
learning involves querying participants for feedback and 
using Euclidean distance for similarity assessment. Lastly, 
learning from complex tasks encompasses metrics such as 
complex skill reproduction, stiffness indication, and log-like-
lihood measurement, offering insights into the algorithm’s 
understanding of intricate tasks. These diverse metrics 
collectively form a comprehensive framework for assess-
ing the capabilities of various human robot collaboration 
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algorithms. Table 2 shows a comparison of learning tech-
niques aimed at enhancing human–robot collaboration.

3.3  Brain‑Computer Interfaces

During the early 1970s, researchers discovered a way to 
enable real-time communication that allowed a person to 
control the movement of a cursor within a maze using the 
event-related potentials (ERPs) found in human EEG signals 
[62]. In the 1990s, researchers developed a complex model 
that translated brain signals from rats into real-time com-
mands for controlling a robotic arm [63, 64]. In the early 
twenty-first century, BCI has grown rapidly, with more 
researchers dedicating themselves to the field. Birbaumer 
et al. demonstrated an alternative communication method for 
a paralyzed patient using the slow cortical potential in EEG 
[65]. Taylor and her colleagues were able to decode real-
time movement intentions from cortical neurons in monkeys, 
using the decoded information to control a neuroprosthetic 
device [66]. Schwartz et al. achieved a milestone by dem-
onstrating that monkeys could learn to feed themselves by 
controlling a mechanical arm with their brain activity [67]. 
Later, noninvasive EEG based BCI was used to detect dif-
ferent human intentions, which were then applied to con-
trol a robotic arm [68]. A telepresence [69] robot assisted 
humans in completing complex tasks in a short amount of 
time, specifically for disabled individuals. Recently, robotic 
arms not only receive output from the brain but also feed 

sensory signals back to the brain, which stimulates the sen-
sory cortex. This allows paralyzed patients to experience the 
sensation of touch through a robotic arm for the first time 
[70]. In addition to assisting patients with motor disorders, 
BCI systems have become a useful tool for improving the 
quality of life for elderly people [71].

Although invasive BCI renders more accurate and precise 
control, noninvasive BCI is more feasible for humans due 
to its lower risk of causing permanent damage to the brain. 
Furthermore, the evolution of noninvasive BCIs, specifi-
cally EEG-based systems, has been complemented by the 
development of advanced engineering algorithms, such as 
machine learning [72], that help address the challenges of 
low resolution and high signal-to-noise ratio in brain signals.

BCIs have been applied to various fields to expedite 
human-robotic interaction. One of their major applications 
is in rehabilitating individuals with motor impairments, such 
as paralysis. BCI systems allow such individuals to interact 
with and control external prosthetics using their own neural 
activity, which facilitates an increase in mobility restoration 
and rehabilitation. Moreover, there has been a growing inter-
est in exploring the potential of human–robot collaboration 
in recent years. Furthermore, BCIs are not only capable of 
fostering interaction among those who have lost their ability 
to communicate to restore communication functionality but 
also provide a promising strategy for increasing information 
transmission rates between humans and robots. Additionally, 
the latest advancements in BCI technology have allowed 

Table 3  Metrics in Human Robot Collaboration

Approach Metrics Sources

Compliance Control-based a. Difference between the reference frame and the given frame
b. Stiffness estimation
c. Force and torque correlations
d. Motion generated by admittance controller against the desired trajectory

[11–16]

Human Performance-based a. Motion estimations – enables robots to follow the motion of its human partner
b. Recursive least square method
c. Accuracy of stiffness estimation

[17–20]

Model-learning a. Correlation between components
b. Motion recognition rate
c. Mean Squared Error

[21–23]

Synergy-based a. Mean Squared Error (MSE): Difference between the recorded pattern and the reconstructed 
pattern

b. Cepstrum distance-based endpoint detection method
c. Recognition accuracy: (Same as accuracy in neural networks)
d. Cancellation index

[24–31]

Learning from Demonstrations a. Skill reproduction to check whether the robots have performed the desired task successfully or 
not

b. Kinesthetic teaching metric of Imitation: a time dependent similarity measure
c. Teleoperation—Likelihood of movement

[39, 46, 47]

Active Learning a. Querying participants for feedback, Euclidean distance measure [55]
Learning from Complex Tasks a. Complex skill reproduction

b. Stiffness indicator
c.Log-likelihood measure

[56–59]
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for more intuitive and human-like communication between 
humans and robots by detecting cognitive mental states such 
as attention, workload, and emotions, which correspond with 
affective states. These breakthroughs in BCI research have 
led to a greater potential for future applications in the field 
of human–robot interaction.

3.3.1  Brain‑Computer Interface Prosthetic in Rehabilitation

Compared to traditional rehabilitative methods that require 
long-term training with a physical therapist, BCI-assisted 
rehabilitation has shown promising results in aiding stroke 
recovery [73] and increasing the accuracy of repetitive reha-
bilitative and assistive motions. Furthermore, BCIs remove 
limitations on the time and capabilities of the therapist, mak-
ing it a more efficient and accessible rehabilitation option. 
Specifically, BCIs focusing on motor neuro-prosthetics, such 
as interfaces with computers or robotic arms, aim to either 
restore movement in paralyzed individuals or provide assis-
tive devices to improve their mobility. The development 
of a low-cost and portable assistive BCI system [74] has 
benefited more individuals in the recovery process, provid-
ing a more user-friendly and affordable alternative that can 
be adopted by a wider range of potential users. The BCI-
rehab system can establish a continuous link between neural 
activity and robotics, enhancing the mobility of physically 
disabled individuals. The system’s robust and reliable decod-
ing strategy translates the intention of gait initiation to an 
autonomous ambulatory robot, thus promoting the recovery 
of lower-limb function [75]. Robotic-assisted BCI devices 
can aid in the recovery of walking ability for individuals who 
have experienced a stroke or spinal cord injury.

