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Abstract
Most current research on dynamic visual Simultaneous Localization and Mapping (SLAM) systems focuses on scenes where
static objects occupy most of the environment. However, in densely populated indoor environments, the movement of the
crowd can lead to the loss of feature information, thereby diminishing the system’s robustness and accuracy. This paper
proposes a visual SLAM algorithm for dense crowd environments based on a combination of the ORB-SLAM2 framework
and RGB-D cameras. Firstly, we introduced a dedicated target detection network thread and improved the performance of the
target detection network, enhancing its detection coverage in crowded environments, resulting in a 41.5% increase in average
accuracy. Additionally, we found that some feature points other than humans in the detection box were mistakenly deleted.
Therefore, we proposed an algorithm based on standard deviation fitting to effectively filter out the features. Finally, our system
is evaluated on the TUM and Bonn RGB-D dynamic datasets and compared with ORB-SLAM2 and other state-of-the-art
visual dynamic SLAM methods. The results indicate that our system’s pose estimation error is reduced by at least 93.60%
and 97.11% compared to ORB-SLAM2 in high dynamic environments and the Bonn RGB-D dynamic dataset, respectively.
Our method demonstrates comparable performance compared to other recent visual dynamic SLAM methods.

Keywords Visual SLAM · Indoor environment · Object detection · Dynamic environment

1 Introduction

With the advancement of technology, robots are gradu-
ally finding applications in large indoor environments like
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shopping malls and warehouses. SLAM technology plays
a crucial role in enabling these machines to navigate and
understand their surroundings. In unknown and unstructured
environments, SLAM serves as a prerequisite technology,
involving the creation of environmental maps and the esti-
mation of the robot’s pose within these maps.

Present-day research on SLAM primarily operates under
the assumption of static scenes, as exemplified by systems
like ORB-SLAM2 and ORB-SLAM3 [1, 2]. However, the
presence of dynamic objects can lead to erroneous assess-
ments of robots. When dynamic objects appear in the scene,
it significantly affects the image frames, disrupting the ini-
tial feature point matching. This disruption results in the loss
of feature tracking in visual odometry and substantial devi-
ations in pose estimation. Furthermore, it also affects the
reconstruction of maps. Researchers have proposed various
methods to address this challenge [3–7].

Yu et al. [7] introduced an RGB-D-based DS-SLAM
system that incorporates a semantic segmentation network,
SegNet [8], to preprocess RGB images prior tomap construc-
tion. This system effectively segments dynamic objects in the
scene. Nevertheless, due to its reliance on direct image inten-
sity information, it may encounter limitations in scenarios
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with an excessive number of dynamic objects. Furthermore,
when confronted with more intricate environments, the com-
putational resources required for maintaining a substantial
number of keyframes become a limiting factor.

The DynaSLAM system, as proposed by Bescos et al.
[3], incorporates a segmentation network utilizing a pixel-
level Mask R-CNN model [9]. This model is proficient at
segmenting objects within each frame at the pixel level.
Additionally, the system introduces a multi-view geometry
approach for the secondary identification of potential non-
stationary objects in the image, resulting in a substantial
enhancement in accuracy. Nevertheless, it is worth noting
that the requirement for image data segmentation in every
frame poses a notable challenge to the real-time performance
of the system.

Zhang et al. [10] introduced theWF-SLAMsystem,which
primarily integrates Mask-RCNN networks with geometric
methods to tightly couple the extraction of feature informa-
tion for every object in the environment and subsequently
allocate weights. This approach is advantageous for precise
segmentation of dynamic objects, enhancing accuracy.While
the system employs object detection to assist in detection and
avoid full-scene segmentation, it still inevitably involves seg-
menting each frame’s image data, and there is the potential
for redundant computations when detection boxes overlap.

JCV Soares et al. [11] employ object detection to iden-
tify individuals within the scene and subsequently perform
a complete removal of feature points located within the
detected bounding boxes. This approach of excessive feature
point removal may lead to the inadvertent deletion of sta-
tionary objects containedwithin the bounding boxes, thereby
potentially adversely affecting the accuracy of pose estima-
tion and mapping.

In summary, while contemporary SLAM algorithms
designed for dynamic environments can detect and elimi-
nate select dynamic feature points, they suffer from issues
such as high computational requirements, Excessive culling
of feature points, and inadequate real-time performance. Fur-
thermore, researchers have not yet delved deeply into the
study of indoor crowds. This has resulted in recurrent chal-
lenges for intelligent robots when navigating through human
traffic in indoor settings. For instance, issuesmay arise during
the transportation of goods, such as the failure to recognize
people, leading to potential collisions. Therefore, research in
the domain of indoor crowd environments has emerged as a
critical concern.

Therefore, this paper proposes a newSLAMsystem called
CP-SLAM (Crowdplus-SLAM), an ORB-SLAM2 [1] sys-
tem specifically improved for Dynamic crowd environments.
It can achieve efficient and accurate SLAM localization in
crowd scenes without pre-training. We adopt a new tech-
nique to solve traditional algorithms’ dynamic feature point

removal and crowd detection problems. The main contribu-
tions of this paper can be summarized as follows:

1. In the improved framework of ORB-SLAM2, a novel
target detection thread is introduced. The target detec-
tion network has been enhanced to increase its detection
coverage in complex crowd environments.

