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Abstract
Coverage path planning (CPP) is in great demand with applications in agriculture, mining, manufacturing, etc. Most research
in this area focused on 2DCPP problems solving the coverage problemwith irregular 2Dmaps. Comparatively, CPP on uneven
terrains is not fully solved. When there are many slopy areas in the working field, it is necessary to adjust the path shape and
make it adapt to the 3D terrain surface to save energy consumption. This article proposes a terrain-shape-adaptive CPPmethod
with three significant features. First, the paths grow by themselves according to the local terrain surface shapes. Second, the
growth rule utilizes the 3D terrain traversability analysis, which makes them automatically avoid entering hazardous zones.
Third, the irregularly distributed paths are connected under an optimal sequence with an improved genetic algorithm. As
a result, the method can provide an autonomously growing terrain-adaptive coverage path with high energy efficiency and
coverage rate compared to previous research works. It is demonstrated on various maps and is proven to be robust to terrain
conditions.

1 Introduction

Coverage Path Planning (CPP) is a fundamental problem
in the field of robotics, involving the determination of an
"optimal" continuous path that effectively covers a given
workspace while avoiding obstacles to ensure safe operation.
Its primary objectives are to minimize trajectory repetition
for efficiency in terms of energy consumption and time uti-
lization while maximizing coverage rate to achieve optimal
operational performance. The CPP technique finds applica-
tions across various domains, including but not limited to
vacuum robots [1, 2], lawnmowers [3], agricultural equip-
ment [4, 5], mine detectors [6], deep-sea mining machines
[7], space rovers [8] and underwater structure inspection [9].
These applications involve scenarios where mobile robots
are required to cover their designated work areas compre-
hensively. Themajor performance considerations include the
turning costs [10], the path length [11], and the coverage rate
[12].

Early research primarily concentrated on resolving the
coverage issue in 2Dmaps, which assume a flat terrain shape.

B Yangmin Xie
xieym@shu.edu.cn

Extended author information available on the last page of the article

The primary goal of 2Dalgorithmswas to identify an efficient
continuous path that covers irregularly shaped maps while
takingobstacles into account [13]. 2Dmethods canbe catego-
rized into traditional algorithms, heuristic-based algorithms,
anddeep learningmethods.Traditional algorithms frequently
employ a Zig-zag path pattern [14, 15] or the Spanning Tree
Coverage (STC) algorithm [16] to plan the coverage of tar-
get areas. The Zig-zag method necessitates simplification
for intricate 2D maps with irregular shapes and obstacles.
In such cases, the whole workspace is typically partitioned
into obstacle-free subsections. Zig-zag paths are indepen-
dently planned within each subsection and subsequently
connected to form a continuous path. STC is acknowledged
for its effectiveness in handling complex maps and non-
backtracking paths but often requires a down-sampling of
the grid map. Heuristic algorithms frequently employ swarm
intelligence [17, 18], which is inspired by the social behavior
of living organisms. This involves collaboration within the
swarm to iteratively optimize path generation through infor-
mation exchange. Swarm intelligence demonstrates strong
adaptability but generally requires significant computational
resources and a high level of environmental information
accuracy. Another newly developed Heuristic algorithm is
the Glasius Bio-inspired Neural Network (GBNN) algorithm
[19], which stands out by incorporating bio-inspired neu-
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ral network principles. It adapts to dynamic environments
through the use of difference equations and dynamic neural
activities. Deep learning methods primarily use reinforce-
ment learning to learn path-generation actions [20, 21]. It
trains the model through repeated episodes, and its per-
formance is sensitive to the setup of the reward function.
Additionally, it typically requires a considerable amount of
time for training to achieve stable and desirable results.

When dealing with distinct working areas, researchers
often needed to find the shortest path that connects all subsec-
tions once the paths within each subsection were established
[22]. This task resembles the well-known Traveling Sales-
man Problem (TSP) [23, 24]. The optimization challenge
was usually tackled using Genetic Algorithms (GA), where
the chromosomes represented the sequence of partitions and
the orientation of each partition’s template. More recently,
deep reinforcement learning techniques have emerged as an
alternative to traditional optimizationmethods for solving the
TSP, aiming to achieve higher time efficiency and improved
optimality [25].

However, the 2D CPP approaches introduced above are
not suitable for scenarios involving uneven terrains. In such
cases, the relationship between driving directions and the ter-
rain slope directions becomes the most critical factor affecting
energy efficiency [10]. As illustrated in Fig. 1, working on
paths that involve significant changes in elevation (up-down
paths) can result in nearly twice the energy cost compared
to following contours on the same 3D terrain. Consequently,
researchers have turned their attention to studying CPP in the
context of 3D terrains over the past decade.

Most 3D CPP studies have adopted the Zig-zag path pat-
tern inherited from the 2D cases [23], with modifications
made primarily to the cost function. In other words, the
energy consumption function now incorporates additional
parameters such as the local terrain inclination angle and the
heading direction angle of the vehicles. Some literature [26]
has introduced an additional term in the cost function, con-
sidering the path distance deformation and the corresponding
loss of coverage. However, these studies have not deviated
from the traditional straight-line path setting.

