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Abstract
Condition monitoring of power transmission lines is an essential aspect of improving transmission efficiency and ensuring 
an uninterrupted power supply. Wherein, efficient inspection methods play a critical role for carrying out regular inspections 
with less effort & cost, minimum labour engagement and ease of execution in any geographical & environmental conditions. 
Earlier various methods such as manual inspection, roll-on wire robotic inspection and helicopter-based inspection are prefer-
ably utilized. In the present days, Unmanned Aerial System (UAS) based inspection techniques are gradually increasing its 
suitability in terms of working speed, flexibility to program for difficult circumstances, accuracy in data collection and cost 
minimization. This paper reports a state-of-the-art study on the inspection of power transmission line systems and various 
methods utilized therein, along with their merits and demerits, which are explained and compared. Furthermore, a review was 
also carried out for the existing visual inspection systems utilized for power line inspection. In addition to that, blockchain 
utilities for power transmission line inspection are discussed, which illustrates next-generation data management possibili-
ties, automating an effective inspection and providing solutions for the current challenges. Overall, the review demonstrates 
a concept for synergic integration of deep learning, navigation control concepts and the utilization of advanced sensors so 
that UAVs with advanced computation techniques can be analyzed with different aspects of implementation.

Keywords  Unmanned Aerial Vehicle · Voltage Transmission Line Inspection · High Voltage Transmission Lines · 
Condition Monitoring · Conductor & Insulator · Deep Learning Techniques · Blockchain Technology

1  Introduction

The increasing population in the present-day warrants the 
demand for more power consumption that leads to the 
expansion of power transmission lines across developing 
countries. These transmission lines are often constructed in 
complex terrains like mountains, rivers, forests & de-pop-
ulated zones, etc. The continuous exposure of power trans-
mission lines to the climatic conditions in the field leads to 

material aging, malfunction of electrical equipment, break-
age of conductors, overheating of insulators and discharges 
caused by nearby trees during heavy wind flow/storm [1, 2]. 
To overcome these losses, transmission engineers need to 
regularly inspect and conduct timely maintenance to ensure 
a constant power supply [3].

Inspection of power transmission lines is critical for 
power companies to ensure a reliable supply of electricity to 
a large number of consumers in key enterprises and house-
holds in a city [4, 5]. The inspection gives critical informa-
tion about the line's status and allows the line engineers to 
prepare for essential repairs or replacements before serious 
damage occurs, potentially resulting in an outrage [6, 7]. 
Power companies are primarily interested in live line inspec-
tion methods that maintain a constant electricity supply to 
the consumer without de-energizing the line, which is the 
only way to overcome unwanted interruptions in the power 
supply.

The review is concerned with the inspection of high volt-
age power transmission lines inspection. These inspection 
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methods can be broadly classified into five different meth-
ods, wherein the ways to carry optical device/inspection 
devices around the power transmission lines are different, 
i.e., (1) visual/manual inspections with or without using 
advanced optical devices, (2) helicopter-based aerial inspec-
tion, (3) Mobile robot-based transmission line inspection, 
includes the use of cable-climbing robots or automatic over-
head power transmission line damage detector move on the 
conductor, (4) Aerial inspections using small (rotor span 
1–2 m) helicopter unmanned aerial vehicle, (5) Quadrotor/
drone-based airborne power line investigation.

The earlier techniques for power line inspection include 
visual/manual field inspections with or without using 
advanced optical devices. These methods are continuing 
without any change for decades [8]. When there is vast rain, 
or natural calamities like storms, earthquakes and heavy 
snowfall etc., a team of electrical department inspectors are 
inspecting the current situation of transmission lines and 
provide maintenance as per the requirement. The inspec-
tion process includes either walking on foot adjacent to the 
transmission lines or traveling around the transmission line 
with visual inspection devices (i.e., binoculars, high zoom-
ing capacity cameras, ultraviolet/infrared cameras & corona 
detection cameras) to detect the faults in power transmis-
sion lines [9]. The visual inspection methods are not always 
accurate because an inspection agent has to watch the power 
transmission lines and components with the naked eye or 
with the help of optical inspection devices. This process is 
prolonged, dangerous, expensive and a lot of time is wasted 
to conduct such surveys. Even though a power line inspector 
has excellent observation skills for visual inspection, still a 
lot of defects like micro-cracks and internal defects are not 
found with a naked eye. Also, digital devices like infrared 
(IR) cameras are used for data collection, but still, it is con-
sidered a manual process.

Mobile robot-based transmission line inspection is con-
sidered as an automated inspection method which involves in 
identifying the power transmission lines and discontinuities 
such as corrosion, cracks in conductors and insulators, mis-
placed conductor, corrosion and physical damage, etc. using 
cable-climbing robots. The cable-climbing robot closely 
inspects the conductors and presents a more descriptive sta-
tus of the conductor. However, this method is considered as 
a slow process of investigation, designing a versatile robot 
and its installation to the conductor is a challenging task.

Compared to the Mobile robot-based transmission line 
inspection, the Unmanned Aerial Systems (UAS) enhances 
the inspection process more safe, inexpensive and less time 
consuming and eliminates the need for workers to physi-
cally access hostile environments such as radiation that 
leads to health issues, skin cancer, effects on brain tissues 
and central nervous system etc., installations that can cause 
injuries etc. UAS utilized for powerline inspection can be 

broadly classified into two types i.e., (1) helicopter (rotor 
span 1–2 m) or even a UAS specially made for this purpose, 
(2) advanced drones or commercial quadcopter equipped 
with a camera and other data acquisition systems. UAS can 
take high-resolution videos and images, capture thermal 
images and transfer the data in online mode at a faster rate 
that would take days in visual/manual inspections.

UAS applications are developed to be autonomous in 
terms of flying/hovering along the transmission line follow-
ing the pre-determined waypoints. It is also considered to 
be autonomous in terms of data collection, as the existing 
most advanced cameras can capture images and videos and 
transfer them back to the Ground Control Station (GCS) 
with live transmission features [10–12].Though many theo-
ries have explained the existing problems such as damage 
to insulators, conductor corrosion, vibration damage, cracks 
on conductors and insulators, atmospheric contaminants, 
fretting between aluminum conductors near to clamps and 
other fittings, sparking, transmission line corona and partial 
discharging levels [9, 13–15] etc. The main aim of power 
line inspection is to determine the state of transmission lines 
and utilize that information in order to realize a decision for 
its maintenance. This process involves the health monitor-
ing of power transmission lines and components which are 
shown in Fig. 1.

This literature review reports the inspection methods for 
the power transmission line, including the task of mapping, 
identifying errors in power line towers, components and 
transmission conductors. The potential & challenges of UAS 
based inspection methods over the other existing methods 
are discussed comprehensively, including the ways of data 
acquisition methods & techniques used in data processing 
and fault detection. The challenges of UAS based naviga-
tion for power line inspection and feasible possibilities are 
discussed.

1.1 � Internal structure of UAS

This manuscript mainly concentrates on the UAS type of 
(Quadcopter) inspection for power transmission lines due 
to their maneuverability and their ability to lift, hover and 
land smoothly with precision making them useful for power 
transmission line inspections. As shown in Fig. 2, a generic 
quadcopter consists of a flight controller and receiver, 
Electronic Speed Controller (ESC), Brushless DC Motors 
(BLDC), Lithium-Ion Polymer (Li-Po) battery, Power Distri-
bution Board (PDB), 3D gimbal, Surveillance camera, video 
transmission and receiving module and frame, etc.

1.2 � Bibliometric analysis

To know the status of existing research on the inspection 
of power transmission lines and methods, we conducted a 
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Fig. 1   Typical transmission line with components [13]

Fig. 2   UAS internal hardware
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bibliometric analysis on 18 September 2021 using acknowl-
edged databases such as web of science and google scholar. 
The total number of research publications indexed by the 
databases from 2004–2021 is shown in Fig. 3. A total num-
ber of 348 documents are found that includes 137 research 
articles related to power line inspection and deep learning 
methods. The total number of research articles was very low 
and stable till 2014. From 2015 onwards, articles on power 
transmission line inspection, methods, and UAS increased to 
a higher level and reached 70 publications in 2020. There are 
44 articles in 2021, i.e. (18/09/2021). Before 2012, inspec-
tion methods and methodologies were published in research 
articles, but implementation was not done in a real-time sce-
nario. After 2016, research articles have gradually increased 
on power line inspection methods, types and deep learning 
algorithms related to inspection. With the development of 
UAS and deep learning technologies, aerial inspection has 
recently become widely used by power companies.

