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Abstract
In this paper, a novel feedback control strategy for quadrotor trajectory tracking is designed and experimentally tested with
proof of exponential stability, using the Lyapunov transformations theory. The controller is derived from an inner-outer loop
control structure, namely by considering the position system coupled through an interconnection termwith the attitude system.
For the design of the position controller, the considered dynamics are worked on the body frame, which is uncommon in
the literature, and its synthesis derives from theories such as Pontryagin’s maximum principle, Lyapunov theory, and Linear
Quadratic Regulator (LQR), which ensure Input-to-state stability, steady-state optimality, and global exponential stability. The
attitude system is based on an error quaternion parameterization via a nonlinear coordinate transformation matrix followed
by a state input feedback, rendering the system linear and time-invariant. Under a correct transformation, LQR theory ensures
almost exponential stability and steady-state optimality for the overall interconnected closed-loop systems. Experimental and
simulation results illustrate the performance of the tracking system onboard a quadrotor.

Keywords Nonlinear control · Interconnected systems · Stability · Quadrotor

1 Introduction

In recent years, research and applications for quadrotors have
been on high demand due to its special structure that allows
them to vertical take off and landing, as well as hovering.
Such capabilities allow quadrotors to perform difficult tasks,
e.g. monitoring, surveying, inspection, search and rescue.

To produce viable solutions to cope with these types of
tasks, control laws that emphasize robustness and efficiency
are of paramount importance. Furthermore, the quadrotor
is a highly nonlinear, underactuated vehicle with coupled
dynamics, which constrains the controller design and sta-
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bility analysis. Over the past years, numerous controllers
have been proposed [1]. In [2], linear control techniques,
such as the linear quadratic regulator (LQR) were success-
fully implemented for low-speed indoor flights. Although
the linear techniques are successful, most of the times their
reliance on linearization of the quadcopter dynamics restricts
their ability to fully explore the vehicle’s flight envelope and
establish an explicit region of attraction for stability. In the
literature, amiscellany of nonlinear approaches can be found,
such as feedback linearization [3], backstepping [4], differ-
ential flatness [5], and sliding-mode control (SMC).

The majority of existing works adopt the inner-outer
loop methodology or backstepping techniques to address
the interconnection term that arises from the underactuation
of quadrotors. For example, in [6, 7], a geometric con-
trol approach is employed on the special Euclidean group
SE(3) to mitigate singularities and complexities associated
with local coordinates. The desired attitude is formulated
to align the total thrust direction with the required thrust
for tracking a specified position command. Subsequently,
the control moment is designed to accurately adjust and
track the desired attitude. The authors in [5] address the
challenges of designing smooth and feasible trajectories, con-
sidering the underactuated nature of quadrotors and control
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input constraints. The paper explores mathematical mod-
eling, optimization algorithms, and control strategies to
generateminimum snap trajectories and enable precise track-
ing by quadrotors. The authors in [8], tackle the problem of
vectored-thrust UAVs using an inner-loop paradigm and inte-
gral Input-to-state stability (ISS) techniques to analyze the
resulting pseudo cascade structure. The proposed strategy
exhibits superior performance compared to other strategies
with a similar basin of attraction. Recent significant con-
tributions to quadrotor control, which combine hierarchical
control with geometric feedback, can be found in [9, 10],
and [11]. The Backstepping method has been applied in sev-
eral studies, as referenced in [12, 13], and [14], to control
underactuated quadrotors. In these approaches, the attitude
error is derived either from the error in the thrust direction
or through the use of traditional backstepping techniques.
Consequently, the interconnection term is skillfully back-
stepped into the attitude control law, effectively canceling its
influence.

The proposed strategy offers a tracking control struc-
ture with almost global exponential stability resorting to the
nonlinear system of a quadrotor in the sensor space and
error domain. The solution blends linear methods, nonlin-
ear transformations and input-to-stable stability to render
the vehicle closed-loop nonlinear systems stable. The con-
troller, designed in the body frame, assumes an hierarchical
approach. The position controller is designed through the
MaximumPrinciple followed by aLyapunovTransformation
that renders a nonlinearRiccati equation linear time-invariant
(LTI), removing the necessity of solving the Riccati equa-
tion over time. The procedure not only guarantees global
exponential stability but also minimizes a regular LQR cost
function for the position controller. The attitude controller,
based on quaternion parameters and the angular velocity
relationship, is designed through a nonlinear transformation
of coordinates followed by state-input feedback that ren-
ders the orientation system LTI. The method ensures almost
global stability and a sense of steady-state optimality of the
controller.

Moreover, to enhance robustness against unknown dis-
turbances, integrative action is incorporated to both position
and attitude errors. Various simulation tests are conducted
to evaluate the controller’s performance under conditions of
moment of inertia variations and when subjected to a pen-
dulum load. Additionally, a trajectory tracking experiment is
carried out in an indoor lab to demonstrate the effectiveness
of the onboard quadrotor tracking system.

