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Abstract
This paper studies the modeling and control of a Planar Vertical Take-Off and Landing (PVTOL) with steerable thruster. A
longitudinal model is obtained using Newton’s second law for the PVTOL which evolves in 3 degrees of freedom and has two
control inputs. The aerial vehicle is driven by steerable propulsion controlling its evolution in the vertical plane through the
thrust and torque control inputs, which drive the vehicle body and generate a rotation. The obtained model is nonlinear and
is significantly different with respect to the well-known PVTOL. For this reason, different control algorithms are presented,
and the closed-loop behavior is studied for each of them. The proposed control strategies perform a stationary flight at a
desired altitude and control the position of the aerial vehicle. The performance of the proposed control algorithms is tested in
numerical simulations.

Keywords Thrust vector control · Linear feedback control · Stationary flight · Closed-loop system

1 Introduction

The PVTOL has drawn the interest of many researchers
because it is a nonlinear dynamical system that simulates
the longitudinal dynamics of a helicopter or multirotor UAV
(Unmanned Aerial Vehicle). It only has two control inputs
while having three degrees of freedom.

In an ideal scenario, the vertical and horizontal acceler-
ations of the vehicle are proportional to the projections of
the thrust vector and the angular acceleration is proportional
the torque. Implicitly, there is a decoupling of the inputs, as
the thrust only influences linear accelerations and the torque
input only impacts rotational acceleration. In the literature,
many PVTOL control methods have been suggested.

Hauser et al. [1] introduced one of the first controllers
that were suggested for the PVTOL. They demonstrated that
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when the PVTOL’s flight control is subjected to an accu-
rate input-output linearization approach, the resulting system
exhibits unstable internal dynamics. They put forth a solution
using a rough input-output linearization technique designed
for nonlinear systems with somewhat non-minimal phase.

A nested saturation control was suggested in [2] to sta-
bilize the PVTOL. The stability was guaranteed only when
the orientation angle θ and its derivative were initially suf-
ficiently small. The idea to employ nested saturation arose
from the observation that when the altitude is controlled by
nonlinear compensation, the resulting subsystem from the
torque input τ to the output x (the horizontal displacement)
reduces to four integrators in cascade when θ is small, i.e.,
when tan θ ≈ θ .

Brandão et al. [3], in contrast, suggests a nonlinear con-
troller based on Lyapunov Theory to stabilize a quadrotor to
execute positioning and trajectory tracking tasks constrained
to a vertical plane. Due to flying restrictions motion lim-
ited to the X Z and Y Z planes. The maneuvers described are
frequently carried out using PVTOL vehicles. A nonlinear
controller is proposed and the closed-loop system stability
is proved. To prevent the physical actuators from becom-
ing saturated, the proposed controller includes saturating the
control signals.

A controller based on a PD controller and a sliding mode
controller was published in [4] to stabilize both the horizon-
tal and angular variables to the desired rest position. It was
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established that the closed loop system is locally stable if the
initial angular rate and angular position fall inside a certain
area without any singularities.

In [5], a hierarchical control approach was suggested for
a small VTOL vehicle to monitor a desired trajectory. By
employing this orientation angle as a virtual input tomaintain
the aircraft location, their control approach gets around the
topological restriction on the orientation.

Additionally, a control strategy to provide a globally stable
controller for UAVs was suggested in [6]. They also have an
adaptive control method that can deal with unknown system
parameters.

A robust controller was suggested in [7] to solve the
PVTOL aircraft trajectory tracking control problem under
crosswind. The controller combines active disturbance rejec-
tion control and input-output feedback linearization algo-
rithms. The latter reduces the impacts of crosswinds, while
the former linearizes the PVTOL dynamics.

In [8], a control approach for the well-known PVTOL
problem was provided. To achieve the target height, the total
force is calculated using nonlinear feedback compensation.
The orientation angle is then selected as a smooth saturation
function of x, ẋ , controlling the horizontal position x . The
Lyapunov approach was used to obtain a stability proof.