2 � A brief introduction and modes 
of inspection for power transmission lines

In this section, various methods used for power line inspec-
tions are discussed briefly and their merits and demerits are 
highlighted. The possible improvement with quadcopter-
based navigation and inspection system was suggested by 
keeping in view of better control, safety in operation, cost 
criteria, and faster inspection.

2.1 � Visual/manual inspections 
with or without using advanced optical devices: 
Foot‑patrolling‑based‑inspection

The most widely used methodology for the inspection 
of conductors and insulators in the past is foot patrolling 

inspection. In this method, two or more technicians from 
the electrical department are sent to inspect the conductors 
by walking on them or using any ground vehicle by moving 
on the cable lines as shown in (Fig. 4a). To find the defects 
in cables and breakage of components, these technicians 
used binoculars, infrared cameras and ultraviolet cameras 
[16]. However, this methodology is tedious, time taking 
and sometimes dangerous to the technicians and workers. 
Another most prominent disadvantage of this method is that, 
the inspection is not possible during natural hazards like 
heavy rains and extreme weather conditions [17].

2.2 � Helicopter based inspection

In this method, inspection is done on the insulators and 
conductors of power transmission lines by a team of engi-
neers/technicians (mostly three members) by flying in the 
helicopter over the power transmission lines as shown in 
(Fig. 4b). Generally, the crew will be a pilot, an inspector 
and a camera technician for recording videos and capturing 
thermal or ultra-violet images for offline inspection [18]. In 
this method the pilot will fly the helicopter and the inspector 
will observe the growth of vegetation around the transmis-
sion lines and poles. The camera technician has to capture all 
the images of towers, including the cables and components 
like insulators, conductors, cross arms, top pads and objects 
around the transmission lines. Later a group of highly quali-
fied engineers will inspect these collected videos and images 
for detection of broken insulators and conductors or missing 
top pads. However, this method is not considered more accu-
rate and safer, as the data acquired will not be sufficient due 
to the fast movement of the helicopter over the transmission 
lines. Sometimes it might take the lives of the inspection 
team as they have to move very close to the transmission 
lines and it is also considered very expensive and requires a 
lot of visual inspection skills [19].

Fig. 3   Number of publications 
indexed in databases based on 
power line inspection
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The automated inspection method is very close to the type 
of helicopter-based inspection. The noteworthy difference 
is that, for both data capture and data analysis, vision-based 
algorithms are used. These algorithms/approaches can be 
used in cameras to move autonomously and capture/record 
the data of pylons, top pads, conductors and insulators. This 
acquired information can be analyzed later for faults. Even 
though this method reduces the task of the camera person 
and technician in terms of time consumption, yet it is con-
sidered still expensive and has to wait for months. The pro-
cess also delays due to the weather conditions such as low 
ceiling clouds and fog. The safety aspects of both methods 
(shown in Sect. 3.1 & 3.2) are considered to be dangerous 
as it places the aircrew and utility workers very close to the 
high voltage lines.

2.3 � Mobile robot‑based transmission line 
inspection includes the use of cable‑climbing 
robots

In this method, the inspection is carried with a crawling or 
climbing robot on power transmission lines. This robot is 
assembled with GPS, sensors (telemetry, altimeter, IR etc.), 
visual and thermal cameras for guiding along the transmis-
sion lines, moving over the obstacles and capturing the data 
of transmission lines and electrical components. Due to its 
adjacency to the power lines, the precision of inspection is 

high in this process as shown in (Fig. 4c). Authors in [20] 
stated that, implementation of these robots is highly risky 
as they are not suitable for inspection of power lines due to 
their structure. The other biggest demerits of these robots are 
that it is a comparably stagnant process related to different 
approaches like autonomous inspection system-using rotor 
helicopter.

2.4 � Aerial inspections using small (rotor span 
1–2 m) helicopter (UAS)

In this method of inspection, UAS is equipped with multiple 
components like advanced sensors, vision camera, thermal 
camera, and global positioning system (GPS) for navigating 
along the power lines. These onboard components will help 
the UAS to guide along the power transmission lines for 
inspection of cables, electronic components like insulators, 
conductors & pylons and capture the detailed videos and 
images for online inspection and offline inspection on the 
workstation later as shown in (Fig. 4d). Due to its structure 
and ability to fly close to the power lines, the rate of accu-
racy is high in terms of detection of faults and it can replace 
the high-cost automated helicopter inspection. This system 
is also cost-effective and safe compared to the foot-patrolling 
and helicopter-based inspection. The total work hour is low 
when compared to the other inspection methods as it takes 

(a) (b) (c)

(d) (e)

Fig. 4   Methods of power transmission line inspection (a) Visual/manual Inspection [22] (b) Pilot operated Helicopter inspection[22] (c) Rolling 
on conductor [23] (d) Unmanned helicopers (i) rotor span 1–2 m (ii) UAStype-1 [23] (e) Drone/Quad copter:UAS type-2 [24]
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10 min approximately for1 km distance of power transmis-
sion lines [21].When compared with a visual inspection, the 
Unmanned aerial systems (UAS) enhance the inspection pro-
cess more safe, inexpensive and less time-consuming and 
eliminates the need for workers to physically access hostile 
environments.

2.5 � Quadrotor/drone‑based airborne power line 
investigation

To develop an autonomous quadcopter, a mathematical 
model has to be developed with the help of Newton's equa-
tion with a perfect Proportional Derivative (PD) control 
system. To achieve such a control system, a stable dynamic 
model has to be developed in terms of its movement (about 
x, y & z-axis) and simulation of such dynamic model has to 
be done by using Euler's angles.

To develop the mathematical models of a quadcopter, three 
parameters i.e. (a) Altitude and Yaw, (b) Roll and (c) Pitch 
plays a major role. Pitch, Roll and Yaw are defined as the axes 
of rotation for controlling the movement and direction of UAS 
in the air. It is used for ascent or descent motion depending 
on the tilt direction. N.J. Wilken [25] designed these models 
individually and later joined them together to form the overall 
mathematical model of the quadcopter. The developed model 
was simulated in the Simulink® to observe the results. Author 
suggested that, more attention should be given to the dynamic 
model to attain stability of quadcopter, which is a vital func-
tion for power transmission line inspection. The periodical 
inspection of transmission lines can be done with the help of 
quadcopters as shown in (Fig. 4e). However, the usage of UAS 
comes with significant challenges like auto-pilot systems and 
hovering. Inspection of power lines is a crucial task in this 
method, but the existing techniques of inspection and data 
comparing are not so accurate in terms of detecting towers 
and estimation of vegetation growth.

3 � Defects and detection methods associated 
with power transmission line components

In this section, the detection of power transmission lines 
including towers, cables and components are discussed in 
detail. The fault analysis of various components (i.e., insula-
tors, conductors and top-pads etc.) are also included in this 
section. The common defects of power line components are 
shown in Fig. 5.

3.1 � Insulator & fitting elements and inspection 
methods

Insulators are affected mainly by mechanical and thermal 
loading, flexural strength and deformation, electrostatic dis-
placement, concrete development, corrosion and climatic 
conditions. Thermal cycling is induced by temperature dif-
ferences between scorching bright days and extremely chilly 
nights and heat generated by power dissipation arcs, which 
cause micro-cracks and allow water to infiltrate the material. 
The amount of stress applied is determined by the dielectric 
metal and cement fittings used to secure the line's fasteners. 
Cement development, which is primarily driven by periclase 
(MgO) hydration and sulfate-related expansion, causes cir-
cular fissures on the ceramic insulator's surface, rendering 
as faulty [26].

