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Abstract
This paper presents a simultaneous task assignment and trajectory planning method for unmanned system swarm by using
optimal transport and model predictive control (OT-MPC). Unlike the conventional hierarchical assignment and planning,
the proposed approach addresses both the task assignment and trajectory planning subproblems concurrently. To be specific,
a unified cost function is designed to solve task assignment and trajectory planning problem. Moreover, the multi-tasks are
assigned by using optimal transport, which establishes an optimal mapping between tasks and unmanned system vehicles
based on transportation cost. The trajectory planning is achieved by using model predictive control, which generates high-
quality navigation trajectories considering obstacle avoidance. Finally, the proposed method is applied to the unmanned
surface vehicles swarm. Numerical simulations and experiments were conducted to validate the effectiveness of the proposed
method.

Keywords Unmanned system swarm · Simultaneous task assignment and trajectory planning · Optimal transport · Model
predictive control

1 Introduction

With the continuous advancement of environmental per-
ception, information fusion, and control decision-making
technologies, unmanned system swarm (USS) has rapidly
evolved and found extensive applications in various fields,
includingmilitary, rescue, and logistics [1, 2]. The unmanned
system vehicles comprising the USS may be unmanned
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ground vehicles [3], unmanned aircraft vehicles [4], unmanned
surface vehicles [5] or spacecraft [6, 7]. As application sce-
narios increase, the complexity ofUSSmissions significantly
grows. Hence, to ensure safe and effective execution of
complex tasks, the task assignment and trajectory planning
method for USS design has receivedmore andmore attention
from the theoretical and engineering areas [8, 9].

In recent years, task assignment and trajectory plan-
ning methods for USS have been studied as different sub-
problems. Substantial advancements have been achieved in
the domain of multiple task assignment [10], with notable
approaches including the Hungarian algorithm [11], par-
ticle swarm optimization (PSO) [12], self-organizing map
[13, 14], and deep learning techniques [15, 16]. Meanwhile,
several approaches have been proposed to address another
sub-problem trajectory planning, such as genetic algorithm
[17], PSO [18], A* algorithm [19], pseudospectral convex
programming [20] and model predictive control [21, 22].
However, traditional methods often handle task assignment
and trajectory planning as separate and independent sub-
problems, overlooking their interdependencies. This can lead
to sub-optimal or locally optimal solutions, failing to ensure
global optimality or near-optimality of overall performance.
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To address the above weakness, the simultaneous task
assignment and trajectory planning methods were presented
[23–25]. This method simultaneously addresses two prob-
lems: assigning unmanned swarm individuals to target
locations and generating collision-free trajectories for each
individual. In [26, 27], a concurrent task assignment and tra-
jectory planning method was presented, which minimize a
cost function based on the square of velocity along the trajec-
tory. However, this approach assumes that the convex hull of
initial locations and desired task locations is obstacle-free. In
[28], a method for solving chance-constrained simultaneous
task assignment and path planning on a graph with stochas-
tic edge costs was presented. In [29], the conflict graph is
designed to simultaneously encode the traveling time cost
of the subsequent path planning result of each task-robot
assignment and address the predicted path conflicts of each
two assignments. However, the focus of these methods is still
on task assignment and ignores the effect of swarm individual
dynamics on trajectories.

It is worth mentioning that the above methods lack ran-
domness in the process of target assignment. Once the
tasks are determined by the unmanned swarm individuals,
the assignments will not be changed, which may lead to
sub-optimal solutions. Additionally, excessive focus on task
assignment neglects proper trajectory planning, resulting in
non-continuous and non-smooth trajectories. Motivated by
solving this problem, a simultaneous task assignment and
trajectory planning method for USS by using OT-MPC is
presented in this paper. The randomness of task assignment
is enhanced by optimal transport theory through probabilis-
tic transfers, and the collision probability among unmanned
swarm individuals is reducedby trajectory prediction through
model predictive control. The main contributions of this arti-
cle are as follows:

1) A simultaneous task assignment and trajectory planning
method for USS is presented. Both the task assignment
and trajectory planning sub-problems are addressed con-
currently. Comparing with [27, 28], a unified objective
function is designed to facilitate the coordination and
consistency between task assignment and trajectory plan-
ning. The risk of compromising overall performance is
mitigated by avoiding local optimization.

