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Abstract
Human-robot collaboration (HRC) is becoming increasingly important in advanced production systems, such as those used
in industries and agriculture. This type of collaboration can contribute to productivity increase by reducing physical strain
on humans, which can lead to reduced injuries and improved morale. One crucial aspect of HRC is the ability of the robot to
follow a specific human operator safely. To address this challenge, a novel methodology is proposed that employs monocular
vision and ultra-wideband (UWB) transceivers to determine the relative position of a human target with respect to the robot.
UWB transceivers are capable of tracking humans with UWB transceivers but exhibit a significant angular error. To reduce
this error, monocular cameras with Deep Learning object detection are used to detect humans. The reduction in angular error
is achieved through sensor fusion, combining the outputs of both sensors using a histogram-based filter. This filter projects
and intersects the measurements from both sources onto a 2D grid. By combining UWB and monocular vision, a remarkable
66.67% reduction in angular error compared to UWB localization alone is achieved. This approach demonstrates an average
processing time of 0.0183s and an average localization error of 0.14 meters when tracking a person walking at an average
speed of 0.21 m/s. This novel algorithm holds promise for enabling efficient and safe human-robot collaboration, providing
a valuable contribution to the field of robotics.

Keywords Person detection · UWB · Machine vision · Sensor fusion · HRC · Agricultural robotics

1 Introduction

Human-robot interaction is an essential research topic due
to the increasing presence of robots in workspace environ-
ments [1, 2]. One of the most important capabilities that
robots should have is path-following. This allows robots
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to autonomously perform certain tasks alongside humans
without manually asking the robots to change their position
in the workspace [3]. Implementing person-following algo-
rithms on autonomous robots is challenging because they
should consider the dynamics of the environments where
the interaction occurs. Thus, approaches should consider
occlusions, appearance changes, pose changes, crouching, or
illumination changes [4]. In outdoor environments, such as
agriculture, robot mobility is also conditioned by the irregu-
larities of the terrain,which the robot should take into account
to travel along safe paths [5–7]. When performed success-
fully, person-following algorithms significantly contribute to
human labour conditions in these environments. For exam-
ple, robots can be used in harvesting to assist humans in
transporting fruit or vegetables to the storage area, thus reduc-
ing physical effort [8]. The primary objective of this paper
is to advance the state-of-the-art in Human-Robot Collabo-
ration (HRC) systems, focusing on the precise recognition
and tracking of humans. The aim is to enable seamless
human-robot collaboration by implementing a fully func-
tional system capable of accurately determining the relative
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Fig. 1 Proposed system overview

position of a person with respect to a robotic platform, as
depicted in Fig. 1. Building upon previous work [9], where
a robot that follows humans was developed using Ultra-
WideBand (UWB) transceivers and a histogram filter-based
approach for localization, we present a significant improve-
ment to enhance the UWB transceiver’s uncertainty.

Our proposed system leverages sensor fusion, combin-
ing data from UWB transceivers and monocular cameras
employing Deep Learning for person detection. Specifi-
cally, we investigate the method of person localization using
monocular cameras and address the challenge of low field of
view (fov) in such camera systems.

The key contributions of this work are as follows:

• Development of a novel approach to determine the rel-
ative position of a person with respect to the robotic
platform, employing onboard UWB transceivers and a
pair of monocular cameras.

• Introduction of sensor fusion through grid interception
and a 2D histogram filter-based approach, significantly
enhancing the accuracy of person localization.

• Creation of a publicly available dataset containing person
detection data from both UWB and monocular cameras,
facilitating further research and benchmarking in this
domain 1,2.

By addressing these crucial aspects, we aim to pave the
way for more efficient and safe human-robot collaboration
systems, contributing significantly to the field of robotics.

The remainder of this paper is structured as follows.
Section 2 presents the current state of the art in this field. Sec-
tion 3 provides a description of the hardware used. Sec-
tion 4 describes the implementation of the proposed sensor
fusion using the interception between UWB transceivers and

1 https://doi.org/10.5281/zenodo.7779131
2 https://doi.org/10.5281/zenodo.7818328

monocular cameras in a 2D grid and the use of the Range
Histogram Filter to obtain relative person localisation. Sec-
tion 5 evaluates the proposed methods using real work data
and an in-house built robot. And finally, Section 6 provides
the main conclusion extracted from the developed work.

2 RelatedWork

2.1 Single Sensor Localisation

Recent developments in person localization have delved
into diverse sensor technologies, including Color and Depth
(RGB-D) cameras [10–13], Light Detection and Ranging
(LiDAR)[14–16], and Ultra Wide Band (UWB)[17–21].