The presented solution proposes a straightforward
approach to quadrotor trajectory tracking by employing
exact Lyapunov transformations to propagate the proper-
ties of linear systems to the nonlinear error dynamics of the
vehicle, emphasizing robustness through integrative action
and optimality considerations. The proposed methodology

incorporates rigid-body translational dynamics expressed in
body-fixed coordinates. This has several advantages. For
instance, it avoids the algebraic transformation of sensor data
to inertial coordinates, which helps mitigate the amplifica-
tion of noise and biases on attitude estimates. This aligns
with the findings of [15], highlighting the undesirability of
such transformations. In addition, the use of the body frame,
which closely resembles the camera frame in image-based
visual servoing, allows for direct application of the proposed
method to visual servoing tasks [16]. Furthermore, working
with the position dynamics on the body frame enables direct
exploitation of accelerometer measurements for body accel-
eration estimation, enabling the system to effectively cope
with certain unmodeled dynamics. This holds true not only
for control purposes but also for estimation [17].

This paper is organized as follows. Section 2 intro-
duces the dynamics and kinematics of the quadrotor. The
problem statement and control objective are also provided.
Section 3 provides the design of an steady-state optimal posi-
tion control law to guaranteed asymptotic convergence of the
closed-loop error to zero. The attitude controller design is
also given with stability proof. In Section 4, a comprehen-
sive analysis of stability for the trajectory tracking system is
performed. Section 5 shows the simulation and experimen-
tal results of the controller, a brief explanation on the gain
tuning, and a performance analysis. Concluding remarks are
pointed out in Section 6.

Notation

Throughout the paper, bold lower-case letters (e.g. x, b)
denote column vectors, bold upper-case letters (e.g. X , K )
denote matrices, the symbol 0 denotes a matrix of zeros and
I an identity matrix, both with appropriate dimensions. The
i-th element of vector x is denoted by xi . The vectors e1, e2,
and e3 denote the unit vectors codirectional with the x, y, and
z axes, respectively. The time derivative of s is denoted by ṡ.
The Euclidean norm of vectors is denoted as ‖x‖, x ∈ R

n . In
R
3, the skew-symmetric matrix of a generic vector a ∈ R

3

is defined as [a×] and given by

[a×] =
⎡
⎣

0 −az ay
az 0 −ax

−ay ax 0

⎤
⎦ .

E s is the vector s expressed in coordinate frame {E}, and
B
I R is a rotational matrix from the inertial frame {I } to the
body frame {B}. Finally, the transpose operator is denoted
by the superscript (·)T .
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2 Problem Formulation

2.1 Quadrotor Dynamics and Kinematics

Consider the quadrotor vehicle model presented in Fig. 1.
The system is equipped with four identical motors and pro-
pellers distributed symmetrically,which generate a thrust and
torque normal to the plane formed by the rotors. Consider the
system body-fixed frame is located at the center of mass of
the vehicle. The differential equations that rules the kinemat-
ics and dynamics for this specific vehicle can be defined as
follows

ṗ = Rv (1)

v̇ = −[ω×]v − T

m
e3 + RT ge3 (2)

q̇ = 1

2
�(ω)q (3)

ω̇ = −J−1[ω×]Jω + J−1τ (4)

where m ∈ R the total mass
J ∈ R

3×3 the inertia matrix with respect to {B}
R ∈ SO(3) the rotation matrix from {B} to {I } and follows
the Tait-Bryan sequence of rotation Z-Y-X

q ∈ R
4 the quaternion vector, where q = [

qTv q4
]T

ω ∈ R
3 the angular velocity in {B}

p ∈ R
3 the location of the center of mass in {I }

v ∈ R
3 the velocity of the center of mass in {B}, i.e. Bv

τ ∈ R
3 the torque generated by the propeller about the−e3

axis
T ∈ R>0 the total thrust

and �(ω) =
[−[ω×] ω

−ωT 0

]
.

Fig. 1 Quadrotor model

2.2 Problem Formulation

Consider a vehicle with motion equations given by Eqs. 1 to
4. Derive a trajectory tracking control law to follow a pre-
scribed trajectory pd(t) ∈ C4 of the location of the center
of mass, and a specified heading angle ψd(t) ∈ C2, respect-
ing a balance between performance and energy expenditure.
Particularly, the reference derivatives ṗd(t), p̈d(t),

...
pd(t),

p(4)
d (t), ψ̇d(t) and ψ̈d(t) are required to be bounded func-

tions of time. Additionally, assume that a sensor set provides
real-time measures of p, v, v̇, q, ω and ω̇. Since the con-
trol law is designed in the body frame, the body velocity v

can be directly retrieved from an onboard optical flow sys-
tem, and the body acceleration v̇ from the accelerometer. The
remaining variables, such as position, angular velocity and
quaternion angle, could be accessed from a GPS sensor, a
gyroscope, and a sensor fusion with all the above, respec-
tively. The angular acceleration can be estimated through
sensor fusion.