2) The proposed method utilizes optimal transport and
model predictive control to achieve simultaneous opti-
mization of task assignment and trajectory planning,
enabling rapid adjustments and re-planning in response
to real-time information. Comparing with the existing
simultaneous task assignment and trajectory planning
such as [27, 29], the optimal transport method is utilized
to match tasks randomly to unmanned system vehicles

based on their costs, while the model predictive control
is employed to iteratively optimize the trajectories of the
unmanned system vehicles based on real-time feedback
and predictions. The proposed approach is more applica-
ble to the actual large-scale unmanned system swarm.

3) The Sinkhorn-Newton method is proposed, which is
capable of rapidly obtaining the global optimal solu-
tion and demonstrates high efficiency and scalability for
large-scale USS tasks. Hence, the proposed approach has
greater application potential.

The paper is organized as follows: Some preliminaries and
problem formulation are introduced in Section 2. In Sec-
tion 3, OT-MPC method for simultaneous task assignment
and trajectory planning is presented. The proposed method
is applied to unmanned surface vehicle swarm in Section 4.
The effectiveness of the proposed control approach is vali-
dated in Section 5. Some conclusions are given in Section 6
to end this work.

2 Preliminaries and Problem Formulation

Let R be the set of real numbers, and R
m×n is the set of

m × n real matrices. The vector 1m denotes an ones vector
of dimension m, and I represents the identity matrix. The
notation [[N ]] refers to the set 1, . . . , N . The Euclidean norm
is represented by || · ||. For any a ∈ R

1×n , ai denotes its i th
element and diag(a) represents the diagonal matrix with its
i th diagonal element being ai , i = 1, 2, · · · , n.

2.1 Monge Problem

In this subsection, the discrete optimal transport is given, and
indicate how it relates to task assignment problem. Optimal
transport is amathematical theory and optimization approach
utilized for computing the optimal mapping between two
probability distributions [30, 31]. Consider two finite metric
spaces, X ⊂ R

m and Y ⊂ R
n . Let μ and ν be two discrete

probability measures onX and Y respectively, satisfying the
following conditions

μ =
∑

i∈m,a∈X
μai δa, ν =

∑

j∈n,b∈Y
νb j δb (1)

where μai and νb j are the massed assigned to a ∈ X and
b ∈ Y . δa and δb are the Dirac delta at a and b, respectively.

Let c : X × Y → R be a cost function, where c(ai , b j )

denotes the transport cost from ai in X to b j in Y , for every
1 � i � m and 1 � j � n. The objective is to find a
transport map T : X → Y such that T#μ = ν, meaning that
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the pushforward measure ofμ under T is equal to ν. In other
words, for each j = 1, . . . , n, one has νb j = ∑

T (ai )=b j
μai .

The goal is to minimize the total transport cost. Hence, the
Monge Problem [32] can be formulated as follows

(MP ) = min
T

{
∑

i

c(ai , T (ai )) : T#μ = ν

}
(2)

Assume thatX indicates the set of unmanned system vehi-
cles, and Y denotes the set of tasks. Let m = n = N , and
μa = νb = 1N/N . N is the total number of unmanned sys-
tem vehicles. The optimalmap T determines the optimal task
assignment, ensuring that each unmanned system vehicle ai
is assigned to a unique task b j , establishing a one-to-one
correspondence between the vehicles and the tasks.

2.2 Kantorovich Problem

The Monge problem mentioned above is a non-convex opti-
mization problem that involves probability measures and
transport costs. It cannot guarantee the existence of an opti-
mal transport mapping from (X , μ) to (Y, ν). To address
these limitations, Kantorovich introduced amore concise and
efficient model for optimal transport by relaxing the require-
ment of fully deterministic transport. Kantorovich relaxes the
Monge problem to a standard linear programming problem

(KP ) = min
P∈�(μa ,νb)

∑

i, j

c(ai , b j )pi j (3)

where pi j is the i th row and the j th column element of
matrix P , which indicates the amount of mass flowing from
ai towards b j , i = 1, 2, . . . , N , j = 1, 2, . . . , N . Moreover,
the matrix P has the following property

�(μa, νb) := {P ∈ R
N×N+ : P1N = μa, P

T1N = νb} (4)

2.3 Predictive Model of Unmanned System Swarm

In this paper, not only the one-to-one task assignment prob-
lem is considered, but also the problem of each swarm
individual reaches the desired target with the optimal tra-
jectory is studies. To address the latter problem, the MPC is
employed to generate optimal trajectories, enabling efficient
and real-time tracking.