Lozano et al. [9] shows how the nested saturation control
may be improved by choosing specific values of the satu-
ration amplitudes. The proposed controller is proved to be
globally stable.

It is worth highlighting that in the case of an ideal PVTOL,
the thrust only provides linear accelerations and the torque
produces only rotational acceleration. Nevertheless, when
the PVTOL thrusters are not perfectly aligned, the torque
produces also a small translational acceleration. This situa-
tion is referred to as the PVTOL issue with strong coupling
at the inputs. Due to its difficulty, there are only few con-
trol techniques that have been proposed in the literature as
described below.

The global stabilization of the VTOL aircraft with strong
coupling at the inputs was addressed in [10] using uniform
static state feedback. Furthermore, applying a decoupling
coordinate change results in the generation of differentially
flat outputs for VTOL aircraft.

On the other hand, [11] proposed an ideal control based
method for examining feasible nonlinear system trajecto-
ries. It serves as a prototype tool for tracking trajectories
in the presence of constraints. The approach is based on new
optimization approaches for optimum control problems with
pointwise constraints applied to a PVTOL, dynamic embed-
ding, and constraint relaxation.

Similarly, [12] proposed an ideal trajectory planner for
spacecraft orientation control subject to input saturation and
angular velocity restrictions. It handles the nonlinearity of the
variety of unit quaternions by adapting Newton’s approach

for trajectory optimization. A modified interior point tech-
nique is then used to manage the system limitations so that
it may still be used in cases when an intermediate solution
estimate is not practical.

The well-known PVTOL has two thrusters attached by a
bar and the center of gravity is located in the middle of the
bar. The present paper deals with an aerial vehicle evolving in
a vertical plane that is driven by a single thruster. The thruster
can be orientedwith respect to the body of the aircraft. There-
fore, the two control inputs are the thrust magnitude and the
angle between the thruster and the body of the aircraft. How-
ever, the center of mass is located in the body of the aircraft.
This means that in a hover flight, the orientable thruster is
located at certain distance below the center of gravity.

Several aerial vehicles belong to this category. Tail sitter
airplanes take-off and land vertically and its orientation is
controlled using the control surfaces of the tail (elevon and
rudder) which deviate the airflow generated by the rotors.
VTOL airplanes like Wingtra belong also to this category.
VTOL jet fighters can also take-off vertically using a vec-
tored thrust engine in the middle of the fuselage which is
used to control the orientation of the aircraft. Some rockets
have a single thruster which can be tilted. These are also
called vectored or steerable thrusters and are used to con-
trol the orientation of the rocket to perform precise take-off
and landing or hover. There exist also small electric rockets
which are driven by two counter-rotating rotors which can
be rotated and therefore operate as a vectorized thruster. The
aircrafts mentioned above are presented in Fig. 1.

A PVTOL aircraft can intuitively be controlled by adjust-
ing the total thrust to control the altitude and then use
independently the torque to control the aircraft orientation
to move forward or backward. In the case of a rocket with
vectorized thrust the torque is generated by changing the ori-
entation of the thruster which is situated at a certain distance
from the center of gravity. Therefore, if we aim to move the
aircraft forward we tilt the thruster in the opposite direc-
tion so that the orientation of the rocket tilts forward. Notice
however that the rocket first moves backward before mov-
ing forward. This is a typical characteristic of non-minimum
phase systems. Notice also that in the PVTOL dynamical
equation the torque input appears only in the equation of the
angular accelerations. Meanwhile in the case of a rocket (or
any aircraft driven by a vectorized thrust) the torque appears
also in the equations for the vertical and horizontal acceler-
ations and thus requires the synthesis of a specific control
strategy.

