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Abstract
This paper proposes the PANORAMAapproach,which is designed to dynamically and autonomouslymanage the allocation of
a robot’s hardware and software resources during fully autonomous mission. This behavioral autonomy approach guarantees
the satisfaction of themission performance constraints. This article clarifies the concept of performance for autonomous robotic
missions and details the different phases of the PANORAMA approach. Finally, it focuses on an experimental implementation
on a patrolling mission example.
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1 Introduction

In [8], the authors claim that a cyber-physical vehicle system
must achieve its “locomotion and task-level objectives while
meeting safety and efficiency constraints”, depending on the
robot and the environmental uncertainties. They highlight
some challenges:

• Fault tolerance:when considering autonomousmissions,
it is essential to deal with unforeseen events and address
the robustness, reliability and dependability properties.
Studies on this topics inmobile robotics focusing on fault
detection [9–11], fault diagnosis [12, 13] or fault/error
recovery [14–16]. Fault tolerance approaches in robotics
involve also fault tolerant control approaches [17–19].
Dependability management concerns also the task level
[20, 21]. Few studies present a global dependability
approach from fault to mission level [3, 22].

• Energy management: this is a critical point for autonomous
robots to guarantee the success of an autonomous mis-
sion. Neglected for a long time, this issue has recently
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gained increased attention from researchers. These last
years many papers concern the power supply modelling
[23, 24] and battery recharge. A review of power solu-
tions for mobile robots is proposed in [25]. The issue of
battery charge scheduling is addressed in [26, 27]. Many
works concerns UAV (Unmanned Aerial Vehicle) and
proposed solutions to increase the flying time using in-
flight battery switching [28], staging energy sources [29]
and autonomous charging [30]. The energy efficiency of
the robots is mainly studied considering the path plan-
ning issue linking path length and energy consumption.
The energy cost is studied in [31, 32] for an Ackermann
platform or skid steer rovers [33, 34]. The impact of the
soil type and relief is also considered for path planning in
[34–37]. Most studies focus on locomotion energy. Few
of them take into account explicitly the energy consumed
by the sensors or by the algorithmic suite in used [38, 39].

• Resource management: robotic system has a set of
hardware (actuators, sensors, processors) and software
(algorithms) resources. The complex underlying issue
is that during full autonomous mission the robot’s con-
trol architecture must be able to efficiently manage these
resources according to the mission objectives, the sur-
rounding environment, and their energy impacts.

In the literature the term Resource Allocation / Manage-
ment has different meanings depending on the application
domain. In computer science it mainly corresponds to the
development of algorithms managing the processor(s) load
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to execute many tasks regarding some optimization criteria
such as computing performance or energy consumption for
embedded systems applications or cloud data centers [40–
42]. In Industrial Engineering it can concern the allocation
policy of human resources to business processes to optimize
performance objectives (cost, duration, human usage, etc..)
[43, 44] or the problem of the machine allocation policy in
job-shops environment to reduce the processing time [45] or
carbon emission [46]. In robotics it mainly deals with Multi
Robot (heterogeneous or not) TaskAllocation (MRTA). Here
the issue is twofold to reach someperformance objectives like
time to reach the mission goal, minimizing the total traveled
distance or the consumed energy [47]:

• On the one hand, it deals with Task Planning - Task
Decomposition which answers the question “What has
to be done”.

• On the second hand, an answer to the question“Who does
the task ?” must be found.

In this paper we consider a unique robot having redun-
dant hardware and software functionalities. Surprisingly, to
the best of our knowledge, there have been very few studies
that tackle the challenge of dynamically and autonomously
selecting a robot’s hardware and software resources through-
out a mission while simultaneously achieving specific mis-
sion performance goals. It seems also clear that the selection
of a resource and its corresponding configuration has an
impact on the robot performance. So the resources tuning
is not neutral and can have a real impact on the mission per-
formance. Somequestions still remain open to guaranty that a
robot successfully fulfill a mission while satisfying different
performance objectives.

The PANORAMA approach developed in this paper
strives to consider the resource allocation, energy manage-
ment and fault tolerance challenges. The main question
addressed is as follows:Considering a roboticmission plan
and some performance goals, as well as a set of available
robot’s hardware and software resources, what resources
should be allocated throughout the mission to achieve
these goals? The proposed resource allocation mechanism
effectively verifies that these goals will be met throughout
the mission, regardless of the observed behavioral drift or of
some unforeseen events.

This paper is organized as follows. Firstly, the perfor-
mance concept is presented and detailed for the robotics
domain. The next part outlines an experimental patrolling
mission in an indoor dynamic environment. This mis-
sion illustrates the different aspects of the PANORAMA
approach, which in turn is explained and described from
Sections 4 to 7. Experimental results are presented that
demonstrate the adaptability and efficiency of the pro-
posed methodology. Before concluding the PANORAMA

implementation process is summarized. Finally, the conclu-
sion points out some limitations of our approach, but also
proposes several potential tracks to extend this work and
some potential applications.

2 Performance: A Key Concept Towards
Autonomy

2.1 Autonomy and Performance

Autonomycanbeviewed as the capacity of a system to decide
and act without any assistance [5, 48]. It clearly concerns
decision-making (decision autonomy) and action (behavioral
autonomy). Decision autonomy relates to “Decide what to
do”. The user is supposed to prescribe the high-level goals
and constraints of the initial mission. These goals are decom-
posed into sub-goals and finally into a set of sequential and/or
concurrent robotic tasks that must be carried out. Behavioral
autonomy relates to “How to perform what has been decided
?”. That involves making decision when choices must be
made among several alternatives to carry out a given task,
depending on the available resources and on themission con-
text.

Decision autonomy involves three main elements: a goal
to be achieved, a finite set of possible alternatives and a cri-
terion to decide which alternative to choose.We think that a
multi-criteria viewpoint is required for robotic decisions, and
that performance is a relevant concept for decision autonomy
(Fig. 1).

2.2 Performance: AMulti-Form Concept

Performance is a concept that is widely used in the robotics
domain, but it is not clearly defined. It is a generic word in
which everyone places the right meaning according to the
studied work and context. We look at enterprise and business

Fig. 1 Autonomy for robotics
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management fields where this concept has been largely used,
as a means to come up with a performance definition. The
following definition extrapolated from [49] could be effec-
tively applied to robotics.
The performance:

• Relates to an objective.
• Is amulti-dimensional concept (if multiple goals are con-
sidered).

• Is the result of actions.
• Depends on the involved resources.

It is important to distinguish between measurement and
evaluation when considering performance. Measurement
involves the determination of a value, while an evaluation
gives an interpretation (higher, good, etc.) of the mea-
surement with regards to a reference. The performance
indicator is crucial to estimate the performance of a system
from a given viewpoint relatively to a given goal. It corre-
sponds to a measurement of the efficiency of a system. In a
system,performance inducers are parameters that influence
the performance indicators. If they are controllable, they can
be tuned to influence and manage the system performance.

3 Performance and Robotics

In robotics, performance is an important, yet poorly defined,
issue as shown by the creation in 2009 of the Technical
Committee on Performance Evaluation and Benchmark-
ing of Robotic and Automation Systems (TC-PEBRAS)
[50]. Papers presented at major robotics conferences and
workshops (ICRA, IROS...) regularly consider the con-
cept of performance. Robotics competitions have proposed
to measure task performance in benchmark environments
(RobotCup@Home,RobocupRescue,WorldRobot Summit,
DARPA Challenge, etc.) and many papers in the robotics
literature propose benchmarking approaches like [51] for
planetary rover mission, [52] for object perception, [53] for
SLAM, [54] for planning approaches or [55] for reinforce-
ment learning. This highlights the fact that there is a real
need to quantify robot performance via accepted metric and
evaluation methodologies to ensure the reliability of robotic
systems.

3.1 Performance andMobile Robotics

The concept of performance is common in industrial robotics
where standardization instances like [56] or [57] definemany
performance criteria particularly for safety standards [58].
But industrial robotics has specific environmental features
(as static environment, accurate localization or unlimited
energy) which are not all relevant for mobile robotics.

Most papers on performance in mobile robotics focus on
the evaluation of the efficiency of a single robotic task (vision
[59], obstacle avoidance [60], localization using SLAM [61]
or not [62], etc.), or using specific task oriented perfor-
mance criteria as for the coverage path planning issue [63,
64]. In [65], even though the authors identify several per-
formance metrics (safety-oriented, trajectory and mission
metrics), they also highlight that performance metrics are
usually neglected or limited to few ones (mission duration
[66, 67] or path length/energy [33]).

This demonstrates that due to the variability in mobile
robot tasks, numerous performance criteria are proposed for
mobile robotic missions, but in a scattered way. There is a
lack of established performance criteria and classifications
for mobile robotics, especially at the mission level. More-
over, the energy aspects are often (and surprisingly) neglected
even though they are essential for real autonomous robotic
missions.