Contrary to the traditional approach, two notable stud-
ies [4, 10] have emphasized the significance of adapting the
local path shape to elevation changes in CPP. These works

highlighted that simply adjusting the driving direction along
straight lines, as depicted in Fig. 1(a), does not yield opti-
mal performance across complex 3D terrains. Instead, they
demonstrated that driving along the contours of the terrain,
as shown in Fig. 1(b), significantly reduces the cost of work
in terms of energy consumption and soil erosion.

Although these studies introduced the innovative concept
of terrain shape-adaptive curve patterns in CPP, they suffer
from certain limitations that hinder their widespread imple-
mentation. In one study [4], the entire field was decomposed
into subsections, and a contour curve was used as the seed
path, with parallel curves grown to cover each subsection.
However, this approachnecessitatesmanual field decomposi-
tion and seed curve construction, which is neither convenient
nor optimal. Moreover, it assumes a field without unpassable
areas, which is unrealistic in many real-world scenarios. The
other study [10] also requires pre-decomposition of the field
into subsections containing only monotonic surfaces [27].
This process is time-consuming and can result in fragmented
partitions when dealing with complex surface shapes. Con-
sidering these concerns, there is a need for a CPPmethod that
covers 3D terrains and offers a more convenient and practical
implementation process.

Firstly, it is worth noting that path planning for Unmanned
Ground Vehicles (UGVs) to avoid hazards on 3D surfaces
relies on terrain traversability analysis, an extensively stud-
ied field [28, 29]. The CPP problem, which is closely related
to terrain shapes, can potentially benefit from the findings
of traversability analysis for path generation purposes. By
leveraging these results, the need for complex cost function
optimization can be reduced, and the avoidance of unpassable
areas in CPP can be automatically achieved. Secondly, the
necessity of planning coverage paths within separate sub-
sections raises questions, as it often introduces additional
complexity in generating the subsections and leads to imprac-
tical disconnection of paths at the boundaries.

Based on the considerations mentioned above, we have
developed a terrain shape-adaptive CPP approach applica-
ble to ground vehicle scenarios navigating uneven terrains,
where energy efficiency is a critical factor. Examples include
agricultural activities in mountainous regions or rover oper-
ations on irregular surfaces of exoplanets. This incorporates
the following attractive and innovative features:

Fig. 1 The comparison of two
kinds of coverage paths (a)
driving up-down hills (b)
driving along the contours
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(1). It generates the coverage path in accordance with a
traversability map, which combines obstacle avoidance
capabilities with field coverage path planning.

(2). The paths automatically grow across the entire terrain
surface, eliminating the need for field decomposition
and simplifying the path planning process.

(3). It determines the optimal starting and ending points of
the paths to minimize total travel cost, utilizing a mod-
ified GA to solve the path connection problem.

The remainder of this article is organized as follows: In
Part II, we introduce the concept of a traversability map for
3D environments as a preliminary step. Part III outlines the
method for generating CPP paths based on the traversability
map. Part IV presents themodifiedGA algorithm designed to
address the path connection problem. In Part V, we provide
experimental data to validate and discuss the effectiveness of

our proposed methods. Finally, in Part VI, we conclude the
article, summarizing the key findings and implications of our
terrain shape-adaptive CPP approach.

2 Preliminary Study On Traversability
Analysis

The traversabilitymap used in this article is from the authors’
previous work on hazard avoidance path planning over 3D
irregular terrains [28]. For any discretized vehicle location on
the map, it provides the driving safety indexes in 8 driving
directions. As shown in Fig. 2, ai, j denotes the cell with i and
j as the indexes in the x and y directions, and Fi, j−(i+1, j+1)

denotes the safety costwhen the center of the vehicle is placed
at ai, j in the direction from ai, j to ai+1, j+1. If a cell has no
terrain data, it is marked as unknown, as the a3,3 in Fig. 2.

Fig. 2 The structure of the
traversability map
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For traversable areas, the local traversability indexes are
determined by the tilt angle of the vehicle. As shown in Fig. 3,
ZW indicates the vertical direction, and Z is the normal vec-
tor of the chassis plane with its vector elements denoted as
(z1, z2, z3). The angle between the two is the tilt angle α. The
details to calculate Z by the interacted relationship between
the vehicle and the terrain surface can be found in [28]. The
tilt angle is calculated by

α = arccos
Z · ZW

|Z||ZW | (1)

Denote ᾱ as the largest tolerable tilt angle, and the safety
cost of the vehicle at (i, j) facing the neighbor cell (m, n) is
calculated by

Fi, j−m,n =
{

tan(α) α < ᾱ

∞ α ≥ ᾱ
(2)

With the aforementioned traversaibility analysis, we can
utilize the results to further find proper driving direction with
efficient energy consumption for the CPP problem. Theoret-
ically, when the vehicle is driving along a contour, the pitch
angle is 0. In this case, the climbing energy is minimal and
the soil erosion is largely prevented. Therefore, we relate the
travel cost of a local path with the pitch angle of the vehicle
chassis. Simply speaking, driving in a directionwith a smaller
pitch angle is beneficial to save energy when the vehicle is
on a slope.