The present paper studies a PVTOLwith steerable propul-
sion and the control objective is to perform a stable hover
flight. The dynamical model of the aerial vehicle driven by
a vectored thruster is very different to the classical PVTOL
model. Three control strategies for such a PVTOL model
with strong input coupling are proposed. The closed-loop
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Fig. 1 (a) VTOL jet fighter, (b)
Tail sitter VTOL Drone, (c)
Electric rockets

system behavior of the proposed control laws is analyzed,
and a comparative study is presented. The objective is to
control the longitudinal model of the aircraft using simple
control laws to perform a stationary hover flight at a desired
altitude and position. The performance of the proposed con-
trollers is tested in numerical simulations.

This paper is organized as follows. Section 2 describes the
PVTOL aircraft with strong input coupling and presents the
dynamical model. Section 3 presents three different control
algorithms and their performance in numerical simulation.
The results obtained in numerical simulation are analyzed in
Section 4. Finally, conclusions are given in Section 5.

2 Model of the PVTOL with Strong Input
Coupling

This section describes themodel of the PVTOL in the vertical
plane with strong input coupling. For simplicity we describe
the model in a simplified rocket as shown in Fig. 2. Let θ be
the angle of the rocket with respect to the vertical, g be the
force of gravity, m be the mass of the rocket, C be the center
of gravity of the rocket located in the middle of its fuselage,
l be the mean distance and F be the thrust force of the rocket
engine.

FromFig. 2,we obtain the equations of the dynamicmodel
for the rocket system using the second law of Newton, which
are as follows.

I θ̈ = τ (1)

ẍ = f sin θ − τ

l
cos θ (2)

ÿ = f cos θ + τ

l
sin θ − mg (3)

where

τ = l fT (4)

fT = F sin γ (5)

f = F cos γ (6)

where γ is the angular displacement of the thruster with
respect to the fuselage, F is the total thrust of the rocket
and is decomposed into the forces f and fT .

Note also that

tan γ = fT
f

(7)

Fig. 2 Forces acting on the simplified rocket. F is the total thrust of
the rocket which is decomposed into the forces f and fT
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F =
√

f 2 + f 2T (8)

In the following sections control algorithms will be pro-
posed for the model given in Eqs. 1, 2 and 3.

Assumption 1. To simplify the presentation of the 3 control
algorithms it is assumed that I = 1, l = 1.

2.1 Control Algorithm 1

This algorithm is based on a change of the control variables
that partially linearizes the system.

Consider the following equations describing the rocket’s
operation which using Assumption 1 can be rewritten as

θ̈ = τ (9)

ẍ = f sin θ − τ cos θ (10)

ÿ = f cos θ + τ sin θ − mg (11)

New input variables are defined as u1, u2

[
u1
u2

]
=

[
sin θ − cos θ

cos θ sin θ

] [
f
τ

]
(12)

Introducing Eq. 12 Eqs. into 9, 10 and 11 we obtain

θ̈ = τ (13)

ẍ = u1 (14)

ÿ = u2 − mg (15)

Once the virtual control inputs u1, u2 are obtained, the
original inputs f , τ can be calculated from Eq. 12 as follows

[
f
τ

]
=

[
sin θ cos θ

− cos θ sin θ

] [
u1
u2

]
(16)

We propose u2 as follows to control the altitude, so that y
converges to a desired altitude yd .

u2 = −2 ẏ − (y − yd) + mg (17)

Introducing Eq. 17 into Eq. 15 gives a closed-loop system

ÿ + 2 ẏ + (y − yd) = 0 (18)

From the above, it is concluded that y → yd , ẏ → 0, u2
→ mg.

Then Eqs. 13 and 14 can be written as

θ̈ = − cos θu1 + sin θu2 (19)

ẍ = u1 (20)

Assuming that θ is near the origin, the above equations
are approximated by

θ̈ = −u1 + θmg (21)

ẍ = u1 (22)

To control the state of the above linear system, we propose
the state feedback control input u1 as follows

u1 = k1θ + k2θ̇ + k3x + k4 ẋ (23)

Introducing Eq. 23 into Eqs. 21 and 22 and applying the
Laplace transform

[
s2 + k1 + k2s − mg k3 + k4s

−k1 − k2s s2 − k3 − k4s

]

︸ ︷︷ ︸
ACL

[
θ

x

]
= 0 (24)