In order to guarantee a well-posed control law, the follow-
ing assumption is established.

Assumption 1 The angular velocity ω and angular accelera-
tion ω̇ of the vehicle are bounded signals.

From a practical point of view, Assumption 1 is not lim-
itative since the systems presented herein are in fact finite
energy systems that ensemble achievable physical vehicles
and sensors.

3 Controller Design

In furtherance of tackling the problem stated in Section 2.2, a
nonlinear hierarchical control law is proposed. The position
and attitude systems are addressed separately. Pontryagin’s
principle and LQR theory aligned with Lyapunov the-
ory are applied to stabilize the vehicle. Through a set of
particular Lyapunov nonlinear transformations, the vehicle
dynamics becomes linear, enabling the exploitation of lin-
ear techniques, hence, a straightforward procedure to tune
the controller. The schematic of the controller is depicted in
Fig. 2.

3.1 Position Tracking Control

Suppose that the desiredpositionof the quadrotor represented

in inertial frame is pd = [
xd yd zd

]T
. The position error is

defined as

ep = p − pd , (5)
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Fig. 2 Controller architecture

with ṗd = Rvd , where vd ∈ R
3 is the desired velocity in

{B}. Define the body velocity error as

ev = v − vd . (6)

In order to achieve zero steady-state error and to add robust-
ness to model uncertainties, an integral feedback of the
position error is taken into account

η̇ = ep. (7)

Hence, by taking the derivative of Eqs. 5-6, considering the
position system Eqs. 1-2 and the integral dynamic Eq. 7, the
position tracking system is defined as

⎡
⎣
ė p
ėv
η̇

⎤
⎦ =

⎡
⎣
0 R 0
0 −[ω×] 0
I 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣
ep
ev
η

⎤
⎦ +

⎡
⎣
0
I
0

⎤
⎦

︸︷︷︸
B

u, (8)

where

u = − T

m
e3 + RT (ge3 − p̈d) (9)

and p̈d ∈ R
3 is the desired inertial acceleration.The feedback

control law proposed for the previous system is

u = − [
RT K p RT KvR RT Kη

]
︸ ︷︷ ︸

Knl

⎡
⎣
ep
ev
η

⎤
⎦ , (10)

where K p, Kv , and Kη are the steady-state LQR gain matri-
ces ∈ R

3×3 corresponding to the LTI system

[
ẋ p
ẋv

ẋη

]
=

⎡
⎣
0 I 0
0 0 0
I 0 0

⎤
⎦

︸ ︷︷ ︸
Al

[
xp
xv

xη

]
+

⎡
⎣
0
I
0

⎤
⎦

︸︷︷︸
Bl

u. (11)

In this section, it will be demonstrated that the feedback
law Eq. 10 effectively stabilizes both the systems Eqs. 8 and
11. Additionally, it should be ensured that the control inputs
provided by Eq. 10 closely match the desired inputs speci-
fied by Eq. 9 at all times. Since the only available input is
the thrust T , the system is indeed underactuated. However,
by assuming full control of R, the trajectory tracking prob-
lem can simplified and transform it into the stabilization of a

triple integrator [18]. This approach is adopted in this section
to address the control challenges associated with underactu-
ation.

Remark 1 The subsequent theorem follows from the exis-
tence of a Lyapunov transformation T (t), i.e. a bounded
continuously differentiable matrix, for all t, with bounded
derivative Ṫ (t), and that admits inverse. Steady-state opti-
mality for the proposed position controller is guaranteed in
the sense that the solution for the problem at hand is found
on the infinite time solution of the LTI Ricatti equation for
the LTI system Eq. 11.

Theorem 1 Let the position error dynamics be described by
Eq. 8. The closed-loop system that results from applying the
feedback lawEq. 10 is globally exponential stable.Moreover,
the feedback law is steady-state optimal in the sense that it
minimizes the cost function

J =
∫ ∞

0

1

2

⎛
⎜⎜⎜⎜⎜⎜⎝
xT

⎡
⎣
Q p 0 0
0 RT QvR 0
0 0 Qη

⎤
⎦

︸ ︷︷ ︸
Q

x + uT RT RpR︸ ︷︷ ︸
Ru

u

⎞
⎟⎟⎟⎟⎟⎟⎠
dt,

(12)

where Q p, Qv , and Qη ∈ R
3×3 are symmetric positive

semi-definite matrices, Rp ∈ R
3×3 is a symmetric, positive

definite matrix, and x = [
eTp eTv ηT ]T .