Y is the heading direction of the vehicle with its vector
elements denoted as (y1, y2, y3), where y1 = m − i and
y2 = n − j . Then y3 can be calculated as

y3 = z1y1 + z2y2
−z3

(3)

The pitch angle αp can be calculated as

αp = π

2
− arccos

Y · ZW

|Y||ZW | (4)

3 Coverage Path Generation

The most distinguishing feature of our method is that the
paths are not planned by an explicit rule. Instead, they grow
automatically by adapting themselves to the local terrain
shape and following the neighbour path in the meanwhile
to achieve terrain coverage. We accomplish this by follow-
ing two principles: (1) the growth of the path mimics the
shape of previous paths, and (2) the terrain adaption happens
only on terrains with considerable inclinations.

The operational flow of the method is shown in Fig. 4. In
the first step, the field is classified into several categories by
terrain classification rules so that the paths can grow by dif-
ferent criteria. The TSA path growth algorithm alternates
between two main functional modules: seed path growth
and subordinary path growth. A seed path autonomously
grows to adapt to the terrain shape without necessitating
shape mimicry. Once a seed path is established, the subor-
dinary paths emulate previous paths until their termination
conditions are met. The seed path and its subordinary paths
collectively form a set of coverage path curves. The algo-
rithm continues to extend this set until no new subordinary
paths can be generated, at which point it initiates a search
for a new seed path growth. The process terminates until the
required coverage percentage is achieved. In the following
content, we introduce the details of the method in a sequence
of terrain classification, seed path growth, and subordinary
path growth.

Fig. 3 The geometric
relationship between a vehicle
and the local uneven terrain
surface
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Fig. 4 The flowchart for coverage path growth
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3.1 Terrain classification

As illustrated in Section 2, the traversability analysis for the
uneven terrain provides a gridded map with directional driv-
ing safety indexes in 8 directions for all the locations in the
entire area. We can utilize the information for two purposes:
(1) to separate the passable area from the unpassable areas
and (2) to distinguish the flat areas from the uneven areas.
The former serves to prevent planning paths in dangerous
places, and the latter helps to build path planning criteria
based on the local terrain shape conditions. The traversabil-
ity map’s passable cells must exhibit dominance to ensure
a coherent and continuous path-growing space for effective
path-planning algorithms. The success of the solution hinges
on the prevalence of connected passable regions, as opposed
to scattered or discontinuous areas, to optimize path planning
outcomes.

As shown in Fig. 5, when projecting the 3D surface on
the horizontal plane with grids, they are categorized by the
corresponding traversability indexes Fi, j−(m,n) in Fig. 2. For
a cell ai, j , if any of the eight elements in Fi, j−(m,n) is larger
than some threshold value, the cell is considered unpassable.
Otherwise, it is passable. αs is a user-specified angle to dis-
tinguish between flat and slopy surfaces. For a passable cell,
if the maximum value in Fi, j−(m,n) is larger than tanαs , the
grid is a slopy cell; otherwise, it is a flat one.

Given the high-resolution nature of the original grid for
accurate traversability analysis, we find it necessary to down-
sample it to facilitate rapid path growth and to avoid serrated
paths caused by small local terrain variations. We denote the
downsampling factor as N . For an N ∗N patch (as illustrated
with N = 2 in Fig. 5), if it contains more than half unpass-
able cells, it is classified as an unpassable area; otherwise, it
is deemed passable. In the case of a passable area, if it has
more sloped cells than flat cells, it is categorized as a sloped

Fig. 5 Terrain shape classification

area; otherwise, it is considered flat. With all terrain cells
labeled by categories, they are prepared for the subsequent
path growth processes.

3.2 Seed path growth

A seed path grows by itself, without the need to follow the
shape of any other ones. For the very first seed path, its start
point is selected as the center point of the largest slopy area.
There are two reasons for this choice. (1) The seed path influ-
ences the shape of its subordinary paths. This choice provides
a well-defined initial adaptation to the three-dimensional ter-
rain, particularly effective in sloped areas, to achieve optimal
energy efficiency. (2) Initiating from the central region allows
for growth on both sides of the path, expanding the influence
area of the seed path and reducing the number of required
seed paths. It reflects the terrain shape tendency in uneven
areas. The covered area of the existing path accumulates and
updates as long as a newpath node grows.Denote the covered
area as Scov . The unfeasible area is the union of the covered
area and the unpassable area, denoted as � = Scov

⋃
Sup.

When a seed path grows into �, it stops. The left feasible
area is the complementary set of �, denoted as ��.

Start point auto-selection. When no more subordinary
path can grow in �� by following the existing ones, the algo-
rithm has to generate another new seed path. In this scenario,
the initiation point of a new seed path is identified in the
vicinity of the termini of existing paths, ensuring that the
newly growing paths closely align with previously expanded
regions, minimizing the gaps between different growing sets.
Local square areas around every endpoint of the paths are
examined as candidates for new starting points, as shown in
Fig. 6. Denote the index of an existing path as p and the
square areas at the two ends of the pth path as S p

1 and S p
2 ,

Fig. 6 Starting point auto-selection for a seed path
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respectively. The side length of the areas is denoted as lse. If
the coverage radius of a path is dpl , lse is usually selected as
2dpl . The percentages of the cells belonging to �� in all S p

1
and S p

2 are calculated, which are denoted as wpp
1 and wpp

2 .
The end area with the largest value ofwpp

1 orwpp
2 is selected

as the starting area for the new seed path. Denote the corre-
sponding path endpoint as pn . In Fig. 6, pn corresponds to
the S11 .