Calculating the determinant of ACL gives

det ACL = s4+s3(k2−k4)+s2(k1−k3−1)+sk4+k3 (25)

The closed loop system poles can be selected arbitrarily
as long as they belong to the stable region. In the numerical
simulation the proposed closed loop control system has been
chosen to have 4 poles at -1. Therefore the characteristic
polynomial of the closed loop system is:

(s + 1)4 = s4 + 4s3 + 6s2 + 4s + 1 (26)

Assuming that mg = 1, the gains are as follows

k1 = 8 (27)

k2 = 8 (28)

k3 = 1 (29)

k4 = 4 (30)

Substituting the above gains into Eq. 23 gives the follow-
ing state feedback law

u1 = 8θ + 8θ̇ + x + 4ẋ (31)
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Fig. 3 Evolution of states
x, y, θ

From the above we conclude that the subsystem state Eqs.
21 and 22 i.e. [x, ẋ, θ, θ̇ ] converges to the origin. Since we
assumed that θ is in a neighborhood of the origin then the
convergence to the origin is local.

2.1.1 Simulation of the Proposed Control Algorithm 1

Figure 3 presents the evolution of x, y, θ and Fig. 4 presents
the evolution of τ, f under the following initial conditions;
θ̇ (0) = 0.12, θ(0) = 0.1, ẏ(0) = 0.2, y(0) = 0.1, ẋ(0) =
0.2, x(0) = 0.1, yd = 1. It can be observed in Figs. 3 and 4
that x and θ converge both to zero while y converge to the
desired output.

2.2 Control Algorithm 2

This section presents a control algorithm which is based on
the following strategy. The control input f is proposed in such
a way that equation Eq. 11 is linearized assuming that τ sin θ

is small. Then the control input τ is proposed in Eq. 9 so that
θ will track the sumof two saturation functionswhich depend
on x and ẋ . The amplitudes of such saturation functions are

chosen small enough to satisfy that τ sin θ is small. Then the
right hand side of Eq. 10 becomes approximately equal to
the sum of the saturation functions and it can be proved that
x converges to zero.

Consider the plant equations in Eqs. 9, 10 and 11. Suppose
f is used to control the altitude, then

f = −2 ẏ − y + yd + mg

cos θ
(32)

By introducing the above equation into Eq. 11, it follows

ÿ + 2 ẏ + (y − yd) = τ sin θ (33)

this means that if the term τ sin θ is small then y → yd , ẏ →
0.

To control the subsystem Eq. 9 and 10 the following con-
trol law is proposed for τ .

τ = −θ − 10θ̇ − 1

mg
(σa(ẋ + x) + σb(ẋ)) (34)

Fig. 4 Control inputs τ, f
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The values of the parameters above have been tuned
through simulations to give a reasonable transient. The
obtained rise time, settling time and overshoot are given in
Table 1.

The saturation function is defined as follows

σa(χ) =
⎧
⎨
⎩
a si χ > a
χ si − a ≤ χ ≤ a
a si χ < −a

(35)

Introducing Eq. 34 into Eq. 9 gives the following closed
loop

θ̈ + 10θ̇ + θ = − 1

mg
(σa(ẋ + x) + σb(ẋ)) (36)

The limits a, b of the two saturations are selected through
simulation. They are selected as a = 0.1 and b = 1.0 such
that after a certain time |θ | < ε, where ε = a + b is a small
number and represents the upper bound on |θ |. The damping
coefficient 10 is selected such that |θ | < ε, in a short time.
Then after a short time lapse one will have that the term
τ sin θ in Eq. 33 is of order ε, so y − yd is of order ε too.

Considering that τ and θ are small, we have that τ cos θ ≈
0, f ≈ mg, sin θ ≈ θ . Then from Eq. 36 it follows that θ

tracks the expression on the right-hand side of Eq. 36. It is
concluded that Eq. 10 is approximately equal to the following
equation.