Also, the performance evaluation timeline with regards to
specific missions has not been clearly identified. Do the per-
formance goals have to be continuously fulfilled over the
mission or only at the end? The performance analysis is
mainly done a posteriori, while we consider that it is essen-
tial to have predictive and accurate performance estimators
to be able to predict the mission feasibility before launch,
as well as monitoring the performance behavior during the
mission. Guaranteeing that a robot will be able to complete
its mission would be a pivotal issue for the future develop-
ment of autonomous systems. Of course a total guaranty in
all cases is an utopia, however it is important to state if the
considered mission can be launched with a good chance of
success. It is also important to be able to decide, during the
mission, if despite some adverse events, the mission can yet
succeed.

However, performance guarantee at the mission level
has seldom been considered for mobile robotics. An inter-
esting study addressing this question was carried out in
[68] for critical robotic operations through formal methods.
Before the mission, the authors conduct a formal analysis
of the robotic mission regarding the performance properties
(safety, liveness, stochastic mission efficiency, etc.), consid-
ering system’s models, the mission scenario and an uncertain
environment as inputs of a verification module. More recent
papers consider this issue from a more limited perspective,
as seen in [69] for the construction of receding search-paths,
multi-agent trajectory planning [70], and energy-efficient
path planning with guarantees on completeness [32].

As in these last works, we think that the robot’s resources,
the mission and performance goals description, as well as
the environmental context, are the three main bases of the
performance evaluation for autonomy. To our knowledge,
despite the importance of performance at the mission level,
no solutions were proposed to aim to guarantee the success
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of a mission while meeting the performance goals during a
real mission. The PANORAMA approach is meant to bridge
this gap.

3.2 Performance and Resource Allocation in Mobile
Robotics

In mobile robotics, the issue of resource allocation mainly
concerns the problem of task allocation of cooperative and
coordinated multi-robots teams supporting homogeneous or
heterogeneous capabilities.Many surveys can be found in the
literature [47, 71] for the Multi-Robot Task Allocation. The
objective is then to take advantage of the robot’s capabilities
to optimize the use of the available resources according to
one or several mission criteria (objectives) like minimizing
the exploration time or maximizing the wireless coverage.
Multi-robots allocation provides an efficient way to deal with
self-reconfiguration, fault-tolerance and robustness.

The resource allocation is an optimal decision problem
which is known to be NP-hard. So, it is impossible to find
quick and scalable algorithms that answer the optimality
issue. Three dimensionsmust be considered: the inputs of the
problem, the coordination methodology and the task alloca-
tion strategy.

Inputs

A resource allocation problem considers different inputs:

• Task modeling: relationships between tasks and robots.
• Constraints supported by the tasks (partial order, time
window, coupling or incompatibility, environmental,
robots, concurrency).

• Utility functions used to estimate the task/robot(s) effi-
ciency (cost, fitness, reward, etc.).

• Optimization objectives defined to determine the best
resources allocation.

For the problem tackled in this paper the following links
can be identified:

• Task modeling: relationships between tasks and robot’s
hardware and software (algorithms) resources.

• Constraints supported by the tasks: mission plan and
environment are supposed to be known. However, the
environment, the functioning conditions of the robot’s
resources, the resources compatibility, and the perfor-
mance viewpoints impose many constraints that must be
considered and verified.

• Utility functions used to estimate the task/robot(s) effi-
ciency. Evidently the relationships between the selection
and the configuration of the robot’s resources and their
impact on the robot’s performance must be modeled.

• Optimization objectives defined to determine the best
robot’s resource allocation. As we will see, depending on
the considered performance class that corresponds to the
definition of continuous or end-time optimization objec-
tives integrating the Mission view-point.

Coordination

In multi-robot problems, the coordination methodology is
an important issue because the robots must share informa-
tion and take common decisions. It is basically based on data
sharing and networks issues, with static/dynamic and central-
ized/decentralized problems. In our context we are interested
in embedded resource allocation on a unique robot, which
make this subject not extremely relevant. It is clear that the
coordination methodology is centralized since the robot’s
control architecture has to manage the embedded resource
allocation.All themission and robot’s information are known
and shared to take allocation decisions. The decision process
can be considered both statically and dynamically. Statically
because the resources allocation is initially considered offline
before engaging a mission. Dynamically because the cur-
rent resources selection can be modified online in case of
resources dysfunctions or performance drift. These resources
switching must be realized efficiently to be compatible with
real-time constraints.

Allocation Strategy

From the inputs and according to the coordination method-
ology, several strategies classes are proposed in robotics
to solve the resource allocation problem while minimizing
the cost function. The scalability of the chosen algorithmic
approach is characterized by its computational complexity.
Multiple salesman problems, market-based task allocation,
behavior-based allocation or clustered task allocation strate-
gies have been investigated. Most of these works propose
only simulation results. Multiple separate objectives are
rarely considered concurrently. Objectives are rather incor-
porated into a single utility value, which results in the loss of
some information.
From this analysiswe can conclude that, despite a correct for-
mulation and identification of the dimensions of the problem
of resource allocation, the usual robotic literature approaches
seem to not tackle this issue with the correct angle to address
embedded hardware and software resource selection adopt-
ing a global mission performance view-point.

The correct angle to address the embedded resource allo-
cation seems more to be the control architecture view-point.
From the early Sens-Plan-Act paradigm, and the architec-
ture based on purely reactive behaviors proposed by Brooks
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[72], the hybrid three levels layered architecture is largely
adopted in robotics applications [73]. The higher level cor-
responds to a deliberate/decision layer handling high-level
task planning, reasoning and interaction with human opera-
tors. The bottom layer corresponds the functional layer that
interfaces the robot architecture with its material/physical
components (actuators, sensors). It is classically composed
of a set of basic robotic actions (motion, localization, etc..)
modules. The middle layer interfaces the decisional one with
the functional one. This execution layer receives the sequence
of actions to be executed from the decisional layer and must
select, synchronise, configure and manage dynamically the
low level functions to perform these actions. Unfortunately,
the process of resource allocation in the robotic control archi-
tecture is poorly detailed in the literature. Of course the
material/software resource must be able to implement the
proposed action, it must be available, shareable or not, and
must have some functioning constraints. But when several
resources can be envisaged how to select the best ones?
Which relevant criteria can be used to decide between them?

To answer to these questions this paper proposes to con-
sider the satisfaction of Mission performance objectives as
the relevant resource selection criteria. So, in the sequel we
consider that the resource allocation problem can be mod-
eled as a Multi-Objective Optimization (MOO) problem as
follow [74]:

min F(x) = [ f1(x), f2(x), .., fk(x)]T
subject to g j (x) ≤ 0 f or j = 1, 2, ...,m and

hl(x) = 0 f or l = 1, 2, ..., e
Where:

• k is the number of objective functions
• x ∈ En is a vector of decision variables. The decision

variables can be continuous or discrete. They represent
the independent variables we have control over.

• n is the number of decision variables creating a Deci-
sion/Design space D.

• fi (x) is an objective (criteria, payoff, cost, value) func-
tion. Objective functions are dependent variables that can
be influenced through the decision variables.

• F(x) is a vector of objective functions. It is a mapping
function between the Design space and the Objective
space O.

• m is the number of inequality constraints.
• e is the number of equality constraints.

Now, the problem is to efficiently find the best solution
minimizing a set of objectives. Ideally an optimal design x̂
corresponds to an objective vector F∗ minimizing each of
the objective functions. Unfortunately this utopian solution
can rarely be reached and the concept of Pareto front des-
ignating non-dominated solutions within the objective space

is used. Multi-objective optimization often forces compro-
mising between conflicting objectives. All the solutions
belonging to the Pareto front can be considered as optimal
but they correspond to a different compromise. Generally,
to facilitate the selection of the best solution, weights are
assigned to the different objective according to its impor-
tance.

In [75] the authors characterize the process of MOO def-
inition and solving according to 3 main dimensions.

The first dimension concerns the problem statement. That
involves the selection of the decision/design variables.Which
ones, which ranges, are they discrete or continuous? That
also concerns the selection of the objective functions. The
constraints identification is also an important issue. Which
ones, what type (equality, inequality) and ranges, can they
be violated? The answer to all theses questions can have a
great impact on the degree of freedom of the problem, on the
dimensions of the decision space O and consequently on the
complexity of the solution.

The second dimension focuses on how objective func-
tions/constraints are calculated. Depending on the problem
space, high-fidelity models can have an important impact on
the computational time when a great amount of designs must
be considered.

The last dimension concerns the selection and set-up
of the optimization algorithm. Many algorithms have been
proposed to address theMOOproblem and find optimal solu-
tions [74, 75] using stochastic or sweeping methods across
theDesign space. These classicalmethods thatmayhave long
convergence time and that can fail to find optimal solutions
can be integrated in meta-heuristic algorithms to facilitate
the searching process.

In this paper we detail the process of hardware and
software resource allocation implemented in the execution
layer of a robot’s control architecture. It must select suit-
able resources before and during the mission to ensure its
success with regard to several mission performance objec-
tives. First, the robot’s resources are presented as well as
the patrolling mission. Then, the proposed PANORAMA
approach is detailed and illustrated based on this experi-
mental context. According to MOO principle we identify
the decision variables, their ranges, the constraints imposed,
the objective functions and their estimation mechanisms. We
also present how a lexicographic-like algorithm can be used
to find an acceptable initial resource allocation plan from an
initial tasks breaking down of the mission. During the mis-
sion, online performance monitoring allows to increase the
robustness of the system with regards to resources failure or
to online performance drift. Before the conclusionwe present
the process to implement the PANORAMA approach on any
given mission. To conclude, we highlight the main strengths
and limitations of the proposed approach.
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Fig. 2 The experimental environment of the patrolling mission

4 PatrollingMission: Experimental Context

We consider a patrolling mission performed by a Pioneer
P3DX mobile robot to determine the state (open or close) of
two valves (V1 and V2) present in our laboratory corridors
(Fig. 2).