The cells belonging to �� in S11 are candidate spots for the
starting point of the following seed path. For each candidate,
calculate the percentage of the �� cells in the square with
length lss and centered at the candidate. The candidate point
with the highest percentage of �� cells wins, denoted as pns .
In Fig. 6, the red dot is the cell in S11 with the largest number
of �� in its neighborhood, so it is selected as the next starting
point for a new seed path. The operation above is to find the
optimal solution with a starting place that is close enough to
the ending locations of the existing paths and, in the mean-
time, far enough to avoid too much overlap with the covered
area. Once the starting point is determined, an initial grow-
ing direction needs to be specified. It is chosen by finding the
feasible driving direction closest to the perpendicular line of−−−→pns pn , as shown in Fig. 6 by the red arrow. This helps the
new path to grow parallel to the existing ones.

Seed path growth. With the starting point and the initial
growing direction determined, the seed curve can grow by
specific rules. We considered two constraints in defining a
cost function to determine the path-growing direction: the
climbing slope and the turning cost. When the vehicle is in
slopy areas, it is desirable to drive along the contours. In
this case, the smaller the pitch angle along a certain driving
direction, the smaller the climbing energy cost could be. In
addition, the vehicle is expected to keep its original driving
direction to save energy in the redirection actions. Accord-
ingly, we design the path-growing cost in the slopy areas in
Eq. 5. The first term in the equation symbolizes the inclina-
tion to traverse in the direction with a gentler slope, while the
second term signifies the necessity to maintain a consistent
driving direction. Consequently, the path exhibits a tendency
to extend in the direction characterized by the smallest Js1. In
regions where the terrain is predominantly flat, the impact of
terrain slope becomes negligible, rendering the first term in
Eq. 5 ineffective. As a result, the seed path undergoes growth
in an unaltered direction, essentially forming a straight line.

Js1(k) = tan(αk
p)

tan(ᾱ)
+ λs1 ∗ tan(�ωk) (5)

where k = 1, 2, · · · , 8 is the index for the eight driving direc-
tions to choose, and�ωk is the angle between the current and
the next step driving directions,λs1 is aweight factor.A lower
value for λs1 underscores a focus on terrain adaptation, while
a higher value prioritizes the avoidance of sharp turns.

3.3 Subordinary path growth

Once a seed path (the red curve in Fig. 7) has grown, two
child paths (the black curves in Fig. 7) grow by its two sides.
Then the child paths have their child paths grow until the
start point for the new child path enters �. Therefore, for a
seed curve, two branches of descendant paths grow beside it.
Similar to the seed path generation, we need to determine the
starting point, the initial growing direction, and the growth
strategy for the subordinary paths.

Starting state determination. The starting point and ini-
tial direction of a child path are closely related to its parent
path. As shown in Fig. 7, projecting the parent path on the
horizontal plane, the starting point of a child path is chosen
as the closest cell at the perpendicular line of the projection at
the parent path’s starting point, with a shift distance dpl . The
initial growing direction is chosen as the feasible direction
that is mostly parallel to the tangential line of the parent path
at its starting point.

Subordinary path growth. With a starting point and its
initial growing direction determined, a child path can grow.
The growth strategy of the subordinary paths is more com-
plicated than the seed path. It has an additional requirement
of following the shape of a parent path so that the working
area is probably covered. They still need to consider climbing
and turning costs, so the cost function for selecting the best
driving direction becomes Eq. 6 in the slopy areas or Eq. 7
in the flat areas. The first two terms in Eq. 6 are the same as
the seed path growth, and the third term reflects how much
it follows a desirable shape of its parent path. We design a
tangent function that has a dramatically increasing value if
the shape deviation becomes large. In this way, it becomes a
solid restriction to avoid significant gaps or overlaps. When
the path grows in flat areas, the influence from the terrain

Fig. 7 Starting status determination for subordinary paths
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Fig. 8 The comparison of different path connection problems. (a) the traditional point-to-point traveling salesman problem; (b1) the path connection
with the consideration of the end-point sequence; (b2) the path connection without considering the end-point sequence

slope is negligible. The first term in Eq. 6 is dropped out,
which gives a cost function as in Eq. 7.

Js2(k) = tan(αk
p)

tan(ᾱ)
+ λs1 ∗ tan(�ωk)

+βs1 ∗ tan(|d(k) − dpl
dpl

| ∗ π

2
) (6)

Js3(k) = λs1 ∗ tan(�ωk) + βs2 ∗ tan(|d(k) − dpl
dpl

| ∗ π

2
) (7)

whereβs1 andβs2 areweight factors for the shape-mimicking
term, large values of which signify a more pronounced
emphasis on conforming the shape of the seed path to its par-
ent path. d(k) represents the distance between the expected
cell of the child path and its parent path. It is worth noting
that, to maintain consistency in form and value range for
the three terms, we incorporate a tangential function for the
newly introduced shape-conforming demand for seed path
growth value functions.