These devices achieve this through intensive and task-
oriented training [76], as well as by regulating a functional 
electrical stimulation system for ankle movement [77]. In 
contrast to lower-limb rehabilitation, upper-limb recovery 
demands more complex and precise movements. Therefore, 
BCI-robotic systems developed for upper-limb recovery 
must control higher degrees of freedom to provide potential 

motor assistance and rehabilitation. Experimental results 
have demonstrated that BCI-based robotic assistance allows 
patients to perform self-initiated, real-time upper-limb 
reaching movements with continuous control after expe-
riencing a stroke [78]. In a study by [79] the correlation 
between particular EEG rhythms in the brain and upper limb 
motor recovery in stroke patients was examined. The study 
also revealed that BCI systems coupled with robotic assis-
tive devices provided passive assistance to hand movements 
and showed potential for clinical rehabilitation. Bidirectional 
BCI has improved the performance of robotic arms by ena-
bling not only top-down neural control of prosthetic arms, 
but also by stimulating the somatosensory cortex of the 
human brain to generate natural tactile sensations [80, 81]. 
The Table 4 provides a summary of the different approaches 
and their applications in BCI-assisted rehabilitation and 
robotic devices for human motor function recovery.

The remarkable finding is that humans can experience 
an illusion of body ownership when operating robots, 
even when there is a time discrepancy. This phenomenon, 
termed the 'ownership illusion,' involves a perceptual trick-
ery that convinces the brain of ownership or agency over 
non-human bodies, such as robots or avatars in virtual envi-
ronments, often induced through visual or haptic feedback. 
Furthermore, this sense of ownership is stronger in cases 
where the robot is controlled through BCI, as opposed to 
motion control [82]. The intention to move and receiving 
feedback on performance can increase the sense of owner-
ship that humans feel towards prosthetic or robotic devices, 
which provides positive encouragement to users and could 
potentially impact the development of BCI systems for 
neuroprosthetics.

3.3.2  Brain‑Computer Interface in Robotics

BCI extends beyond assisting and compensating impaired 
patients. Mobility BCI systems not only compensate for 
mobility impairments but also promote cooperation and 
collaboration between humans and robots in various fields. 

Table 4  Approaches for BCI-assisted rehabilitation and robotic devices

Approaches Description

BCI-assisted rehabilitation Aiding stroke recovery and increasing the accuracy of repetitive rehabilitative and assistive motions. [73]
Providing a more user-friendly and affordable alternative in the recovery process [74]
Decoding strategy translates the intention of gait initiation to an autonomous ambulatory robot and promoting the 

recovery of lower-limb function. [75]
Robotic-assisted BCI devices Aiding recovery of walking ability for individuals who have experienced a stroke or spinal cord injury [76]

Perform self-initiated, real-time upper limb reaching movements with continuous control after experiencing a 
stroke

[78, 79]
Bidirectional BCI Improved the performance of robotic arms by enabling top-down neural control of prosthetic arms and stimulat-

ing the somatosensory cortex to generate natural tactile sensations [80, 81]
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Currently, a lot of research is focused on the development 
of BCI-controlled, especially teleoperated, mobile robots for 
commercial use [83, 84]. BCI technology makes it possible 
for a human to directly control a humanoid robot in remote 
locations with their intentions, with mental synchronization 
between the human operator and robot and minimized the 
operation bias, if the speed and accuracy requirements are 
met. By using EEG signals as a command, a humanoid robot 
can be controlled to pick up a user-selected object and navi-
gate to a specific location [85]. Chae et al. described a new 
BCI system for controlling humanoid navigation through 
asynchronous EEG [86], which offers flexible direct control 
to navigate a humanoid robot with real-time feedback from 
camera vision and dynamic mental status recorded from 
EEG. Kubacki and Jakubowski investigated the possibility 
of using a hybrid of brain signals and eye movements to 
control a robot, enabling the manipulation of objects while 
avoiding obstacles [87]. Steady-state visual evoked poten-
tials (SSVEPs) have proven to be effective in BCI systems 
due to their ease of use and high accuracy. In 2022, Farmaki 
et al. developed a system for navigating a robotic car using 
an online SSVEP-based BCI [88]. Users could drive this 
robotic car in real-world conditions with flexible movement 
and precise collision avoidance. The use of SSVEP-based 
BCI has been shown to offer promising accuracy and fast 
information transfer rates (ITRs) even for new users without 
prior training [89]. Therefore, synchronous SSVEP-based 
systems, which usually need a synchronization cue for the 
beginning of each task, are frequently employed in telepres-
ence scenarios where the robot is pre-trained using program-
ming by demonstration (PbD). Programming by demonstra-
tion (PbD) introduces imitation learning to the robot [90], 
which is independent of the BCI system. As a result, the 
robot can be effectively trained in the factory, and there is no 
need for users to undergo any training sessions while using 
the BCI system. Table 5 summarize various approaches for 
BCI applications in robotic devices.

3.3.3  Brain‑Computer Interface in Communication

Communication is a crucial process for expressing oneself 
and interacting with others. Unfortunately, this process can 
pose severe challenges for individuals suffering from motor 
neuron disorders, such as amyotrophic lateral sclerosis 

(ALS), which progressively disables mobility and impairs 
communication abilities [91]. BCI presents a promising 
strategy to restore communication between patients and their 
environment, providing an alternative solution for improved 
communication in individuals lacking voluntary muscle 
control compared to traditional communication technol-
ogy [2]. A reliable neural speech interface was established 
for paralyzed and communication impaired individuals by 
recording single-unit firing from the speech motor cortex. 
This breakthrough provides a significant opportunity for the 
development of neural prostheses and improvement of the 
BCI system [92].

The BCI speller is a commonly used communication 
interface for individuals with disabilities Improving the 
communication speed of the BCI is essential and presents a 
challenge in BCI-speller research. High-performance intra-
cortical BCIs have been identified as potential assistive com-
munication systems, enabling paralyzed individuals to type 
continuously at a rate of up to 30–40 characters per minute 
using information transfer rate (ITR) [93]. The fast P300-
based BCI speller can achieve an ITR of up to 5.32 bits/
second, approximately 60 characters (12 words) per minute 
[94], which is overwhelming for invasive and noninvasive 
BCIs. Beyond “spell”, developed a BCI-controlled robot sys-
tem to “write” characters in a pixel-based interface, enabling 
the efficient writing of both ideogram and phonogram [95]. 
Velasco-Alvarez et al. developed a communication system 
that´ connects the brain and a smartphone, allowing users 
to open an app, spell out words, and send messages using 
a BCI speller [96]. Table 6 provides a summary of differ-
ent methods utilized for implementing BCI applications in 
communication.