4.1 The Robot

We use a Pioneer 3DX integrating 16 sonars and 10 bumpers.
It weights 25kg, including an embedded laptop and all the
sensors.

Two top to tail lasers are used for obstacle avoidance,
centering motion and robot localization. A Kinect camera
and geo-referenced markers may also be used for local-
ization. The robot communicates with an embedded laptop
supporting a real-time control architecture implementing the
PANORAMA approach. The robot and the laptop had their
own batteries, which were respectively monitored by an
embedded watt-meter. Controlled switchboards were used
to independently switch on or off the Kinect and each laser.

Forward motion (MOV robotic task) could be carried
out using path following or reactive centering techniques.
It was combined with the Safe Maneuvering Zone (SMZ)
obstacle avoidance method [76] which considers the robot’s
safety radius and kinematic behavior. The localization task
(LOC) was implemented using either dead-reckoning navi-
gation (odometers) or grid-based localization requiring the
two lasers or QR-CodeNavigation (QRCN)which combined
the Kinect camera and odometers. Depending on the algo-
rithms and sensors used, the following control methods are
thus available (detailed in Table 1): 7 different moving con-
trol laws (MOV tasks), 3 localizationmethods (LOC tasks), a
turn (TUR task) movement and 2 types of image analysis for
valve state detection (DET task). The different control laws

for a robotic task are called Task Implementation Options
(TIOs).

4.2 The Patrolling Mission

The experimental environment is the ground floor of our lab-
oratory, whose map is given in Fig. 2. On the right side,
the experimentation room (ER) covers about 10m long and
includes a docking station (DS). Then between the points A
and B, there is a straight hall (H1) of approximately 50m
long, ranging from 1.7m to 2.2m width. Within H1, there is
a glazed area G, impeding the use of lasers. After B, another
hall (H2) is about 30m long and more than 2.2m width. Two
valves V1 and V2 are present in the middle of H1 and the end
of H2. Many markers (QR codes) were spread across these
halls to facilitate the robot localization.

Thepatrollingmission aims to control the state (open/close)
of V1 and V2: from its docking station, the robot must go to
inspect V1 and V2 before going back to its base. The total
round-trip of the mission is about 187m long.

4.3 Experimental Constraints

Besides the performance constraints, robotic mission must
deal with physical and functional constraints defining a set
of limitations. For example, they correspond to the robot
hardware (velocity, size, weight, sensors, actuators, etc.) and
software (CPU frequency, number of cores, memory size,
etc.) limitations. The environment also largely influences the
robotic mission according to its dynamic, properties (opac-
ity, transparency, color, etc.), nature (ground, water, air, flat
surface, slope, etc.), complexity, presence of humans, etc.
We call all these elements experimental constraints. These
constraints are localized depending on their impact area. For
example, the physical maximal velocity of the robot does not
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Table 1 Allocation of robotic
tasks and hardware components:
definition of the TIOs (✗ means
it is required)

SOFTWARE HARDWARE
Rob. task Information Sonar Laser Kinect Actuators TIO

MOV Path-Following with
obstacle avoidance

✗ ✗ M1

✗ ✗ M2

✗ ✗ ✗ M3

✗✗ ✗ M4

✗ ✗✗ ✗ M5

Reactive centering with
obstacle avoidance

✗ ✗✗ ✗ M6

✗✗ ✗ M7

LOC Odometry L1

QR-Code (QRCN) ✗ L2

Grid-Based Localiza-
tion

✗✗ L3

TUR Rotation - Valve Track-
ing

✗ T1

DET Detection of the valve
orientation

✗ D1

✗ ✗ D2

change all along the mission. While in specific areas with
glass doors, sonar sensors must be used to detect it.

More precisely in our mission, the experimental con-
straints can be summarized as:

• Maximal velocity : the physical characteristics of the
robot limits its velocity to 0.76m/s.

• Environmental constraints: first, in glazed areas only
moving methods using sonars must be considered ; sec-
ond, the difference of widths of the two halls H1 and H2
influence the obstacle avoidance capacity.

• Localization precision: in areas where the image anal-
ysis of the valve must be done, QR-code navigation
methods must be used, requiring the use of the robot’s
Kinect to ensure accurate location.

• Software and hardware limitation: using the camera
imposes a maximal velocity of the robot (v < 0.45m/s)
to ensure frame stability.

5 PANORAMA: Overview

An autonomous robotic system must be able to objectively
decide if it is able to achieve the performance set by the user
for the proposed mission. Moreover, during the mission, it
must be able to maintain, at best, the quality of service while
being exposed to unforeseen events or failures.

The Performance and AutoNOmy using Resource Allo-
cation MAnagement (PANORAMA) method addresses the

following question: How a mission could be carried out
while meeting a set of performance goals?

Implemented in the execution layer of the robot’s con-
trol architecture, PANORAMA addresses behavioral auton-
omy, answering the question “How to conduct the planned
robotic tasks?”.1 PANORAMA allows to decide offline if
the autonomous robotic system can perform the proposed
mission and meet the user’s performance goals. Moreover,
during the mission, PANORAMA verifies that the robotic
system meets the performance goals as long as the mission
is feasible.

In our works, the following general hypotheses are
assumed:

• The initial available amount of energy of the robotic sys-
tem is known.

• The software and hardware capacities of the robotic sys-
tem are compatible with the robotic mission.

• The environmentmap and the initial robot path are known
for the mission.

PANORAMA reduces the design space solution sets
before selecting one Fig. 3. It can be divided into two main
parts of two phases (noted from P0 to P4), which are out-
lined in detail in the next sections. The first part concerns
the problem statement and the mission mapping for resource

1 And not the decision autonomy which addresses “What task to do?”.
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Fig. 3 PANORAMA narrowing
availability space for solution

allocation. It integrates the phase P0 which defines and iden-
tifies the performance elements: axes, indicators, inducers
and goals. It provides the performance constraints that must
be verified during the mission. The next offline P1 phase
enables the user to build a Mission Scenario MS by mapping
the experimental and performance constraints on the initial
mission description, i.e. on the different tasks the robot must
execute and the different ways these tasks could be imple-
mented.

The mission scenario can be seen as a series of mission
slices, called activities, with invariant constraints. The sec-
ond part concerns the resources allocation process. For each
of these activities, the offline P2 phase locally estimates the
possible performance values (depending on the hardware and
software resources used). Then a decision-making algorithm
builds an initial Resource Allocation Solution RAS0 which
enables themission to be performedwhile globally satisfying
all of the performance constraints. Finally, during the mis-
sion, the onlineP3phase involvesmonitoring the realmission
performanceswith regard to the expected and planned perfor-
mances. If, due to unforeseen events, themodels drift or some
resources fail, the mission success can no longer be ensured
using the current RASi , a new RASi+1 that still meets the
performance goals is then calculated in real time according
to the remaining available resources, if it is possible.

The first part of the PANORAMA approach corresponds
to the problem statement dimension of a MOO problem
where the decision variables are identified, their range set, the
problem constraints enumeration and the objective functions
fixed. That allows to define the problem maximum decision
space. The second part of PANORAMA correspond to the
selection and set-up of the MOO algorithm solution.

Now we will detail the process of the first part of the
PANORAMA approach.

6 PANORAMA: Problem Statement and
MissionMapping for Resource Allocation

6.1 PANORAMA P0-Preliminary Performance
Definition

The bases of the performance concept are established in this
preliminary phase. The user defines the performance axes of
interest and then the corresponding performance indicators
and inducers are identified. The user also sets the refer-
ence value (goal) that each indicator must comply with. That
defines the reference constraints of the robotic system for the
target mission.

6.1.1 Performance Axes: A Framework for Robotics

For autonomous robotic missions, we propose to represent
performance through axes of two types. Themajor axesmust
necessarily be considered regardless of the robotic mission.
Theminor axes are related to user-oriented performance. We
consider that four major axes should always be considered
for autonomous mobile robotic missions:

Safety. It is essential to guarantee the physical integrity
of Humans, the robot and the environment throughout the
mission.
Energy. This is a key point for autonomous missions.
Localization. The robot must be able to localize itself
with acceptable accuracy during the mission.
Stability. This concerns the mechanical and control
aspects in order to ensure convergence of control and
fusion algorithms.

Minor axes concern user-oriented robotic tasks. Depend-
ing on the expected service, many performance axes can be
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envisaged, such as map accuracy for exploration missions or
more generally mission duration.

6.1.2 Performance Inducer and Indicator Identification

For each performance axis, the performance indicators and
their corresponding inducers must be identified.

Performance Inducers

Performance inducers are specific elements of the system.
Generally in robotics we find:

• Characteristics of the mission environment are important
performance inducers. The environment can be static or
dynamic, and its physical properties (nature, absorption
coefficient, etc.) can be known or not.