Mixed growth mode. There is one more condition to
address.When a child path grows out of the range of its parent
path, as the blue path in Fig. 7, it enters the auto-growthmode.
In other words, it locally becomes a seed curve without any
reference to follow. In this case, the growing law becomes
the same as a seed path. Similar to seed path growth, the
subordinary path stops when it enters �.

3.4 Optimal path connection with amodified GA

Traditionally, the CPP problem connecting paths from dif-
ferent subsections is simplified as the typical TSP problem
[23, 24], as shown in Fig. 8. The traditional point-to-point
TSP is shown in Fig. 8(a). It only needs to consider the con-
necting sequence of the waypoints. Using TSP to solve the
CPP introduces an extra problem: the connecting sequence
of the path endpoints also influences the traveling cost to
a large extent. As shown in Fig. 8(b1) and Fig. 8(b2), if
the endpoint sequence of the path connection is not opti-
mized, it could cause unnecessary detours. It did not largely

affect the coverage path length in previous research since
there were only a few subsections in the whole working area.
The increased traveling cost caused by the improper choice
of endpoint sequences is bearable. However, in the technical
path of this paper, there is no need to partition the working
area. Instead, many individual paths autonomously grow fol-
lowing the rules in Section 3. The number of paths largely
increases. As a result, the total travel cost would dramati-
cally rise if the endpoint sequencewas not carefully arranged.
Therefore, in this paper, we need to simultaneously address
the path connection sequence and the endpoint connection
sequence, which is called a path connection traveling sales-
man problem (PC-TSP).

We treat the PC-TSP as a two-layer problem. The upper
layer solves a common TSP problem using GA. The lower
layer uses a dynamical programming method to find the best
endpoint connection sequence for a given chromosome in the
upper layer, in other words, a particular path sequence.

In the upper layer, a gene Sp in the GA is defined as a path
with two endpoints{Sp

1 , S p
2 }, as shown in Fig. 9. p is the index

of a gene in a chromosome. The two endpoints in a gene are
denoted as S p

1 and S p
2 , respectively, according to their storage

sequence in chromosomes. In this way, the GA mutation of
the chromosome corresponds to a pure ordering problem for
the genes. We use the order crossover OX1 of Davis [30] as
the crossover operator to perform the information exchange
between chromosome individuals.

Fig. 9 A genetic node
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Fig. 10 The connection of the genetic nodes with all possible endpoint sequences

On the other hand, the lower layer calculates the fitness
value for each chromosome. The problem can be defined as
finding the shortest path from the first gene to the last one
with a designated starting point S11 , among all possible end-
point connection sequences depicted in Fig. 10. It is a typical
dynamic programming problem, and the corresponding state
transition equations are shown in Eq. 8 and Eq. 9. The two
states for the pth gene connection are defined as dp[1, p]
and dp[2, p]. They represent the travel cost of connecting
S p
1 or S p

2 with the p − 1 genes ahead. dis(·, ·) represents
the distance between two endpoints. With the state equations
defined above, dynamic programming can be applied to find
the endpoint sequence with the smallest travel cost. The fit-
ness of the chromosome can be calculated by Eq. 10.

dp[1, p] = min(dis(Sp
1 , Sp−1

1 )

+dp[2, p − 1], dis(Sp
1 , Sp−1

2 ) + dp[1, p − 1]) (8)

dp[2, p] = min(dis(Sp
2 , Sp−1

1 )

+dp[2, p − 1], dis(Sp
2 , Sp−1

2 ) + dp[1, p − 1]) (9)

F = min(dp[1, M], dp[2, M]) (10)

where M is the chromosome length, and i is the index of the
chromosome.

Combining the algorithms above, we can obtain a mod-
ified GA solving the PC-TSP problem. The algorithm is
formally presented in Algorithm 1.

4 Experimental Results and Discussion

We conducted three experiments using different test datasets
sourced from various origins to showcase the algorithm’s
effectiveness across diverse terrain conditions. In the sub-
sequent sections, we present the outcomes of applying our
method to three distinct maps. Subsequently, we perform
a comparative analysis, evaluating the performance of the
TSA-CPP method in contrast to prior methodologies.

Algorithm 1 The modified GA for the PC-TSP problem
Require: the population size Pn , the probability of crossover Pc, the

probability of mutation Pm , the generation of current evolution t ,
the generation of terminating evolution G, the threshold of fitness
function T f and the population fitness Fm(0);

Ensure: Path sequence with endpoint connections
1: initial population P0
2: while the population fitness Fm(t) < T f ∨ the reproductive gener-

ation t < G do
3: t = t + 1, Fm(t) = ∞
4: for i = 1 → Pn do
5: dp[0, 0] = 0, dp[1, 0] = 0
6: for p = 1 → M do
7: calculate dp[1, p] and dp[2, p] using Eq. 8 and Eq. 9
8: end for
9: F(i) = min(dp[1, M], dp[2, M])
10: Fm(t) = min(F(i), Fm(t))
11: end for
12: for i = 1 → Pn do
13: Select operation to the current population Pt
14: end for
15: if random(0, 1) < Pc then
16: for i = 1 → Pn/2 do
17: Ordered crossover operation to Pt
18: end for
19: end if
20: if random(0, 1) < Pm then
21: for i = 1 → Pn do
22: Mutation operation to Pt
23: end for
24: end if
25: Pt+1 = Pt
26: end while