3.3.4  Brain‑Computer Interface in Cognition Detection

Human cognitive state detection is an essential field for both 
humans and robotics. It can help disabled users with active 
robotic assistance, as well as detect human cognitive states. 
BCI has also been applied to the recognition of cognitive 
states, with the goal of improving communication between 
individuals and machines by recognizing human brain states 
such as emotions. BCI compensates for disruptions caused 
by a user's emotional state, allowing intentions to be cor-
rectly interpreted. BCI applications that recognize human 

Table 5  BCI-based approaches in robotics

Approach Description

BCI-controlled mobile robots EEG signals can be used as a command to control a robot to pick up a user-selected object and 
navigate to a specific location [85–87]

SSVEP-based BCI for robotic car navigation Online SSVEP-based BCI, allowing for flexible movement and precise collision avoidance [88]
SSVEP-based BCI in telepresence scenarios Using programming by demonstration, which introduces imitation learning to the robot [89, 90]
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intention adapt to changes in the affective states of humans 
and thereby facilitate the recognition and detection of human 
cognitive states, improving the human-robotic interaction.

3.3.5  Brain State Detection

The ideal interaction between humans and robots should 
resemble human–human interaction, which requires con-
tinuous detection and prediction of human intention [99]. 
An intention detection model has been built using machine 
learning algorithms, enabling to distinguish user’s move-
ment intention from non-invasive EEGs [100]. The detection 
of fatigue levels is also used in a wide range of applications, 
as drops in attention levels and increases in cognitive fatigue 
can affect the accuracy of non-invasive BCIs [101].

Studies have shown that mental fatigue may contribute 
to poorer BCI performance, highlighting the importance of 
fatigue detection coupled with a training system to ensure 
practical clinical efficacy according to the detected or pre-
dicted fatigue or mental state [102]. To detect emotional 
changes and monitor the status of a mobile terminal, Wang 
et al. designed an intelligent wearable helmet [103]. Three 
negative emotional levels (anxiety level, fatigue level, con-
centration level) monitoring using BCI potentially avoid 
improper operation and improve operation safety. Table 7 
provides a summary of various brain state detection methods 
along with their corresponding descriptions.

3.3.6  Emotion Detection

Comprehensive cognition, including emotions, enables 
universal social communication, an essential topic in 
human–robot interaction. Emotions are necessary for cog-
nition to manage human behavior, helping people respond 

appropriately to their surroundings and make decisions. 
Emotions can be reflected in facial expressions, body lan-
guage, and speech, enabling simple communication between 
humans and machines or robots [105]. One of the differ-
ences between humans and robots is that humans have emo-
tions and can hide their feelings. Thus, accurately modeling 
and quantifying the emotional states are important in the 
assessment of the emotions of human [110]. BCI system 
enables emotion detection from human subconsciousness 
and directly communicates between brain states and the 
outside world by identifying the positive and negative emo-
tions of the users. When a human controls and monitors 
robot navigation, the BCI system distinguishes between 
satisfaction and dissatisfaction based on the correctness 
of the robot’s performance, and the immediate feedback is 
subsequently conveyed to the robot [106]. This can correct 
and improve the behavior of the robot to maximize human 
satisfaction for better interaction between the robot and the 
human. Furthermore, regarding the collaboration between 
robots and humans, robots should be able to adapt their 
behaviors according to the human’s mental or physical states 
and be more socially acceptable. [107] proposed mapping 
the human brain into intelligent robots by projecting the 
detected human feelings to a behavioral model of the robot, 
which allows the robot to detect and react to humans. For 
the detected signals out of the range of pre-defined catego-
ries, the robot will ask the users their feelings and enhance 
the communication and interaction between humans and 
robots. Furthermore, researchers suggested that it is helpful 
that the robot can understand the behavior and internal brain 
states, especially the stress level of humans, when the robot 
interacts with humans for effective response [108]. Table 8 
provides a summary of various emotion detection methods 
along with their corresponding descriptions.

Table 6  Approaches for BCI-
based communication systems

Approach Description

BCI for Communication Improved communication in individuals lacking voluntary 
muscle control. [2, 91]

Single-Unit Firing Recording Recording single unit firing from the speech motor cortex. [92]
BCI Speller Communication interface for individuals with disabilities. [93,

94]
Beyond “spell” System to “write” characters in a pixel-based interface. [97, 98]
Brain-Smartphone Connects the brain and a smartphone. [96]

Table 7  Brain State Detection utilizing BCIs

Approach Description

Intention detection model Detect and predict human intention through non-invasive EEGs [99, 100]
Detection of fatigue levels The ability to detect changes in attention levels and cognitive fatigue. [101, 102]
Intelligent wearable helmet Monitoring emotional changes and status of a mobile terminal [104]
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The ability to identify emotions using BCI can provide 
humans with more natural ways of effectively controlling 
and interacting with robots. This requires accurate detection 
algorithms and higher information transfer rates to enrich 
the entire communication process, leading to a more natural 
and effective user experience. This potential for improved 
interaction could open new opportunities for applications. 
Additionally, recognizing human emotional states would 
allow for automatic system adaptation to humans or, it may 
predict their intentions, enhancing usability, and minimiz-
ing frustration, leading to an improved human experience 
with robots.

3.3.7  Metrics in Brain‑Computer Interface (BCI) Systems

As depicted in Table 9, in the realm of Brain-Computer 
Interface (BCI) systems, an array of metrics is employed 
to evaluate their performance and usability. These metrics 
encompass various dimensions of system functionality and 
user experience. Accuracy provides insight into the reliabil-
ity of the interface. Information Transfer Rate (ITR) quan-
tifies the amount of information successfully transmitted 
from the user’s brain to the computer, indicating the speed 
and efficiency of communication. Task operation time and 
Decoding time assess the speed at which users can perform 
tasks and the system can decode their intentions, respec-
tively. Response time measures the duration between the 
user’s intent and the system’s response, influencing real-
time interactions. Success attempts gauge the number of 
accurately completed tasks, reflecting the system’s practi-
cal usability. Post-session assessment correlations analyze 
the consistency between users’ self-assessments of their 
experience and objective system performance, providing 
valuable feedback for system refinement. Collectively, these 
BCI evaluation metrics offer a comprehensive framework 
for assessing the effectiveness, efficiency, and user-centered 
aspects of Brain-Computer Interface systems.