Let xi (k) indicate the state variables at time step k for the
i-th unmanned system vehicle. The control input is denoted
as ui (k). Hence, the state space model for the i-th unmanned
system vehicle is given by

xi (k + 1) = f (xi (k), ui (k)), i = 1, . . . , N (5)

where f represents a nonlinear continuous function.

By applying MPC, the prediction states of the i-th
unmanned system vehicle is defined as follows

xi (k+ p+1)= f (xi (k+p|k), ui (k+ p|k)), p=0, . . . , Nh−1

(6)

where xi (k+ p|k) denote the i th unmanned system vehicle’s
state at time step k + p, predicted at the time step k. The
corresponding control actions are denoted by ui (k + p|k).
Nh is the predictive horizon.

2.4 Problem Formulation

The simultaneous task assignment and trajectory planning
problem of this work can be stated as: Considering the
unmanned system swarm’s motion dynamics with state and
control input constraints, given the initial position state
{x0i }Ni=1 of the USS and the position of desired tasks {xdj }Nj=1,
the objective is to find an optimal task assignment plan
σ : [[N ]] → [[N ]] and control inputs {ui }Ni=1 that solve the
following optimization problem

min
σ

∑

i∈[[N ]]

ciNh
(x0i , x

d
σ(i)) (7)

where the cost function ciNh
is defined as

ciNh
(x0i , x

d
σ(i)) = argmin

ui

Nh−1∑

k=0

Li (xi (k), ui (k); xdj )

subject to

xi (k + p + 1) = f (xi (k + p|k), ui (k + p|k)),
p = 0, . . . , Nh − 1

xi (k + p + 1) ∈ Wi , ui (k + p|k) ∈ Ui

xi [0] = x0i (8)

where Wi and Ui denote the state and control input con-
straints of the i-th unmanned system vehicle, respectively.
Li (xi (k), ui (k); xdj ) is the cost function of model predictive
control.

Remark 1 A unified cost function Eq. (7) is designed to
solve the problem of task assignment and trajectory plan-
ning simultaneously. Moreover, the task assignment problem
is addressed by utilizing optimal transport Eqs. (3) and (4),
while the trajectory planning is achieved by using model
predictive control Eq. (8). Each solution of the cost function
requires the mutual coordination of task assignment and path
planning.
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3 OT-MPC for Simultaneous Task
Assignment and Trajectory Planning

According to Eqs. (7) and (8), the optimal task assignment
and trajectory planning for theUSS can be achievedwhen the
optimal permutation σ ∗ and control inputs uMPC (x(k), xdσ ∗)
are determined. However, relying solely on the initial and tar-
get states to obtain the permutation may not yield an optimal
task assignment. Additionally, with the increase of the swarm
scale, the computational complexity of task assignment and
trajectory planning also escalates. Hence, a temporary target
state is introduced to solve the optimal permutation problem,
and the Sinkhorn-Newton with MPC method is proposed to
mitigate computational complexity.

3.1 Entropy Regularization for Optimal Transport

Entropy regularization can be utilized to find the approximate
value to achieve fast solution for optimal transport. The Kan-
torovich problem Eq. (3) is rewritten by through the entropy
regularization [33]

(KP )ε = min
P∈�(μa ,νb)

∑

i, j

c(ai , b j )pi j − εH(P) (9)

where H(P) = −∑
i, j pi j (log((pi j ) − 1) is the cost func-

tion of regularization, ε is regularization parameter.
For each permutation σ ∈ [[N ]], the corresponding per-

mutation matrix Pσ is defined as follows

pσ
i j =

{
1, i f j = σ(i)
0, otherwise

(10)

According to [33, 34], the temporary target state xtemp
i (P)

is given by

xtemp
i (P) = N

N∑

j=1

pi j xdj (11)

Note that for a permutation matrix Pσ , it can be observed
that N

∑N
j=1 p

σ
i j x

d
j = xdσ(i).