4.1 Experiment 1-open-source data

In this experiment, the test data is displayed in Fig. 11, repre-
senting open topography data of an agricultural field obtained
through aerial LiDAR in Nelson, New Zealand [31]. The
technical parameters for the tests are detailed in Table 1,
encompassing vital dimensions of the vehicles, map areas,
and parameter values pertinent to the TSA-CPP algorithm.
The vehicle size is akin to that of a tractor, highlighting its
suitability for agricultural applications. The weight factors
in Eq. 5, Eq. 6, and Eq. 7, represented by λs1, βs1, and βs2,
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Fig. 11 The open source data in Nelson, New Zealand

respectively, are set to 0.5, 4, and 7.We conducted sensitivity
analyses and fine-tuned these parameters to strike a balance
that optimally aligns with the objectives. This set of weight
factors proves to be robust against variations in terrain con-
ditions and remains consistent across all three experiments.
It achieves a balanced performance in terms of path smooth-
ness, path shape conformation, and terrain shape adaptation,
as demonstrated in the following three cases.

The traversability maps for the test field are presented in
Fig. 12. The left map illustrates the initial traversability con-
ditions, identifying four terrain conditions: the border area of
the field, the region with turning-over risk, the uneven area
posing chassis collision risk, and the traversable area-the only
safe condition for the specified vehicle to navigate. The right
image displays the terrain classification for the CPP prob-
lem based on the principles outlined in Section 3.1. The CPP
prioritizes avoiding entry into unpassable areas for enhanced
driving safety. Flat areas are treated as a 2Dcase,while sloped
areas employ a path-growing algorithmwith terrain-adaptive
functions. The limited presence of flat areas in the open-
source data underscores the need for terrain shape adaptation
when planning an energy-efficient path. In regions where the
slope is excessively steep, they are marked as unpassable
areas unsuitable for the vehicle to work on.

Table 1 Parameter list for the open-source and simulation data

Parameter Value Parameter Value

vehicle size/m ∗ m 2.5 ∗ 2 wheel Radius/m 0.3

chassis Height/m 0.4 weight/kg 1500

ᾱ 15 field area/m2 420 ∗ 420

cell side length/m 3 lss 6

N 7 αs / ◦ 8

dpl /m 18 λs1 0.5

βs1 4 βs2 7

The illustration of the path auto-growth process is pre-
sented in Fig. 13. In the context of open-source data, paths
exhibit a tendency toward uniform growth directions due
to gradual slope changes. All paths halt before entering
hazardous zones. However, small portions of areas at the
boundaries between safe and hazardous zones remain uncov-
ered. This conservative approach is implemented to mitigate
potential operational risks. Despite this, the path-growth
algorithm effectively covers the majority of irregular terrain.
Path intervals are generally maintained consistently, and the
path shape aligns with the contour lines. There are a total of
35 separate paths generated.

PC-TSP in Section 3.4 is applied to connect the paths with
optimal sequences. The resulting connections are shown in
Fig. 14. Since most of the paths have a close-to-parallel pat-
tern for the open source data, the algorithmfinds the neighbor
paths to be connected in sequence. There are no apparent
twists or detours.

4.2 Experiment 2 - simulation data

In this experiment, we employ mathematical functions to
model the topography depicted in Fig.15. The terrain is char-
acterized by a steep peak and a valley, illustrating scenarios
where the landscape exhibits abrupt elevation changes within
a confined space. Additionally, smaller peaks and valleys are
dispersed throughout the surrounding region, contributing to
the complexity of the terrain. The experimental parameters
are identical to those of Experiment 1, outlined in Table 1.

The traversability maps for the simulation data are
depicted in Fig. 16. The initial traversability analysis reveals
that the terrain poses challenges primarily on the steep slopes
near the peak and valley, where passage is hazardous. Con-
sequently, two unpassable regions are identified on these
slopes, with the majority of the left area characterized as
slopy areas. Flat areas are dispersed around the periphery,
while the central region exhibits an intricate interplay of var-
ious terrain conditions.

The 53 auto-growing paths on the simulation data are illus-
trated in Fig. 17, with little surface left uncovered. These
paths maintain a contour-like configuration, efficiently cov-
ering the majority of passable areas while circumventing
potential driving hazards. The depiction distinctly reveals
six peaks and valleys, with the path automatically forming a
spiral pattern centered around the highest and lowest points,
which is close to the theoretical energy-optimal design in
[10]. This design is presumably advantageous for conserving
energy during movement, minimizing the need for repetitive
ascent and descent actions.

Despite the intricate distribution pattern of paths, as
depicted in Fig. 18, the PC-TSP adeptly identifies an opti-
mized and rational connection sequence for continuous
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Fig. 12 The traversability map and region classification for the open-source data

operations. The connection of the paths successfully miti-
gates long jumps and eliminates unnecessary detours.