• Material resources, such as sensor or actuator capacities,
affect the mission performance (accuracy, range, energy
consumption, etc.).

• Software resources are also critical for the mission suc-
cess according to their efficiency, frequency, CPU load,
etc. The software integrates the control architecture,
which is a key point with regard to mission execution
and performance satisfaction. It allows real-time selec-
tion of the resources according to the mission plan and
its execution. The control frequency impacts the robot’s
energy consumption, reactivity and control stability.

• Input data: the available input data can influence the per-
formance. For example depending on the chosen path to
follow in a motion task, the duration of the mission will
be different. Another example could be the input map of
the robot environment that can influence the localization
performance.

• Finally, energy sources are critical performance inducers
for autonomous missions. They can be controlled offline
or can be sometimes regenerated during the mission.

Measurement of Performance Indicators

For the performance indicators that can be measured, several
classes can be defined depending on the measurement means
and the monitoring times. Considering a performance axis
axis and a performance indicator ind on this axis, the value
of this performance (i.e. its measurement) at time t is denoted
Per f indaxis(t). Thismeasurement could be i) either observed at
a given time from a specific component (for example a dedi-
cated sensor); ii)estimated from a model of the performance
behavior. This estimation can be updated during the mis-
sion execution according to the known past. For example in
Fig. 4, the solid line represents the series of the observed val-
ues of an indicator. The dotted black line represents the value
of the performance indicator estimated from the initial time
(initial estimated performance). This figure also shows that
estimated performance generally do not completely match
with reality (observed performance).

6.1.3 Performance Constraints

A performance constraint implies checking the results of the
comparisonof an indicator valuewith agoal. If a performance
axis depends on several performance indicators, then all of
the performance constraintsmust be jointly satisfied to obtain
an acceptable performance for the considered axis.

Some of the performance constraints must be satisfied
throughout themission. They are called core-oriented. Their
associated goals can be defined as constant (same goal all
along the mission) or variable (the constraint respect is

Fig. 4 Measurement of
performance indicators
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Table 2 Example of P0 phase:
definition of the performance
indicators and inducers

Axis Perf. indicators Perf. inducers

Safety Harmlessness Velocity

Sensor choices and settings (resource allocation)

Obstacle avoidance capacity Control algorithm setting (resource allocation)

Robot dynamics (a priori set)

Energy Laptop Consumption Velocity

Planned path (a priori set)

Robot Consumption (RC) Sensor choices and settings (resource allocation)

Duration Mission Duration (MD) Velocity

Planned path (a priori set)

Control algorithms (resource allocation)

permanently necessary, but with goal values that are vari-
able throughout the mission, see Fig. 4).

Formally, considering a performance axis axis and one of
its performance indicators ind, we can define a core-oriented
performance constraint as a partial order relation linking the
performance value Per f indaxis(t)with regards to its associated
goal Goalindaxis(t):

Per f indaxis(t) op Goalindaxis(t) ∀t ∈ [0, tend ],
with op ∈ {<,≤,=,≥,>} (1)

Conversely, for some performance axes, the defined goals
must only be satisfied at the end of the mission, defining an
end-oriented performance goal. For example, for the energy
axis, the overall robot consumption at the end of the mis-
sion must be less than a predefined value (the amount of
energy initially available in the batteries). Formally, for an
end-oriented performance of a given performance indicator
ind and axis axis, we denote FPer f indaxis(MS) the Final Per-
formance value of the mission at the end (t = tend) of the
Mission Scenario (MS), and FGoalindaxis(MS) the Final per-
formance Goal that must be respected. Thus an end-oriented
performance constraint is defined as:

FPer f indaxis(MS) op FGoalindaxis(MS)

with op ∈ {<,≤,=,≥,>} (2)

6.1.4 Example of P0

For simplification, in our example we do not tackle all of
the previously presented performance axes. We only focus
on two major axes: Safety and Energy, and on the minor
axis: Duration. The safety performance is core-oriented as
the mission must always be safe, i.e. the safety constraints
must always be verified. On the contrary, the energy and
duration performances are end-oriented: the robot and the
embedded laptop have a limited amount of energy, and the
user wants to limit the total duration of the mission.

Table 2 summarizes the indicators and the main induc-
ers of the studied performance axes. In fact, in our system,
we act on only two inducers: the robot’s velocity and
the resource allocation. The robot’s velocity is an unavoid-
able inducer, impacting all of the performance indicators.
Resource allocation is also an essential inducer, managing
the control algorithms (allowing to manage the motion, the
obstacle avoidance or the localization) and the sensors used
(influencing the localization precision, the consumed energy,
the acquisition frequency of data, etc..). The other inducers
of the Table 2 are fixed a priori for a given mission and a
given robot.

The next step is to establish the performance constraints
for each axis. For our mission we define the following per-
formance constraints (resumed Table 3):

Safety axis:

• Harmlessness constraint: in case of unpredictable dynamic
obstacles, the obstacle avoidance cannot be guaranteed.
Thus, we state that, in presence of moving obstacles,
the safety of the robot and its environment must be
guaranteed by insuring that the energy dissipated dur-
ing an impact (denoted e) is less than 4J 2, i.e. if
Per f harmless

sa f ety (t) = e < 4J ∀t . As e = 1
2mv2 with

m being the mass of the robot and v its velocity, and as
the mass of our robot is m = 25kg, then this constraint
becomes:3 v < 0.56m/s.

• TheObstacleAvoidance (OA) constraint is to never bump
into an obstacle.We can expressed it as: Per f OA

sa f ety(t) =
min(Dist(o)) > 0m ∀o,∀t , with Dist(o) the distance to
an obstacle o. According to the SMZ algorithm [76], the
capacity to guarantee this constraint is a function which
depends on the safety radius value, on the environment of
the robot, on the availability and the sampling frequency

2 ISO 10218: norm that limits maximum kinetic energy tolerated for
an impact. [77]
3 To simplify we note v instead of v(t).
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Table 3 Example of P0 phase:
definition of the performance
constraints

Axis Indicator Type Constraint

Safety Harmlessness core-oriented e < 4J ⇒ v < 0.56m/s

Obstacle avoidance core-oriented Dist(o) > 0

Energy Robot consumption end-oriented FPer f RCEnergy(MS) ≤ 2.4Wh

Duration Mission duration end-oriented FPer f MD
Duration(MS) ≤ 600s

of the sensors, on the algorithms used to detect/avoid an
obstacle, and on the robot’s dynamics and velocity.

Energy axis: the total energy consumed during the mis-
sion by both the laptop and the robot must be below a known
available amount. We focus here on the consumption of the
robot (RC): FPer f RCEnergy(MS) ≤ 2.4Wh.

Duration axis: the total mission duration (MD) must be
below a given value. For example: FPer f MD

Duration(MS) ≤
600s.

6.2 PANORAMA P1 - Preliminary Phase

This section describes the PANORAMA P1 phase and illus-
trates it on our experimental mission. It designs the mission
scenario, i.e. the initial mission is broken down into several
activities with their associated sets of possible resources and
inducer values, while respecting the core-oriented and exper-
imental constraints.

6.2.1 Mission Decomposition

We consider that a mission corresponds to the sequential
execution of nobj objectives. An objective is a high-level
robotic action (going to a point, finding an object, analyzing
the data, etc.) that is executed via one or several robotic tasks.

The mission scenario is built from the initial mission
description by projecting the experimental and performance
mission constraints on the initial mission description. We
suppose that an objective, as well as the constraints, can be
spatially defined in a specific area of the mission map. A
constraint can thus be mapped on the mission description to
generate a decomposition of the mission objectives in spa-
tial areas called activities. So a mission will be broken down
into a sequence of nact 4 activities Ak , each activity being
associated with constant constraints.

As seen before, the evaluation of the performance con-
straints depends on the type of the performance. As end-
oriented performance constraints must only be satisfied at
the end of the mission, they do not influence the mission
decomposition in activities, which is mainly based on the

4 nact ≥ nobj

core-oriented performance constraints and on the experimen-
tal constraints.

Figure 5 highlights the decomposition concept. First, the
mission is described through nobj objectives. Then, to con-
sider the specific constraint Ci , the objectives OII andOIII are
both divided into two activities. Activities AII and AIII are
different because they do not respect the same constraints,
while activities AIII and AIV are different because they do
not belong to the same objective, even if they have the same
constraints.

6.2.2 Mapping of Experimental and Core-Oriented
Constraints

Previous constraint mapping leads to the identification of the
activities, but it will also be used to reduce the set of the
possible performance inducer values.

The first inducer to consider is resource allocation: the
sensors and algorithms needed to execute a robotic task. The
resource allocation inducer is an important element to con-
sider in robotics (even if it is sometimes ignored).

Each task can be implemented using a set of differentTask
Implementation Options. A TIO corresponds to a set of
hardware and software resources that can be used to execute
the corresponding robotic task. For example, the localization
task could be based only on odometers, only on camera image
analysis, or both, which defines 3 TIOs for this task. But the
mapping of the core-oriented and experimental constraints
on the activities5 could reduce the implementation possibil-
ities of the tasks, thus reducing their set of possible TIOs.
For example, in Fig. 5, the task Ti of the objective OII can
theoretically be executed using one of the possible TIOs. But
the constraintCi removes all TIOs except TIO1 and TIO3 for
the activity AIII.