2. We propose a novel feature-filtering algorithm that inte-
grates information from detection boxes and geometric
depth to preserve useful static features extracted from
the detection framework while rejecting dynamic infor-
mation. This approach allows for better preservation of
static features and improves the robustness of the feature
filtering process.

3. We evaluated the performance of our proposed algorithm,
CP-SLAM, on two dynamic RGB-D datasets: TUM and
BonnRGB-D. The positional and trajectory errors of CP-
SLAM were compared with those of ORB-SLAM2 and
other state-of-the-art algorithms.

The rest of this paper is organized as follows. Section II
describes the system framework. In Section III, the proposed
feature filtering algorithm is explained. Section IV shows the
experimental comparison as well as the analysis. In Section
V, the conclusions are given.

2 System Framework

ORB-SLAM2 is a visual SLAM system with multiple
threads, and multiple threads can be parallelized at the same
time. This system shows high accuracy and robustness in a
static environment, and the drawback is that it does not per-
form well in dynamic scenes. Therefore, in this paper, the
CP-SLAM framework is improved based on ORB-SLAM2.
The general framework is shown in Fig. 1, with the Dynamic
Target Detection thread on the far left, the Tracking thread
on the top, the Local Mapping thread on the far right, and
the Loop Detection thread on the bottom.Our work focuses
on enhancing the processing capability of the tracking and
target detection threads in a dense crowd dynamic envi-
ronment to improve the overall system performance. In the
feature extraction stage, we extract feature point distribution
information of crowds and other objects in the image. We
then integrate a target detection thread to receive people’s
detection frame information. In the subsequent processing
stage, we pass the detection frame information to the tracking
thread, which combines it with the feature point distribution
information.We employ a feature filtering method to remove
the dynamic “human” feature information. The resulting fea-
ture information is then passed to the local map tracking and
new keyframe generation.

123

27   Page 2 of 14



Journal of Intelligent & Robotic Systems (2024) 110:27

Fig. 1 System framework (Improvements on blue background)

In the LocalMapping thread, the local map will acquire
keyframes and filter the map points for rejection. The local
beam levelling (BA) is then used to adjust the poses fur-
ther and improve the map points. Finally, the keyframes are
re-filtered

The loopback detection thread contains two main parts:
loopback detection and loopback correction, which mainly
detect and correct key frame information. Finally, the posi-
tion and attitude are optimized through global BA.

3 Feature Filtering Algorithm

This section describes the target detection network we used
and the proposed feature filtering algorithm.

3.1 Target Detection Networks

When confronted with congested environments, the utiliza-
tion of an instance segmentationmodel for scene analysis can
substantially escalate the computational load, consequently
impeding real-time operational efficiency. In light of this
challenge, we propose the adoption of target detection as a
solution. Specifically, we employ the lightweight YOLOv4-
tiny [12] detection network, which is devoid of dependence

on deep layers and endows the system with rapid inference
capabilities.

In response to the restricted expressive capacity of
LeakyReLU in accommodating intricate data distributions
and capturing non-linear associations, this investigation
introduces the Swish activation function as a replacement.
The mathematical expression of the Swish function is Eq. 1
and its derivative is Eq. 2. Swish manifests nonlinearity over
non-negative input values, thereby augmenting the model’s
capability to adapt to complex data distributions. Compar-
ative diagrams of activation functions are delineated in the
subsequent Fig. 2. Furthermore, to enhance the detection cov-
erage in dense crowds, the dual YOLO output layers were
replaced with three YOLO output layers.

f (x) = x · Sigmoid(x) = x

1 + e−x
(1)

f ′(x) = f (x) + e−x

1 + e−x
· (1 − f (x)) (2)

To optimize the network’s computational speed and
efficacy, the YOLOv4-tiny detection network is trained
employing the CrowdHuman dataset [13], culminating in the
development of our proposed network architecture, denoted
as YC (YOLOv4-tiny for CrowdHuman). Our improved
method achieves fast and accurate crowd detection, out-
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Fig. 2 Activation function
graph

performing traditional methods while maintaining real-time
performance in crowded environments. The network struc-
ture diagram of YC is shown in Fig. 3.

Table 1 provides a comparison between the YOLOv4-
tiny network and the enhanced YC network. From the
data, it is evident that our network exhibits a substantial
improvement in average accuracy, with a remarkable 45.7%
increase. Simultaneously, the recall rate has also seen a45.7%
enhancement. This suggests anoverall superior detectionper-
formance, capable of identifying a greater number of true

positive samples and thereby enhancing detection coverage.
However, it’s worth noting that the introduction of some
false positives within the positive samples has led to a slight
decline in precision.

The MOT dataset includes scenes with large crowds gath-
ering, such as train stations, where the number of people
occupies more than 2/3 of the scene, which is in line with the
scenario of our research. We select a frame from the video of
the MOT20-2 sequence in the MOT dataset [14] for detec-
tion. The test results are shown in Fig. 4. The results indicate

Fig. 3 YC network structure map
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Table 1 Network evaluation indicators

mAP@0.50 Precision Recall

yolov4-tiny 36.02% 0.69 0.35

YC 50.97% 0.65 0.51

that the enhanced network achieved a detection coverage rate
of over 95% and an accuracy exceeding 96%.