Hence, with the temporary target state xtemp
i (P), the state

of the USS at each moment is given by

xi (k+1) = f (xi (k), uMPC
i (xi (k), x

temp
i (P∗(x(k))))) (12)

P∗(x)= min
P∈�(1N /N ,1N /N )

∑

i, j∈[[N ]]

ciNh
(xi , xdσ(i))pi j −εH(P)

(13)

where x(k) := [x1(k); x2(k); · · · ; xN (k)].

Remark 2 The solution of the cost function Eq. (7) is trans-
formed into solving Eqs. (12) and (13). At each moment,
the multi-task assignment problem of USS is firstly carried
out. Then, the optimal trajectories are planning according
to the task assignment result and the swarm individuals are
driven to the temporary target state. At the next moment, the
tasks are reassigned again according to the current location
of the swarm individuals. The above steps are repeated until
all swarm individuals reach the desired target position.

3.2 Sinkhorn-Newton for Entropic Optimal Transport

According to [33], The solution to (13) is unique and has the
matrix form

∀(i, j) ∈ [[N ]] × [[N ]] , P∗ = diag(α)Kdiag(β), pi, j = αi Ki, jβ j

(14)

where K = exp(−ciNh
(xi , xdj )/ε), Ki, j is the element of

matrix K , αi is the i th element of α ∈ R
1×N , and β j is the

j th element of β ∈ R
1×N .

To reduce the computational burden, theSinkhorn-Newton
method is proposed to solve P∗. It is seen in (14) that the
solution P∗ is amapping of K throughα andβ. Given K , P∗
can be computed by solving mappings α and β iteratively.
From the mass conservation condition of optimal transport,
it inferred that μa , νb and α, β are satisfied

{
diag(α)Kdiag(β)1N = μa
diag(β)KTdiag(α)1N = νb

(15)

then it follows that

{
diag(α)(Kβ) = μa
diag(β)(KTα) = νb

(16)

According to Newton’s method, the Sinkhorn-Newton
method is designed, and the Newton iteration is derived to
find a root of the function

G(α,β) =
[
diag(α)Kβ − μx
diag(β)KTα − ν y

]
(17)

and the Jacobian matrix is

JG(α,β) =
[

diag(Kβ) diag(α)K
diag(β)KT diag(KTα)

]
(18)

Then the Newton iteration for Eq. (16) is given by

[
αk+1

βk+1

]
=

[
αk

βk

]
− JG(αk,βk)−1G(αk,βk) (19)
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By several iterations, the optimal mapping α∗, β∗ is
obtained when the cutoff condition is satisfied. Hence, the
optimal solution is

P∗ = diag(α∗)Kdiag(β∗) (20)

Note that the initial values α0 and β0 is arbitrary.

4 Application to Unmanned Surface Vehicle
Swarm

In this section, the proposed simultaneous task assignment
and trajectory planning method is applied to unmanned sur-
face vehicle (USV) swarm. According to Eqs. (8), (12) and
(13), the motion state xi of USV and the cost function
Li (xi (k), ui (k); xdj ) of MPC need to be given.

4.1 TheMathematical Modeling of USV Swarm

Assuming that only planarmaneuvers are considered. Hence,
the surge, sway, and yaw motions are investigated, while the
roll, pitch, and heavemotions of theUSVneed not be studied.
Hence, the kinematic model of USV with three degrees of
freedom is defined as [35]

η̇i = R(ϕi )vi (21)

where

R(ϕi ) =
⎡

⎣
cosϕi − sin ϕi 0
sin ϕi cosϕi 0
0 0 1

⎤

⎦ , ηi = (xi , yi , ϕi )
T, vi = (ui , vi , ri )

T

(22)

where R(ϕi ) is rotation matrix, xi , yi and ϕi denote the
position and orientation of the i-th USV in inertial frame,
i = 1, . . . , N . ui , vi , ri represent the i th USV’s velocities
of surge, sway, and yaw in body frame, respectively. The
relationship between the inertial frame and body frame is
shown in Fig. 1. Let FE {OE XEYE } be an inertial frame,
which is centered on the relative stationary reference, with
the XE -axis pointing due north and the YE -axis pointing due
east. FB{OBXBYB} be the body frame fixed to the center of
mass of USV, where the positive direction of the XB-axis and
YB-axis correspond to the rightward and forward directions
of the USV, respectively.