Proof The proof follows the similar approach of the LQR.
Applying the maximum principle theorem [19], to minimize
the cost functionEq. 12 subject to the constraintEq. 8, renders
the optimal control law

u∗ = −R−1
u BTλ, (13)

where Ru is defined in Eq. 12, λ = Px, and P is a square
symmetric matrix governed by the matrix differential Ricatti
equation

− Ṗ = P A + AT P − PBR−1
u BT P + Q. (14)

Since the systemEq. 8 is time varying, P is also time varying.
Nevertheless, consider the well-defined Lyapunov transfor-
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mation T [20]

P=TPPPT T , T =
⎡
⎣
I 0 0
0 RT 0
0 0 I

⎤
⎦ , Ṫ =

⎡
⎣
0 0 0
0 −[ω×]RT 0
0 0 0

⎤
⎦ .

(15)

By application of Eq. 15 into Eq. 14, results the Ricatti equa-
tion for the LTI system Eq. 11

−Ṗ̇ṖP = PPPAl + AT
l PPP −PPPBl R−1

p BT
l PPP + Ql , (16)

where Ql = T T QT , Al and Bl are defined in Eq. 11, and Rp

is defined after Eq. 12. Consequently, at the infinity, Ṗ̇ṖP∞ = 0
and the steady-state optimal control law u∗ Eq. 13 can be
rewritten as

u∗ = − [
RT K p RT KvR RT Kη

]
⎡
⎣
ep
ev
η

⎤
⎦ (17)

Thereby, u∗ is the optimal control law thatminimizes the cost
function Eq. 12 for the position system Eq. 8. The globally
exponential stability proof is now immediate. Consider the
following well defined Lyapunov function

V1(x) = xT TPPPT T x, (18)

with time derivative given by

V̇1(x) = d

dt

(
xT T

)
PPPT T x + xT TPPP d

dt

(
T T x

)

= xT
(
AT
clT + Ṫ

)
PPPT T x

+xT TPPP
(
T T Acl + Ṫ T

)
x

= xT T (Al − BKl)
T PPPT T x

+xT TPPP (Al − BKl) T T x

= −xT T QlT T x, (19)

with Acl = A − BKnl , Knl defined in Eq. 10, and Kl =⎡
⎣
K p 0 0
0 Kv 0
0 0 Kη

⎤
⎦.

Thus, V1(x) ≥ 0 and V̇1(x) ≤ 0, and, by the Theorem
4.9 in [21], the origin of the error system in closed-loop is

globally asymptotically stable. Observe the following
inequalities [21]

−xT T QlT T x ≤ −�min(Ql)xT x,

xT TPPPT T x ≤ �max(PPP)xT x
, (20)

where �min(Ql) and �max(PPP) are both the minimum eigen-
value of Ql and the maximum eigenvalue of P, respectively,
which are positive.

Define α = �min(Ql )

�max(PPP)
> 0 and apply Eqs. 20 to 19

V̇1(x) ≤ −αV1(x), (21)

Hence, the origin is globally exponentially stable. �	
Bear in mind that, although the proposed controller guar-

antees steady-state optimality, by computing the solution for
the Ricatti equation Eq. 16 and changing the controller gains
accordingly during the transient period, optimality can be
guaranteed for all t . For high bandwidth systems, such as a
quadrotor UAV, the transient period is negligible. Addition-
ally, the theorem shows that there is not required computing
for all t the solution of the Ricatti equation for the linear
time-variant system Eq. 8 to achieve steady-state optimality.
The block diagram of the position controller is depicted in
Fig. 3.

The position control is an underactuated problem with
one control input and three output variables. The outer-loop
is responsible to generate not only the desired thrust but also
angular references.Noting that u = − T

m e3+RT (ge3 − p̈d),
and although T is a system input, the rotation matrix RT is
not and cannot be set arbitrarily. Nevertheless, the attitude
variable R can be controlled by means of the attitude system
Eqs. 3-4 and the input moments can be exploited to drive
the thrust force to some intended direction. To deal with the
coupling term, u can be divided, similarly as in [22], into

u = − T

m
e3 + RT

d (ge3 − p̈d)
︸ ︷︷ ︸

ud

−
(
R̃T − I

)
RT (ge3 − p̈d)︸ ︷︷ ︸
�

,

(22)

where the term � ∈ R
3 is a perturbation due to the attitude

error control, Rd is the desired rotation matrix, and R̃ =
RT Rd describes the discrepancy between the vehicle attitude
and the attitude command.

Remark 2 The stability proof present in this section does not
hold for the coupling term�, which is a requisite for a hierar-
chical control scheme. Nevertheless, input-to-state stability
(ISS) for the position closed-loop system, perturbed by �,
is proved right after. Also, the integrator added to the plant
attenuates the coupling term impact.
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Fig. 3 Position controller block
diagram

The position closed-loop system, perturbed by �, can be
written as follows
⎡
⎣
ė p
ėv
η̇

⎤
⎦ =

⎡
⎣

0 R 0
−RT K p −[ω×] − RT KvR −RT Kη

I 0 0

⎤
⎦

︸ ︷︷ ︸
A

⎡
⎣
ep
ev
η

⎤
⎦+

⎡
⎣
0
�

0

⎤
⎦ , (23)

Theorem 2 The position error dynamics Eq. 23 is ISS with
input �, if ∃ k > 0 : ‖ p̈d‖ ≤ k, for all t .