3.2 Dynamic Point Rejection Algorithm

The traditional approach based on target detection is to
inspect the image to get the anchor box of each class, then
input the information of the box to the Tracking thread, and
then reject all the feature point information in the dynamic
object box without filtering. However, existing methods for
processing dynamic feature points suffer from significant
drawbacks, as shown in Fig. 5.When a static object is located
within a dynamic object box, orwhen a part of the object clas-
sified as static is in a dynamic object box, the feature points
that should be left on the static object are directly rejected.
The result is an increase in the error of the positional estima-
tion, which reduces the system’s positioning accuracy and
map-building integrity. To solve this problem, We propose a
novel approach that combines depth values of feature points
to segregate and eliminate non-static feature points, which

Fig. 5 Feature point misdeletion map.(Error deletes feature points in
the red box that are not on the person)

involves a feature point filtering algorithm founded on stan-
dard deviation fitting (SDF).

In-depth images, there is a significant disparity in depth
between the human body and other objects. Furthermore,
humans often occupy a substantial portion of the image
and their depth values are well-distributed. Hence, employ-
ing pixel-wise depth segmentation of humans is a viable
approach. To remove outliers, we adopt the Maximum
Likelihood Estimation Sample Consensus (MLESAC) [15]
algorithm, which differs from the traditional fitting methods

Fig. 4 YC test map
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in that we do not use a linear model, but instead choose the
standard deviation of pixel depth as the criterion for differen-
tiation, and then calculate the likelihood value to distinguish
between inliers and outliers. This improves the robustness
and flexibility of the algorithm.

TheSDF ismainly divided into two steps, firstly, this paper
has to traverse each detection frame to determine whether the
feature point is inside the frame, and if the feature point is
inside the target frame, this paper stores it in a dynamic point
set. After that, this paper randomly selects two points in the
dynamic set, calculates the standard deviation between their
depth values as a mathematical calculation model, and then
iterates through all the feature points in the dynamic point
set, and stores the points within the range as “good points”
in another set, so that this paper gets a set of feature points
that meet the requirements. The points within this set are
the feature points within the contour of the non-static object
that we do not need, and all remaining feature points are the
static points used for subsequent threads. The algorithm is as
follows Algorithm 1.

Algorithm 1 Standard deviation fitting.
Input: npoints: Feature points,nboxes:Number of boxes, nI ter =

0:Number of iterations,th:thresholds
Output: Static point set:S − S1
1: for i = 0; i < npoints; i + + do
2: if i in boxes then
3: i add to S
4: end if
5: end for
6: while nI ter < k : do
7: Randomly select d1 and d2 from S;
8: Calculate the standard deviation of the d1, d2 depth values SD0;
9: for j in S − (d1 + d2): do
10: Calculate the standard deviation between their depth values

SD;
11: Calculate likelihood ;
12: if likelihood < th : then
13: nInliers + +
14: j add to S1
15: end if
16: end for
17: nI ter + +
18: end while

The formulas in the algorithm contain the following:

μ =
∑n

i=1(xi )

n
(3)

σ =
√∑n

i=1(xi − μ)2

n
(4)

L = 1√
2πσ 2

e− (x−μ)2

2σ2 (5)

where σ denotes the standard deviation and μ denotes the
mean value,L is likelihood refers to the value of the proba-
bility density function.

Considering that setting a large value for K could sig-
nificantly increase the computational burden on the system,
leading to delays in processing, we have chosen to set
K = 20. The selection of the appropriate threshold, th, is
crucial for robustly identifying inliers and fitting a suitable
model, while effectively excluding noise and outliers. In this
paper, We have devised a novel method for determining the
threshold value, as represented in Formula 6. This approach
enables flexible adjustment of the threshold value based on
the changing relative density of inliers, thereby mitigating
errors associated with a fixed threshold value.

th = 0.02 ∗ (1.0 + nInliers/S.si ze()) (6)

Here, nInliers refers to the number of inliers, and
S.si ze() indicates the number of feature points within the
detection box.

4 Experiments and Analyses

In this section, we first compare CP-SLAM with ORB-
SLAM2 and then compare it with other superior dynamic
SLAM algorithms to highlight the system’s performance.
We first select the RGB-D TUM Dataset [16] for experi-
mental comparison and analysis and then further validate it
on the Bonn RGB-D Dynamic Dataset [17]. Absolute trajec-
tory error (ATE) is chosen to compare the deviation degree
of trajectory of each system, and relative pose error (RPE)
is used as the evaluation index of pose estimation, and root
mean square error (RMSE) and mean value (Mean) under
the two errors are used as the metric.

The experiments were conducted on a laptop with Ubuntu
20.04 OS, NVIDIA GeForce GTX 1650, and Intel Core i5-
10200H CPU.

4.1 TUMDataset Validation

The TUM RGB-D dataset has become the primary experi-
mental dataset in the field of SLAM, which contains depth
images, RGB images, accurate ground data, and actual
dynamic data. The dataset includes a variety of scenes,
including most real-life human sitting and walking postures,
as well as objects such as tables and monitors. In this paper,
several of them and representative ones containing walking
and other highly dynamic sequences are selected for experi-
mental comparison.