The dynamic model of the USV is defined as follows [35,
36]

u̇i = κ1ui + κ2τi

ṙi = κ3ri + κ4ζi
(23)

Fig. 1 The definition of reference coordinate system

where u̇i and ṙi indicate the forward and yaw accelerations
of the i-th USV, respectively. τ and ζ denote the thrust and
rudder of the i-th USV, respectively. κ1, κ2, κ3, and κ4 are
the model parameters.

Let xi (k) = [xi (k), yi (k), ψi (k), ui (k), vi (k), ri (k)]T
denote the state at time step k, ui (k) = [τi (k), ζi (k)]T indi-
cate the control input at time step k. The linearized state space
model is described as

x̃i (k + 1) = Ai (k)x̃i (k) + Bi (k)ũi (k) (24)

Ai (k) = I6×6+

⎡

⎢⎢⎢⎢⎢⎢⎣

0 0 −ui sin ϕi − vi cosϕi cosϕi − sin ϕi 0
0 0 ui cosϕi − vi sin ϕi sin ϕi cosϕi 0
0 0 0 0 0 1
0 0 0 κ1 0 0
0 0 0 0 0 0
0 0 0 0 0 κ3

⎤

⎥⎥⎥⎥⎥⎥⎦
·dt

(25)

Bi (k) =
[
0 0 0 κ2 0 0
0 0 0 0 0 κ4

]T
· dt (26)

where x̃i = xi − xi (0), ũi = ui − ui (0). x0i and u0i are the
state and control input at k = 0, respectively. dt is discretiza-
tion step.

4.2 The Cost Function Design for MPC

In this subsection, the cost function is designed as Li (xi (k),
ui (k); xdj ) = JNh (xi , ui , k) + Jao(xi , k). JNh (xi , ui , k) is
the cost of state and control input, and Jao(xi , k) is the cost
of obstacle avoidance.
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Fig. 2 The diagram of obstacle
avoidance
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The cost function considering the state and control input
is defined as

JNh (xi , ui , k) =
Nh−1∑

p=1

(||xi (k + p|k) − xdj ||2Q

+||ui (k + p|k) − udj ||2R)

+||xi (k + Nh |k) − xdj ||2QNh
(27)

where Q, R, QNh are positive-definite weight matrices for
state, control input and terminal state respectively. The cost
function of terminal state is utilized to ensure the stability of
the model predictive controller.

In this paper, a collision avoidance cost function is intro-
duced to prevent collisions. Prior to this, the obstacle is
modeled and the collision avoidance mechanisms is inves-
tigated. To simplify the modeling complexity, a circular
envelope is used to enclose the obstacles. The diameter of the
envelope circle is determined as the longest distance across
the obstacle, with its midpoint denoted as (xobs, yobs), and
the radius denoted as robs .

It is seen in Fig. 2 that the area surrounding an obstacle
is divided into three zones by utilizing the distance between
the USV and the obstacle, including the safety zone, obstacle
avoidance zone, and danger zone. Rmax and Rmin denote the
radius of the obstacle avoidance zone and the danger zone,
respectively. daoi indicates the shortest distance between the
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Fig. 3 The result of simultaneous task assignment and trajectory planning for USV swarm without obstacle
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Fig. 4 The trajectories of USV
swarm over time step k
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USV and the obstacle. If daoi > Rmax − robs , the trajectory
tracking mode is engaged. If Rmin − robs ≤ daoi ≤ Rmax −
robs , the collision avoidance mode is activated. If daoi <

Rmin − robs , the USV is considered to be too close to the
obstacle, resulting in a failure to avoid the obstacle.