3.4  Emotional Intelligent Perception

The ability of robots to recognize human emotions is a com-
pelling attribute, especially in socially interactive devices 
such as assistive and educational robots. Emotion perception 

and recognition from face and body poses are extensively 
studied in human computer interactions and affective com-
puting. These expressions provide social cues to infer emo-
tions only by computer vision analysis of facial expressions 
and body movements. In general, there are two model rep-
resentations for emotion recognition. Some scholars argue 
that emotions comprise discrete entities and are categorized 
distinctly [111, 112]; in contrast, others suggest that con-
tinuous values define features that describe emotions [113]. 
Accordingly, facial expression and body gesture recogni-
tion methods are developed based on these model repre-
sentations. This section reviews state-of-the-art algorithms 
for classifying emotions using facial expressions and body 
gesture recognition. Finally, we look at eye-tracking emo-
tional-relevant features that can be applied to human–robot 
interactions.

3.4.1  Facial Expression Recognition

Facial expressions are an effective nonverbal communica-
tion method for conveying emotional information among 
humans [114, 115]. Additionally, they are reflective of vari-
ous human emotions and thoughts [116–118]. Consequently, 
countries across the globe share a high level of agreement 
in identifying emotions through facial expressions [119]. 
Recent research has even demonstrated that sixteen facial 
expressions occur in similar contexts worldwide, showcasing 
the universality of these expressions [114]. Facial emotion 
perception is influenced by two contrasting theories: cat-
egorical and dimensional. The categorical approach suggests 
that there are six fundamental emotions that are recognized 
universally: happiness, anger, sadness, surprise, disgust, and 
fear [120–124]. In contrast, the dimensional theory describes 
human emotions using a two-dimensional space, which con-
siders valence and arousal [125, 126]. Valence refers to the 
level of human pleasure on the pleasantness–unpleasantness 
continuum, while arousal considers the degree of energy of 
an emotional experience.

Some studies use a combination of dimensional and cat-
egorical theories to detect facial expressions [127–129]. In 
this section, we will primarily concentrate on deep FER 
(Facial Emotion Recognition) models that classify emotions 
categorically.

Table 8  Emotion detection utilizing BCIs

Approach Description

Emotion detection through BCI system EEG signals can be used as a command to control a robot to pick 
up a user-selected object and navigate to a specific location. [105, 
106]

Mapping human feelings to a behavioral model of the robot Enable robots to detect and react to human feelings. [92, 107]
Understanding human stress levels Effective response in human–robot interactions [108]
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Facial expression recognition (FER) is a computer vision 
technique used to recognize a human’s psychological state 
and emotions from an image or video sequence [130]. 
This makes it a practical tool for robots to automatically 
comprehend and recognize human facial expressions for 
better interactions. With the popularity of machine learn-
ing, recent studies have employed deep neural networks to 
decipher the emotions conveyed by facial expressions in an 
image [131]. These networks require large training datasets 

from real-world scenarios to handle emotion recognition 
in the wild. Overall, FER holds great potential for advanc-
ing the field of human–computer interaction, especially in 
the development of emotionally intelligent robots. As deep 
learning techniques continue to improve, we can expect to 
see even more accurate and effective emotion recognition 
in the future.

FER2013 is among the most popular databases and con-
tains 35,887 images that have been resized to 48 × 48 pixels. 

Table 9  Metrics in Brain-
Computer Interface (BCI) 
systems

BCI Metrics Applications Operation tasks Sources

Accuracy Rehabilitation Active walking [75]
Passive walking [76]
Virtual walking [77]
Upper limb motor imagery [78]

Robotics Directional navigation [83]
Motor imagery [84]
Location navigation [85]
Directional navigation [88]
Robotic task control [90]
Directional navigation [104]

Communication Text spelling [94]
Character writing [95]

State detection Limb motor imagery [100]
Robot navigation [106]
Robotic control [107]

Information Transfer Rate Robotics Motor imagery, directional navigation [86]
Directional navigation [88]

Communication Text typing [93]
Text spelling [94]
Character writing [95]
Send and read messages [96]

Task operation time Rehabilitation Drinking [74]
Hand motor imagery [81]

Robotics Motor imagery, directional navigation [86]
Target navigation [87]

Communication Character writing [95]
Send and read messages [96]

Decoding time Rehabilitation Active walking [75]
Response time Robotics Motor imagery [84]

Motor imagery, directional navigation [86]
Success attempt Robotics Motor imagery, directional navigation [86]

Target navigation [87]
Motor Arm control [109]

Communication Character writing [95]
Post session assessment Rehabilitation Hand motor imagery [79]

Hand motor imagery [82]
State detection Upper limb rehabilitation [102]

Cognitive tests [108]
Correlations State detection Picture stimulation [103]

Cognitive tests [108]
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These images were collected from Google image search API 
[132]. AffectNet [133] is another significant database that 
contains both categorical and dimensional models of facial 
expressions. It comprises over one million images gathered 
from various search engines on the internet. Most FER data-
bases typically classify emotions into the six fundamental 
expressions of happiness, anger, sadness, surprise, disgust, 
and fear, as well as a neutral state. For instance, Extended 
Cohn-Kanade (CK +) [134], Static Facial Expressions in 
the Wild (SFEW) [135], and Toronto Face Database (TFD) 
[136] are a few publicly available databases that contain 
these basic expressions and serve as benchmarks for FER 
models. These databases are essential for training and evalu-
ating FER models, and their availability enables research-
ers to compare the performance of different models. As 
FER continues to gain popularity in computer vision and 
human–computer interaction, it is likely that more advanced 
and diverse databases will become available in the future.