RGB-D cameras are a popular choice for single-sensor
person localization as they can use deep learning techniques
frommonocular cameras [22–24] to detect people and stereo
vision to extract depth information, enabling person local-
ization. However, RGB-D cameras have a limited field of
view, making it difficult to track a person moving out of
the camera’s view. LiDAR is another popular choice for
single-sensor person localization. LiDAR sensors can pro-
vide accurate range measurements, which can be used to
estimate the position of a person. However, LiDAR sensors
are frequently costly, challenging to deploy, and notably vul-
nerable to subject occlusion. UWB, a technology that has
been in existence for several decades, has recently seen a
surge in personal location. UWB sensors excel in precise
distance measurements, even in obstructed environments,
making them highly effective for HRC systems. In addition,
their cost-effectiveness and ease of deployment have con-
tributed to their growing adoption. A key advantage of UWB
technology is its ability to penetrate obstacles, such as walls
and structures, which can hinder LiDAR and visual detection
methods. Unlike machine vision, which often faces limita-
tions in its field of view, UWB offers a wider detection range.
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Moreover, compared to LiDAR and visual detection meth-
ods, UWBcan deliver a higher update rate and providesmore
detailed distance data at the decimetre level.

2.2 Multi-sensor Localisation

Multi-sensor person localization techniques have emerged as
effective solutions to enhance the accuracy of person track-
ing, surpassing the limitations of single-sensor approaches.
One notable example is thework of Jinu et al. [25], who fused
anAngle of Arrival (AoA) sensor with a 2DLiDAR sensor to
improve the accuracy of person tracking. The AoA sensor is
able to reliably detect the target, but it gives very noisy results.
The 2D LiDAR sensor, on the other hand, has a lower error
but is more prone to misidentifying the target. The fusion of
these two sensors using a Kalman filter approach was able to
reduce the overall uncertainty of the system. Liu et al. [26]
proposed a system for person localization that is similar to
the one developed in this paper, utilizing UWB transceivers
and a monocular camera. The main difference between their
system and ours is the placement of cameras and anchors. In
their work, the cameras and anchors are fixed and confined
to a specific space, whereas in our system, they are mounted
on a robotic platform. This adaptability enables us to track
people in more dynamic environments. Luchetti et al. [27]
and Conejero et al. [8] present similar systems that use sen-
sor fusion with a Bayes filter between UWB transceivers,
which have higher uncertainty in the angular direction, and
RGB-D cameras, in which the uncertainty is predominant
along the radial coordinate, to obtain a more accurate and
robust dynamic person tracking system. These systems are
very similar to the one proposed in this paper in the sense
that they use cameras and UWB anchors fixed to the robot,
enabling dynamic person tracking. However, these systems
differ fromours in the use of stereo systems instead ofmonoc-
ular cameras. Furthermore, in our system, we utilize a fusion
technique between cameras and UWB transceivers known
as the Range Histogram Filter (RHF) [9] for person track-
ing. Unlike the Bayes filter, the RHF allows us to utilize
non-Gaussian probability models, making it more effective
in handling uncertainty.

2.3 Proposed Approach

In conclusion, this paper proposes a novel approach for robust
person detection by utilizing a UWB transceiver with fixed
anchors on the robot and a tag on the target. UWB technology
was chosen for its capabilities, such as obstacle penetra-
tion, higher update rates, and decimeter-level measurements,
which outperform other person detection techniques such as
LiDAR and visual detection.

Fig. 2 Experimental robotic platform. The green circle surrounds the
UWB tag, the red circles surround the UWB anchors, the yellow circles
surround the OAK-1 cameras and the blue circle surrounds the Livox
Mid-70 Lidar

However, UWB is prone to significant radial errors.
Therefore, a multi-sensor approach is proposed that also
incorporates visual person detection, similar to works such
as [8, 27], but with the added advantage of using multiple
monocular RGB cameras to increase the field of view. This
is because using monocular cameras allows for a larger field
of view with smaller dimensions and costs than stereo cam-
eras.

Finally, the Range Histogram Filter (RHF) [9] will be uti-
lized for the UWB and camera fusion, as well as for person
tracking.

3 Hardware

The hardware components utilized in this study are out-
lined in this section. The custom-built robot, referred to as
Model-E, is equipped with QORVO DWM1004 transceivers
for UWB ranging. For person detection, Luxonis OAK-1
cameras with a performance of 1.4 Trillion Operations Per
Second (TOPS) are used for AI applications. Additionally,
for data collection in Section 5, a Livox Mid-70 LiDAR is
also mounted on the robot. All mounted devices can be seen
in Fig. 2.