Hence, the cost function of obstacle avoidance for the i th
USV at time k is defined as

Jao(xi , k)=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0, i f duoi (k) � Rmax
Nh∑
p=1

−λ(daoi (k+ p|k)−(Rmin−robs)), i f Rmin �duoi (k)< Rmax

∞, i f duoi (k) < Rmin

(28)

where duoi (k) = daoi (k) + robs , λ is penalty parameter, and

daoi (k) =
√

(xi (k) − xobs)2 + (yi (k) − yobs)2 − robs (29)

daoi (k + p|k) =
√

(xi (k + p|k) − xobs )
2 + (yi (k + p|k) − yobs )

2 − robs

(30)

5 Simulation and Experimental Verification

In this section, the effectiveness of the designed simultaneous
task assignment and trajectory planning scheme is verified
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Fig. 5 The result of simultaneous task assignment and trajectory planning for USV swarm with obstacles
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Table 1 Comparison of
computation time and
completion time for three
algorithms

Task number/N OT-MPC PSO Ant Colony
Tc (s) T f (s) Tc (s) T f (s) Tc (s) T f (s)

10 0.00359 17.96848 0.00602 30.77694 0.00586 29.33018

50 0.00956 155.25466 1.15527 233.96935 1.13426 229.60527

100 0.03926 1010.61458 9.82803 1802.97535 8.02310 1635.12642

with the USV swarm by numerical simulations and experi-
mental tests.

5.1 Simulation Results

According to the dynamic model (23), the unknown parame-
ters need to be obtained through model identification exper-
iments. The Zigzag experiment and Rotation experiment
[37] are designed to identify the USV’s model parameters.
According to the collected experimental data, the param-
eters are calculated by least square method. Hence, the
USV model parameters are κ1 = −1.6812, κ2 = 3.6594,
κ3 = −3.1772 and κ4 = 4.9305. The model discretization
step dt = 0.02. The task space is in area [−250, 250]m ×
[−250, 250]m. Moreover, the following three cases are
simulated.

Case #1: No obstacles are set in the simulation sce-
nario. The number of USVs N = 40. It is observed in Fig.
3(a) that the initial position of the USV swarm is a uni-
form random distribution, and the desired tasks are evenly
distributed on a circle with a radius of 200m. The initial
velocities of USVs are zero and the initial heading angles
are random. When implementing the developed simulta-
neous task assignment and trajectory planning algorithm,
the related parameters are chosen as Nh = 50, ε = 2.5,
α0 = β0 = 1N . Q = 1 × 10−2 ∗ I6×6, R = 1 ∗ I2×2,
and QNh = 5 × 10−2 ∗ I6×6. Note that without affecting
the dynamic processing of the swarm system, the prediction
time step Nh is as small as possible. The selection of Q,
R and QNh need to be based on different requirements for
system performance. ε > 0 is selected by trial and error
method.

When the simultaneous task assignment and trajectory
planning algorithm is implemented in this case, the task
assignment result is illustrated in Fig. 3(b). The proposed

Table 2 The mean value and standard deviation of computation time
and completion time for task assignment

Task number/N Computation time Completion time
T̄c (s) σTc (s) T̄ f (s) σT f (s)

10 0.00360 0.0005 18.90049 0.36206

50 0.00955 0.0030 153.58283 1.54302

100 0.03928 0.0051 1006.16914 2.63427

method assigns optimal tasks to each swarm individual
and generates collision-conflict free trajectories. It is fur-
ther verified in Fig. 4 that the proposed method generates
collision-free time series trajectories.

Case #2: Obstacles are set in the simulation scenario. The
number of USVs N = 20. It is seen in Fig. 5(a) that the initial
position of the USV swarm is a uniform random distribution,
and the desired tasks are evenly distributed on a semicircular
pattern resembling an expulsion formation. Additionally, the
obstacles are located at coordinates (10, 5), (8, 2), (65, 10),
and (12, 10). The initial velocities of USVs are zero and the
initial heading angles are random. The value of ε is set to 1.2,
while other parameters are kept samewith theCase #1. Figure
5(b) illustrates that each USV in the swarm is successfully
assigned to its corresponding task and avoiding all obstacles
to reach the positions of desired tasks.

Case #3: Simulations on analyzing computation time and
completion time. The simulations were done on computer
with Intel Core i7-9750H CPU @2.6GHZ and 16GB RAM.
To verify the superiority of the proposed method in terms
of computational efficiency, PSO algorithm and Ant Colony
algorithm are used for comparison. Table 1 shows the com-
putation time and completion time of three algorithm. Tc
denotes the computation time and T f denotes the completion
time. Even for a scenario with 100 USVs and 100 tasks, the
computation time of the proposed method is still well under
0.1 second. Compared to other twomethods, themethod pro-
posed in this paper can better demonstrate the advantages of
global optimization as the swarm size increases.