In the past, handcrafted features were typically used 
in laboratory settings for FER models. However, recent 
advances in deep learning have enabled us to utilize both 
neural networks and handcrafted features to learn dis-
criminative representations. For instance, researchers have 
employed local feature learning using Convolutional Neu-
ral Networks (CNN) and handcrafted features calculated by 
the bag-of-visual words (BOVW) model to classify different 
emotions in human faces [137]. In addition, experiments 
with Convolutional Neural Networks (CNNs) and Recur-
rent Neural Networks (CNN-RNN) have been conducted to 
classify basic expressions and evaluated on various emo-
tion databases [138]. Similarly, a Compact and Accurate 
K-dimensional representation of Emotion (CAKE) is used to 
learn emotions from static images [139]. These approaches 
have yielded promising results in FER, and as the field con-
tinues to evolve, it is likely that researchers will develop 
even more sophisticated models and techniques to improve 
the accuracy of facial expression recognition.

Li and Deng categorized deep FER neural networks 
into two groups based on their representations of static and 
dynamic features [140]. Static FER models extract spatial 
features to identify and classify human emotions from a sin-
gle image without taking temporal information into account. 
Many static FER systems consider multiple relevant fac-
tors, such as head pose, illumination, and facial morphology, 
for multitask FER learning. Some others leverage special 
tasks like facial landmark localization to enhance FER per-
formance [141, 142]. For instance, FaceBehaviorNet is a 
framework designed to analyze faces and extract all facial 
behavior features [143]. Hybrid Multitask Learning (HMTL) 
employs self-supervised learning to extract more valuable 
features in the FER domain [144]. Additionally, Emotion-
GCN is a multi-task learning (MTL) framework that lever-
ages expression classifiers, valence-arousal regressors, and 

a Graph Convolutional Network (GCN) to recognize facial 
expressions, [145].

Several FER approaches utilize lifelong learning to accu-
mulate information over time through deep networks. For 
instance, the packing-and-expanding (PAENet) method is 
a continual learning approach that enables the network to 
gradually incorporate new facial features such as face rec-
ognition, gender identification, and facial expressions [97]. 
Similarly, Compacting, Picking, and Growing (CPG) is an 
incremental method that facilitates continual learning of 
facial expressions and emotions [98].

Certain static FER methods are more attentive and exhibit 
greater sensitivity to various regions of human face. For 
instance, the Distract your Attention Network (DAN) lever-
ages underlying similarities in facial appearance and directs 
attention to multiple facial areas, generating a compre-
hensive attention map [146]. This allows for precise facial 
analysis of specific regions for both facial expression and 
attribute recognition, ultimately improving the accuracy of 
convolutional neural networks (CNNs) in emotion recogni-
tion [147]. The Deep Attentive Center Loss (DACL) method 
employs an attention mechanism to select significant fea-
tures and control sparse center loss, effectively classifying 
facial expressions in wild FER datasets [88]. Moreover, the 
Facial Motion Prior Networks introduce a new branch to 
produce a facial mask on facial muscle movements, further 
enhancing the performance of the FER framework [148].

Dynamic FER models leverage the temporal rela-
tions among frames in the facial expression sequence. For 
instance, EmoAffectNet is an emotion recognition frame-
work that models temporal dependencies across video 
frames [149]. Additionally, these models prioritize effi-
ciency and are well-suited for real-time applications and 
video processing. For example, an efficient neural network 
can extract features from a frame to predict individual emo-
tions, enabling real-time facial expression recognition [147]. 
Furthermore, efficient facial feature learning with wide 
ensemble-based convolutional neural networks has been 
shown to reduce redundancy and computations, resulting in 
actual ensemble performance improvements [150].

Following an extensive analysis of various real-time 
semantic segmentation models [151–154], a recent FER 
model based on the Mix transformer has been developed. 
This model integrates a self-attention mechanism, focusing 
on enhancing efficiency while maintaining high accuracy 
[155].

Some scholars have demonstrated that the performance of 
multiple networks can exceed that of an individual network 
[156]. In the context of static FER models, an ensemble 
ResMaskingNet combined with six other convolutional neu-
ral networks outperformed all individual networks on the 
FER2013 dataset for static images [157]. Ensemble methods 
are not only used to combine spatial information, but also 
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to integrate temporal information in dynamic FER models. 
For instance, optic flow and facial landmark trajectories can 
be fused into a spatial representation using multiple channel 
networks for dynamic FER systems [158, 159].

Static and dynamic vision-based FER models are com-
plemented by other modalities for recognizing expressions, 
such as audio or physiological channels. Some scholars 
consider audio to be a significant element for multi-modal 
information processing [160, 161]. For instance, the study 
of audio-visual emotion recognition proposes a visual facial 
expression feature extraction network that leverages knowl-
edge distillation for FER [162]. Moreover, the fusion of 
multiple modalities, such as RGB, 3D, and thermal images, 
can enhance the representation space and improve emotion 
inference [163].

Modern FER systems encounter several challenges, 
including issues with illumination, head pose, and identity 
bias [140]. Among these challenges, occlusion and non-fron-
tal head pose are two main challenges of deep FER models. 
As a result, various methods have been proposed to mitigate 
these issues. For instance, the Pyramid with Super Resolu-
tion (PSR) proposes a deep network to address the prob-
lems associated with pose, direction, and input resolution in 
the FER task [164]. Similarly, Region Attention Networks 
(RAN) have been developed to tackle FER issues pertaining 
to occlusion-robustness and pose-invariance [165]. Figure 1 
1 shows the categories of different deep facial recognition 
methods explained above. Table 10 presents an overview 
of various deep facial expression recognition (FER) meth-
odologies, providing recent neural networks employed for 
this purpose.

3.4.2  Emotional Body Gesture Recognition

In recent years, there has been a growing interest among 
researchers in the analysis of emotional body language, in 
addition to facial expressions. It has been observed that emo-
tions can also be conveyed through human body motion and 
pose [167]. Furthermore, dynamic body language can often 
provide additional cues for recognizing basic emotions, 
which complement facial expression recognition [168]. 
Therefore, the extraction of emotions from body pose can 

enable robots to better perceive and interact with humans, by 
being able to recognize emotional body language.