Atmospheric pollutants, such as sea or road salts, may 
either attack Portland cement or they may corrode the gal-
vanizing surface if they penetrate through metal pieces. 
This condition is made worse by ionic motion triggered 
by an electric field. A review in [27] suggested a method 
for identifying defects in power transmission line dampers. 
In this method, a baseline approach was used to detect the 
desired component from aerial data. Then a technique of 
Hessian matrix and balloon force snake method is utilized 
for edge detection (cracks, breakage and loose connection) 

Fig. 5   Common defects of 
power line components
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in dampers from the segmented images. Authors in [28] sug-
gested different methods for identifying broken spacers in 
power lines. First, the Scanning window, Canny edge detec-
tor and Hough transform techniques are used for identifying 
spacers as Region of Interest (ROI). Next morphological 
operations are used to extract features in images. Lastly, the 
connected domain analysis technique is used to detect bro-
ken spacers. Vinyals et al. [29] used an algorithm known 
as one-shot learning, enabling a trained neural network to 
learn and identify electrical components and their defects. It 
is considered to be a promising approach for better results. 
In another method, the author trained a neural network 
with fabricated images of power lines and defects and later 
applied it to recognizing defects in electrical components 
by using unsupervised domain adaptation. Goodfellow 
et al. [30] proposed new possibilities for detecting unsuper-
vised anomalies by using Generative Adversarial Networks 
(GANs). This methodology is used for training the data of 
transmission line components. For anomaly detection of 
defects, various parameters, such as the discrimination and 
the residual results, are joined and used as the irregularity 
score.

There are several possible causes of defects in these com-
ponents, such as continuous exposure to climate, which will 
lead to corrosion; discharges due to vegetation encroach-
ment; corona discharges; and improper flow of voltage, 
which will lead to damage to insulators and conductors. 
Improper maintenance will result in missing top pads and 
bolts on towers, cracks in insulators, conductors and HVDC 
lines, etc. Poor condition monitoring of these defects will 
lead to a breakdown of the power supply, damage to power 
line components, blackouts and huge losses. To overcome 
this, T.W. Yang et al., [31] mentioned a six-step verification 
process for identifying defects and faults in conductors and 
insulators. The author has used the UAS inspection module 
and the six-step process to overcome this issue. The method 
includes the first step is about acquiring the image of the 
conductor from the data system of UAS and the second step 
is to apply adaptive threshold segmentation to the image to 
extract the conductor region. In the third step, Gray Vari-
ance Normalization Method (GVN) is applied to process 
the images. In the fourth step, to detect the breakages of 
the conductor, the Square Wave Transformation (SWT) 
method is used, which is easy and gives accurate results. In 
the fifth step, a projection algorithm from the GVN method 
is used to detect the surface defects of the conductor. In the 
sixth step, the results of faults or damages are recognized 
by filtering the identified errors and calculating the total 
number of breakages. The author has conducted a series of 
experiments by using the same process and obtained the 
best results (90%-92%) in identifying the defects of conduc-
tors. The purpose of maximum likelihood estimation is also 
used to compute the drone to estimate position by inertial 

measurement unit (IMU) and visual systems. These methods 
gave an accuracy of 91.44% in position detection [32].

To identify the defects in power lines, image classifica-
tion, object detection and segmentation pipelines are widely 
used [33]. For example, to identify the masts in captured 
images, a framework of power mast recognition can be uti-
lized and the desired region can be selected as ROI. Sec-
ondly, a data structure of defective models can be trained 
for detecting the small components (top pads, conductors) 
and their defects (broken insulators, cracked poles, missing 
top pads) from the selected ROI. The recognized defective 
components can be trained as input to AI algorithms for 
identifying even small defects, like broken conductors, miss-
ing splints, missing bolts and nuts, cracked insulators and 
conductors, etc., as shown in (Fig. 6a-f).

3.2 � Conductor defects and inspection methods

Among the most common conductor types are steel-rein-
forced aluminum conductors (ACSR). Corrosion of alu-
minum strands is the most common cause of conductor 
degradation. Pollutants and moisture in the form of aque-
ous solutions containing chloride ions infiltrate the inter-
face between the steel and aluminum strands, damaging the 
steel's galvanizing protection as shown in Fig. 7. Rust of 
galvanizing coat reveals aluminum and steel to one another 
and results in iron-aluminum corrosion. Aluminum corrodes 
quickly as an anode and white aluminum hydroxide powder 
is formed. The current load capacity is decreased due to 
the loss of aluminum and the mechanical properties of the 
line [34]. Along with the corrosion, wind-induced vibra-
tion can cause significant surface defects to the conductors 
due to cyclic mechanical load absorption [35]. When the 
breeze stream passes the line, it creates vortices downstream. 
These vortices cause Aeolian vibrations in the conductor's 
diameter by creating oscillating drag and lift movements 
with frequencies of 10–30 Hz. Wind can also create fret-
ting of the aluminum strand close to the clamps by causing 
sub-conductor vibrations in stacked conductors. The fretting 
reduces the tensile strength of the line and speeds up the 
failure process.
Corrosion Problem and detection  Corrosion tests are an 
essential element of a wide range of methods (techniques 
and tools) used to assess the condition of overhead lines to 
devise the best approach for maintenance and renovation. A 
detailed "snapshot in time" is required to establish the over-
all condition of the line for a renovation program.

Corona problem and detection  In the presence of water, 
corona produces nitric acid, ozone and nitrogen oxides. This 
corrosion shortens the life of transmission lines, components 
and substations because of the corrosive materials. Thus, 
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a problem or defect in a component creating a local high 
electric field shows corona activity. Corona creates corro-
sive materials: Ozone, Nitrogen oxides which in presence 
of water vapor yield nitric acid. These corrosive materials 
shorten the life span of high voltage lines, components and 
substations. As corona is invisible to the human eye in day-
light, maintenance staff utilizes a corona camera or a radio 
antenna to inspect suspicious regions. Figure 8 shows a case 
of corona condition on the conductors.

The problem with such defects always gets worse over 
time. The first step to overcome such defects is to detect 
it, which may be done using a UV inspection or a corona 
camera [39, 40]. Salt polluted insulators form a conductive 

coating when exposed to a high humidity environment, 
reducing the insulator's insulating properties. In severe 
instances, when the insulator can no longer handle the line's 
voltage, it leads to flashover. Most line tripping occurs 
before dawn or early in the morning when humidity levels 
are at their highest.

Ha et al. [41] used a microphone array for identifying 
faults (broken cables, fatigue and fracture cracking etc.) in 
transmission lines and to verify these defects, a Charge Cou-
ple-Device Camera (CCD) and a thermal imaging camera 
is used. Reddy et al. [42] used cameras mounted on UAS 
for capturing images of insulators at regular intervals. By 
using the photogrammetric method, the size of insulators 

Fig. 6   Fitting and insulator 
defects, missing splint and 
broken conductor [36, 37]

(a) Broken Insulator (b) The visible damage of 

punctures along the sheath of 

the test insulator

(c) Insulator defect

(d) Missing Split (e) Broken conductor (f) Missing Pin

Fig. 7   Corroded conductor [38]
Fig. 8   Corona on Conductors [38]
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is measured and an automatic classification method is used 
to identify the broken insulators. TLS point clouds were 
used by Arastounia et al. [43]to discuss about insulators, 
conductors, and to identify critical components such as cir-
cuit breakers, fences, and cables of electrical substations. 
Munawar et al. [44] & Lu et al. [45] discussed that detection 
of power lines is a critical task in an autonomous vision 
inspection system. Liu et al. [46] have also explained that 
the detection of lines based on monocular images will give 
the best results when compared to images taken from long 
segments [47]. Song et al. [48] presented a method for iden-
tifying HVDC cables from captured images. A Match Filter 
(MF) and First Order Derivative of Gaussian (FDOG) are 
used to detect line segments with symmetrical edges to gen-
erate an outline of the map. Secondly, morphological filters 
are used for extracting non-power line segments. Finally, a 
graph theory known as the graph-cut model is used to group 
the detected line segments into power lines.

Li et al. [49] combined the top-down and bottom-up line 
detection process in the detection of power lines with aerial 
images. In this process, the study has been carried by using 
the pulse coupled neural network filter method to remove the 
background images captured from the UAS camera. Lastly, 
the spurious linear objects are eradicated from the images 
using the clustering (K-means) process. The images taken 
from the UAS are applied with canny and steerable filters. 
Later circle-based search methods are used for detecting the 
power lines with geometric relationships. A simple process 
was also used by Zhu et al. [50] in power line detection. In 
this process a double-sided filter was used to enhance the 
clustered background in the images, later straight lines are 
detected using the random transform method and finally, to 
identify the power lines, a parallel line restriction approach 
is used.