Figure 6 shows the comparison of feature detection under
fr3_walking_xyz high dynamic sequence. From the chart can
be seen that this paper’s method (Fig. 6d) compared to ORB-
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Fig. 6 Comparison of feature
detection. (In Figure d, not only
are the feature points on
individuals removed, but also
those on objects such as screens
and mice are retained)

SLAM2 (Fig. 6b), this paper on the scene of people and
objects in the dynamic and static object classification, the
human as dynamic, the extracted feature points almost no
longer on the person, compared to completely remove the
box feature points in Fig. 6c, this paper also retains the fea-
ture points on static objects such as monitor, mouse, and

keyboard, which will not cause excessive waste of feature
points.

In Fig. 7, ORB-SLAM2 in the left column, DynaSLAM
in the second column, and CP-SLAM in the third column
are selected for comparison, and the ATE and RPE plots
of the fr3_walking_static sequence (blue plots) are used to

Fig. 7 Performance comparison on fr3_walking_static sequence. (In the comparative chart with the blue curve, the errors of our algorithm are
consistently below 0.025, which is significantly smaller than the errors observed in the other two systems)
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Fig. 8 Comparison of absolute trajectory error of ORB-SLAM2 (left) with DynaSLAM (middle) and Our (right)
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Table 2 Comparison of
absolute trajectory errors
between the CP-SLAM and
ORB-SLAM2 algorithms of this
paper (ATE unit: m)

Sequence ORB-SLAM2 CP-SLAM Improvements/%
RMSE Mean RMSE Mean RMSE Mean

fr3_sitting_static 0.008 0.007 0.007 0.006 12.50 14.29

fr3_sitting_xyz 0.009 0.008 0.014 0.013 −35.71 −62.50

fr3_sitting_rpy 0.018 0.014 0.013 0.012 27.78 14.29

fr3_sitting_half 0.021 0.017 0.017 0.015 23.81 11.76

fr3_walking_static 0.377 0.341 0.006 0.005 98.41 98.53

fr3_walking_xyz 0.739 0.624 0.018 0.015 95.56 97.60

fr3_walking_rpy 0.469 0.423 0.030 0.024 93.60 94.33

fr3_walking_half 0.442 0.358 0.028 0.025 93.67 93.02

Bolded text indicates smaller error data or a boost greater than zero

Table 3 Comparison of absolute trajectory errors between the CP-SLAM and ORB-SLAM2 algorithms of this paper (ATE unit: m)

Sequence Liu et al. DS-SLAM DynaSLAM Crowd-SLAM CP-SLAM
RMSE/Mean RMSE/Mean RMSE/Mean RMSE/Mean RMSE/Mean

fr3_sitting_static 0.006/0.005 0.006/0.006 0.006/0.005 0.008/0.007 0.007/0.006

fr3_sitting_xyz −/− −/− 0.014/0.013 0.018/0.017 0.014/0.013

fr3_sitting_rpy −/− −/− 0.046/0.026 0.015/0.013 0.013/0.012

fr3_sitting_half −/− −/− 0.022/0.018 0.020/0.017 0.017/0.015

fr3_walking_static 0.010/0.007 0.008/0.007 0.007/0.006 0.007/0.007 0.006/0.005

fr3_walking_xyz 0.016/0.014 0.024/0.019 0.015/0.013 0.020/0.017 0.018/0.015

fr3_walking_rpy 0.042/0.030 0.444/0.377 −/− 0.044/0.031 0.030/0.024

fr3_walking_half 0.031/0.026 0.030/0.026 0.030/0.026 0.026/0.022 0.028/0.025

Bolded text indicates smaller error data or a boost greater than zero

Table 4 Comparison results and
improvement of absolute
trajectory error (ATE [m])

Sequence RDS1 Improve2 SOLO-SLAM Improve CP-SLAM
RMSE RMSE RMSE Mean RMSE Mean RMSE Mean

fr3_W3_static 0.0206 70.87% 0.0104 0.0093 42.31% 44.09% 0.0060 0.0052

fr3_W_xyz 0.0571 67.78% 0.0187 0.0167 1.60% 5.39% 0.0184 0.0158

fr3_W_rpy 0.1604 81.30% 0.1194 0.0894 74.87% 72.37% 0.0300 0.0247

fr3_W_half 0.0807 64.44% 0.0276 0.0240 −3.98% −3.75% 0.0287 0.0249

1 RDS is RDS-SLAM
2 Improve is Improvements
3 W is walking
Bolded text indicates smaller error data or a boost greater than zero