The study of emotions has expanded beyond facial 
expressions to encompass full body expressions. Recog-
nizing emotions from full-body expressions is more chal-
lenging than facial expression recognition (FER) due to the 
greater freedom of movement and substantial variability in 
body figures during motion. However, recent advances in 
computer vision and machine learning have demonstrated 
promising results in categorizing emotional body language 
from visual cues. The development of motion capture tech-
nologies has enabled automatic recognition of expressive 
movements [169]. Some methods have been developed that 
recognize human emotions from body movement and gesture 
dynamics, which are determined by the dynamics of motion 
cues such as speed and fluidity of movements [170]. Many 
researchers have focused on specific body parts for expres-
sion recognition, for example, the recent study suggests that 
there is a universal relationship between emotion and gesture 
elements, such as handedness [171].

The recognition of emotions from body gestures, or Emo-
tion Body Gesture Recognition (EBGR), involves several 
steps, including body detection, pose estimation, and learn-
ing representation [169]. In the first step, EBGR systems 
detect the entire body and remove the background to isolate 
the body gesture. The second step involves detecting and 
tracking the body pose, which entails estimating the con-
straints of a body model from a single frame or sequence 
of frames. Body pose detection and tracking are crucial as 
the body’s position and configuration change over time. The 
final step is applying learning models such as classification 
or regression to construct a relevant representation, includ-
ing feature extraction and emotion recognition. Research 
on recognizing emotions from body gestures is still in the 
beginning stages as most studies have focused on analyzing 
facial expressions. Nevertheless, some methods have been 
proposed for recognizing emotions from body gestures, and 
we discuss some of them below.

Empirical evidence suggests that machine learning tech-
niques, such as SVM, ensemble tree, decision tree, 1-near-
est-neighbour, k-nearest neighbor, and hidden Na¨ıve Bayes, 
have been successful in recognizing emotions from body 

Table 10  Models and methods in deep facial expression recognition

Approach Description Metrics

MultiTask Network A type of deep neural network that combines the outputs of multiple individual models for enhanced perfor-
mance. [138, 143–145]

Accuracy

Lifelong Learning Allowing robots to continuously learn and adapt to new situations and environments. [97, 98] Accuracy
Attention Models Focusing on specific parts of an input sequence, such as facial expressions or speech, to improve accuracy and 

speed. [146, 148, 155, 166]
Accuracy

Ensemble Networks Combines multiple models to improve accuracy and generalization in emotion recognition and human robot 
interaction. [157]

Accuracy
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gestures. For instance, Saha et al. [172] used these tech-
niques to categorize emotions into five states, namely anger, 
fear, happiness, sadness, and relaxation. Similarly, Castel-
lano et al. [170] applied these methods to extract dynamic 
representations of emotional body expressions, such as 
anger, joy, pleasure, or sadness. Moreover, Bayesian net-
works have also been utilized to classify upper-body gestures 
categorically [173]. These traditional methods have demon-
strated promising results in the field of emotion recognition 
from body gestures.

Researchers have identified different categories of basic 
emotions by tracking body motion trajectories. For instance, 
Sapin´ski et al. proposed a sequential model that catego-
rizes emotions based on the spatial location and orienta-
tion of joints of the skeletal structure, using a sequence of 
body movements [174]. Similarly, Glowinski et al. applied 
trajectories of the head and hands from frontal and lateral 
views to recognize emotions in the dimensional space [175]. 
Dynamic qualities of gestures are utilized to detect, measure, 
and group affective behavior based on their valence (posi-
tive, negative) and arousal (high, low).

Empirical research has established that real-world images 
are comprised of a plethora of nonverbal cues, including 
body gestures and contextual features, such as the back-
ground. In recent years, numerous convolutional neural 
network (CNN) models have been developed and trained to 
identify and classify human emotions, by combining both 
spatial and contextual information extracted from images, as 
well as data extracted from the bounding box. As reported in 
a recent study by Huang et al., these models have achieved 
significant success in emotion recognition by leveraging 
such information [176]. Specifically, the baseline CNN 
models used in the field of affective computing are typi-
cally trained to classify emotions into discrete categories, 
including but not limited to happiness, anger, and sadness, 
among others. Additionally, some models incorporate con-
tinuous emotion dimensions, such as valence, arousal, and 
dominance, to provide a more nuanced understanding of the 
emotional states conveyed by an image, as demonstrated by 
Kosti et al. [177].

In the realm of emotion recognition, body gestures are 
often used in conjunction with other modalities to enhance 
the accuracy of the results. For instance, Inthiam et al. uti-
lized multiple modalities, such as facial expressions, body 
gestures, and speech, to improve the emotion recognition 
of a social robot through a Hidden Markov Model [178]. 
Another study by Yang and Narayanan explored the rela-
tionship between speech and body gestures, specifically 
the head and lower and upper body motions, on emotional 
expression [179]. Similarly, Vu et al. developed a bi-modal 
emotional recognition system based on speech and gesture 
for classifying four emotional states: happiness, sadness, dis-
appointment, and neutrality [180]. In addition, Gunes and 
Piccardi proposed a bi-modal emotion recognition method 
that fuses body gestures and facial expression recognition for 
more accurate results [181]. Psaltis et al. (2016) employed 
a multi-modal system that combined facial action units and 
body gestures to classify five emotional states: surprise, hap-
piness, anger, sadness, and fear [182]. Furthermore, Kessous 
et al. (2010) developed a multi-modal system that incorpo-
rated features from facial expressions, body gestures, and 
audio components to recognize different emotional states 
of ten people speaking in other languages, such as French, 
German, and Greek [183]. In addition, they used a Bayesian 
classifier to recognize the different emotional states of ten 
people talking in other languages, including French, Ger-
man, and Greek. Empirical evidence suggests that multi-
modal systems outperform unimodal systems. Table 11 
shows the summary of different emotion body gesture rec-
ognition methods that we reviewed in this section.