ẍ = −σa(ẋ + x) − σb(ẋ) (37)

We have chosen a = 0.1 and b = 1.0 such that a << b.
Define V = 1

2 ẋ
2. Then V̇ = ẋ(−σa(ẋ + x)) − σb(ẋ)). So

Table 1 Parameters of the behavior observed in simulations for the
controllers

Algorithm 1
x y θ

Rise time 1.16 3.52 1.26

Settling Time 10.26 7.58 10.79

Steady state error 1.8 x 10−6 0 1.17 x 10−5

Algorithm 2

x y θ

Rise time 24.09 3.87 0.061

Settling Time 384.66 10.93 78.69

Steady state error 0.75 0 -2.55 x 10−2

Algorithm 3

x y θ

Rise time 24.086 3.87 0.05

Settling Time 690.73 9.06 77.25

Steady state error 9.57 x 10−8 0 -9.49 x 10−6

when |ẋ | > b it follows that V̇ < 0. Therefore after a finite
time |ẋ | < b.

The above equation reduces to

ẍ + ẋ = −σa(ẋ + x) (38)

From the above it follows that ẋ + x → 0 and then x → 0

2.2.1 Simulation of the Proposed Control Algorithm 2

Figure 5 presents the evolution of x, y, θ and Fig. 6 presents
the evolution of τ, f under the following initial conditions;
θ̇ (0) = 0.5, θ(0) = 0.1, ẏ(0) = 0.02, y(0) = 0.03,
ẋ(0) = 0.1, x(0) = 0.4, yd = 20. From Fig. 5 it follows
that θ converge to zero, y converges to its desired value and
x oscillates around zero. FromFig. 6 it follows that the inputs
τ and f converge both to zero.

2.3 Control Algorithm 3

The control algorithm to be proposed in this section is also
based on the altitude control using the control variable f
and a stabilization of the variable θ using a single saturation
function. This allows θ to converge to a neighborhood of the
origin. Subsequently, the saturation function is selected such
that the displacement x converges to the origin.

Let us consider again the system equations

θ̈ = τ (39)

ẍ = f sin θ − τ cos θ (40)

ÿ = f cos θ + τ sin θ − mg (41)

We propose again the control input f as

f = −2 ẏ − y + yd + mg

cos θ
(42)

and the control input τ as

τ = −θ − 10θ̇ − 1

mg
σc(0.01x + ẋ) (43)

In the above equation the control input τ has only one sat-
uration function. The damping term fixed as 10 multiplying
θ̇ modifies the speed of convergence. The proportional term
fixed as 1 multiplying θ modifies the amplitude and finally
the coefficient 0.01 multiplying x will reduce the influence
of the initial condition x(0) and therefore the control algo-
rithm will first reduce the horizontal velocity |ẋ | and once
the velocity is small then the displacement x will converge
to zero. Introducing Eq. 42 into Eq. 41 gives the following
closed-loop system

ÿ + 2 ẏ + (y − yd) = τ sin θ (44)
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Fig. 5 Evolution of states
x, y, θ

Introducing (43) into (39) we have

θ̈ + 10θ̇ + θ = − 1

mg
σc(0.01x + ẋ) (45)

If the limit c in Eq. 43 is such that c < ε then after a certain
time it will follow |θ | < ε

mg . Then from Eq. 43 it follows that
|τ | < ε

mg and after a certain time the term τ sin θ will be of

the order of ( ε
mg )2.

For this reason, it is considered that τ and θ are small and
it follows that τ cos θ ≈ 0, f ≈ mg, sin θ ≈ θ . Then θ

converges to the expression on the right-hand side of Eq. 45.
Therefore Eq. 40 can be rewritten as the following equation.

ẍ = −σc(0.01x + ẋ) (46)

For an initial condition x(0) the coefficient multiplying
x can be chosen sufficiently small so that |ẋ | decreases and
then Eq. 46 reduces to

ẍ + ẋ + 0.01x = 0 (47)

from which it follows that x → 0.