To perform a robotic task, a unique TIO must be selected
at a given time. Selecting a unique TIO for each robotic task
involved in a specific activity allows to define an Implemen-
tation Alternative (IA). Many possible IAs could exist for
an activity, each one representing a different combination

5 Let us remind that each objective corresponds to a set of robotic tasks
that must be executed in parallel. Of course, each activity of an objective
inherits its robotic tasks.
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Fig. 5 Description of the
mission: constraint mapping and
activity identification

of TIOs. For example, Fig. 6 presents an activity A imple-
menting three robotic tasks (Ti , Ti i , Ti i i ). The number of
TIOs for each of these tasks is respectively 4, 2 and 3. So
the number of all the possible implementation alternatives is
nA
I A = 4∗2∗3 = 24.Thus the resource allocation inducer

corresponds to the IAs of an activity
The second essential performance inducer in robotics is

the robot’s velocity, which influences most of the perfor-
mances. In our experimental mission, velocity is the main
inducer of all of the performance axes. Each activity must be
associated to a set of possible velocity values. Initially, the
velocity valuemust be lower than themaximal value imposed
by the physical characteristics of the robot (experimental
constraints). But the robot velocity must also respect the
core-oriented performance constraints. For example, safety
axis constraints may reduce the maximum velocity value due
to the reaction time needed to detect and react to unexpected
obstacles.

6.2.3 Example of P1

Mission Decomposition

For the patrolling mission described Section 4.2, Table 4
describes the sequence of objectives that must be sequen-
tially executed and their corresponding robotic tasks.6 Their
spatial location across the mission is defined along a lon-
gitudinal axis over the distance travelled by the robot. The
robot is supposed to follow a straight path in the middle of

6 The possible robotic tasks are described in Section 4.1 and Table 1.

the corridors. Initially the robot is located at x = 0m, while
at the end of the mission, the robot will return to the docking
station at x = 187m. The operator | denotes a concurrent
execution of the robotic tasks.

For the mapping of the constraints, we first consider
the experimental ones given Section 4.3. We also have to
consider the core-oriented performance constraints, which
concern in our case the safety axis (harmlessness and obsta-
cle avoidance) as described Section 6.1.3 and Table 2. We
have shown that the harmlessness depends on the robot’s
velocity, and the obstacle avoidance capacity depends on the
width of the corridor (for the safety radius), and on the used
sensors, hence they greatly depend on the environment. This
is expressed in grey in the Table 5 as follows:

• The environment elements linked with the experimental
constraints are given in the lines Env.: the halls H1 and
H2, the valves and the glazed areas.

• The line CEXP projects these constraints on the resource
allocation inducer: ALL means that all methods are use-
able, LASmeans that onlymethods using the sonarsmust
be considered (glazed area), and QRmeans that QR-code
and Kinect are needed to ensure accurate localization
before the valve monitoring.

Thus, combining the 9 predefined objectives of the initial
mission with the mapping of the experimental and core-
oriented performance constraints, we generate 17 activities
for the patrolling mission. The final mission scenario is pre-
sented Table 5, where the 5th line represents the name of the
activities and the two next ones their spatial location (xstart
and xend ) throughout the mission round-trip path.
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Fig. 6 Implementation
alternatives for an activity with
3 robotic tasks

Table 4 Example of P1 phase:
description of the patrolling
mission

Objective Location (m)
(xstart - xend )

Objective description Robotic tasks

OI 0 - 37 Travel to V1 MOV | LOC

OII 37 Turn to V1 TUR | LOC

OIII 37 Analyse V1 state DET

OIV 37 Turn back TUR | LOC

OV 37 - 93.5 Travel to V2 MOV | LOC

OVI 93.5 Turn to V2 TUR | LOC

OVII 93.5 Analyse V2 state DET

OVIII 93.5 Turn back TUR | LOC

OIX 93.5 - 187 Travel back to Docking Station MOV | LOC

Table 5 The initial patrolling mission scenario MS
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Mapping of the Constraints

We have to define the set of values for the pertinent induc-
ers of our system: the Implementation Alternatives and the
velocity of the robot. Information on the possible values of
these two inducers are given in the last three lines of Table 5:

• nOi
I A and n

A j
I A respectively represent the maximal num-

ber of IAs that are initially available for the objective
(depending on the objective’s tasks), then the number of
possible IAs for the activity considering the constraints.
For example, for OI, we have seen in Table 1 there are
7 different TIOs for the moving task, and 3 for the loca-
tion task, thus generating 21 possible IAs. This number
decreases with the constraint mapping: A2 must only use
sonar for the moving task, leading to only 12 possible
IAs, and A3 must also use the Kinect for localization,
thus reducing the choice to only 4 possible IAs.

• Then the last line gives the maximum velocity value, set
as follows:

– Throughout the mission the velocity cannot exceed
0.76m/s because of the robot’s physical limitations,
but also cannot exceed 0.56m/s because of the harm-
lessness safety constraint.

– The safety radius for the obstacle avoidance con-

straint can be higher in H2 than in H1, thus v
A j
max in

H2 remains equal to 0.56m/s (e.g. in A9), whereas

v
A j
max = 0.41m/s in H1 (e.g. in A8).

– Within theglazed area, the obstacle avoidancemethod
must use sonar information, which have lower sam-
pling frequency than the lasers. Thus v

A j
max =

0.33m/s when sonars must be used (e.g. in A2).

– If the QRCN method is used for location, v
A j
max =

0.41m/s (e.g. in A10) to ensure the stability of the
Kinect frame imaging.

The initial mission scenario being defined the resource
allocation process can start.

7 PANORAMA: Resources Allocation Process

At the end of the P1 phase, we have defined the performance
axes, and the performance indicators and inducers that are rel-
evant for the targeted system. We also define the constraints
related to this system in a given context and mission. Phase
P1 also allows to reduce the set of possible values of the
performance inducers while respecting the experimental and
core-oriented constraints. Now, it is necessary to select the
most adequate inducer value respecting the end-oriented per-
formance constraints. As one off themain inducer are the IAs
which correspond to the hardware and software resources of

the activities, the next two phases of PANORAMA mainly
deal with the resource allocation problem based on the esti-
mation of end-oriented mission performance.

7.1 End-Oriented Performance Estimation

To estimate the end-oriented performance constraints, i.e. at
the mission level, it is necessary to estimate the values of the
indicators performance based on the decomposition of the
mission into activities.

7.1.1 Estimation of the Mission Performance

As defined in Section 6.1.3, to evaluate the end-oriented
performance constraints, we need to estimate the final per-
formance value FPer f indaxis(MS) of the mission MS. As MS
is a sequence of activities, we decompose the computation
of the performance mission adding the local performance of
each activity. Thus, with FPer f indaxis(A j ) the estimation of
the performance value at the end of the activity period A j ,
we have:

FPer f indaxis(MS) =
nact∑

j=1

FPer f indaxis(A j ) (3)

7.1.2 Estimation of an Activity Performance

Wesupposed that it exists amodel that provides an estimation
of the performance indicator value from the inducers values.
Thus, all the inducersmust be set to a specific value, chosen in
the set of all the possible values remaining after the mapping
of the core-oriented and experimental constraints. But many
possible values are still possible, even more if we consider
the combination of all the possible values of all the per-
formance inducers. Hence, it is necessary to establish some
strategies allowing to estimate the activity performance. In
PANORAMA we use strategies inspired by both empirical
and well-admitted logic.

The first main inducer of most of the performance axes is
the robot’s velocity, which is a continuous parameter, lead-
ing to an infinite number of possible values. Thus, we must
choose a restricted number of inducer values to consider.
More precisely, we select only one value for the velocity
inducer, significantly reducing the number of calculated per-
formance values.

The second important element to consider is the alloca-
tion resource through the implementation alternatives which
manages the control algorithms and the sensors used. The
way a task is executed has an influence in many of the
end-oriented performances. Typically, the choice of the used
sensors has an important impact on the energy performance.
Thus we choose to consider all the possible IAs of an activity,
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leading to consider several possible performance values for
each activity (one per possible IA).

However, when executing a mission only one IA is
selected per activity. So when we estimate the performance
value of a mission, we consider that the performance value
of an activity A j to the value of its selected implementation
alternative I Ak :

FPer f indaxis(A j ) = FPer f indaxis(I Ak) (4)

This allows to calculate the performance values of the per-
formance indicators of the mission, necessary to evaluate
the end-oriented performance constraints.

7.1.3 Example of Final End-Oriented Performance
Estimation

We remind that in our example, we focus on two end-oriented
constraints (Table 3): the mission duration and the energy
consumption of the robot energy. In our resource allocation
algorithm, we first address the duration then the energy.

End-Oriented Performance Estimation

We now want to estimate the performance value of the IAs
(then the activities) for the two indicators implicated in the
end-oriented performancewe focus on (see Table 3): themis-
sion duration and the robot energy consumption. We will not
give all the numerical values in detail here, but only present
the methods we used to estimate the values of these perfor-
mance indicators.