Table 5 Root mean square error
and mean value of translational
drift in RPE

Sequence ORB-LAM2 DS-SLAM DynaSLAM CP-SLAM
RMSE/Mean RMSE/Mean RMSE/Mean RMSE/Mean

fr3_sitting_static 0.012/0.011 0.008/0.007 0.009/0.008 0.010/0.009

fr3_sitting_xyz 0.014/0.012 −/− 0.021/0.019 0.021/0.019

fr3_sitting_rpy 0.027/0.023 −/− 0.067/0.042 0.023/0.020

fr3_sitting_half 0.031/0.025 −/− 0.030/0.027 0.010/0.009

fr3_walking_static 0.540/0.366 0.010/0.009 0.009/0.008 0.009/0.006

fr3_walking_xyz 1.116/0.908 0.033/0.024 0.022/0.019 0.026/0.023

fr3_walking_rpy 0.687/0.588 0.150/0.094 −/− 0.059/0.049

fr3_walking_half 0.649/0.505 0.030/0.026 0.043/0.038 0.041/0.036

Bolded text indicates smaller error data or a boost greater than zero
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Table 6 Root mean square error
and mean value of rotational
drift in RPE

Sequence ORB-LAM2 DS-SLAM DynaSLAM CP-SLAM
RMSE/Mean RMSE/Mean RMSE/Mean RMSE/Mean

fr3_sitting_static 0.348/0.314 0.273/0.245 0.327/0.293 0.317/0.283

fr3_sitting_xyz 0.585/ 0.497 −/− 0.624/0.543 0.592/0.514

fr3_sitting_rpy 0.847/0.747 −/− 1.019/0.862 0.618/0.553

fr3_sitting_half 0.769/0.697 −/− 0.810/0.718 0.317/0.283

fr3_walking_static 9.868/6.721 0.269/0.242 0.327/0.293 0.264/0.238

fr3_walking_xyz 7.302/5.652 0.826/0.584 0.614/0.486 0.668/0.530

fr3_walking_rpy 11.778/9.711 3.004/1.919 −/− 1.393/1.185

fr3_walking_half 15.483/12.684 0.814/0.703 0.972/0.868 0.959/0.855

Bolded text indicates smaller error data or a boost greater than zero

visualize the performance of each system. where the true
value is in black and the estimated value is in blue, and the
deviation of the true trajectory from the estimated trajectory
is in red. Therefore, the length of the red curve represents the
greater deviation from the real camera trajectory. The devi-
ation degree of the camera motion trajectory of our system
in this figure is much smaller than that of the ORB-SLAM2
system and close to that of the DynaSLAM system. There-
fore, it shows that the accuracy of our system is better than
ORB-SLAM2 and not lower than the DynaSLAM system.
The horizontal coordinate in the RPE plot represents time in
s; the vertical coordinate represents the value of positional
error in m, and the higher the curve, the larger the error. the
error range ofORB-SLAM2 in theRPEplot is 0-0.8; the error
range of DynaSLAM positional error is 0-0.04, concentrated
between 0.005-0.02; CP-SLAM’s positional error range is 0-
0.025, with error values concentrated between 0.0025-0.015.
Therefore, the RPE curves can be seen in this paper that the
system performance is a little better than the first two.

Figure 8 compares the absolute trajectory error of our
proposed CP-SLAM (right) with ORB-SLAM2 (left) and
DynaSLAM (middle) on the selected sequence. The study
compares the performance of xyz and static sequences in
fr3_sitting, along with halfsphere and xyz sequences in
fr3_walking. The shorter red curve corresponds to a smaller
error. From the comparison chart, it is easy to see that the
CP-SLAM after filtering the redundant features is smaller in
error than the other two, and the pose estimation will be more
accurate.

CP-SLAM and ORB-SLAM2 were selected for compar-
ative experimental analysis in Table 2. By comparing the
RMSE andMean values under ATE with multiple sequences
on the dataset. The data are marked boldly to indicate bet-
ter accuracy, which is the case for all of the following. We
selected the fr3_walking_rpy sequence as highly dynamic
because its scene is continuously and substantially moving
with people, etc. In this high active sequence comparison, we
found that theRMSEofCP-SLAMimproved by 93.60%, and
the Mean value improved by 94.33%. The average improve-

ment of RMSE in the walking high dynamic sequence is
95.93%. This suggests that CP-SLAM can address the inter-
ference caused by the presence of dynamic objects in the
scene.

In Table 3, CP-SLAM is selected for comparative anal-
ysis with Liu, Detect-SLAM, DS-SLAM, DynaSLAM, and
Crowd-SLAM [11]. Where “-” indicates no analysis result
for this dataset in this literature. The comparison results of
ATE data from the selected sequences show that the error
of our CP-SLAM is better than the other algorithms in most
environments, indicating that our algorithm has higher accu-
racy under these sequences. Although there are still small
parts that are still inferior, the difference between them is
tiny.

Table 4 shows the absolute trajectory error and the
improvement in the high dynamic series between CP-SLAM
and the two recent years of the excellent performance
of RDS-SLAM [18] and SOLO-SLAM [19] systems. The
experimental data show that the REME values obtained by
our system improve over RDS-SLAM for all four series
selected from the TUM dataset, by at least 64.44% and up
to 81.30%. In comparison with the latest SOLO-SLAM,
our MEAN and RMSE are higher than it except for the
fr3_walking_half sequence. The experiments show that our
proposed feature point rejection algorithm can achieve the
desired effect of separating dynamic and static objects so
that the system’s performance in the dynamic environment
is no less than that of similar systems and thus meet real-life
applications.