3.3 � Detection of Towers and its faults

The objective of the tower detection is to identify the type 
of tower, its position, and defects in a single image. Many 
approaches and algorithms are proposed to seamlessly 

perform this difficult task. In the detection of towers, top 
corners are the critical points of a tower instead of detecting 
the lines. Castellucci et al. [51] implemented a novel method 
to detect the edges and identify the top corners of towers, 
but it is observed that most of the results derived are lim-
ited to only specified parameters. However, in real-time, the 
towers are classified into various parameters depending on 
the color, shape, size, appearance, and material (e.g., wood, 
steel, ceramic, etc.) as shown in (Fig. 9a-d).

To identify the towers, including all parameters, many 
researchers have proposed different computer vision tech-
niques and algorithms to overcome the problem. To solve 
the difficulty in identification and classification, a two-feed 
forward MLP neural network has been presented by [52]. In 
the first stage, the background of the tower is identified, and 
the second stage is trained for detecting multiple transmis-
sion towers.

Remarks  The information provided in Table 1 includes, 
detection of power line components, features of images 
used in presented methods, type of component for inspec-
tion, techniques of image preprocessing, type of predictor 
for input data, concise information of data and performance 
of approach/methods used.

Color model  In few studies power line components are 
detected by using a color model. In this, images are con-
verted to HSI and acquired image intensity by converting 
the aerial images from RGB to HSI color space to locate the 
possible area on power line components.

The results obtained are displayed in the bounding boxes 
(Fig. 6). Recently, computer vision techniques like SVM 
[57] ROI, deep learning [58] are used to label and detect the 
location of towers. For best results, multiple classifiers are 
required to train on different parameters and backgrounds. 
Another promising research is to extend the system for 
autonomous detection of towers and faults with the exact 
classification by fusing the information from various sensors 
(LIDAR, thermal and infrared cameras).

(a) 115 kV Wood H-frame (b) Ceramic insulator on

Pole-tower

(c) 115 kV Steel lattice (d) 230 kV with improved

appearance 

Fig. 9   Four different types of towers varying in the background, size, shape and lighting conditions for power line [51]
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3.4 � Fault identification and diagnosis

From the literature review, it has been observed that the 
topic of fault identification and diagnosis has attained less 
research interest compared to component identification. The 
main reasons are: i) datasets or data base of faulty compo-
nents are not available; ii) from component to component, a 
variety of defects are seen; iii) in the images, the same defect 
can be seen in multiple forms, which makes the defect iden-
tification process harder. Because of the aforementioned fac-
tors, there is a severe shortage of fault data, making training 
AI algorithms difficult. The typical procedure followed for 
fault identification and diagnosis is comprised of two stages: 
i) Identifying the component and ii) Detecting the fault. In 
the first stage, Region of Interest (ROI) is used to detect the 
component and crop it out of the background so that it may 

be investigated further. Then, in ROI, a defect prediction 
approach is used to discover faults. Some researchers have 
eliminated the first stage as they consider the component the 
principal part of the image. The literature review concern-
ing the identification of the component and fault detection/
identification is shown in Tables 1 and 2 respectively.
Remarks  The information provided in Table 2 includes the 
information related to the concepts of fault identification and 
diagnosis, type of fault, suggested method, the technique 
used in the identification of components, methodology used 
in detecting defects, features of data techniques, brief infor-
mation, and performance of metrics used.

The abbreviations used in Tables 1 and 2: Fully Convo-
lutional Network (FCN), You Only Look Once (YOLO), 
Support Vector Machine (SVM), Hue, Saturation, Intensity 

Table 1   Summary of the state of artwork related to power line component detection

Features Methods Component Image preprocessing Component Detection

Color
[52]

Color model Insulator RGB to HSI morphological filter - The insulators are detected using a morphological filter and 
the Optical Entropic Threshold (OET)

Color model Tower RGB to HSI
RGB to YCbCr

- The 3-layer classified ANN features are used for the detection 
of types of towers based on HSI &YCbCr color features by 
extracting from aerial images

Color model Insulator RGB to Lab
K-means cluster

- K-means is used to transform RGB images to Lab color space 
to generate the appropriate cluster

Texture [53] HM-LA Fitting RGB to Gray - A texture feature is used for the detection of faulty power line 
components with repetitive geometric structures

RI-LDP + SVM Insulator - - Rotation Invariant LDP (RI-LDP) is used to detect the orien-
tation of insulators

Harr + AdaBoost Fitting RGB to Gray
Smoothing filter

- The AdaBoost classifier is used to identify the classes of 
dampers through the sliding window of original images

Shape [54] PLineD Conductor RGB to Gra - Edge drawing (ED) is used for the detection of transmission 
conductors. First, straight-line segments are collected by ED 
and hand-craft rules with different steps are used to identify 
lines

Canny Tower RGB to Gray
Gaussian filter

- An edge detector called canny is used for tower detection. At 
first, contours are extracted and then images are separated 
into 10 X 10-pixel boxes. Finally, straight lines are employed 
to identify the towers and remove the false box

MLP Fitting - - For segment extraction in fittings and dampers, a multi-level 
perception with three levels (low-level, middle-level, and 
high-level) is applied

Deep
[55, 56]

FCNs Conductor - - To identify transmission conductor from aerial photos, fully 
convolutional networks are used

Faster R-CNN Insulator Augmentation Resize - The insulators in the aerial images are cropped as the main 
part and then resized to 500 X 500 resolutions. Next insula-
tors are employed to Faster R-CNN for detection of insulators

CNN + SW Insulator Augmentation Resize - For insulator detection, a six-stage convolutional neural net-
work is integrated with a sliding window

YOLOv2 Insulator RGB to Gray
Resize

- Adaptive morphology is used in YOLOv2 for the identifica-
tion of insulators

YOLOv3 Tower Augmentation Resize - YOLOv3 models are trained with various pixel sizes like 288 
X 288, 352 X 352, 480 X 480 and 544 X 544 for training and 
detection of towers
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Table 2   Summary of the state of artwork related to fault identification

Fault Method Detection Identification Detection of defects

Corrosion of tower [59] DELM-LRF - DELM-LRF - The corrosion on transmission towers is 
identified by LRF and DELM. At first, LRF 
is used to extract features on the surface 
of the tower and the extracted features are 
classified into corrosion levels using DELM

CMDELM-LRF - CMDELM-LRF - The deep features are collected from visible 
images and applied multi-modal imaging to 
detect the damage on the tower

Broken strand of conductor [20, 60] CT Gestal Rules -—Cross Template and handcraft rules are 
used to recognize the broken strand, spacers 
and dampers installed at conductors

CED-IFR CED IFR - A Canny edge detector was used to extract 
the segments of the conductor from aerial 
images. Then IFR is used to detect the 
broken strand in the conductors

GVN-SWT GVN SWT - The aerial images are converted to gray 
color space by using GVN. Then conduc-
tors are extracted by adaptive threshold 
segmentation. Thus, broken strands are 
identified by using a Z-shaped waveform 
from SWT

The surface fault of insulator
[22, 61]

M-PDF OAD-BSPK AlexNet - Insulators are detected from aerial images 
by using OAD-BSPK and the detected 
region is given as input to pre-trained 
AlexNet to extract features. Finally, a 
trained SVM is used to identify the faults 
on the surface of insulators

IULBP - IULBP + Rules - An improved IULBP is used for feature 
extraction in insulators. Then GrabCut is 
used to find the faults on the surface of 
insulators

CGL-EGL CGL EGL - The region of insulators is detected by 
Canny edge detection and GrabCut segmen-
tation. Then EGL is used to find individual 
caps. Finally Local Outlier Factor is used to 
find the faulty caps on surface of insulators

M-SA F-PISA Color model - Insulators are detected by F-PISA and 
a particular region is extracted by color 
determination in Lab color space. Then a 
fault diagnosis scheme is used to detect the 
surface faults on insulator

Vegetation encroachment [62] CNN-SM - CNN-SM - The height of trees is calculated using a 
binocular camera mounted on a fixed-wing 
UAV, and the vegetation around conductors 
is detected using an 8-layer CNN-SM

PCNN - PCNN - A PCNN and morphological operation is 
used to detect vegetation by multiplying the 
horizontal distance between conductors and 
trees by height

Missing cap insulator
[16, 24]

M-YOLO + AM M-YOLO Adaptive morphology - YOLOv2 is used to detect the insulators 
on power lines and adaptive morphology 
is used to highlight the missing cap on the 
insulator. Later GrabCut is used to display 
the faulty region on the insulator

Up-Net + CNN Up-Net CNN - In this Up-Net is used to determine the 
segment of insulators and a 10-layer CNN 
is used to identify the missing cap of insula-
tors
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(HSI), Luma, blue-difference, red-difference (YCbCr), 
Local Directional Pattern (LDP), Deep Extreme Learning 
Machine (DELM), Local Receptive Field (LRF), Improved 
Free Man Rule (IFR), Circular Gradient Location and Ori-
entation Histogram like (CGL), Elliptical Gradient Loca-
tion and Orientation Histogram like (EGL), Pulse Coupled 
Neural Network (PCNN), Orientation Angle Detection and 
Binary Shape Prior Knowledge (OAD-BSPK), Faster Pixel-
wise Image Saliency Aggregating (F-PISA), Aggregate 
Channel Features (ACF), Convolutional Neural Network 
for Stereo Matching (CNN-SM), Hough Transform (HT).