2.3.1 Simulation of the Proposed Control Algorithm 3

Figure 7 presents the evolution of x, y, θ and Fig. 8 presents
the evolution of τ, f under the following initial conditions;
c = 0.1, ε = 0.3, θ̇ (0) = 0.5, θ(0) = 0.1, ẏ(0) = 0.2,
y(0) = 0.3, ẋ(0) = 0.1, x(0) = 0.4, yd = 20. As can be
seen in Fig. 7 and 8, y converges to its desired value, θ and x
converge both to zero, τ converges to zero and f converges
to a constant value.

3 Results Analysis

Control algorithm 1 is based on a change of the input vari-
ables so that a linear control law can be defined to stabilize
the altitude at a desired value. Subsequently it is assumed
that the θ orientation is close to the origin. Then the model
of the x − θ subsystem is reduced to a linear system that
is controlled by a pole assignment control law. This control
algorithm presents good behavior in numerical simulation,

Fig. 6 Control inputs τ, f
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Fig. 7 Evolution of states
x, y, θ

see Figs. 3 and 4. Note that in this case the control law for
thrust and torque are linear. Control algorithm 1was obtained
assuming that the angular displacement θ was close to zero.
Therefore the convergence to the origin of this controller is
only local. Indeed, it has been observed in numerical simu-
lations that if the initial position x(0) is chosen far from the
origin, then the controller will fail to stabilize the system.
Since control algorithm 1 requires |θ(0)| to be small, one
could propose a strategy that first makes θ small and then
switch to control algorithm 1. However, control algorithms
2 and 3 do not require any switch. Notice from Table 1 that
algorithm 1 provides the smallest values for rise time and
settling time of x , y and θ .

Control algorithm 2, is based on the compensation of the
nonlinearities in the altitude equation (y), so that the vehicle
reaches a desired altitude. On the other hand, an orientation
control law for θ in Eq. 36 is proposed so that θ converges
to the sum of two saturation functions of x and ẋ . The sat-
uration amplitudes a and b should be chosen small enough
so that θ converges to a neighborhood of the origin. Further-
more, the amplitude of the saturation containing x , a, should
be selected smaller that the amplitude of the saturation con-

taining only ẋ , b. This is done so that the controller reduces
first the size of the velocity ẋ and once the velocity is smaller
than b then equation Eq. 38 holds and it follows that both x
and ẋ converge to zero. However, Eq. 37 has been obtained
assuming that θ is small and that τ is zerowhich is an approx-
imation. This explains why x does not exactly converge to
zero but oscilates in a neighbothood around the origin as can
be seen is Fig. 5. This type of controller stabilizes the θ angle
and ensures that x converges to a neighborhood of the ori-
gin. The selection of the values of the saturations amplitudes
allows to vary the speed of convergence of the displacement
to the origin, but also varies the amplitude of the oscillations
of x .

Control algorithm 3, is similar to control algorithm 2 but
in this case the torque control law contains a single satu-
ration function. In this case too, the controller first reduces
the horizontal velocity ẋ and this is carried out by select-
ing a small weight 0.01 on the displacement x in Eq. 43. In
this control algorithm it is also assumed that θ converges to a
small neighborhood of the origin and that τ converges to zero
which leads to Eq. 46 and finally Eq. 47. As can be seen in
Figs. 7 and 8, the numerical simulations results using control

Fig. 8 Control inputs τ, f
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algorithm 3 are better than those obtained with control algo-
rithm 2. In this case the altitude converges also to its desired
value but furthermore x and θ converge both to the origin.

4 Conclusions

In this paper a PVTOL with a steerable thruster was con-
sidered. The obtained dynamical model was a PVTOL with
strong coupling at the inputs. To our knowledge, this type of
system has not been studied in the literature. The objective
was to control the evolution of this vehicle in the vertical
plane. We proposed different control strategies to perform
a stationary flight in the vertical plane. A closed-loop sta-
bility analysis and a comparison of the proposed methods
in numerical simulation were performed. Future research
includes developing a control strategy for tracking a pre-
defined trajectory.
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