Themain reason why CP-SLAM can performwell in high
dynamic environments is its ability to accurately acquire tar-
get detection frames and the algorithm’s ability to accurately
and not excessively reject dynamic features in the target
frame, making its acquisition of keyframes more accurate.

The relative positional errors of the algorithm in this
paper are tested below, comparing this paper with ORB-
SLAM2, DS-SLAM, and DynaSLAM systems, respectively.
Table 5 shows the comparison results of translational and
rotational drift on eight sequences selected from the TUM
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dataset are shown in Table 6. The comparison shows CP-
SALM is slightly better under high dynamic sequences such
as fr3_walking_hal and does not lag too much under other
lower dynamic sequences.

4.2 Bonn RGB-D Dynamic DataSet

Although the TUMdataset is widely used as a benchmark for
VSLAMsystems, it remains unconvincing for applications in
crowded environments such as supermarkets, stations, etc.,
because the number of people in their dynamic scenes is
too small. Therefore, the Bonn RGB-D dynamic dataset is
selected for further testing, which contains amore significant

number of people and people walking, which is closer to the
environment of dense crowds.

In Fig. 9, this paper compares the system performance
with ORB-SLAM2 and this paper’s algorithm CP-SLAM
for the selected crowd2 sequences to further demonstrate the
superior system performance in a dense environment. From
the ATE curve in the left half of the figure, we can see that
the red curve length of CP-SLAM is smaller than that of the
ORB-SLAM2 system, indicating that the CP-SLAM system
has less error in this population environment. The blue curve
in the right half of the figure shows that the RPE values of
CP-SLAM are between 0.1 and 0.36, but the error value of
the ORB-SLAM2 system is up to 1.6. The above comparison

Fig. 9 Comparison of crowd2 sequence performance. (In the comparative chart, the blue curve representing our algorithm consistently maintains
errors below 0.35, which are substantially lower than the errors exhibited by the other system)
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Fig. 10 Comparison of the pose trajectory error.(From the 3D trajectory comparison, it is evident that the overlap of our algorithm significantly
surpasses that of the ORB-SLAM2 system)

can show that our system has higher accuracy in a dynamic
crowd environment.

This paper evaluates the pose trajectory error of our
proposed CP-SLAM algorithm (right) and ORB-SLAM2
(left) on the selected crowd1, crowd3, and synchronous2
sequences in Fig. 10. As the comparison graph shows, our
system’s trajectory more closely approximates the camera’s
true trajectory, resulting in significantly lower pose error.
This demonstrates that our algorithm effectively reduces the
impact of dynamic objects on the scene and improves system
accuracy.

We selected the Bonn RGB-D dynamic dataset crowd1-
3, synchronous1-2 sequences for experimental comparison.
These five sequences have the characteristics of a large

number of people and high dynamics. From the compari-
son of RMSE values under ATEA in Table 7, we can find
that the values of CP-SLAM are much smaller than ORB-

Table 7 RMSE for absolute trajectory error

Sequence ORB-SLAM2 CP-SLAM Improvements

crowd1 0.914 0.026 97.16/%

crowd2 1.453 0.037 97.45/%

crowd3 1.140 0.033 97.11/%

Synchronous1 1.098 0.009 99.18/%

Synchronous2 1.484 0.008 99.46/%

Bolded text indicates smaller error data or a boost greater than zero
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Table 8 Comparison of root
mean square errors of RPE

Sequence ORB-SLAM2 CP-SLAM Improvements/%
LD1 Rd2 LD Rd LD Rd

Crowd1 1.324 39.463 0.317 21.040 76.06 46.68

Crowd2 2.105 85.735 0.218 25.315 89.64 70.47

Crowd3 1.695 42.485 0.232 23.916 86.31 43.71

Synchronous1 1.551 27.880 0.028 1.272 98.19 95.44

Synchronous2 2.139 38.688 0.008 9.289 99.63 75.99

1 LD is Levelling Drift
2 Rd is Rotational drift
Bolded text indicates smaller error data or a boost greater than zero

SLAM2. The error is reduced by at least 97.11% compared
to ORB-SLAM2. The translational drift error and rotational
drift error of the two systems are compared separately in
Table 8. Both error values are reduced under CP-SLAM,
where the translational drift error is reduced by at least
76.06%, and the rotational drift error is reduced by 43.71% to
95.44%. In summary, the experimental comparison between
the two tables shows that our system can reduce the effect
of dynamic population on the positional estimation, thus
improving the system’s accuracy.

4.3 Real-Time Operation

We establish a real-time transmission channel that enables
the rapid transmission of detection frame information during
the detection process while using the rejection algorithm to
quickly estimate the pose of the scene and build the map.
This approach eliminates the need for pre-training the scene,
making it highly efficient and effective for real-time dynamic
SLAM applications.In addition, we compared the running
times of ORB-SLAM2, CP-SLAM, and Dyna-SLAM on the
fr3_walking_xyz sequence, as shown in Table 9. As you can
see, CP-SLAM have the same good real-time performance
as ORB-SLAM2.