The estimation of the energy performance indicator
FPer f RCEnergy of our robotic system for an IA is done using
the following energy consumption model [78]:

FPer f RCEnergy(I A) = β0PRMotion (v
I A
max ) + β1PRSonar

+β2PRKinect + k1β3PRLaser (5)

where k1 ∈ {0, 1, 2} denotes the number of active lasers,
βi are Boolean coefficients that indicate whether the corre-
sponding component is used or not, and v I A

max represents the
selected maximal velocity of the IA. PRMotion () which cor-
responds to the instantaneous motion power consumption
has been determined using an experimental model definition
[79].

Concerning the duration performance indicator of an IA,
it is easy to compute its planned duration when the robot’s
planned path (considered as a straight line) is known and its
velocity is set. Activities (and thus IAs) dedicated to the valve
observation are supposed to have a constant and, known,
duration.

We now present how the velocity parameter is selected.

Velocity Parameter Selection

To calculate the performance values, we have to set the veloc-
ity value for a given IA. For a given activity A j (and thus for
all of its IAs), the velocity must be chosen in the interval

[0, vA j
max ]. A priori, using the maximal velocity is a good

solution for duration. Also, in some previous studies dealing
with the energy model of our robot [78, 79], we have shown
that, to travel a given distance, the optimal velocity value for
the energy axis is vopt = 0.76m/s. Moreover, the consumed
energy decreases in a monotonic way with the velocity until
vopt is reached. So, while vopt is not reached during the mis-
sion, moving as fast as possible minimizes the consumed
energy.

Furthermore, the safety constraints reduce the local max-
imal velocity in the activities. In particular, the harmlessness
constraint imposes v < 0.56m/s < vopt . So in our context,
it is justified, from the energy viewpoint, to go as fast as pos-
sible. Thuswe estimate the performance indicators by setting
the robot’s velocity at themaximal velocity value allowed for
each IA.

At the end of this phase, we now have estimated, for a
mission, all the values of the performance inducers of all
IAs of activities. From the Eq. 3 we are able to estimate the
final end-oriented performances of every possible mission
scenario. We can now use these information as a basis for the
offline resource allocation problem.

7.2 PANORAMA P2 - Offline Resource Allocation
Phase

Let a Resource Allocation Solution (RAS) be a plan which
proposes a resource allocation, i.e. the selection of an IA for
each activity of the mission, while satisfying all the perfor-
mance constraints, included the end-oriented ones. The P2
phase aims to identify RAS0, which corresponds to the initial
RAS designed before the the mission launch.

7.2.1 Complexity of the Resource Allocation Problem

More than only choosing an allocation solution, we are inter-
ested in an appropriate local selection of AIs, while globally
verifying the end-oriented performance constraints. This cor-
responds to the formulation of a knapsack class problem,
which is known to be NP-hard. The decision complexity of
our problem relates to the total number of combinations of
the possible IAs for each activity, called Number of Global
Alternatives (NGA). It corresponds to the overall space that
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should be explored to find the optimal solution, and is equal
to the product of the numbers of all the different possible IA
combinations:

NGA =
nact∏

k=1

n
A j
I A (6)

NGA significantly increases with the number of tasks per
activity and of TIOs per task. For example in our case-study
mission, we have

NGA ≈ 7.7 ∗ 1014

The problem now is: How to efficiently solve this NP-hard
problem?

7.2.2 Resource Allocation Algorithm: Principles

The efficiency of PANORAMA greatly depends on the effi-
ciency of the Resource Allocation (RA)Algorithm .We dealt
with this complexity by adapting the algorithm proposed in
[80] for human resource allocation to enterprise process. This
algorithm seeks effective solutions to the knapsack problem.
When several end-oriented performance constraints must be
considered, the problem becomes a multiple knapsack prob-
lem and the iterative version of the RA algorithm is used.

The efficiency of the chosen RA algorithm is based on
three main assumptions:

• For a given activity and performance indicator, the IAs
can be sorted from best to worst with regard to their local
performance estimation.

• Each activity performances evaluation is independent
from each other.

• The composition law used for the estimation of the final
performance of the mission from each local performance
value preserves the local ordering relation. Thus, when
the selection, for an activity, of a performance that is
lower (resp. higher) than the current selected choice will

lead to a lower (resp. higher) final performance of the
mission.

The algorithm executes the 3 following steps, for each
indicator implicated into each end-oriented constraint: sort-
ing of the IAs, selection of the highest IAs combination
satisfying the performance constraint, and the reduction of
the set of possible IAs.

The first step is the sorting of the IAs for each activ-
ity (see Fig. 7) depending on their performance value
FPer f indaxis(AI j ). They are sorted depending on the con-
sidered performance constraints, from the best to the worst
values. For example, for the duration constraint where the
final performance must be inferior to a goal, the smallest
IA’s performance value is considered to be at the bottom and
the greatest one at the top.

The second step is the selection of thehighest IAs combi-
nation satisfying the considered performance constraint.
To find a solution, the RA algorithm uses a binary search
algorithm for each activity so as to find locally the better piv-
otal point selection of IA, leading to the best global solution.
The algorithm for a local IA selection is as follows (Fig. 7):

1. The initial selection is composed of the set of the highest
IA for each activity.

2. Then the final performance value of the mission is com-
puted with the local performance values of these selected
IAs (see Section 7.1).

3. If the end-oriented performance constraint is not veri-
fied, the selected IA of the last activity is modified, while
searching by dichotomy for the highest value that could
verify the constraint.

4. If the constraint is still not verified even if the selected IA
is the lowest one, then the process described previously
in 3 is repeated for the previous activity, and so on.

The chosen RA algorithm, like some others MOO algo-
rithms, can be used sequentially for different performance
objectives sorted in order of importance. Then each objective
is treated one after the other so that each sub-problem does

Fig. 7 Sorting and selection of
the IAs for one end-oriented
performance constraint:
Resource Allocation algorithm
principle
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Table 6 RAS0 for the patrolling mission

not degrade any of the previous solutions. This way of treat-
ment of MOO problem is called lexicographic approach for
optimal searching. In our approach, the final solution is not
optimal, but reachable and the principle remains the same. So
we can say that we implement a lexicographic-like approach
to solve the MOO problem.

When a solution has been found for one end-oriented per-
formance constraint, the selected IAs are the highest possible
ones for all the activities while satisfying this constraint.
Indeed, the objective of this selection is to maximize the state
space of valid solutions to optimize the chance of finding a
solution for the rest of the end-oriented constraints.

We then execute the third step of our algorithm: the reduc-
tion of the set of the possible IAs, considering only the
subset still acceptable. In Fig. 7, this subset corresponds to
the IAs that are under the dotted line. Then we address the
next performance constraints,7 looping to the step 1, until
there is no further end-oriented constraint to respect, or if
there is no resource allocation solution.

Thus, the resource allocation algorithm can select, for all
mission activities, the IAs that must be used to satisfy all of
the performance constraints of the mission. This algorithm
does not give the optimal solution for our resource allocation
problem, but it has the essential advantage of being low in
complexity (logarithmic) meaning that it can find a good
resource allocation in real time (necessary for the phase P3).

The selected initial solution is named RAS0. That is the
end of the offline process and the mission can start using this
pre-defined plan. If there is no solution, then we consider that
the mission cannot be performed regarding the performance
constraints.

7 Remark: this shows that the order in which the constraints are pro-
cessed may affect the resulting solution set.

7.2.3 Example of Resource Allocation Solution

Firstly, it’s important to remind that the core-oriented con-
straints (here the safety) remain satisfied for all IAs, guar-
antying this performance viewpoint all along the mission.
Then, the first end-oriented performance considered is the
Duration. The application of RA algorithm allows to remove
IAs that cannot satisfy the duration constraint. The second
end-oriented performance considered is the Energy. Once
more RA algorithm allows to remove IAs leading to exces-
sive consumption.

Now the problem is: Among all the remaining possible
IAs, how to select the exact IA sequence RAS0 to do the
mission?

In our example, the verification of the duration constraint
does not reduce the IAs possibilities. Thus this performance
has no influence in the IAs choices. For the Energy per-
formance, the classical strategy would be to select the least
energy consuming IAs. Unfortunately this choice would lead
to the selection of odometry for all localization tasks, to pre-
vent using more consuming sensors like the lasers. But it is
well known that due to odometry drift, using this solution
all along a mission is unreasonable. To overcome this limita-
tion, we will suppose that using the more consuming sensors
allows to use better localization algorithms. So we choose to
always select the most energy consuming IA still satisfying
globally the end-oriented energy performance constraint.

In the following we do not give all the details of the
algorithm steps, but the resulting RAS0 defined by our algo-
rithm is given in Table 6. In the last RAS0 line, each cell
represents the selected implementation alternative of the
associated activity. These IAs are described with one TIO
for each robotic task required for this activity, according
to the TIO numbering given in Table 1. Concerning the
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Fig. 8 The performance drift
and margin concept

robot consumption constraint, for all the activities from
A1 to A16 the “best” IAs has been selected, i.e. the most
energy-consuming ones. For example, for the moving task
of activity A1, we select the TIO M5 which uses all the sen-
sors, and the TIO L2 for the localization task, which uses the
high energy-consuming Kinect. However, for A17, the more
energy consuming IA M5|L2 could not be used as it violates
the final energy constraint, M3|L1 is used instead.