The most feasible methods for the inspection and moni-
toring of overhead power transmission lines with algorithms/

methods are listed in Table 3. It summarizes the most used 
methods and data collected through different software or 
algorithms applied for different applications in the inspec-
tion of power lines [65]. Many types of research are going 
on to present a combination of deep learning and RGB-D 
(Red, Green, Blue) data for helping the UAS to identify the 
location and details of obstacles/defective components.

In the present literature, researchers have considered a 
diagnosis of faults as a classification task or detection of 
the object. In practice, different forms of faults lead to dif-
ficulties in developing a robust algorithm. It would be better 
if faults are identified from the aspect of irregular images. 
The topic of defect analysis excluding the step of power 

Table 2   (continued)

Fault Method Detection Identification Detection of defects

Missing pin of fitting [63, 64] HM-LA Haar + AdaBoost HT + LSD - As per And or Graph (AoG), the fitting is 
represented as a combination of several 
parts like pin and nut. To detect these parts, 
Haar + AdaBoost classifiers are used. Later 
Hough transform is used to highlight the 
missing pin of the fitting

CNN ACF + AdaBoost CNN - ACF + AdaBoost classifiers are used to 
locate the fitting region. The features of the 
fitting region are then extracted using an 
8-layer CNN and divided into three types: 
normal fitting, fitting with a missing pin, 
and background fitting

Table 3   A summary of feasible software/algorithm used for power line inspection

Ref. no Vision-based data 
analysis software

Thermal Image 
Inspection

Offline inspection
(Visual/manual 
inspection)

Software/Algorithm

[2] ✗ ✓ ✗ (Electrical Transmission detection)
[7] ✓ ✗ ✗ ✗
[66] ✗ ✓ ✓ (ImageNet)
[10] ✓ ✗ ✗ (Computer Vision, MATLAB toolbox)
[11] ✓ ✓ ✓ (Image Processing, MATLAB toolbox)
[12] ✓ ✓ ✓ (Canny Edge Detector, HOG, Computer Vision, MATLAB)
[67] ✓ ✗ ✓ (Edge Detector, Mapping)
[14] ✗ ✗ ✓ (HOG, MLP ROI & MATLAB)
[68] ✓ ✗ ✓ (Segmentation, Graph cut)
[61] ✗ ✓ ✓ (Image processing, MATLAB)
[69, 70] ✗ ✗ ✓ (Machine learning, Computer Vision & MATLAB)
[17] ✓ ✓ ✗ (Multivariate regression analysis
[21] ✓ ✓ ✓ (HOG, CBS)
[22] ✗ ✓ ✓ (Image processing, HOG & MATLAB)
[71, 72] ✗ ✗ ✓ (Local to Global power line detection)
[73] ✓ ✗ ✓ (PCNN, HOG)
[51] ✓ ✗ ✗ (MATLAB, HOG)
[53] ✓ ✗ ✗ (Gray Variance Normalization, Square Wave Transformation)
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transmission lines and components deserves future research. 
Nevertheless, implementation of these results in the practi-
cal application of UAS is highly welcomed as the present 
research is mostly evaluated and limited to the laboratory 
only. The standard assessment guideline, along with meth-
ods and the open data sets will support the research in the 
entire field of inspection and data analysis.

Most of the researchers have concentrated on developing a 
system either for inspection or navigation. These improved sys-
tems worked to some extent in the specified/developed tasks, 
but they have many limitations in terms of accuracy and ability 
to function efficiently in the specified tasks. It is also observed 
that the developed systems are not yet fully integrated with 
UAS for the inspection of power transmission lines.

4 � Important issues related to power line 
inspection using UAS

This section describes two important aspects i.e., (1) hard-
ware or ways to acquire power line inspection data; (2) an 
overview of control methods for UAS collision-free move-
ment during the inspections.

4.1 � Hardware/ways to acquire power line 
inspection data

After going through various literature reviews on data 
acquisition methods and automatic inspection of power line 
systems covered by [36, 74], a summary is written based 
on different ways of data sources for power line inspection 
including their advantages/disadvantages and the process 
of implementation in the UAS. The identification of trans-
mission line components is considered as a prerequisite for 
further inspection. It is not only important for fault identifi-
cation but can also be used for UAS navigation. In traditional 
methods, the acquisition of images is carried by foot patrol-
ling inspectors and crew members traveling in helicopters 
with binoculars and cameras to record the data in a logbook. 
Later advanced methods of an inspection like UAS are using 
automatic video surveillance cameras for image acquisition 
and detection of faults. An innovative research method like 
Remote Terminal Unit (RTU), as well as Surface Vehicular 
Patrolling (SVP) is suggested for the data acquisition.

4.1.1 � Inspection with ultraviolet images

Ultraviolet inspection plays a vital role in the field of power 
line inspection. In order to detect the presence of corona in 
power line components, a UV camera can be used. Most of 
the corona energy comes from a wavelength range of 300 to 
400 nm (nm) [75, 76].The ultraviolet images are obtained in 

two ways as ultraviolet-induced fluorescence photography or 
reflected ultraviolet photos[77, 78].

4.1.2 � Inspection with thermal images

Thermal images are captured with thermal imaging cameras 
or infrared cameras like FLIR. Thermal imaging camera’s 
work on the principle of infrared radiation as visible light 
so that an average human can see beyond the red shortwave 
length [79]. Thermal imaging depends on the temperature of 
the object that emits radiation. The components operating at 
higher temperatures (hotspots) can be identified because they 
emit energy in the long-wavelength infrared spectrum. These 
cameras are mostly useful in power line inspections for the 
detection of a change in temperature and faults in electronic 
components like insulators, conductors and pylons.

4.1.3 � Aerial images

In this method, images are generally captured with the help of 
a fixed-wing aircraft [80]. This method is used for obtaining 
detailed images of electronic components like conductors, insu-
lators, transformers, cross arms, top pads and surrounding areas. 
Capturing aerial photos is very useful in the inspection of power 
transmission lines, especially in recognizing the vegetation, 
mapping and monitoring of faults in electronic components.

4.1.4 � Synthetic aperture radar images

Synthetic aperture images (SAR) are collected by using 
active imaging sensors. This method is useful in creating 
two or three-dimensional models of landscapes or objects. 
SAR’s are mounted on the top of aircraft or UAS for collect-
ing the images. The main advantage of this method is that it 
can capture high-resolution images irrespective of day, night 
and weather conditions [81]. SAR's are very useful in power 
line inspections for control of vegetation and mapping, and 
they are capable of creating 4-D images and mapping.