Proof One can write the solution for the linear time varying
system Eq. 23 in the form

x(t) = �(t, t0)x0 +
∫ t

t0
�(t, σ )�(σ )dσ, (24)

where � is the state transition matrix, which is derived from
the input free system, i.e., for � = 0. By Theorem 1, the
input free system is uniformly asymptotically stable, which
is equivalent to write

∃ η, λ > 0 : ‖�(t, t0)‖ ≤ ηe−λ[t−t0], for all t ≥ t0 (25)

Apply the modulus to Eq. 24

‖x(t)‖ ≤ ηe−λ[t−t0]‖x0‖ +
∫ t

t0
ηe−λ[t−t0]‖�‖dσ

≤ ηe−λ[t−t0] ‖x0‖︸ ︷︷ ︸
β(‖x0‖,t)

+
η‖

(
R̃T − I

)
‖‖ge3 − p̈d‖t0,∞
λ︸ ︷︷ ︸

≤γ
(‖�‖t0,∞

)
. (26)

According to Definition 4.7 in [21], and assuming that p̈d is
bounded, β ∈ KL and γ ∈ K. Consequently, the closed-loop
system Eq. 23 is ISS. �	
Remark 3 The previous proof could also be accomplished by
applying the Lyapunov transformation T to the closed-loop
system Eq. 23, which would render an LTI system perturbed
by a bounded perturbation � that does not depend on the
system states. Therefore, the LTI system is ISS. The trans-
formation T is bounded and does not depend on the state

variables, consequently the original system Eq. 23 has the
ISS property.

One thing to bear in mind is that if � converges to zero as
t → ∞, so does x(t), whichwould be the case if R̃T (t) → I
with time. This would imply GAS for the position closed-
loop system Eq. 23.

Moreover, the desired rotation matrix Rd is obtained by
equating u∗ in Eq. 22 and the output of the feedback law u∗
Eq. 17, which gives

u∗ = − T

m
e3 + RT

d (ge3 − p̈d) ≡

u∗ + T

m
e3

︸ ︷︷ ︸
ut

= R1RT
2︸ ︷︷ ︸

RT
d

(ge3 − p̈d)︸ ︷︷ ︸
ϑ

≡ RT
1 ut = RT

2 ϑ,
(27)

The idea is to find first R1 by imposing the following

RT
1 ut = ‖ut‖ e3 ≡ R1e3 = ut

‖ut‖ , (28)

which is a similar problem as when the control is designed in
the inertial frame. The rotation matrix can then be computed
as

R1 = [
b1 b2 b3

]
, (29)

where b3 = ut‖ut‖ , b2 = b3×bd‖b3×bd‖ , b1 = b2×b3‖b2×b3‖ , and bd =[
1 0 0

]T
.

By computing R1 as in Eq. 29, the rotation matrix R2 can
now be computed in a similar fashion since one can write
RT
2 ϑ as follows

RT
2 ϑ = ‖ut‖ e3 ≡ R2e3 = ϑ

‖ϑ‖ (30)

which can be solved in order to R2 as in Eq. 29, i.e.,

R2 = [
d1 d2 d3

]
, (31)

where d3 = ϑ
‖ϑ‖ , d2 = d3×dψ

‖d3×dψ‖ , d1 = d2×d3‖d2×d3‖ , and dψ =
[
cos(ψd) sin(ψd) 0

]T
, whereψd represents the desired yaw

angle.
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The relation given in Eqs. 28 and 30 fixes only two of
the three degree of freedom of R1 and R2, respectively. The
third degree of freedom, which is the rotation around the
vectors ut and ϑ , can be arbitrarily assigned according to
attitude tracking objectives. For this particular case, the two
third degree of freedom are defined by the assigned vectors
bd and dψ .

The rotation matrix R2 represents the ideal desired rota-
tion matrix according to the given trajectory. The rotation
matrix R1, on the other hand, acts as a correction matrix that
is dependent on the errors of the position system. The influ-
ence of R1 on Rd tends to diminish during the steady-state
and increase during the transition states.

Lemma 1 Consider Eq. 27. If the following conditions are
satisfied

∥∥u∗∥∥ < ‖ge3 − p̈d‖ > 0, (32)

then it is always possible to extract the thrust magnitude from
Eq. 27 as

T = m

∥∥∥∥
√

‖ϑ‖2 − u∗
1
2 − u∗

2
2 − u∗

3

∥∥∥∥ , (33)

with 0 < T < 2m ‖ge3 − p̈d‖, and the desired rotation
matrix Rd can be computed as

Rd = R2RT
1 . (34)

Proof See Appendix A. �	

Typically, the thrust is upper bounded, i.e. T < Tmax ∈
R>0, so being able to impose an upper constraint on it is
advantageous. The following inequality can be found by
imposing upper bounds on the thrust,

u∗
1
2 + u∗

2
2 +

(
u∗
3
2 + Tmax

m

)2

≥ ‖ge3 − p̈d‖ .