Table 1 Sensor placement measurements relative to the centre of the
robot

Sensor Position x y yaw
(m) (m) (rad)

Camera 1 0.267 0.037 0.459

2 0.267 -0.037 -0.459

UWB 1 -0.235 0.0 0.0

2 0.235 0.280 0.0

3 0.235 -0.280 0.0

LiDAR 0.25 0.0 0.0

The numbering of the sensors, i.e., Camera 1, corresponds to the sensor
positions illustrated in Fig. 3
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Fig. 3 Positioning of sensors with respect to the centre of the robot.
Yellow and red circles surround the cameras and UWB transceivers,
respectively

Fig. 4 Probability density function of UWB transceiver rangemeasure-
ments for range sensor mapping onto the grid

The relative positions of all sensors to the centre of the
robot were determined through measurements. The custom
support holding the cameras was intentionally set to the
desired angle. These values were recorded in Table 1 and
are illustrated in Fig. 3.

4 Person Localisation from the Fusion
of UWB as Range Sensor andMonocular
Person Detection: TheMain Approach

4.1 UWB as Range Sensors

UWB transceivers can be used as range sensors through tech-
niques such as Time of Arrival (ToA) or Angle of Arrival
(AoA). Compared to other localization techniques, UWB
transceivers offer significant advantages in their robustness
against obstacles, making them an ideal choice for person
localization in Human-Robot Collaboration (HRC) systems.
Their ability to penetrate walls and other barriers allows
for precise range measurements even in obstructed environ-
ments, enabling accurate tracking of individuals even behind
obstacles. This unique capability enhances the effectiveness
and reliability of person localization in various real-world
scenarios.
Themost typical configuration forUWB localization is to use
fixed anchors in relation to theworld to locate a tag.However,
in our case, we want to locate people relative to a moving
robot. This means that the anchors must be static relative
to the robot. In previous work [9], this approach was vali-
dated. The relative distance between the UWB transceivers
fixed on the robot (anchors) and the mobile UWB transceiver
on the person (tag) was obtained using Time of Arrival
(TOA) techniques. To improve the accuracy of the localisa-
tion, a novel algorithm called Range Histogram Filter (RHF)
was developed. The RHF is a probabilistic filter that works

Fig. 5 Stages of UWB Person Localization observation grid creation:
(a), (b), and (c) show all UWB anchor detections of the tag mapped in
the 2D grid, and (d) depicts the intersection of all UWB transceivers.

Please note that in all these grids, the black and red x and y axes repre-
sent the grid and the robot-center axes, respectively
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on 2-Dimensional grids centred on the robot. This filter is
explained in [9] and will be further explained in this paper in
Section 4.3.

There are three main grids in the range histogram filter:
the observation grid, the innovation grid, and the update grid.
In this subsection, we will only discuss the observation grid.

The observation grid is where the UWB range detec-
tions aremappedwith an exponential probability distribution
(Fig. 4).

Each UWB transceiver generates a circular region with an
exponential probability distribution along the radial axis, as
shown in Figs. 5a, b and c. In these figures, d1, d2, and d3
represent the UWB range measurements from transceivers 1,
2, and 3, respectively, to the person tag (according to Table 1).
The intersection of all UWB transceivers is shown as the
dark area in Fig. 5d. This is the region where the presence
of a person is most likely. Note that the width of this area is
greater along the angular direction than the radial direction.

The aim of this paper is to reduce this angular error by
intersecting the UWB observation grid with the observa-
tion grid obtained from person detections acquired by the
cameras. Subsequently, the intersection of the two grids will
undergo filtering using the RHF, enabling the determina-
tion of the position of the target. By leveraging this novel
approach, it will be possible to enhance the accuracy and
reliability of person localization.

4.2 Angle Estimation with Monocular Vision

To complement UWB person localisation and reduce angu-
lar uncertainty, an approach based on Deep Learning for
person detection is proposed. This method uses cameras to
detect people and determine their bounding boxes. The angle
between the subject and the camera is then determined from
the bounding box, which can then be used to determine the
angle between the person to track and the robot. This fusion
proves advantageous for vision as well, as UWB signals
exhibit greater resistance to occlusion compared to vision.
This capability addresses the inherent occlusion challenges
present in vision-basedmethodswhile reducingUWBperson
detection angular error.

4.2.1 Camera Setup

Maximizing visual coverage is essential to complement
UWB person detection. Therefore, using multiple monoc-
ular RGB cameras to increase the field of view is an effective
approach. Compared to stereo cameras, monocular cameras
have a wider field of view, are more compact, and are less
expensive. Additionally, as UWB person detection is already
accurate in the radial direction, stereo cameraswould not pro-
vide a significant advantage. As a result, multiple monocular

cameras are a simpler and less expensive solution for per-
son detection. The proposed vision system comprises of two
monocular cameraswith additional lenses formaximumfield
of view coverage, as shown in Fig. 6. The cameras are strate-
gically arranged to minimize intersection, ensuring robust
detections without dead zones while maximizing the field of
view.