4.1.5 � Mapping of data with land‑based methods

Mapping of data is collected with the help of land-based 
vehicles like cars, boats, all-terrain cars and human beings. 
To obtain the data, data collection sensors with a mobile 
mapping system (MMS)and data collecting modules like 
scanners, cameras, GPS, sensors and Inertial Measurement 
Unit (IMU) are mounted on the top of these vehicles or the 
back of a human being. The most common methods used for 
land-based mobile mapping data are point clouds and images 
[82, 83]. This method has been beneficial in mapping the 
GPS data of electronic components like conductors, pylons 
and hanging components.
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4.2 � Overview of control methods for UAS 
collision‑free movement during the inspections

The power transmission line inspection using UAS brings up 
many challenges, i.e., path planning [84], navigation, con-
trol—hovering & stability of UAS, etc. Among these, one of 
the core problems is the navigation of UAS without colliding 
with the obstacles or power transmission lines [85]. Accord-
ing to S. Huang et al. [86], navigation is generally divided 
into two categories: 1) navigation using Global Path Plan-
ning (GPP) scheme, and 2) navigation using Local Collision 
Avoidance Schemes (LCAS). In the former one, a set of 
waypoints are generated from starting position to the ending 
position for avoiding obstacles and precisely moving along 
the power transmission lines. In local collision avoidance 
schemes, a waypoint is given as a local goal assignment to 
avoid the obstacles.

Presently with the help of control algorithms, conven-
tional sensors and pre-located information of obstacle, UAS 
can perform autonomous missions along the determined 
flight path [87]. However, there are multiple obstacles on 
the overhead power transmission lines, which can affect the 
flight performance of UAS and its cognitive ability [88]. 
According to [89] different sensors, such as infrared range 
finders, LIDAR, radar, and ultrasonic are mostly equipped 
in UAS to identify the obstacles and overcome the colli-
sion of a vehicle with HVDC lines. However, due to the 
limitations of senor functions like a range of sensing, light 
sensitivity and resolution provide very less information to 
the UAS vehicles. Minaeian et al. [90] has used monocu-
lar cameras on UAS for image processing and to evaluate 
the environment around HDVC lines in RGB space. But in 
outdoor applications, light-sensitive and time-consuming 
features restrict their performance. Therefore, insufficient 
knowledge on ambient properties will lead to failure of UAS 
flight path and obstacle collision avoidance. Recently the 
development in the integration of sensors and processing 
methods, RGB-D cameras are widely suggested for its aver-
age cost and multifunctional use in robots and UAS systems. 

This type of cameras will have specifications, such as insen-
sitivity to light, lightweight and high accuracy with great 
potential for obstacle detection.

Apart from three channels of RGB information, RGB-D 
cameras have an extra feature of distance information to cap-
ture the data of obstacles color, position and profile simultane-
ously. However, the process of extracting the data from these 
features remained unsuccessful yet. In recent years algorithms 
of deep learning, such as convolutional neural networks (CNN) 
and object detection have been proposed for path planning and 
obstacle detection & avoidance [91, 92]. Redmon et al. [93] 
have proposed to use YOLO for high performance in classifi-
cation accuracy and object detection. From this point of view, 
it is understood that combining the techniques of deep learning 
algorithms and RGB-D camera will give better results in the 
detection of an obstacle. Many researchers have focused on 
improving the algorithm of object detection by using RGB-D 
cameras. For example, Depth Recurrent Convolution Neural 
Network (DRCNN) and Single Stream Recurrent Convolu-
tion Neural Network (SSRCNN) to detect the objects such 
as conductors, insulators, top pads and pylons etc. on power 
transmission lines [94, 95].

Zhang. X et al. [96] have combined all these methods for path 
planning of unmanned wing helicopter and control of obstacle 
collision. These existing techniques are finally clubbed into 
different categories. In recent years, algorithms of deep learn-
ing such as Convolutional neural networks (CNN) and object 
detection has been proposed for path planning [97] and obstacle 
detection & amp; avoidance. In brief explanation, the Geometric 
guidance method generates an avoidance control method based 
on conflict geometry. In the conflict resolution method trajecto-
ries of UAS vehicles are considered to avoid the obstacles and 
hover in a free path [98, 99]. Mohanta et al. [100] has proposed 
a collision avoidance algorithm with a significant result. Xi Dai 
et al. [101] proposed a CNN-based learning scheme for avoid-
ing obstacles in unknown and unstructured environments. An 
architecture of obstacle avoidance with two steps end-to-end 
algorithm is designed, with a monocular camera pointing for-
ward is used in UAS. In the first step, a CNN model is used for 

Table 4   Summary of completed/ongoing research on power line inspections around the world

Manufacturer Maximum speed Transmission range & Endurance Weight Commercial 
availability

Fixed-wing aircraft (Sichuan Electric Power Corp.) [58] 70 km/h 50 min. using 16,000 mAh Li-Po battery 3 kg Max. take-off ✗

X650 Pro (XAIRCRAFT PTY Ltd.) [62] - 20 min. using 5800 mAh 4S Li-Po battery 1.8 kg ✓

mdMAPPER 1000 (Microdrones) [103] - 40 min 5.8 kg take-off ✓

SkyRanger R60 (Aeryon Labs, Canada) [104] 70 km/h 42 min 4.5 kg ✓

UAV (Hexrotor) [105] 30 km/h 25 min 6 kg Max. take-off ✗

Smartcopter UAH (ARCAA & CSIRO, Australia) 1.0 m/s 2 km, 55 min. range using two-stroke gas engines 12.3 kg take-off ✗

Quadrotor UAV (CAS) [106] 17 m/s 3.5 km, 40 min 2.7 kg take-off ✓

TQuad1000 (Poison Aviation Co. Ltd.) [106] - 60 min. using 22.2v, 22,000 mAh batteries 2 kg Max. Payload ✗

Mavic 2 (SZ DJI Technology Co. Ltd.) [107] 72 km/h 31 min. using 3850 mAh Li-Po battery, 4 km 0.91 kg take-off ✓
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prediction, using three effective operations such as channel split, 
group convolution and depth convolution. In the second step, the 
movement of UAS is mapped with a control mechanism in order 
to change the yaw angle of UAS and counter an obstacle. While 
hovering the UAS should analyze the conditions to avoid any 
obstacles. The reason for this is, sensors like, LIDAR, Telemetry 
and GPS always have velocity and position errors. It would be 
wise to consider the defects of these sensors for collision avoid-
ance. In practical maintaining, a safe distance will improve col-
lision avoidance. Ram prasad padhy et al. [102] has proposed a 
DNN based algorithm for localization of UAS in corridor envi-
ronments to navigate safely without any collisions. In this process 
the deep models were trained to predict the input commands of 
flight. This deep learning network is mainly trained for multiple 
tasks such as, prediction of translation and rotational deviation 
of the UAS with respect to central bisector line.

5 � Inspection using UAS: potential, 
limitations and challenges

5.1 � Growth in Drone potential

Drone or quadcopter application utilization for power line inspec-
tion has a high potential to include safety, speed, efficiency and 
cost-effectiveness into the inspection services. So far, many 

researchers across the globe have worked to develop an effective 
UAV for inspection of power transmission lines. Some impor-
tant discoveries are shown in Table 4. The smart guard is an 
industrial robot equipped with a Li-Po battery, visible light and 
thermal camera, image processing module and four wheels for 
moving around the substation for analysis of transmission lines 
and electrical components such as pylons, switches, conductors 
and insulators within the substation. As of 2016, China's power 
utility firms have installed approximately 300 smart guards.

A British multinational electric and gas utility company, 
the National Grid, has signed a licensing agreement to use 
the LineScout robot as reported in 2014. Also, Japan Kansai 
Electric Company and Japanese Electric Power Systems Inc. 
have adopted the Expliner robot for power line inspection. 
However, it is noticed that Hydro Quebec Electric Company, 
Canada, has equipped with Line-Ranger and Line-Drone 
which can be considered as the most advanced robots in 
terms of speed, stability, portability, obstacle avoidance and 
onboard technologies for the usage of power line inspections.

5.2 � Limitations of current research and solutions 
of data analysis system for power line 
inspection

From the literature review, it can be clearly understood 
that several attempts are done in the past for automating 
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the power line inspection system, but the autonomous UAV 
was completely unsuccessful or limited to only a set of tasks. 
Those specific task-related approaches resulted in enormous 
restrictions in terms of precision and inability to respond to 
defined input. Detection of a wide range of faults with dif-
ferent classes is also not achieved. It is also noted that there 
are mainly four problems in the present inspection methods 
related to power lines. i) Data cleaning, quality and Data 
labeling. (As mentioned by [36] an individual human spends 
approximately 60 min tagging the captured pictures), ii) 
Disproportion of data class and Data insufficiency (In the 
practical world, different components have different defects 
and frequency. In some cases, there are no datasets available 
such as, tower collapse and vegetation which leads to class 
imbalance and a poor model for inspection), iii) Intra-class 
variations and iv) Multiple data sources. Therefore, a lot of 
time and effort is needed for attaining a completely autono-
mous UAV system for inspection of every minor defect (i.e., 
detection of broken poles, damaged insulators and cracks in 
conductors etc.).