7.3 PANORAMA P3 - Online Performance
Management Phase

The P2 phase provides a solution RAS0 to execute the mis-
sion respecting the performance constraints. But this initial
resource allocation solution could be questioned for two
major reasons: 1) either the real mission performances do
not correspond to the planned ones, leading to violation
of the end-oriented performance constraints; 2) or hard-
ware/software failures induce a resource reallocation. To deal
with these unanticipated problems, a new RASi+1 must be
calculated during the mission if RASi cannot be used.

Thus the P3 phase of PANORAMA deals with dynamic
resource allocation management during the mission.

7.3.1 Performance Margins

The margin concept is widely used in control theory but
rarely tomanagemission execution.Hereafter, the robustness
of PANORAMA with regard to model drifts or unforeseen
events mainly depends on the efficiency of the resource allo-
cation algorithm, on the accuracy of the models, and on
the performance margin management. For an end-oriented
constraint, a performance margin can be thought of as a
performance “stock” used to overcome the drift between
the performance estimated for the planned mission and the
actual performance during the execution of that mission. So
the performance robustness increases with the growth of the
performance margin. The best IAs in terms of end-oriented
performances are the ones which maximise these margins. In

the following, we explain the concept of performance drift
andmargin, and re-define end-oriented constraints to beman-
aged in real-time.

Performance Drift In the planned mission, the environment
is considered as static, the models are assumed to be per-
fect, and the planned path is supposed to be perfectly exactly
followed, which is not the case in reality [78]. This perfor-
mance drift could be caused for example by the imprecision
of the model used to estimate the initial performance value,
or induced by the difference between the real path and the
planned one. So during amission, the performance drift must
be monitored by comparing the instantaneous performance
measurement to the expected value.

Figure 8 illustrates such a drift: first, at t0, the performance
value is estimated from a model, given the lowest dotted
curve. But the unforeseen event encountered during the mis-
sion lead to the real performance values represented by the
continuous curve.At t1, an observedvalue of the performance
is available, which reveals a performance drift. Thus a new
estimation could be calculated for the performance, leading
to the higher dotted curve.

Performancemargin

At a given time t , the performance margin corresponds to
the difference between the final performance goal and the
final performance value of the system estimated at this time.
Figure 8 shows an example of performancemargins. The first
margin, denotedMind

axis(t0), is the difference between the final
performance value8 estimated at t0 (bottom grey circle) and
the performance goal of the mission. In t1 the detection of the
performance drift leads to a new estimated final performance
value and then a lower margin Mind

axis(t1).
Given an end-oriented performance constraint, we have

defined in Section 6.1.3 that FPer f indaxis(MS) is the final

8 for the performance axis axis and the performance indicator ind
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performance value observed at the end of the mission (i.e. at
tend ). But at any time t of themission, it can be estimated from
the current performance value measured at t combined with
the value estimated with a performance model from t . This
allows to project the final performance value in the future
from the current state. Thus we introduce another parameter
to this function: the instant from which the value has been
estimated. We thus define FPer f indaxis(MS)(t) as the final
performance value of the mission MS estimated from the
time t .

And the performance margin is formally defined as:

Mind
axis(t) = FGoalindaxis(MS) − FPer f indaxis(MS)(t) (7)

In Fig. 8, we have 3 performance margins: the final one,
calculated from the observed measurement value FPer f indaxis
(MS)(tend), and two margins estimated during the mission
at time t0 and t1. We see that these 3 values are different,
due to the drift of the real performance values reducing the
margin.

Real-Time End-Oriented Constraints Verifica-
tion

A mission is successful if the performance margins of all
of its end-oriented performance constraints remain positive
until the end of the mission, i.e. if:

Mind
axis(t) ≥ 0 ∀axis,∀ind,∀t (8)

Due to the run-time performance drift, the PANORAMA
approach must be able to dynamically customize the soft-
ware and hardware resource allocation to ensure the mission
success.

7.3.2 Dynamic Resource Allocation Solution

During the mission, one performance margin can become
negative. This means that, in the future, the associated (end-

oriented) performance constraint can no longer be verified
with the current ResourceAllocation SolutionRASi . In addi-
tion, the mission cannot continue if a hardware or software
resource fails and if that resource belongs to the currently
executed IA or to one of the scheduled IAs in the current
RASi . In these cases, a new RASi+1 must be determined.
This allows to anticipate future violations of constraints, to
manage the availability of resources or to adapt the mission.

RAS replanning uses the same process as in P2, but a
Reduced Mission Scenario (RMS) is considered instead of
the initial MS, starting from the mission’s current state. If
some resources are no longer available, the new RASi+1

will be calculated by eliminating IAs which use these failed
resources. If no new solution can be found, the mission will
be aborted because the performance constraints can no longer
be satisfied.

7.3.3 Example of P3

The performance margins are managed differently depend-
ing on the strategies used for the considered performance
constraint:

• Duration: since the robotmoves as fast as possible (while
satisfying the safety constraint), the duration margin is
initially maximized but as a result there are not many
ways to improve it in case of violation.

• Energy: on the contrary, the local selection, for each
activity, of the most consuming IA compatible with all
constraints leads to a limited energy margin, but with
many solutions to improve it in case of violation.

In the following experimental example (Fig. 9) we con-
sider the previous patrolling mission, with the deliberate
addition of many obstacles to be avoided, and of an error
detection on one laser sensor (X=118m).

Figure 9 shows the experimental curves of the perfor-
mance margins for the mission duration (duration margin
DM, at the top) and the robot energy (robot energy margin
REM, at the bottom). In this figure, DM regularly decreases
due to obstacle avoidance, but the margin remains positive.

Fig. 9 Performance margins of
the patrolling mission
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Table 7 The different RASi used in the experimental patrolling mission

For REM, we identify four singular points denoted TRASi ,
directly linked to the detection of a particular event during
the mission which leads to a new RAS calculation. Table 7
summarizes these different RAS used during this patrolling
mission. The control schemes actually executed during the
mission are in bold. We remind that the patrolling mission is
described in Fig. 2, the TIOs in Table 1, and the robotic tasks
in Table 4.

• TRAS0: at the beginning of the mission, the initial
resource allocation solution RAS0 satisfying all of the
performance constraints has been found: the mission
starts.

• TRAS1: at the location x = 64m, during the execution
of A8, the robot’s energy margin becomes negative due
to odometry drift, obstacle avoidance and consumption
model errors. A new resource allocation solution RAS1
is calculated to return to a positive energy margin. It is
obtained by modifying the IA allocation for activities
A16 and A17 by using only sonar (less consuming) for
obstacle avoidance (TIOs M5 and M3 are replaced by
M1). Switching off lasers in A16 and A17 reduces the
overall energy consumption and so increase the energy
margin.

• TRAS2: during the execution of A14 (at x = 118m), a
fault is simulated on one laser used in the current activity
(as well as in future ones). So a new RAS2 is calcu-
lated that eliminates this hardware resource. All activities
using two lasers are switched to use a single one: TIOM5

is switched to M3 in activities A14 and A15. In return, the
energy saved by using a single laser allows M3 to be
rescheduled for A17.

• TRAS3: dring the last activity, at x = 170m, the energy
margin again becomes negative, for the same reasons as
in TRAS1, and the same strategy is used (sonar vs laser)
to save energy to finish the mission.

So finally, despite several unforeseen events, the mis-
sion has been successfully executed while satisfying the
predefined performance constraints thanks to resource and
constraint autonomous management.

We present now how to implement the PANORAMA
methodology for a mission with a given robotic system.

8 PANORAMA: The Implementation Process

To implement the PANORAMAprocess, the usermust verify
that certain working hypotheses are satisfied:

• The mission environment is known, a map is available to
perform localisation.

• The robot’s moving and sensing capacities are compati-
ble with the mission.

• The robot’s available robotics algorithms are adapted to
the mission.

• The robot’s planning path is known.

If these hypothesis are satisfied the PANORAMA imple-
mentation process can start. Figure 10 summarizes the
implementation process followed by the user.

Before being able to use PANORAMA, an important task
requiring many interconnected steps is necessary. It can be
decomposed into three steps related to the description of the
robotic aspects of the mission (in yellow in Fig. 10), the
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Fig. 10 The PANORAMA
implementation process

performance axes (in green in Fig. 10), and the mission and
its experimental constraints (in blue in Fig. 10).

The description of the robotic aspects of the mission
involves several steps. Firstly, the characteristics of the
robotic system must be defined. This encompasses various
aspects such as the robot’s dimensions, available sensors and
actuators, maximum linear and angular velocity, accelera-
tion, payload capacity, and more. It also involves gathering
important information about the robotic control architec-
ture, including factors like the frequency of the basic control
loop and whether an embedded laptop with or without its
own battery is used. The work related to actuators and
sensors modelling can be particularly time-consuming but
is crucial for optimizing energy and security performance.
Concerning actuators, it is essential to experimentally iden-
tify the relationship between the robot’s velocity and power
consumption [79]. This addresses the propulsion aspect of
energy consumption.As for sensors, obtaining various pieces

of information, including operating frequencies, power con-
sumption, usage conditions, accuracy, andmore, is necessary.
Additionally, accurately estimating the energy level of the
battery (rather than relying solely on vendor product data) is
crucial information for the mission.