4.3 Experiment 3 - experimental data

In this experiment, we utilize an actual Unmanned Ground
Vehicle (UGV) for data collection and conduct path plan-
ning tests. The UGV is depicted in Fig. 19(c). The vehicle
is equipped with a dense LiDAR system, which gener-

ates a point cloud map of the experimental scene shown
in Fig. 19(b). The presence of shrubs and obstacles scat-
tered throughout the scene adds complexity to the driving
conditions, serving as a valuable test for the robustness of
the TSA-CPP. The acquired data, illustrated in Fig. 19(a),
reveals a slope with distributed obstacles. At the summit of
the slope, shrubs pose obstacles that impede the UGV’s pas-
sage. The parameter list for the experimental data is presented
in Table 2. The vehicle-related parameters are set to be con-
sistent with the UGV.

Fig. 13 The process of path growth for open-source data

123

Page 11 of 19    41



Journal of Intelligent & Robotic Systems (2024) 110:41

Fig. 14 The path connection
results for the open-source data.
(a) The connection sequence
from the designated start point
to the end point, projected to the
xy-plane. (b) The connected
continuous coverage path on the
3D terrain surface, where the
black curves are the
auto-growing path and the red
curves are the connection
between the path segments

The traversability maps for the experimental data are
illustrated in Fig. 20. The majority of passable areas are
characterized as flat terrain, with only a few sloped spots
scattered throughout. This is attributed to the relatively gen-
tle and smooth slopes. Several obstacle zones are embedded
within extensive passable areas, and in the upper-left cor-
ner, a passable region becomes inaccessible due to obstacle
barriers.

In this map, a total of 23 paths have been generated from 5
seed paths (Fig. 21). As evident, the majority of areas exhibit
a flat slope, resulting in parallel growth of most paths. The
only exceptions occur in the upper-left region, where a seed
path extends into a sloped area, forming a small circular path.
Subsequent paths then emulate this pattern, resulting in lay-
ered curves. Similar to the two aforementioned experiments,
the PC-TSP algorithm identifies the shortest connection path,
forming a continuous operational route from the starting
point, as illustrated in Fig. 22.

4.4 Comparative study

To compare the performance of the TSA-CPP method with
previous research, we use three recent works on CPP as the
contrast reference. Thefirst one is the optimal Zig-zag pattern
planning for 3D terrains [24]. The optimal Zig-zag algorithm
finds the driving angle of the Zig-zag lines with the best

Fig. 15 The simulation data

energy consumption. Thoughwithout the terrain-shape adap-
tive property, it theoretically provides themost energy-saving
driving direction within all possible fixed direction choices.
The second approach is the GBNN algorithm [19], which is
not explicitly tailored for 3D terrains but an innovative bio-
inspired method dealing with complex 2D maps. In contrast,
STC is a widely used and sophisticated method [16] that has
received much research attention [32, 33]. GBNN and STC
are both grid-based methods, where GBNN uses a grid map
with the same cell edge length as the path shift distance dpl
and STC requires a cell edge length as 2dpl .

For an equitable comparison, we maintain a consistent
path shift distance (dpl ) for all four methods and generate
functional grid maps incorporating designated unpassable
regions throughour traversability analysis. This ensures envi-
ronmental uniformity across the three methods employed for
comparative analysis. The methodologies were executed on
a personal computer equipped with an Intel(R) Xeon(R) W-
2145 3.70GHz CPU and 128GB of memory. Following the
model outlined in [34], the rolling resistance coefficient is
estimated at 0.023, assuming a rubber material for the tires
and a muddy terrain environment.

The visual comparison of the four methods is shown in
Fig. 23. The path produced by the TSA method exhibits dis-
tinctive features when compared to the other three methods,
showcasing contour-shaped curves as opposed to straight
lines. The initial Zig-zag path is truncated by unpassable
areas, prompting the application of the GA method in this
paper for effective path reconnection. The GBNN method
demonstrates relatively limited proficiency in generating
obstacle-free path connections, particularly evident in the
experimental map where the path segment crosses unpass-
able regions. Furthermore, downsampling of the original grid
is necessary for GBNN to achieve a cell edge size equivalent
to dpl , leading to some uncovered passable areas. The situa-
tion is exacerbated in STC as it mandates a cell edge size of
2dpl , resulting in a lower resolution and a higher prevalence
of uncovered areas.
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Fig. 16 The traversability map and region classification for the simulation data

Fig. 17 The process of path growth for simulation data

Fig. 18 The path connection
results for the simulation data
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Fig. 19 The experimental setup and data. (a) the experimental data, (b) the experimental scene, and (c) the UGV used for data collection and tests

The climbing energy, path length, and coverage rate of
the four algorithms are detailed in Table 3. The TSA algo-
rithm exhibits a noticeable advantage in reducing climbing
energy. Across all three maps, TSA demands the least climb-
ing energy and attains the highest coverage rate on the third
map, ranking second on the first two maps (with marginal
differences of 0.4% and 0.5%, slightly trailing the Zig-zag
method). Its climbing energy is 72.3%, 52%, and 91.8%
of the other three methods on average, respectively, while
achieving average coverage rates 0.7%, 2.4%, and 3%higher.
In other words, TSA achieves the lowest energy assumption
while maintaining the largest map coverage.