5 Conclusions

In this study, we present a novel dynamic SLAM system
built upon the ORB-SLAM2 algorithm, aimed at enhanc-
ing the practicality of SLAM in crowded environments. This
new system incorporates a target detection thread to identify
dynamic individuals within the scene. We introduce a fea-

Table 9 Running time

System ORB-SLAM2 DynaSLAM CP-SLAM

Running time(s) 38’24 412’26 39’24

ture point filtering algorithm based on the standard deviation
fitting (SDF) to eliminate feature points located on individ-
uals within the detection boxes, thus preventing the issue of
indiscriminate removal of static points within the detection
boxes. Experimental validation on two datasets demonstrates
that our system substantially reduces theATE andRPE errors
by over 90% when compared to ORB-SLAM2 in highly
dynamic crowd environments. This indicates its high pre-
cision and suitability for indoor crowd scenarios, such as
shopping malls and train stations.

Nevertheless, the system does have certain limitations,
such as the less pronounced improvements in low-dynamic
environments. In the future, our research will continue to
focus on gradually enhancing its applicability in various
settings.

Acknowledgements This work was supported by the National Natural
Science Foundation of China (Grant Nos. 61703040 and 61603047) and
the Teacher Recruitment and Support Plan of Beijing Information Sci-
ence & Technology University (Grant No. 5029011103). The authors
thank Juan Dai for her technical assistance with the experiments and
Zhong Su and Cui Zhu for their insightful suggestions throughout the
study. The authors also express their gratitude to the anonymous review-
ers for their valuable comments and suggestions that helped improve
the quality of this paper.

Author Contributions Jianfeng Li served as the first author and com-
pleted the entire creative process. Dai Juan acted as the corresponding
author, providing guidance and revising the manuscript. Zhong Su and
Cui Zhu contributed to the revision of the manuscript as assisting
authors.

Code or data availability The Crowdhuman dataset [13], MOT dataset
[14], TUM dataset [16], and Bonn RGB-D Dynamic DataSet [17] were
used in our work.

Declarations

Conflicts of interest/Competing interests Not applicable

Ethics approval Not applicable

Consent to participate Not applicable

Consent for publication Not applicable

123

Page 13 of 14    27

https://www.crowdhuman.org/download.html
https://www.vision.rwth-aachen.de/page/mots
https://docs.google.com/forms/d/e/1FAIpQLSdX9F_0Jm3_zsTtjyvFOm8WntHk0VxckzcOqZKvQ8WsbJfIkA/viewform
https://hci.iwr.uni-heidelberg.de/node/6132


Journal of Intelligent & Robotic Systems (2024) 110:27

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Mur-Artal, R., Tardós, J.D.: Orb-slam2: an open-source slam
system for monocular, stereo, and rgb-d cameras. IEEE Trans.
Rob.33(5), 1255–1262 (2017). https://doi.org/10.1109/TRO.2017.
2705103

2. Campos, C., Elvira, R., Rodríguez, J.J.G., Montiel, J.M., Tardós,
J.D.: Orb-slam3: an accurate open-source library for visual, visual-
inertial, and multimap slam. IEEE Trans. Rob. 37(6), 1874–1890
(2021)

3. Bescos, B., Fácil, J.M., Civera, J., Neira, J.: Dynaslam: tracking,
mapping, and inpainting in dynamic scenes. IEEE Robot. Autom.
Lett. 3(4), 4076–4083 (2018). https://doi.org/10.1109/LRA.2018.
2860039

4. Li, S., Lee, D.: Rgb-d slam in dynamic environments using static
point weighting. IEEE Robot. Autom. Lett. 2(4), 2263–2270
(2017). https://doi.org/10.1109/TMC.2019.2944829

5. Zhang, T., Zhang, H., Li, Y., Nakamura, Y., Zhang, L.: Flow-
fusion: dynamic dense rgb-d slam based on optical flow. In:
2020 IEEE International Conference on Robotics and Automation
(ICRA), pp. 7322–7328 (2020). IEEE. https://doi.org/10.1109/
ICRA40945.2020.9197349

6. Cui, L., Ma, C.: Sof-slam: a semantic visual slam for dynamic
environments. IEEEAccess 7, 166528–166539 (2019). https://doi.
org/10.1109/ACCESS.2019.2952161

7. Yu, C., Liu, Z., Liu, X.-J., Xie, F., Yang, Y., Wei, Q., Fei, Q.: Ds-
slam: a semantic visual slam towards dynamic environments. In:
2018 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 1168–1174 (2018). IEEE. https://doi.org/10.
1109/IROS.2018.8593691

8. Badrinarayanan, V., Kendall, A., Cipolla, R.: Segnet: A deep con-
volutional encoder-decoder architecture for image segmentation.
IEEETrans. Pattern Anal.Mach. Intell. 39(12), 2481–2495 (2017).
https://doi.org/10.1109/TPAMI.2016.2644615

9. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In:
Proceedings of the IEEE International Conference on Computer
Vision, pp. 2961–2969 (2017)

10. Zhong, Y., Hu, S., Huang, G., Bai, L., Li, Q.: Wf-slam: a robust
vslam for dynamic scenarios via weighted features. IEEE Sens. J.
(2022). https://doi.org/10.1109/JSEN.2022.3169340

11. Soares, J.C.V., Gattass,M.,Meggiolaro,M.A.: Crowd-slam: visual
slam towards crowded environments using object detection. J Intell.
Robot. Syst. 102(2), 1–16 (2021)

12. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: Optimal
speed and accuracy of object detection. arXiv:2004.10934 (2020)

13. Shao, S., Zhao, Z., Li, B., Xiao, T., Yu, G., Zhang, X.,
Sun, J.: Crowdhuman: a benchmark for detecting human in a
crowd. arXiv:1805.00123 (2018). https://doi.org/10.48550/arXiv.
1805.00123

14. Dendorfer, P., Rezatofighi, H.,Milan, A., Shi, J., Cremers, D., Reid,
I., Roth, S., Schindler, K., Leal-Taixé, L.: Mot20: A benchmark for
multi object tracking in crowded scenes. arXiv:2003.09003 (2020).
https://doi.org/10.48550/arXiv.2003.09003

15. Torr, P.H., Zisserman, A.: Mlesac: a new robust estimator with
application to estimating image geometry. Comput. Vis. Image
Underst. 78(1), 138–156 (2000)

16. Sturm, J., Engelhard, N., Endres, F., Burgard, W., Cremers, D.:
A benchmark for the evaluation of rgb-d slam systems. In: 2012
IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems, pp. 573–580 (2012). IEEE. https://doi.org/10.1109/IROS.
2012.6385773

17. Palazzolo, E., Behley, J., Lottes, P., Giguere, P., Stachniss, C.: Refu-
sion: 3d reconstruction in dynamic environments for rgb-d cameras
exploiting residuals. In: 2019 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 7855–7862 (2019).
IEEE. https://doi.org/10.1109/IROS40897.2019.8967590

18. Liu, Y., Miura, J.: Rds-slam: real-time dynamic slam using seman-
tic segmentation methods. IEEE Access 9, 23772–23785 (2021).
https://doi.org/10.1109/ACCESS.2021.3050617

19. Sun, L., Wei, J., Su, S., Wu, P.: Solo-slam: a parallel semantic
slam algorithm for dynamic scenes. Sensors 22(18), 6977 (2022).
https://doi.org/10.3390/s22186977

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Jianfeng Li is currently pursuing a Master of Science program in
Electronic Information at Beijing Information Science & Technology
University, Beijing, China, with an expected completion date in 2024.
His research focuses on SLAM in dynamic environments, as well as
navigation guidance and control.

Juan Dai received the M.S. degree in Fundamental Mathematics from
Anhui University, China, in 2009 and the Ph.D. degree in Control Sci-
ence and Engineering from Beijing Institute of Technology, China, in
2016. During 2016-2018, she was a Postdoctoral Research Associate
with the School of Aerospace Engineering, Beijing Institute of Tech-
nology, China. She is currently an Associate Professor with the Beijing
Information Science and Technology University, Beijing, China. Her
current research interests are in the fields of intelligent control sys-
tems, autonomous navigation guidance and control, active disturbance
rejection control.

Zhong Su received the Ph.D. degree from the Beijing Vacuum Elec-
tronics Research Institute, Beijing, China, in 1998. He is currently a
Professor with the Beijing Information Science and Technology Uni-
versity, Beijing, China. His current research interests include control,
inertial devices, novel gyro sensors, and integrated navigation.

Cui Zhu received the B.S. degree in Automation from China University
of Geosciences (Wuhan), China, in 2005 and the Ph.D. degree in Con-
trol Science and Engineering from Beijing Institute of Technology,
China, in 2014. She is currently an Associate Professor with Beijing
Information Science and Technology University, Beijing, China. Her
current research interests are in the fields of networked state estima-
tion, multi-sensor information fusion and wireless sensor networks.

123

27   Page 14 of 14

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/TRO.2017.2705103
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/LRA.2018.2860039
https://doi.org/10.1109/TMC.2019.2944829
https://doi.org/10.1109/ICRA40945.2020.9197349
https://doi.org/10.1109/ICRA40945.2020.9197349
https://doi.org/10.1109/ACCESS.2019.2952161
https://doi.org/10.1109/ACCESS.2019.2952161
https://doi.org/10.1109/IROS.2018.8593691
https://doi.org/10.1109/IROS.2018.8593691
https://doi.org/10.1109/TPAMI.2016.2644615
https://doi.org/10.1109/JSEN.2022.3169340
http://arxiv.org/abs/2004.10934
http://arxiv.org/abs/1805.00123
https://doi.org/10.48550/arXiv.1805.00123
https://doi.org/10.48550/arXiv.1805.00123
http://arxiv.org/abs/2003.09003
https://doi.org/10.48550/arXiv.2003.09003
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS.2012.6385773
https://doi.org/10.1109/IROS40897.2019.8967590
https://doi.org/10.1109/ACCESS.2021.3050617
https://doi.org/10.3390/s22186977

	RGB-D Based Visual SLAM Algorithm for Indoor Crowd Environment
	Abstract
	1 Introduction
	2 System Framework
	3 Feature Filtering Algorithm
	3.1 Target Detection Networks
	3.2 Dynamic Point Rejection Algorithm

	4 Experiments and Analyses
	4.1 TUM Dataset Validation
	4.2 Bonn RGB-D Dynamic DataSet
	4.3 Real-Time Operation

	5 Conclusions
	Acknowledgements
	References