Secondly, the robotic algorithms can be identified by
establishing their connections with the robotic tasks they
can be involved in, as well as the actuators and sensors
that are either necessarily or potentially used. Some robotic
algorithms may also have operational constraints, such as
maintaining a maximum robot velocity to reduce image blur-
ring in the case of a Kinect camera, for example.

Thirdly, if an embedded laptop is usedwith its ownbattery,
it is essential to identify the power consumption of various
laptop connections, including those associatedwith low-level
robot control and sensors, as well as the power consumption
of different robotic algorithms [79].
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Finally, all the performance estimation models must
be identified. These models will enable the estimation of
activity performance during the PANORAMA process for
each selected combination of robotic algorithms and chosen
inducer configuration values.

The different performance axes must also be described:

• The performance axes are defined in terms of indicators,
inducers, and performance class (core or end-oriented).
Cause-effect diagrams can be useful tools for identifying
performance indicators and inducers. The identification
of relevant inducers is crucial. Some can be controlled
before the mission begins, such as the chosen travel path
or the energy level of the robot’s battery. Others can be
controlled during themission, such as the robot’s velocity
or sensor frequencies, for instance.

• Each performance indicatormust have a sorting function.
• For each end-oriented goal, the global performance com-
position law must preserve the local performance partial
order.

While the description of the robotic aspects of the mission
and of the performance axes are time-consuming, they offer
the advantage of potential reuse in future missions involving
the same robot, robotics algorithms, and sensors.

The final initialisation step is dedicated to the mission
description. It can be decomposed in two parts. Firstly, the
user must describe the mission plan within the environ-
ment. This description must specify which robotic tasks are
involved in the mission and their spatial constraints. Con-
current implementation of several tasks is possible. For each
task, the user must also select the various robotic algorithms
that could potentially be used. Additionally, the plannedmis-
sion path must be specified, as this is essential information
for estimating the performance of the Duration and Energy
performance indicators. Secondly, the user must overlay the
mission description with the experimental constraints that
need to be verified and specify their spatial constraints. These
constraints may include areas in the environment that impact
sensor functionality or the limitations under which the user
mandates the selection of specific robotic algorithms.

This ends the initialisation of the PANORAMA method-
ology which can be now really launched (Fig. 10) following
the 4 phases previously detailed in the paper.

• The Preliminary phase P0 is dedicated to defining mis-
sion performance. In this phase, the user selects the
performance axes they want to consider and the per-
formance goals they aim to achieve. Subsequently, the
core-oriented and end-oriented constraints are derived
from the performance description database.

• The Preliminary phase P1 is dedicated to integrating all
the constraints and estimating the performance of each
Implementation Alternative. Mapping the constraints is

a challenging task due to their diverse origins. This map-
ping, in conjunction with the mission plan, helps identify
the final activities with constant constraints and deter-
mines the functioning range of the inducers within these
activities. Once the mission scenario generates the per-
formance models, it becomes possible to compute the
performance level of each Implementation Alternative
for each performance axis. Finally, for each identified
activity and performance axis, the available Implemen-
tation Alternatives are locally sorted.

• Phase P2 involves the offline search for the initial
Resource Allocation Solution. It consists of sequentially
applying the resource allocation algorithm based on the
chosen order of performance importance.

• Phase P3 focuses on online performance management
in the event of a final performance goal violation or the
detection of a faulty robotic task. It follows the same
logic as Phase P2 to generate a new Resource Allocation
Solution based on the current position of the robot within
the mission scenario.

For the current implementation of this work, all initial-
ization steps were performed manually. However, using the
generated data structures, all PANORAMA phases have
been integrated into the robot control architecture to man-
age the robot’s mission performance. In the future, it is
conceivable to develop mission scenario and performance
description editors. Furthermore, once the robotic platform
is fully described, it would be possible to offer off-the-
shelf components for the robot’s description, robotic task
implementation based on selected sensors and actuators, and
performance computation.

9 Conclusion

This paper addresses the problem of hardware and software
resources allocation during autonomous robotic mission. It
can be viewed as a Multi Objectives Optimisation prob-
lem and can be considered as a multiple NP-hard Knapsack
problem. We propose and detail a new approach, named
PANORAMA implemented in the execution layer of the
robot’s control architecture. It enhances the robot behavioral
autonomy while addressing the performance satisfaction
issue for autonomous robotics. Before the autonomous mis-
sion launch it allows to ensure that some performance
goals can be achieved. During a mission, the robot can
autonomously and dynamically choose which hardware and
software resources must be used locally to meet these per-
formance goals.

We highlighted the lack of consensus concerning the per-
formance for roboticmissions andwe propose a definition for
this concept. The PANORAMAapproach is divided into four
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mainphases. The initial phaseP0 is dedicated to the definition
of the performance elements: characterization of the perfor-
mance axes and identification of the performance inducers,
indicators and their estimation models. Then from an initial
description of the robotic system and the mission, phase P1
consists in mapping some of different constraints (environ-
ment, robotic platform, safety, etc..) on this initial mission to
decompose the mission into specific sections, denoted activ-
ities, with constant constraints. Phase P2 concerns off-line
calculation of an initial resource hardware and software allo-
cation solution satisfying the performance goals. Finally, the
last phase, using online monitoring of performance margins,
verifies if these constraints remain satisfied throughout the
mission despite the unavoidable performance drifts and some
unforeseen events or hardware or software failure. In case of
violation of a performance constraint, the robot can adapt
its current and future resource allocation, or detect that there
are no longer any solutions respecting the performance con-
straints. The main aspects of the PANORAMA approach are
illustrated through an experimental patrolling mission.

The proposed methodology addresses the hardware and
software resource allocation issue at the mission level which
is often neglected in robotics. It provides an efficient answer
to the embedded real-time resources allocation problem in
robotic control architectures. It considersmany core and end-
oriented performance viewpoints. Among them, the energy
axe, which is seldom considered in detail at themission level,
is thoroughlymanaged.Moreover, it enhances the robustness
of the mission by finding adapted recovery solutions in case
of hardware or software resource failures.

However, this approach has some limitations with regard
to long and complex missions:

• The formalization of the performance and experimental
constraints is difficult. It depends on substantial informa-
tion that are hard to extract.

• Theproliferation of constraints generatesmany activities,
thus increasing the combinatorial complexity of the state
space to consider for resource allocation.

• The energymodel is a core feature of PANORAMAsince
it is a major criterion for resource allocation selection.
Therefore, accurate energy consumptionmodel will have
to be developed to manage different robotic systems.

• The localization performance is assumed sufficient in our
study. So from the energy viewpoint, the proposed strat-
egy to ensure a good localization is to locally use themost
energy consuming sensors while verifying that globally,
at the mission level, the allocated energy reserve is not
totally consumed. This strategy is not entirely satisfac-
tory.

We are currently developing a strategy with a deeper
analysis of localization axis performance. Being sure of the

performance of the chosen localization method enables us
to consider a resource allocation solution minimizing the
energy consumption and then maximising the energy mar-
gin. We are also interested in comparing our approach with
other multi-constraint optimization methods, as for exam-
ple constraint programming methods. Finally the proposed
methodology could be extended to more complex missions.
For example, PANORAMA could be helpful to enhance
the robustness of autonomous exploration mission in an
unknown environment. Our approach can not be used for
the exploration itself as the map is not initially known, but
it could guaranty that the way back of the robot is always
possible. We plan to use this method for exploration mis-
sions of harsh environments like karstic networks [81]. It
could also be interesting to investigate full autonomous sys-
tems that combine decision and behavioral autonomy in other
contexts. Harsh environments, e.g. extraterrestrial or under-
water environments, are clearly application domains where
behavioral autonomy, resource management, fault tolerance
and energy management are crucial.

GLOSSARY

Performance indicator (ind): Ameasurement of the effi-
ciency of a system.

Performance inducer: Element that can be tuned to
manage the performance. It influences the performance
indicator values.

Performance axis (axis): Point of view according to
which the performance of the system is estimated.

Performance constraint: Partial order relation linking a
performance to a goal.

Core-oriented performance constraint: The performance
constraint must be satisfied throughout the mission.

End-oriented performance constraint: The performance
constraint must only be verified at the end of the mission.

Mission (M): Sequential execution of Objectives.

Objective (O): High level robotic action performed using
one or more robotic parallel tasks.

Activity (A): Part of a mission realized under constant
constraints.

Task Implementation Option (T I O): Chosen set of
hardware and software resources implementing a robotic
task.

Implementation Alternative (I A): Selection of a single
TIO for each robotic task involved in the related activity.
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Mission Scenario (MS): Sequence of the activities of a
mission.

Resources Allocation Solution (RAS): Projected plan
for the allocation of resources for each mission activity.

Performance Margin (Mind
axis): Difference between the

final estimated or actual performance value and the per-
formance goal.
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