To address these problems, an intelligent analysis of 
inspection system should be considered. Some potential 
approaches are defined as (i) Supervised Object Detection 
(SOD) uses image-level for labeling and training the images, 
which plays an important role in relieving human involve-
ment of data labeling. The technician only needs to tag the 
object in the picture without caring about its location, which 
drives the process of labeling with double speed-reducing 
labor work, cost and time.

(ii) Autonomous image generation is promising research 
to address the issues of data variation imbalance and data 
insufficiency, intra-class variations. In this method, rare 
data is generated by copying or transforming. In copy-
ing, the target object is extracted by segmentation network 
(e.g., U-Net, Deep Lab and Mask R-CNN) [63, 73] and 
paste the region of object in the background image. An 
example of this method is also explained in [24, 108]. (iii) 
Multiple object detection can be used to fuse the data from 
different data sources to detect multiple objects in varying 
backgrounds, if available. A few researchers have tried 
using this method for fusing visible and thermal images 
for the detection of insulators and defects on power line 
components [17]. However, this method is considered 
to be in its early stage for using in power line inspec-
tions. (iv) Embedded application is also needed to meet 
the limitations of existing data analysis. At present, some 
embedded devices (on-board UAV) such as Raspberry Pi, 
NVIDIA Jetson can complete image acquisition and pro-
cessing tasks (e.g., DCNN) but failed in tackling the high-
performance analysis. The diagram of these systems can 
be seen in Fig. 10. Thus, it is a challenging task on how 
to achieve precise data analysis for overhead transmission 

line inspection with small memory and less computing 
time in practical engineering and application. In order to 
tackle the detection of power line components and fault 
identification, we propose a multiple component detec-
tion and classification pipeline. In this system, the pipeline 
works as follows: At first, the dataset of images is sent as 
input to the mast detector for detection of power masts and 
these detected power masts are cropped and used for (CD) 
to detect the power line components. Finally, the detected 
power line components are cropped and the input images 
are passed through fault detection models to detect poten-
tial faults such as missing caps on insulators, conductor 
and insulator breakage, transmission tower damage, and 
missing top-pads.

Images from various sensors can be used to detect 
multiple types of power line faults. For example, opti-
cal images are useful for detecting visual faults, whereas 
thermal and ultraviolet images are useful for detecting 
faults that are invisible to the human eye, such as equip-
ment bad connections and corona discharges. As a result, 
combining images from multiple sensors can help inspec-
tion systems detect a wider range of faults. In addition to 
this, image channel fusion can enhance inspection perfor-
mance because image channels such as optical and thermal 
images typically provide complementary visual informa-
tion that deep learning models can use.

5.3 � Challenges

The limited power of the onboard battery is one of the 
key challenges of UAV, reducing the inspection distance.
However, stability issues remained in UAV and cause dif-
ficulty in data acquisition.
As UAS will be working around the energized extra 
HVDC lines, the onboard electronics will suffer electro-
magnetic interference and might get damaged. Hence, 
research is necessary on the shielding of electromagnetic 
interferences, which would be a great research point.
The consequences of external disruption were not taken 
into account by the current UAS in power line inspections 
(e.g., wind). As a result, it will be excellent research sub-
ject to devise dynamic models representing the robot-line 
coupled system for stability analysis and control of the 
UAS under the influence of wind.
The present UAS are transmitter operated which leads 
to a lack of improper identifying and sensing units of 
power transmission line components. So, designing arti-
ficial intelligent algorithms and methods will improve the 
level of autonomous inspections in power lines. Hence, a 
promising research point.
Utilization of geo tagging along with GPS waypoints for 
the access of location of defective electrical components, 
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segmentation, classification of different forms of errors 
and their working conditions.
Huge data size has to be reduced and collected for farther 
use of different stack holders.
Improved DL techniques integration with UAV’s applica-
tion and Collective use of many UAV’s together.
Installment of high-resolution cameras & advanced sen-
sors, refined data storage and security issues.

5.4 � Inspection methods vs performance, 
advancements and cost criteria matrix

The traditional methods, viz., visual inspection, infrared 
inspection, ultrasonic inspection, and helicopter-based 
inspection, are still readily used in most parts of the world 
for the inspection of power transmission lines and towers. 
Many inspection performance measures, i.e., time consump-
tion, inspection quality, incurred cost, safety issues, accessi-
bility range, computational and technical advancements etc. 
are taken into consideration for comparing the inspection 
methods. An Inspection method vs performance, advance-
ments and cost criteria matrix are presented for comparing 
all the inspection methods in terms of its performance crite-
ria, associated advancements, and costs (Table 5).

Efficiency- quickly, ease to execute and accurately 
inspection saving time and cost; Installation cost or Asset 
cost- investment required to install the inspection assets; 
Safety- associated risk of accidents and injuries; Inspec-
tion Quality- accurate and reliable results; Inference time- 
time taken capturing data and generating detected results; 
Accessibility range- access these locations hard-to-reach 
locations for all components; Training requirement- Neces-
sity of training to operate/execute the; Recall- Proportion 
of true positive predictions to the total number of actual 
defects, indicating how well the DL algorithm can detect all 
defects; Technical Advancements- Upgradation of inspec-
tion method in terms of technical data capturing systems, 
used sensors, techniques of fault representation, assessment 
and storage etc.

Above matrix summarizes that there is no one-method-fits 
for all inspections of multiple components and their faults 
on overhead power transmission lines. Each method has its 
strengths and limitations and the selection of the most appro-
priate method depends on various factors, including the type of 
power line, its location and the available inspection resources.

6 � Blockchain utilities in UAV‑based power 
transmission line inspection

Future is looking towards a self-regulating automatic UAV 
based power transmission line inspection system, using 
the swarm of UAV’s and AI along with advanced vision 

systems. A combination of navigation approaches, including 
beam exposure-based, Global Positioning System waypoint-
based, and power line disclosure-based methods, coupled 
with UAV autopilot can help overcome current challenges in 
developing such an inspection system. Moreover, the chal-
lenges like handling huge data size, storge of refined data, 
data transparency among the distributed stakeholders, col-
lective use of UAVs and advanced data management, the 
blockchain technology has demonstrated innovative solu-
tions in different sectors [109–111].

Data-dependent services are often vulnerable to being 
hacked. Thus, security issues are always a big concern for 
such businesses. In addition, distributed access to the stored 
data, effective management of large data set and local intel-
ligence capability are much-needed features to power line 
inspection framework, which encourages blockchain technol-
ogy implementation. Inspection of a standalone (wire between 
tower to tower) wire segment can’t be useful until and unless 
engineers can predict the overall health of the conductor 
(source transformer to user transformers wire). Power indus-
tries are looking forward to a scheme that can be helpful in 
terms of automating drone-based inspections, security-proof 
programming, data storage infrastructure and data transpar-
ency to stakeholders. Blockchain technology brings up three 
main features to this scheme, i.e., Security, Trust, Storage & 
Distributed use [109–113]. The blockchain based scheme for 
the power transmission line inspection can be divided into 
two folds, i.e., (1) Blockchain-based conceptual framework for 
power line inspections, (2) Parallel-plane navigation concept 
which helps in automating vibration-free navigation of drones.