To enable angle estimation, determining the focal length
of the cameras is essential. Kalibr, an interactive framework
for camera calibration,was used for this purpose [28, 29]. The
resulting horizontal field of view of both cameras combined
was 146 degrees, which is considered sufficient since the
primary goal of the human-tracking robot is to face the person
within this field of view in most cases.

Furthermore, as the proposed UWB and camera fusion
algorithm (RHF) uses 2D grids, it would be easy to add more
cameras, as each new camera would simply add to the cam-
era observation grid. However, the current field of view is
sufficient for the scope of this paper, which focuses on the
fusion between monocular vision and UWB.

Moreover, the UWB fusion can compensate for scenarios
where the robot is temporarily out of the camera’s sight or
occluded, as person detection remains possible. This raises
the question of whether additional cameras would be effec-
tive in such cases.

4.2.2 Angle Estimation using Deep Learning techniques

The proposed method for calculating the angle between an
object and a robot requires determining the relative position
of the bounding box, which is obtained fromDeep Learning-
based object detection in the images captured by the cameras.
Deep learning object detection employs neural networks

Fig. 6 OAK-1 with a 120 degrees lens
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Fig. 7 Illustration of the Angle
Estimation Method: (a) Depicts
Vertical and Horizontal
Perspectives. (b) Illustrates the
Camera’s Horizontal View with
the Red Line Indicating the
Measured Angle.

trained on labelled datasets to detect objects in images or
videos. As demonstrated in Section 2, person detection using
Deep Learning has been extensively researched, resulting
in an abundance of resources. Notably, large datasets and
pre-trained models, which simplify its implementation. To
enable object detection, two OAK-1 cameras were used.
These cameras can perform Deep Learning object detection
offline. The company that developed the cameras, depthai,
provides pre-trained Deep Learning object detection models
and implementation examples 3. Since the goal is to detect
people, a pre-trained MobileNetv2-SSD model provided by
depthai is used. This model is designed for object detection
and is the combination of a MobileNetv2 model[30] and the
SSD architecture[31]. In this context, the model has been
trained on a dataset of labelled images which includes the
class person.

To obtain an angle from the bounding box of the per-
son detection, the horizontal distance in pixels between the
reference and the detection must be converted to an angle.
Therefore, the pinhole camera model is considered, as rep-
resented in Fig. 7. Considering only the horizontal axis, as
shown in Fig. 7b, it can be concluded that the angle can be
obtained from the displacement of the detection towards the
centre of the image (�x ). Knowing that the focal length Fl
is constant, the following relation is obtained in Eq. 1.

θ̂ = arctan
(2�x · tan (

fw
2 )

ω

)
(1)

where fw represents the image’s horizontal field of view and
ω the image width in pixels.

The ultimate goal of the system is to intercept UWB
measurements with camera angle measurements using RHF.
Therefore, the camera measurements must be placed in the
observation grid. For this purpose, the angles from the centre
of the bounding box and its extremities will be discovered.
Then the angle that derives from the centre of the bound-
ing box is assumed to have the highest probability of being
the person. The angles covered by the bounding box region
then follow a normal probability distribution, as shown in

3 https://github.com/luxonis/depthai-ros-examples

Fig. 8, and are mapped into the 2D camera observation grid
as shown in Fig. 9.

4.3 UWBTransceivers andMonocular Camera Fusion
with the Use of RHF

This subsection discusses the implementation of the Range
Histogram Filter (RHF) [9] for sensor fusion. RHF is based
on a histogram filter, which proves highly advantageous for
fusion in this context. It can effectively handle exponential
(person localization by UWB) and Gaussian (person local-
ization by the camera) systems, allowing the representation
of complex distributions. The filter can be decomposed into
three stages:

• Observation - Combination of the UWB and camera
measurements;

• Innovation - Estimation of the next iteration;
• Update - Interception of the estimation andmeasure parts
of the filter.

Fig. 8 Normal distribution mapping to 2D grid from bounding box.
PMax is the Max probability value and x is the horizontal coordinate of
the image
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Fig. 9 Mapping of Angles Obtained from Monocular Camera Person
Detections onto a 2D Grid. Please note that in all these grids, the black
and red x and y axes represent the grid and the robot-center axes, respec-
tively

The filter can be described by the Eq. 2, where the grid
M is the interception of the sensor observations MO (Eq. 4)
and the innovation MI (Eq. 7) grids. Note that MI is from
the previous time step t − 1, whereas MO and M are from
the current time step t . This is because MI at time t − 1
represents the predicted position of the person at time t .