Remark 4 The use of saturation functions in the outer loop
plays a critical role in avoiding singularities. Saturation func-
tions are not considered throughout the paper. Nonetheless,
any saturation function with guaranteed ISS for the position
closed-loop system, such as several nested function found in
the literature [23, 24], would serve this purpose.

The reference angular velocity ω and its time derivative
along the body x and y axis can be easily derived as functions
of ut and ϑ , and its time derivatives. As a matter of fact, it
follows from RT

1 Ṙ1e3 = [ω1×]e3 and RT
2 Ṙ2e3 = [ω2×]e3

that

ω1 =
[
−WRT

1
d
dt

(
ut‖ut‖

)

ω13

]
,

ω2 =
[
−WRT

2
d
dt

(
ϑ

‖ϑ‖
)

ω23

]
,

ω̇1 =
[
−W

(
−[ω1×]RT

1
d
dt

(
ut‖ut‖

)
+ RT

1
d2

dt2

(
ut‖ut‖

))

ω̇13

]
,

ω̇2 =
[
−W

(
−[ω2×]RT

2
d
dt

(
ϑ

‖ϑ‖
)

+ RT
2

d2

dt2

(
ϑ

‖ϑ‖
))

ω̇23

]
,

(35)

where W =
[
0 1 0

−1 0 0

]
, and ω13, ω23 and its derivatives are

not subjected to constraints deriving from the position track-
ing objective. Finally, the desired angular velocity ωd and its
derivative is defined in the lemma that follows

Lemma 2 The angular velocity ωd can be expressed as

ωd =R1(ω2 − ω1) (36)

and

‖ωd‖ ≤ �1 ∀ t ≥ 0, �1 ∈ R≥0,

where ω1 and ω2 are defined in Eq. 35. Additionally, the
angular acceleration ω̇d can be expressed as

ω̇d =R1(ω̇2 − ω̇1) + R1[ω1×](ω2 − ω1)

and

‖ω̇d‖ ≤ �2 ∀ t ≥ 0, �2 ∈ R≥0,

where ω̇1 and ω̇2 are defined in Eq. 35.

Proof See Appendix B. �	

From Lemmas 1-2, it is clear that the extracted attitude is
time-varying, and that ωd and ω̇d can be derived using the
expressions of u̇t and üt , which are functions of available sig-
nals. The next section presents the attitude stabilization based
on the quaternion parametrization. The quaternion space is
topologically simpler than SO(3), which causes discontinu-
ities when a memoryless maping to S

3 is used. To prevent
those undesirable effects, the path lifting mechanism pre-
sented in [25] is employed.
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3.2 Quaternion Tracking Control

The attitude controller is designed via a similar procedure as
in the position controller.

Suppose the desired orientation of the quadrotor is qd =[
qTvd q4d

]T = [
q1d q2d q3d q4d

]T
. Define the quaternion

error as follows

eq = �(qd)
T q, (37)

where �(q) =
[
q4 I3×3 + [

qv×
]

−qTv

]
.

Define the angular velocity error vector in the body frame,
i.e.,

eω = ω − �(eq)−1�(eq)Tωd (38)

where �(eq) =
⎡
⎣

qTd q −eq3 eq2
eq3 qTd q −eq1

−eq2 eq1 qTd q

⎤
⎦.

Take the derivative of Eqs. 37 and 38, and define the atti-
tude tracking system by the kinematic differential equation

ėq = 1

2
�(eq)eω (39)

and by the dynamic equation

ėω =−J−1[ω×]Jω + J−1τ − d
dt

(
�(eq)−1�(eq)Tωd

)
.

(40)

Apply the following input transformation

τ = J
(
J−1[ω×]Jω + τ n + d

dt

(
�(eq)−1�(eq)Tωd

))
(41)

and rewrite Eqs. 39-40 in state-space form as follows

[
ėq
ėω

] [
0 1

2�(eq)
0 0

] [
eq
eω

]
+

[
0
τ n

]
. (42)

Consider the following nonlinear transformation of coor-
dinates

[
eq
eω

]
= Tq

[
xq
xω

]
, with Tq =

[
I 0
0 �(eq)−1

]
, (43)

with |Tq | = qTd q. The determinant of Tq consists of the
rotation cosine between the reference qd and the nominal q
quaternions. Consequently, the transformation matrix Tq is
singular if and only if qd and q are orthogonal.

Applying Eqs. 43 to 42 yields

[
ẋq
ẋω

]
=

[
0 1

2 I
0 �(qd)T�(q̇)�(eq)−1

] [
xq
xω

]
+

[
0

�(eq)

]
τ n.