To further illustrate the reliability of the results, The mean
value and standard deviation of computation time and com-

Fig. 6 The environment of outdoor experiment
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Fig. 7 The experiment result:
The simultaneous task
assignment and trajectory
planning for single USV
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pletion time for task assignment are displayed in Table 2. The
mean value and standard deviation are obtained through run-
ning 50 Monte Carlo simulation. For the scenario with 100
USVs and 100 tasks, the mean value and standard deviation
of computation time are 0.03928s and 0.0051s, respectively.

Correspondingly, the completion times are 1006.16914s and
2.63427s, respectively. The fact that the standard devia-
tion differs by several orders of magnitude from the real
data suggests that the proposed algorithm is relatively
stable.

Fig. 8 The experiment result:
The simultaneous task
assignment and trajectory
planning for four USVs (One
real and three virtual)
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5.2 Experimental Verification

In this section, an outdoor experiment is conducted using
the catamaran unmanned ship provided by Harbin Institute
of Technology, Weihai, as shown in Fig. 6. The USV has
dimensions of 11.98m in length, 5.65m in width, and 1.53m
in depth. It is equipped with various advanced technologies,
including radar, photoelectric pod, AD hoc base station, and
inertial navigation equipment, capable of providing accurate
navigation information. The USV offers three operational
modes: manual driving, remote control, and autonomous
navigation, providing flexibility for conducting experiments
and evaluating performance. To overcome limitations on the
number of real USV and to ensure safety, the experimental
was set up into two scenarios.

Scenario #1: A single USVwas utilized to perform simul-
taneous task assignment and obstacle avoidance trajectory
planning.

The experiment was designed in an open sea area with
an approximate size of 1000 m2. The starting point of
the USV was set as (0, 0), and the task point was cho-
sen as (800, 800). To create a challenging environment, the
obstacles was placed in a plurality of locations, including
(400, 100), (200, 200), (700, 500), (800, 300), (400, 500),
(200, 800), and (600, 700). The USV was set to operate in
autonomous navigation mode. By analyzing the navigation
data, it was observed in Fig. 7 that the USV successfully
navigated to the task point without any collisions.

Scenario #2: A virtual-real combination experiment was
designed, and the virtual-real combination system includes a
realUSVand three virtualUSVs generated by the ground sta-
tion.This approach allows for the simulationof larger swarms
of USV while ensuring safety, and validates the effective-
ness of simultaneous task assignment and trajectory planning
methods for USS.

The experimental scenario was set up as in Scenario #1.
Real-time data from the physical USV and simulation data
from the ground station were exchanged through wireless
communication. The experimental results in Fig. 8 demon-
strate that the successful task assignment and trajectory
planning for each of the four USVs. Each USVwas assigned
a single task and navigated to the corresponding task position
without any collisions. It is worth mentioning that although
there may be instances of overlapping and crossing of USV
swarm trajectories, these trajectories occur at different time
and do not lead to collisions.

6 Conclusions

The simultaneous task assignment and trajectory planning
problem of the unmanned swarm system was addressed. A
unified cost function by coupling the task assignment and

trajectory planning sub-problems together by using optimal
transport andmodel predictive control. The optimal transport
method is utilized tomatch tasks randomly to unmanned sys-
tem vehicles based on their costs, while the model predictive
control is employed to iteratively optimize the trajectories of
the unmanned system vehicles based on real-time feedback
and predictions. Each solution of the cost function requires
the mutual coordination of task assignment and path plan-
ning. Another feature of this approach was that it is capable
of rapidly obtaining the global optimal solution and demon-
strates high efficiency and scalability for large-scale USS
tasks by using the Sinkhorn-Newton algorithm.

Although the proposedmethod can solve both task assign-
ment and trajectory planning problems of large-scale swarm
simultaneously, only the one-to-one task assignment was
investigated. Future research works lie in exploring further
optimizations and extensions of the proposedmethod for dif-
ferent scenarios and applications, especially scenarios where
the number of swarm individuals and tasks are not same.
Moreover, the idea of prescribed time [38] should be intro-
duced to investigate the assignment of tasks at a specific
time.
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