Mt = MO
t ∩ MI

t−1 (2)

After creating a grid, the map probability undergoes nor-
malization, making the probability values comparable for
appropriate grid weighting during interception. Addition-
ally, a minimum detection probability value is defined to
give more weight to grids more likely to contain the person.
These operations are described by Eq. 3, where probabilities
exceeding the threshold Pthreshold are set to p/PMax , with
PMax being the maximum probability value on the grid. If
the probability value is below Pthreshold , it is set to Pmin . A
smaller Pmin value increases the significance of the grid.

f (x) =
{
p/PMax p > Pthreshold
Pmin p < Pthreshold

(3)

The observation grid MO (Eq. 4) is formed by intersect-
ing the grids generated by UWB transceivers measurements
Muwb (Eq. 5) and the person angle estimation from the cam-
eras Mcam (Eq. 6).

Figure 10a illustrates the intersection of Muwb and Mcam ,
resulting in the MO grid, which is highlighted in green in
Fig. 10b. Additionally, Fig. 10b shows a red area representing
the intersection of only UWB measurements, as previously
shown in Fig. 5d. Importantly, the angular dimension of the
green area is smaller than that of the red, indicating that the
monocular vision fusionwithUWB transceivers successfully
reduced the error, as anticipated.

MO
t = Muwb

t ∩ Mcam
t ∈ [Pobs

min, 1] (4)

Muwb
t ∈ [Puwb

min , 1] (5)

Mcam
t ∈ [Pcam

min , 1] (6)

Fig. 10 Integration of UWB and Monocular Camera Data for Person
Detection: (a) Sensor values fromUWB transceivers and camera detec-
tions integrated into the grid. The grid’s centre aligns with the robot’s
centre. (c) Depicts the intersection of the measurements from UWB
transceivers and camera detections depicted in (a). (d) Represents the

previously generated innovation. (e) Displays the intersection of the
current measurement with the previous innovation. Please note that in
all these grids, the black and red x and y axes represent the grid and the
robot-center axes, respectively
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The primary objective is for the system to track a des-
ignated target precisely. In this context, UWB transceivers
excel at isolating the target, a capability that vision-based
person detection lacks. Therefore, the UWB grid is assigned
greater importance in the resulting intersection than the
camera grid. Consequently, the minimum probability of the
camera-generated grid must also be higher: Puwbmin <

Pcammin.
The innovation grid MI

t (Eq. 7) is a prediction of the pos-
sible next person positions, taking into account the last Mt .
The prediction is made assuming that the person is moving
with a maximum velocity U . This means that the updated
grid Mt is dilated as a function of U . Note that MI

t is gener-
ated at time t , but is a prediction for t + 1. Therefore, it will
only be used in the next update cycle. Figure 10c represents
the innovation grid MI at time t − 1. The blue area is the
result of the M grid at time t−1. The dark area is the dilation
of the blue area according to a certain U .

MI
t = Mt−1 +U ∈ [Pinov

min , 1] (7)

Finally, the update phase Mt (Eq. 2) is the intersection of
the current observation grid MO

t and the previous innovation
grid MI

t−1. However, since it is unlikely that a person moves
with a speed higher than the predefined value, more impor-
tance must be given to the innovation grid: Pinov

min < Pobs
min .

Figure 10d shows Mt (orange area), which is the intersection
of MO

t (green area) and MI
t−1 (dark area).

5 Results

To evaluate the person localisation achieved by the sensor
fusion proposed in this article, tests were developed to assess
the performance of the UWB range sensors with and without
monocular vision fusion. The real experiments conducted in
a laboratory scenariowere performed. The computer used for
testing the proposed algorithm is a laptopwith an i7-7700HQ
CPU running at 2.80GHz and 16GB of RAM. The proposed
algorithms and the required drivers were implemented using
C++ and the ROS2 framework on Ubuntu LST 20.04.

5.1 Range Evaluation

A range benchmark was performed to determine the min-
imum and maximum range of person following. This was
done by measuring with the LiDAR the minimum and
maximum distances in which measurements from UWB
transceivers and a monocular camera were being acquired.
Note that these results were obtained within an indoor
corridor environment. This context introduces potential chal-
lenges, such as sub-optimal lighting conditions that could
impact camera performance. Additionally, the presence of

walls can influence UWB transceiver wave propagation,
leading to reflections and potential signal interference.While
walls can extend UWB range, they can also introduce out-
liers due to signal interactions and variations in wave path
lengths, potentially leading to inaccurate measurements. To
determine the position of a person with LiDAR, an algorithm
was developed. The algorithm requires that the detection area
be empty so that only the point cloud from the person is gen-
erated. The position is then estimated by the centre of the
point cloud in 2D space, and the range measurement is deter-
mined by the Euclidean distance of the person relative to the
LiDAR. Finally, the range measurements are transformed to
the reference frame of each sensor. This is done by taking
into account the values of sensor placement measurements
in Table 1. The results are presented in Table 2.