(44)

Define the following input transformation law

τ n = �(eq)−1
(
τ l − �(qd)

T�(q̇)�(eq)−1xω

)
, (45)

which transforms the system Eq. 44 into

[
ẋq
ẋω

]
=

[
0 1

2 I
0 0

] [
xq
xω

]
+

[
0
I

]
τ l , (46)

By inspection, the system is LTI and also controllable, which
means that τ l can be given by an LQR feedback control
law. Then, the control law for the nonlinear attitude tracking
system Eqs. 39-40 is given by

τ (q, qd ,ω,ωd) =
J�(eq)−1

( [−Kxq −Kxω�(eq)
] [eq

eω

]

︸ ︷︷ ︸
τ l

−�(qd)
T�(q̇)eω

)

+ [ω×]Jω + J
d

dt

(
�(eq)−1�(eq)Tωd

)
,

(47)

where Kxq and Kxω are the steady-state LQR gain matrices
∈ R

3×3 corresponding to the LTI system Eq. 46.

Theorem 3 Let the attitude dynamics be described by
Eqs. 39-40. The closed-loop system that results from apply-
ing the feedback law Eq. 47, assuming a sufficiently smooth
trajectory such that |Tq | = qTd q �= 0, is almost globally
exponentially stable.

Proof Apply the control law Eq. 47 to the attitude tracking
system Eqs. 39-40, which is equivalent to

[
ėq
ėω

]
=
[

0 1
2�(eq )

−�(eq )−1Kxq −�(eq )−1Kxω �(eq )− �(eq )−1�(qd )T �(q̇)

]

︸ ︷︷ ︸
Acl

[
eq
eω

]
,

(48)

Define x2 =
[
eTq eTω

]T
. Choose the candidate Lyapunov

function

V2(x2) = xT2 TaPaT T
a x2, (49)

wherePPPa is the steady-state covariance matrix of the Riccati

equation for the LTI system Eq. 46, and Ta =
[
I 0
0 �(eq)T

]
.
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In steady-state, the Riccati equation verifies

0 = PPPa Al + AT
l PPPa + Qa . (50)

Take the time derivative of Eq. 49

V̇2(x2) = −xT2 Ta QaT T
a x2, (51)

As in the stability proof for the position system 1, there is

an α such that α = �min(Qa)�min(TT
a Ta)

�max(Pa)�max(TT
a Ta)

> 0, which guaran-

tees that

V̇2(x2) ≤ −αV2(x2), (52)

Hence, the origin is almost globally exponentially stable,
since for qTd q �= 0 the controller presents a singularity. �	

The attitude error exhibits critical points that are influ-
enced by the topology of SO(3). These critical points
correspond to when |Tq | = qTd q = 0. Due to the presence
of these isolated critical points, it is not possible to design
a globally stable continuous feedback controller in SO(3).
Instead, achieving almost global stability is the best that can
be accomplished through continuous feedback for the closed-
loop system, as demonstrated in [26].

The block diagram of the attitude controller is depicted in
Fig. 4.

4 Stability Analysis of the Architecture

Assuming that the condition Eq. 32 is satisfied, hence is
always possible to extract the thrust, desired rotation matrix,
ωd , and ω̇d , which are all bounded signals according to
Lemma 1-2. Then, from Theorem 2, the position closed-
loop system Eq. 23 is ISS, and from Theorem 3, the attitude
closed-loop system Eq. 48 is uniformly asymptotically sta-
ble. Consequently, the desired tracking objective for the
whole system can be accomplished [27, Corollary B.3.3],
and the perturbation term � → 0 asymptotically as t → ∞,
which implies that x1 converges to zero.

A stronger proof, which guarantees almost uniform expo-
nential stability for the combined system, can be achieved by
forcing bounds on Ql and Qa.

Let the Lyapunov function for the combined system be
given by

V = V1 + V2. (53)

Take the derivativeEq. 53 and account for the interconnection
term �, i.e.,

V̇ = −xT1 T QlT T x1 − xT2 Ta QaT T
a x2 − 2xT1 T K�R�,

(54)

where K� =
⎡
⎣
P2P2P2

P4P4P4

P5P5P5
T

⎤
⎦ ∈ R

9×3, withPPP =
⎡
⎣
P1P1P1 P2P2P2 P3P3P3

PPPT
2 P4P4P4 P5P5P5

PPPT
3 PPPT

5 P6P6P6

⎤
⎦.