3.4.3  Emotion Recognition by Eye‑Tracking

In the field of emotion recognition, eye-tracking has emerged 
as a valuable modality alongside facial expressions and 
body gestures. Eye-tracking technology involves moni-
toring the point of gaze where the human eyes focus on a 
visual stimulus [184]. Eye-tracking devices such as desktop 
eye-tracking and mobile eye-tracking integrated into light-
weight glasses or head-mounted displays collect data that 

Table 11  Emotional Body Gesture Recognition Methods

Approach Description Metrics

Traditional ML Methods Classification using machine learning algorithms such as SVM, decision tree, 1-nearest neigh-
bor, k-nearest neighbor, and hidden Naive Bayes. [170, 172, 173]

Accuracy

Tracking Body Motion Trajectories Categorization of emotions based on the spatial location and orientation of joints of the skeletal 
structure

[174, 175]

Accuracy

BodyGesturesand
Contextual Features

Classify human emotions, by combining both spatial and contextual information [176] Accuracy

Multi-Model Systems Recognition of emotions from body gestures in conjunction with other modalities to enhance 
the accuracy of the results [178, 179, 181–183]

Accuracy
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robots can use to detect human emotions. Robots can uti-
lize various emotional-relevant eye features such as pupil 
diameter and position, motion speed of the eye, or pupillary 
responses. Machine learning algorithms, such as support 
vector machines (SVM) and neural networks, are used to 
classify emotions based on eye-tracking data. Pupil diam-
eter is associated with changes in emotions and cognitive 
processing [185]. Zheng et al. combined pupil diameter with 
EEG signals and used an SVM classifier to classify human 
emotions [186]. Aracena et al. employed neural networks 
to classify human emotions while viewing images based 
on pupil size and position [187]. Pupil motion analysis is 
another technique used in emotion recognition systems to 
track the speed of eye movements [188]. In this study, arti-
ficial neural networks were used to classify four emotions: 
neutral, disgust, funny, and interested. In addition, Alhargan 
et al. recognized the affective state of players interacting 
with a virtual gaming environment using pupillary response 
features [189]. The Hilbert transform was employed in this 
study to improve the emotional recognition performance in 
the arousal and valence model. Table 12 summarizes the 
various eye-tracking methods for emotion recognition that 
we have reviewed in this section.

3.4.4  Metrics in Emotion Recognition Approaches

As depicted in Table 10, 11, and 12, Emotion recognition, a 
pivotal aspect of human robot interaction, employs a spec-
trum of metrics across various methodologies to gauge 
accuracy and effectiveness. In the realm of deep facial 
expression recognition, diverse approaches harness metrics 
such as Accuracy to quantify the precision of Multitask Net-
works, Lifelong Learning paradigms, Attention Models, and 
Ensemble Networks. In the context of emotional body ges-
ture recognition, traditional Machine Learning methods and 
models tracking body motion trajectories utilize Accuracy 
to assess classification performance.

Similarly, strategies incorporating both body gestures 
and contextual features focus on achieving high Accuracy 
through combined spatial and contextual information.

Meanwhile, multi-model systems fuse body gesture anal-
ysis with other modalities to enhance recognition accuracy. 

In the realm of eye-tracking based emotion recognition, 
metrics like Pupil Diameter and Pupillary Response are 
exploited to infer emotional states. Metrics like Gaze Posi-
tion and Pupil Size feature prominently in methodologies 
using pupil size and position as indicators of emotion, and 
the analysis of Pupil Motion proves essential for classify-
ing emotions based on eye movement speed. These diverse 
metrics collectively underscore the efficacy and accuracy 
of varied emotion recognition paradigms across different 
modalities.

4  Discussion on Future Directions

The development of robots capable of collaborating closely 
with humans in a shared environment has spurred the emer-
gence of the human–robot interaction, which is still in its 
early stages. As outlined by [190], several approaches have 
been proposed that establish general principles of this field. 
While preliminary investigations have focused on basic 
motor tasks, such as assisting with object manipulation or 
robot-patient interaction, more complex applications are 
envisioned, including working with therapists, guiding 
individuals with visual impairments, and beyond. While the 
interaction dynamics for these scenarios may differ from 
current research outcomes, the theories and insights gained 
from the study of human–human interaction can provide 
valuable directions for the advancement of human–robot 
interaction.

In recent years, the field of human–robot collaboration 
has shown promising developments in the design of algo-
rithms that can enhance the efficiency of robots operating in 
the presence of human partners. These advancements have 
paved the way for robots to assist humans in performing 
tasks that may be dangerous, repetitive, or require a high 
degree of precision. The potential applications of such 
robots span several industries, including manufacturing, 
healthcare, and logistics, and can significantly improve pro-
ductivity. Additionally, these robots can significantly reduce 
the physical demands placed on human workers in hazardous 
environments, enabling them to work more comfortably and 
safely.

Table 12  Emotion Recognition (ER) methods using eye-tracking

Approach Description Metric

Pupil Diameter Pupil diameter is associated with changes in emotions and cognitive processing. [185] Pilot testing
Pupil Size and Position Pupil size and position are used to classify human emotions while viewing images. [187] Gaze position 

and pupil 
size

Pupil Motion Pupil motion analysis tracks the speed of eye movements and is used to classify emotions. [188] Accuracy
Pupillary Response Pupillary response features are used to recognize the affective state of players interacting with a 

virtual game. [189]
Accuracy
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BCI-based HRI is an emerging field that utilizes human 
brain activity to control robotic behavior, enabling adapt-
ability to changing collaborative requirements. This tech-
nology has the potential to overcome the current limita-
tions of preprogrammed industrial robots, which are only 
capable of performing fixed, repetitive tasks. However, 
despite its potential, there are still several challenges that 
must be addressed. One significant limitation of BCI-
based HRI is that the majority of current applications are 
conducted in laboratory environments under strict condi-
tion control, which can limit the generalizability of the 
findings to real-world scenarios. Additionally, BCI sys-
tems are susceptible to interference from the environment, 
and the real-time decoding of brain signals and informa-
tion transfer rate can significantly impact the performance 
of human–robot interactions. In the commercial field, the 
design and implementation of HRI systems must consider 
a diverse range of factors specific to the application envi-
ronment. To improve the collection of brain signals, it is 
crucial to develop high signal-to-noise ratio data collection 
and transfer systems. Portable, noise-insensitive, and com-
fortable headset systems are required to ensure relatively 
pure brain activity is captured for long-term use. Effective 
decoding systems require ideal analysis algorithms that 
can achieve fast and accurate signal processing and infor-
mation transfer. Despite the limitations of BCI-based HRI, 
its potential to enhance human–robot collaboration and 
increase productivity in various industries such as manu-
facturing, healthcare, and logistics is significant. Further 
research and development are needed to overcome the 
current limitations and address the practical challenges 
associated with the use of BCI-based HRI in real-world 
applications.