It is crucial to highlight that the minimum distance
achieved by the proposed person-tracking algorithm using
LiDAR was 0.3124 meters. On the contrary, the LiDAR’s
maximum range wasn’t reached, as it continued to measure
even at the end of the corridor (15 metres). This implies
that the minimum distance achievable by the UWB and cam-
era systems could potentially be even shorter. The results
reveal two significant findings. To begin, a defined limit of
12 metres must be established for the person detection algo-
rithm. Second, the best operating range is determined when
both cameras and UWB transceivers are actively gathering
data, at ranges of less than 7 metres.

5.2 Standing Test

To evaluate the performance of the proposed algorithm for
person localization, four specific test points were chosen
strategically. Each point was positioned at a fixed distance
of 1.5 meters from the centre of the robot. These test points
were designed to represent scenarios where the fusion of
UWB and vision measurements was both possible and not
possible.Avisual representation of the ground truth positions
and the corresponding person detections achieved by the
algorithm is provided in Fig. 11. Measurements were taken
statically at these points and compared with ground truth.
The average error and standard deviation were calculated to
evaluate the system. To better evaluate the angular error of
UWB transceivers, a common defect, and its improvement

Table 2 Range Benchmark Results

Sensor Min. Distance Max. Distance
(m) (m)

Cameras 0.2937 7.5520

UWB 0.3924 12.7220

This table provides information on the maximum and minimum dis-
tances, recorded inmeters, from the LiDAR sensor in the corresponding
sensor frame where the measurement is detected
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Fig. 11 Stationary person
detection results.
Green, blue, yellow, and red
indicate visionless person
localization at predefined
positions. Purple represents the
results of the proposed vision
fusion algorithm. The robot is
centered at (0,0)

with fusion, the error was calculated in both Cartesian and
polar coordinates. This allowed for a better observation of
the angular error. Additionally, to benchmark the improve-
ment of the filter, the algorithm was run in a region where
vision is possible (point 0), with and without fusion. This
enabled the comparison of the performance of the algorithm
with and without fusion. The resulting error for each posi-
tion can be seen in Table 3. Considering the results at point 0,
where the UWB person localisation algorithm is tested with
and without the monocular vision fusion technique, the dif-
ference between the two is clear, either in the visual analysis
of Fig. 11 or in the results in Table 3. The proposed fusion

Table 3 Error results for position estimation against a set of predefined
positions

Point Error Avg. Error
Type Without Fusion With Fusion

0 εr (m) 0.111 ± 0.075 0.058 ± 0.023

εθ (rad) 0.056 ± 0.056 0.015 ± 0.007

εx (m) 0.049 ± 0.027 0.049 ± 0.027

εy (m) 0.087 ± 0.086 0.023 ± 0.011

1 εr (m) 0.141 ± 0.099 -

εθ (rad) 0.086 ± 0.069 -

εx (m) 0.131 ± 0.106 -

εy (m) 0.028 ± 0.023 -

2 εr (m) 0.187 ± 0.092 -

εθ (rad) 0.093 ± 0.101 -

εx (m) 0.023 ± 0.027 -

εy (m) 0.183 ± 0.093 -

3 εr (m) 0.175 ± 0.099 -

εθ (rad) 0.113 ± 0.067 -

εx (m) 0.170 ± 0.100 -

εy (m) 0.023 ± 0.023 -

The error is evaluated in both polar coordinates (r ,θ ) and Cartesian
coordinates (x ,y), where r and θ are the distance and angle between the
robot and the detection. x and y are the axes of the grid

of UWB and monocular vision leads to a 47.75% reduction
(from0.111m to0.058m) in the radial error and66,67%(from
0.056rad to 0.015rad) in the angular error of person localisa-
tion compared with the results without fusion. Furthermore,
it can be observed that the points where fusion is not possible
(points 1, 2, and 3) since they are outside the field of view
of both cameras, have significantly higher radial and angu-
lar error values, which is to be expected since the person
localisation algorithm is based only on UWB.

5.3 Moving Square Test

Since the ultimate goal is to obtain a robot that tracks people,
it is important to evaluate the localisation of the person as a
moving target. To this end, a test was conducted in which a
person moved in a square perimeter covered by the cameras
and the UWB transceivers. To determine the actual position
of the person, LiDAR was used in the same manner as dis-
cussed in the previous test in Section 5.1. The proposed test
is shown in Fig. 12.