6.1 � Blockchain utilization for UAV‑based power line 
inspection: a general framework

The Blockchain-based conceptual framework has four main 
entities, i.e., Blockchain, Inter Planetary File System (IPFS), 
Unmanned Arial System (including the video camera, infra-
red camera and other smart devices) & GCS (Ground Con-
trol System), and data user (source end personal, user end 
personal, recommending engineer, repairing engineers and 
different drones) as shown in Fig. 11.
(I) Blockchain  Blockchain is a programming cum informatic 
application model used for decentralized data storage, data 
visibility, incapsulated and encryption algorithm/intelli-
gence [114], peer-to-peer transmission and other technolo-
gies. Blockchain is utilized to store the inspection data col-
lected by drones or other means in this application. As well 
as the encrypted algorithm/intelligence also evaluates the 
status of the line segment, keeps updated the wire health and 
identifies the defects. Only authorized entities are allowed to 
modify the record. The data stored on the blockchain can-
not be arbitrarily modified. But it can have visibility to all 
stakeholders.
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(II) Inter Planetary File System (IPFS)  The Inter Planetary 
File System is a decentralized storage protocol. It is defined 
as an off-chain database. The off-chain database is used in 
order to store UAV data (mission information, flight sta-
tus details, sensor data) that is too large to be stored in the 
blockchain efficiently. In fact, OrbitDB is a distributed peer-
to-peer database performing with IPFS. The latter generates 
the hash of the data saved into OrbitDB and stores it as an 
immutable transaction in the blockchain [110].

(III) Unmanned Aerial System & GCS  UAS are pilotless air-
craft that can operate autonomously via the onboard com-
puter or can be remotely controlled by a pilot at the Ground 
Control Station (GCS). UAS use onboard sensors to collect 
different types of data such as UAS speed, battery level, 
altitude, RGB images, thermal images. Depending on the 
system requirements, specific sensors can be applied. The 
collected data can be preprocessed or kept intact at the UAS 
before being sent to GCS. GCS is responsible for receiving 
data from UAS and sending out commands to control UAS, 
including uploading new mission commands and updating 
controlling parameters. Unmanned Aerial System & GCS 
are mainly responsible for uploading the inspection data to 
the blockchain and IPFS [115–117].

(IV) Data Users  All stakeholders can be the data user, i.e., 
the drones, engineers managing the transmission load to 
the lines, maintenance engineers, research engineers, third-
party users, etc. DU first needs to make a request to the base 
stations/GCS. If the smart system device affirms that their 
attributes meet the access policies, the system smart device 
will return a token for them to search for the stored records.

Wire segment details and inspected recorded data of the wire 
segment are stored in an individual block, which also keeps its 
own AI/ML-based programming file to identify/predict the 
defect. Its programming files are enabled to update the health 
status after a drone inspection and new data are uploaded to it. 
Any stake-holding drone can upload its inspection file (photos, 
videos, infrared camera pictures, ambient sensor data, etc.) to the 
concerning block. Each line block between tower-to-tower can 
further consist of sub-blocks to keep an inspection record of the 
wire segments. With the help of the blocks, wire health status 
and accordingly wire load decision can be updated.

There are two types of blocks suggested i.e., (1) Tower 
block (center location of the tower, wire hanging location, 
number of busy wires hanging locations, keeps reference 
status, keeps updated status all hanging nodes); (2) Wire 
block (updated status of all sub-blocks and updated status of 
wire health and defects along with their location).

Fig. 11   An illustration of a DL 
based model for power line 
inspection and solution to data 
analysis system. (MD is Mast 
Detector and CD is Component 
Detector)
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6.2 � Parallel‑plane navigation concept

Towers are a well-established structure (center point, dimen-
sions and wire hanging locations are known), which center 
point can easily be denoted in GPS form. With reference to 
the center point, all wire hanging point location is not a big 
task to figure out. After finding out the GPS location and 
height of the hanging points, it becomes easy to automate 
the drone navigation. There is an interesting fact that, due 
to gravitational force, the conductor (wire) is pulled towards 
the ground. The wire hanging points at two consecutive tow-
ers and the wire itself remains in the same plane. If a UAS 
can be navigated along the wire and parallel to this plane 
(making some distance from the wire), then there will only 
be a task to manage the altitude of the UAS. So, the navi-
gation will be vibration-free, and it is a good approach to 
automate UAS-based inspections. The utilized CCD camera, 
Infrared cameras, and ambient sensor can obtain clear data 
and lead to fault detection accuracy. Challenges associated 
with vibrations (conductor vibration, quadcopter vibration), 
navigation control and path planning issues are suggested 
to cope with a stepwise UAS movement and image acquisi-
tion strategy. It will be executed using parallel plan concept. 
Accurate data acquisition has always been tedious in such 
live dynamic scenarios.

Stepwise UAS movement and image acquisition strategy 
is as follows:

•	 Quadcopter step by step movement will be performed 
along the transmission line. It will work together with 
GNSS location, telemetry devices and ultrasonic sensor-
based safe distance concept.

•	 Hovering of the quadcopter in a vertical plane which is 
parallel to the transmission line vertical plane.

The inspection task can be more effective, accurate and 
easily manageable by utilizing the parallel plane navigation 
concept.

Although there are review articles on power line 
inspection techniques, the vast majority of these works 
primarily focus on particular transmission components 
and their associated defects. This review focuses on dem-
onstrating the use of a UAV and DL-based methods for 
monitoring and inspecting various power transmission 
line components, such as insulators, conductors, fittings, 
and spacers.

6.3 � Recommendations for further enhancing 
the use of UAS in power line inspection

Some recommendations have been carefully developed 
based on the insights and review presented throughout 
the manuscript. They are designed to serve as actionable 

guidance for a broad audience, including researchers, prac-
titioners and policymakers involved in the field of power 
transmission line inspections. The recommendations are as 
follows:

–	 Although processing real-time videos and images 
through deep learning algorithms has been quite useful 
for instantly recognizing and classifying issues such as 
vegetation encroachment or structural damage, providing 
real-time insights to inspection teams. But still, advanced 
DL approaches (Graph-based Deep Learning, Genera-
tive Adversarial Networks (GANs), Deep kernel-based 
architectures, etc.) can improve defect detection accuracy 
in many ways.

–	 With a change of orientation, the same defect looks in a 
different form, so there is a need for a power line defect 
image and faulty component image data base. A widely 
accepted, rich, and comprehensive database of such 
faulty component images is rarely available.

–	 By implementing strategies to mitigate electromagnetic 
field (EMF) interference, such as improved shielding 
(carbon fibre wrapping around the controller) or intel-
ligent frequency management (installing a real-time 
kinematics (RTK) system on a drone), power companies 
can enhance the flying and controlling efficiency of their 
Unmanned Aerial System in dense EMF regions near live 
power transmission lines.

–	 By coordinating multiple drones within a swarm, these 
Unmanned Aerial Systems can cover extensive areas 
efficiently, collect real-time data, and identify potential 
issues with power lines more quickly and accurately.

–	 By implementing blockchain methodology, power com-
panies can create an unalterable ledger of inspection 
records, guaranteeing the authenticity of critical main-
tenance and safety data. This not only enhances data 
security but also facilitates regulatory compliance and 
transparency in the maintenance of power infrastructure.

7 � Conclusions and remarks

In this paper, a comprehensive review of UAS for power 
transmission line inspection with a focus on existing 
automated visual inspection systems is presented. Many 
advanced techniques and platforms have been devel-
oped so far, each of them has its own merits and flaws. 
Therefore, a detailed literature survey about these tech-
niques, platforms and sensors has been reviewed in this 
manuscript to enhance advanced research work on power 
lines. Firstly, different modes of power transmission line 
inspection are presented with their approaches to detect 
defects. Then image acquisition with fault identification 



Journal of Intelligent & Robotic Systems          (2024) 110:54 	 Page 21 of 25     54 

and diagnosis are analyzed from the aspects of different 
image features such as image color, shape, texture and deep 
features. Next, a survey on fault diagnosis of power line 
components is presented including tower corrosion, surface 
fault of insulator, broken strand of conductor, vegetation 
encroachment and missing pin of fitting etc. The necessary 
information required for inspection of power transmission 
lines includes different issues/planning, i.e., mapping, navi-
gation, pole detection, collision avoidance and fault detec-
tion of components are discussed/illustrated with the basic 
facts. Further a solution to power line inspection and data 
analysis system which is mainly dependent on deep learn-
ing and blockchain technology is discussed tackling the 
challenges. This system consists of data preprocessing, an 
illustration of our pipeline model, fault detection method, 
data management and automating an effective inspection. 
Finally, we have discussed the challenges and limitations 
of this domain and suggested research directions in terms 
of quality and quantity of datasets, endurance of flight, 
embedded application, and detection of small objects and 
evaluation of baseline. UAS and AI is still an emerging 
and promising area in overhead power transmission line 
inspection.
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