BCI-based HRI presents further limitations related to the 
performance of human commands decoding and the condi-
tion of human mental state level. The requirement of high 
concentration in control, operation, and communication to 
the robotics restricts the feasibility of sophisticated inter-
actions in diverse conditions. Moreover, the occurrence of 
performance degradation under heavy mental tasks is com-
mon, making a good mental state a necessary requirement 
in avoiding performance deterioration. As a compensa-
tory approach, hybrid interfaces in HRI systems have been 
proposed to improve the accuracy of robotic control and 
further facilitate the performance of human–robot inter-
action. With hybrid multimodal bioelectrical signals [87, 
191, 192], the interaction can provide more stable motor 
control of a robotic system. In addition, the combination of 
BCI and computer vision techniques enables flexible and 
effective control with real-time visual feedback, leading 
to the potential of an efficient human and robot interaction 
through close-loop HRI with neurofeedback [86, 193]. These 
emerging hybrid interfaces have the potential to overcome 

the limitations of BCI-based HRI and enhance the overall 
performance of human–robot interaction.

The development of emotionally intelligent robots has 
shown great potential in a wide range of fields, including 
but not limited to education, healthcare, and services. Emo-
tionally intelligent educational robots have the capability 
to adapt their teaching styles by detecting and interpreting 
the emotional cues present in the user’s facial expressions 
or body gestures. Furthermore, these robots can play a cru-
cial role in assisting autistic children in understanding and 
identifying other people’s emotions. In a collaborative envi-
ronment, robots equipped with emotion detection abilities 
can track the emotional state of users, such as their stress 
levels and fatigue, and adjust their behaviors accordingly 
to ensure efficient and effective interaction. Additionally, 
emotionally aware robots can play a key role in detecting 
fraud and scams in the service industry by determining the 
honesty of the human’s behavior. As the technology in the 
field of emotionally intelligent robots continues to evolve, 
there will be numerous opportunities for further advance-
ment and refinement, leading to a significant impact on the 
way robots can be utilized to improve human lives.

In the realm of emotionally aware robotics, the integration 
of multiple channels of communication data has shown great 
promise for enhancing emotion perception capabilities. By 
fusing physiological signals from multiple modalities, such 
as EEG and EMG, with computer vision techniques such 
as facial expression and body gesture recognition, a mul-
timodal approach has been shown to yield higher accuracy 
in emotion recognition compared to a unimodal approach. 
As such, a crucial direction for future research in this field 
is the development of advanced data fusion techniques that 
can effectively integrate the data from various modalities 
to further improve the accuracy of emotion recognition in 
robots. With the advent of machine learning algorithms and 
accessible technologies such as affordable cameras, non-
invasive EEG, and smart portable devices recognizing and 
conveying emotions to robots are more feasible. This allows 
emotionally intelligent robots with the ability to adapt their 
behaviors according to their social interactions with humans. 
However, multimodal systems require new deep learning 
models to apply to heterogeneous data. Also, training such 
deep learning architectures requires realistic datasets for 
HRI contexts. As a result, deep learning models adapted 
for fusing numerous features and new dataset. The integra-
tion of human–robot cooperative control, brain-computer 
interfaces, and emotional intelligent perception has the 
potential to revolutionize various industries, such as health-
care, manufacturing, and service sectors. The use of robots 
in rehabilitation can provide patients with the opportunity 
to practice their motor skills and improve training quality. 
In manufacturing, tasks that require physical interaction 
between robots and humans can be made more efficient 
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and of higher quality through the exchange of rich haptic 
information during compliant movements. However, future 
directions in this area require the development of new deep 
learning models and the use of realistic datasets for train-
ing such models. The continued advancement of technology 
and the use of multimodal systems can ultimately facilitate 
physical and emotional collaboration between humans and 
robots in a variety of scenarios.

5  Conclusion

This paper provides a comprehensive review of critical 
approaches to human–robot interaction (HRI), with a par-
ticular emphasis on three crucial areas that have significant 
implications for the future of HRI. The first area examines 
popular techniques for human–robot collaboration, includ-
ing compliance control-based, human performance based, 
model learning-based, and synergy-based methods, as well 
as newer techniques such as learning from demonstration, 
active learning, and learning from complex tasks. The sec-
ond area delves into cutting-edge methods for utilizing brain 
signals to enhance the interaction between humans and 
robots, particularly emphasizing areas such as rehabilitation, 
robotics, communication, brain state detection, and emotion 
recognition. The third area discusses innovative techniques 
for transferring emotions from humans to robots, including 
an explicit focus on facial expression recognition and emo-
tion recognition through body gestures and eye-tracking to 
create an emotionally intelligent perception for a robot.

These approaches are revolutionizing industries, with 
applications in healthcare, manufacturing, and domestic set-
tings, demonstrating the significant potential of HRI to trans-
form everyday interactions and operational efficiencies. In 
healthcare, it enables robots to assist in rehabilitation, offer 
support in surgeries, assist autistic children, and detect stress 
levels to improve patient care. In manufacturing, HRI facili-
tates safer and more precise production processes, enhancing 
worker productivity and safety. Furthermore, in domestic 
settings, emotionally intelligent robots are emerging as adap-
tive home assistants capable of recognizing and responding 
to user emotions and decoding human commands. These 
applications demonstrate the significant potential of HRI to 
transform everyday interactions and operational efficiencies 
across varied sectors.

Overall, this review provides valuable insights and direc-
tions for the field of HRI, laying a solid foundation for future 
studies. We have identified key modalities for HRI, including 
control methods for human–robot collaboration, brain-com-
puter interfaces for direct neurological commands, and the 
recognition of human emotions by robots. Additionally, our 
paper presents innovative methods to enhance multimodal 
HRI systems, incorporating brain signals and visual cues 

for more effective collaboration. By delving into current lit-
erature, we have highlighted the latest trends and emerging 
frontiers in the field. The development of systems capable 
of accurate perception and response to human emotions, 
adaptive behavior, and effective interaction necessitates a 
multimodal approach. Consequently, our work contributes 
to a comprehensive understanding of the diverse modalities 
necessary for unlocking the full potential of human–robot 
interaction, paving the way for groundbreaking advance-
ments in this dynamic and rapidly evolving field.
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