Fig. 12 Test setup diagram: Yellow, blue, and green areas denote the
camera’s fov, LiDAR’s operational range, and the person’s movement
zone, respectively
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Table 4 Position estimation error results when the person is at a slow
pace varying expected person speed

Expected Person Min. Error Max. Error Avg. Error
Speed (m/s) (m) (m) (m)

1.94 0.0041 0.5869 0.1404 ± 0.0883

1.39 0.0041 0.5853 0.1388 ± 0.0877

0.83 0.0041 0.5453 0.1378 ± 0.0869

In this test, the average speed travelled by the subject was 0.2071 ±
0.0785 m/s, with the highest value being 0.3966 m/s and the lowest
being 0.0685 m/s. The error values are presented in meters

In this figure, it is possible to observe that the person fol-
lows a predefined square route in a bounded area. Since the
range of the UWB transceiver is much larger than that of the
camera and the LiDAR, this area is limited not only by the
field of view of the camera but also by the LiDAR, which has
a limited field of view of 70 degrees. Although the LiDAR
is very accurate, the UWB tag was not placed exactly in the
centre of the target as required by LiDAR target acquisi-
tion. This introduces errors in the test but is still useful to
evaluate the detection of the moving target. To evaluate the
performance of the actual speed of the target compared to
the expected speed input parameter of the innovation part of
the filter, a test was first performed at slow speeds, achieving
an average speed of 0.2071 m/s. The results can be found
in Table 4 and Fig. 13a. Subsequently, a test with increased
speed was carried out, achieving an average speed of 0.7147
m/s. The results can be found in Table 5 and Fig. 13b. In
addition, Table 6 shows the execution times of the proposed
algorithm. The datasets recorded in these experiments, both
for slower1 and for higher2 speeds, have been made publicly
available.

In the first test, where the targeted person moves at lower
speeds, the expected speed value of the innovation part of the
filter has no significant impact on the selected group. How-
ever, in the second test, where the subject speed is increased

Table 5 Position estimation error results when the person is at a fast
pace varying expected person speed

Expected Person Min. Error Max. Error Avg. Error
Speed (m/s) (m) (m) (m)

1.94 0.0039 0.7601 0.2247 ± 0.1442

1.39 0.0039 0.7670 0.2205 ± 0.1389

0.83 0.0039 1.1264 0.2884 ± 0.2089

In this test, the average speed travelled by the subject was 0.7147 ±
0.1201 m/s, with the highest value being 0.9210 m/s and the lowest
being 0.3994 m/s. The error values are presented in meters. The robot
is located on the left side of the graph at (0,0)

to values higher than the selected expected speed parameter
values, this causes the system to have a higher error than in
the first test. Moreover, the error in this second test decreases
significantly as the value of the expected velocity increases.
From this, selecting a higher expected velocity is preferable.
However, the value should not be set excessively high, as
this would result in a performance loss of the proposed filter.
Analysis of Figs.13a and b also suggests that human detec-
tion has an optimal following range, as the error tends to
increase the farther the human is from the robot. Based on
the recorded times from Table 6, it can also be concluded that
this algorithm can be run offline.

5.4 Comparison with State-of-the-Art

In this subsection, the results presented in the previous sub-
sections will be compared to the approaches discussed in the
Related Works section (Section 2).

LiDAR exhibits the highest accuracy for person localiza-
tion. However, it relies on a single technology, which renders
it less robust, particularly in scenarios involving occlusion.
Additionally, LiDAR is associated with a higher cost.

RGB-D cameras demonstrate accuracy in the angular
direction but experience reduced performance in the radial

Fig. 13 Results of moving person detection. The orange, green, and red
colours represent the moving person detection by the proposed algo-
rithmusingdifferent input values for the expected speedof the person for

the proposed filter. The blue line is the LiDAR-generated ground truth
of a person moving at an average speed of 0.2 m/s (a) and 0.7 m/s (b)
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Table 6 Execution Times of
each Section of the Proposed
Algorithm in Seconds

Test Algorithm Min. Time) Max. Time Avg. Time
speed sections (s) (s) (s)

Slow Filter 0.0096 0.0483 0.0183 ± 0.0069

UWB 0.0097 0.0508 0.0192 ± 0.0069

Vision 0.0034 0.2500 0.0076 ± 0.0083

Fast Fiter 0.0095 0.0426 0.0179 ± 0.0062

UWB 0.0097 0.0508 0.0192 ± 0.0067

Vision 0.0034 0.0210 0.0074 ± 0.0025

In the algorithm sections, Vision refers to the creation and updating of the camera grid, UWB refers to the
creation and updating of the UWB transceivers grid, and finally the filter section refers to the histogram filter,
which includes the fusion of both grids, the innovation, and update parts

dimension. Their single-sensor nature leads to limitations
in robustness and occlusion handling. Nonetheless, RGB-D
cameras are more cost-effective than LiDAR systems.