As for the path length, TSA is the longest for the first
two maps but the shortest for the third one. TSA exhibits a
similar path length to the Zig-zag method for the first two
maps, which is reasonable given their comparable coverage
rates. STC has the shortest path for these maps due to its
low coverage rate. The high coverage rate for the third map
illustrates that TSA has advantages in handling maps with
complex obstacle distributions.

Additionally, we conducted a comparison of their compu-
tational time costs. The Zig-zag method consistently incurs
a time cost of around 6 seconds across all three maps. STC
exhibits the overall lowest time cost, ranging from 3 to 4 sec-
onds. The time cost of GBNN is highly dependent on themap
size, with a larger value exceeding 17 seconds for the first

Table 2 Parameter list for the experimental data

Parameter Value Parameter Value

vehicle size/m ∗ m 0.5 ∗ 0.5 wheel Radius/m 0.1

chassis Height/m 0.15 weight/kg 20

ᾱ 15 field area/m2 70 ∗ 70

cell side length/m 0.5 lss 6

N 7 αs / ◦ 8

dpl /m 3 λs1 0.5

βs1 4 βs2 7

two maps and a considerably smaller one of about 4 seconds
for the third map. In comparison, TSA’s processing time is
intermediate and not only correlates with map size but also
with path complexity. On Map 1, characterized by relatively
simple terrain variations, TSA’s processing time is similar to
Zig-zag. However, onMap 2, featuring intricate terrain shape
variation, the processing time increases to 14.5 seconds. In
contrast, on Map 3, with relatively gentle terrain variations
and a smaller map size, TSA incurs the shortest processing
time among all methods, merely 2.7 seconds.

5 Conclusion

Coverage path planning on uneven 3D terrains remains an
ongoing challenge. As highlighted in this article, the path
should ideally adapt to the shape of the terrain, primarily fol-
lowing elevation contours to optimize energy consumption
during climbing. In this work, we present a novel terrain-
shape-adaptive method that introduces innovations in three
key aspects. Firstly, it utilizes traversability analysis to gen-
erate paths, effectively integrating obstacle avoidance and
coverage path planning into a unified process. This ensures
that the planned paths prioritize driving safety and avoid
hazardous areas. Secondly, rather than adhering to a prede-
termined policy, the algorithm autonomously allows paths
to grow on the terrain surface, facilitating terrain shape
adaptation. Lastly, by transforming the traditional Travel-
ing Salesman Problem (TSP) into a Path Connection TSP
(PC-TSP), we propose an improved GA that determines the
optimal path connection sequencewith the lowest travel cost.

The algorithm demonstrates the ability to generate TSP
paths based on point cloud maps. We evaluated its perfor-
mance using three distinct datasets, and the results indicate
its applicability across various terrain conditions. The gen-
erated coverage paths not only adhere to terrain contours on
slopes but also successfully avoid all hazardous areas. The
improved GA effectively makes path connection decisions
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Fig. 20 The traversability map and region classification for the experimental data

with minimal travel costs. A comparison with three other
previous works revealed a significant reduction in climbing
energy ranging from 8.2% to 48% with relatively high cov-
erage rates.

In conclusion, this work is well-suited for ground vehicle
applications involving irregular terrain surfaceswhere energy
consumption is a crucial consideration. It represents a signif-
icant advancement in 3D CPP by autonomously generating

terrain-adaptive paths and facilitating hazard avoidance. It is
important to note that the proposed method requires a pre-
liminary analysis of terrain traversability, which may entail
additional computational costs. The traversability map needs
to have a grid format and contain the quantification of driving
safety in different directions. This enables the map to cap-
ture the local terrain shape and guide the growth of a path that
adapts to the terrain. However, considering that traversability

Fig. 21 The process of path growth for experimental data
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Fig. 22 The path connection
results for the experimental data

Fig. 23 The comparison of the CPP results. The first row shows the paths by our TSAmethod, and the following three rows are by Zig-zag, GBNN,
and STC methods, respectively
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Table 3 Comparison of the CPP
performance

Algorithm Metric Open Source Data Simulation Data Experimental Data

TSA climb energy/KJ 8.23E+06 4.80E+06 7.20E+05

path length/m 7.96E+03 8.88E+03 6.34E+02

coverage rate/% 98.2 99.4 96.1

time/s 6.5 14.5 2.7

Zig-zag climb energy/KJ 1.20E+07 1.07E+07 7.60E+05

path length/m 7.94E+03 8.50E+03 7.02E+02

coverage rate/% 98.6 99.9 93.3

time/s 6.1 6.0 6.0

GBNN climb energy/KJ 1.26E+07 9.67E+06 7.97E+05

path length/m 7.82E+03 8.11E+03 7.71E+02

coverage rate/% 98.2 97.8 91.6

time/s 17.4 17.3 4.2

STC climb energy/KJ 9.90E+06 7.82E+06 7.97E+05

path length/m 6.46E+03 7.09E+03 8.99E+02

coverage rate/% 95.6 93.4 94.4

time/s 3.8 3.1 3.7

analysis is generally necessary for obstacle avoidance path
planning on irregular 3D terrains, this requirement is not a
significant drawback from a systematic perspective. More-
over, the algorithm’s auto-growth property makes it a viable
candidate for addressing multi-robot CPP, as it simplifies the
problem by transforming it from complex terrain segmenta-
tion to a multi-TSP setting.
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