UWB technology provides accuracy in the radial direction
but shows performance degradation in angular measure-
ments. Compared to LiDAR and RGB-D, UWB stands out
for its superior target recognition capabilities and resilience
to occlusion. Moreover, UWB solutions are cost-effective
compared to RGB-D and LiDAR.

The fusion of RGB-D and UWB constitutes a compelling
solution, capitalizing on the angular precision of RGB-D
cameras and the radial accuracy of UWB. This multi-sensor
approach significantly enhances robustness, especially in
scenarios prone to occlusion. It effectively counteracts the
camera’s susceptibility by relying on the UWB’s reliability
for localization, even though there may be trade-offs in angu-
lar precision. Importantly, this combined approach provides
a cost-effective alternative to LiDAR.

Our approach integrates UWB technology with mul-
tiple monocular cameras, a deliberate choice, given the
limited field of view inherent to RGB-D cameras. This com-
bination extends the system’s coverage while preserving
cost-effectiveness. It consistently performs at a level compa-
rable to RGB-D and UWB systems, which is evident when
comparing the results in Section 5.2 with the stationary find-
ings presented by [8]. This alignment with expectations is
unsurprising sinceRGB-D cameras exhibit suboptimal radial
performance. Consequently, when combined with UWB,
monocular cameras fulfill a similar role, mainly focused on

mitigating the angular errors resulting from UWB localiza-
tion.

A summarized conclusion of these observations can be
found in Table 7.

6 Conclusion

This paper presents a method for human tracking in settings
involving human-robot collaboration (HRC). In particular,
relative person localisation is accomplished by combining
monocular vision with ultra-wideband (UWB) transceivers
as range sensors.

This method is able to track an individual equipped with
a UWB transceiver, utilizing these transceivers as range sen-
sors. UWB transceivers have a large angular error, which can
be problematic in human-robot collaboration (HRC) settings
where accuracy is essential.

To reduce the angular error, the range information from
the UWB transceivers was fused with the angle estimations
obtained from amonocular vision system. The vision system
usesDeepLearningobject detection techniques to detect peo-
ple and estimate their relative angle to the robot. This method
has a very high angular accuracy, andwhen fusedwithUWB,
it can significantly reduce the overall angular error of the sys-
tem.

Compared to UWB localisation alone, the experiments
showed that combining UWB and monocular vision using
the RHF significantly reduced the angular error. The angular

Table 7 Person detection
techniques

Approach Angular Radial Robustness Occlusion Cost Ref.

LiDAR ++ ++ - - - [14–16]

RGB-D + - - - + [10–13]

UWB - + - + ++ [9, 18–21]

RGB-D & UWB + + + + + [8, 27]

RGB & UWB + + + + + Proposed approach
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error decreased by 66,67% and the radial error by 47.75%.
Furthermore, the position of the target was estimated with an
average inaccuracy of 0.14 m and 0.22 m at moderate veloci-
ties of 0.21m/s andhigher velocities of 0.71m/s, respectively.
From the results presented, where a maximum velocity of
0.92 m/s was achieved, we conclude that this approach can
be used up to a velocity of 0.92 m/s to locate the target suc-
cessfully.

The main advantage of our approach is that the target can
be located relative to the robot without the need for fixed
sensors in theworkspace. This is particularly advantageous in
unstructured environments such as agriculture. Furthermore,
the approach is computationally efficient with an average
processing time of 0.0183 seconds.

The robustness and safety of HRC systems will be explored
in future work. This includes investigating the following:

• Robustness to disturbances: An in-depth analysis of
the robustness of the approach is planned, particularly
in scenarios with multiple individuals present. This is
a common scenario in situations such as harvesting.
Furthermore, the real-world performance of the system
in diverse environments, including challenging settings
such as agricultural landscapes, will also be assessed.
Open fields and row crops could result in different results
due to occlusion of the vision or irregular wave propaga-
tion ofUWB signals. This researchwill involve extensive
experimentation and data collection to gauge the adapt-
ability and reliability of the technology.

• Safe Human-robot collaboration (HRC) navigation: Inves-
tigations will extend to the realm of HRC navigation.
Collision avoidance techniques such as obstacle detec-
tion and avoidance and path planning will be explored
to enhance the safety of human-robot interactions. These
studies will involve both theoretical modelling and prac-
tical experimentation.
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