The error Eq. 37 verifies [28]

R̃ =
[(

q24e − eTq eq
)
I + 2eqeTq − 2q4e

[
eq×

]]
. (55)

One may rewrite �, using Eq. 55, as follows

� = −2
([eq×] + q4e I

) [ϑ×]eq , (56)

where ϑ is defined in Eq. 27, such that V̇ can be given by

V̇ = − xT1 T QlT T x1 − xT2 Ta QaT T
a x2

+ 4xT1 T K�R
([eq×] + q4e I

) [ϑ×]eq
≤ − �min(Ql) ‖x1‖2 − �min(Qa) ‖x2‖2

+ 4
√
2
√
2 + q24e�max(P2) ‖ϑ‖

︸ ︷︷ ︸
Υ 1

∥∥ep
∥∥ ∥∥eq

∥∥

+ 4
√
2
√
2 + q24e�max(P4) ‖ϑ‖

︸ ︷︷ ︸
Υ 2

‖ev‖
∥∥eq

∥∥

+ 4
√
2
√
2 + q24e�max(P5) ‖ϑ‖

︸ ︷︷ ︸
Υ 3

‖η‖ ∥∥eq
∥∥

≤ −
[‖x1‖
‖x2‖

]T [
�min(Ql) − 1

2 (Υ 1 + Υ 2 + Υ 3)

− 1
2 (Υ 1 + Υ 2 + Υ 3) �min(Qa)

] [‖x1‖
‖x2‖

]
.

(57)

Fig. 4 Attitude controller block diagram

123

Page 9 of 17    9



Journal of Intelligent & Robotic Systems (2024) 110:9

The previous Lyapunov function derivative is negative defi-
nite for

�min(Qa) > 0 and

�min(Ql )�min(Qa) − 1

4
(Υ 1 + Υ 2 + Υ 3)

2 > 0,
(58)

which, according to Theorem 4.10 in [21], guarantees expo-
nential stability for the combined system. By tuning the LQR
parameters Q and R, the previous inequalities can be accom-
plished. Note that by fixing Q, Υ i can be made sufficiently
small by increasing the input action control R.

Less restrictive inequalities can be found to guarantee
exponential stability. One may write the following inequality

V̇ ≤ −

⎡
⎢⎢⎢⎢⎣

∥∥ep
∥∥

‖ev‖
‖η‖∥∥eq

∥∥
‖eω‖

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

�min(Q p) 0 0 − 1
2 Υ 1 0

0 �min(Qv) 0 − 1
2 Υ 2 0

0 0 �min(Qη) − 1
2 Υ 3 0

− 1
2 Υ 1 − 1

2 Υ 2 − 1
2 Υ 3 �min(Qq ) 0

0 0 0 0 �min(Qω)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

∥∥ep
∥∥

‖ev‖
‖η‖∥∥eq

∥∥
‖eω‖

⎤
⎥⎥⎥⎥⎦

,

(59)

which is negative definite for

�min(Qω) > 0, �min(Qq) > 0,

J1 = �min(Qη)�min(Qq) − 1

4
Υ 2

3 > 0,

J2 = �min(Qv)J1 − 1

4
�min(Qη)Υ

2
2 > 0,

J3 = �min(Q p)J2 − 1

4
�min(Qv)�min(Qη)Υ

2
1 > 0.

(60)

A simple procedure can now be derived to render the com-
bined system exponentially stable, i.e.,

1. Define Qη, Qq and Rp such that J1 > 0;
2. Define Qv such that J2 > 0;
3. Define Q p such that J3 > 0, and choose Rq to fulfil the

input action.

Although the combined system has guaranteed uniform
stability, as stated in the beginning of Section 4, the condi-
tions present in Eq. 60 guarantees exponential convergence
rate of x1 and x2 to zero.

Additionally, one can add the integral of the quaternion
error, i.e.

eqi =
∫

eq dt, (61)

as a state variable, to copewith unmodelled systembehaviour
and increase the system robustness. The incorporation of the
state variable (61) enhances the performance of the control

system by eliminating steady-state errors caused by constant
disturbances or reference input commands.

Remark 5 The presence of plant integrators enables the
control system to handle constant uncertainties in the dynam-
ical model. As long as these uncertainties remain constant,
exponential stability of the position and attitude error ismain-
tained. However, when dealing with nonlinear uncertainties,
such as a biased mass or moment of inertia, additional mea-
sures are required. The introduction of a nonlinear integrative
or adaptive term in the control system can help restore expo-
nential stability and address the effects of these nonlinear
uncertainties [29].

The addition of this new variable does not alter the tra-
jectory system properties, as it would just add the negative
quadratic term �min(Qqi )

∥∥eqi
∥∥2 to the derivative of the

Lyapunov function V̇ Eq. 59. Moreover, an augmented LTI
system, similar to Eq. 46, is used to take into account the new
variable, i.e.

⎡
⎣
ẋq
ẋω

ėq i

⎤
⎦ =

⎡
⎣
0 1

2 I 0
0 0 0
I 0 0

⎤
⎦
⎡
⎣
xq
xω

eqi

⎤
⎦ +

⎡
⎣
0
I
0

⎤
⎦ τ l (62)

which allows to substitute the feedback control law τ l present
in Eq. 47 for

τ l i = [−Kxq −Kxω�(eq) −Keqi
]
⎡
⎣
eq
eω
eqi

⎤
⎦ , (63)

where Keqi is the steady-state LQR gain matrix ∈ R
3×3 for

the variable eqi corresponding to the LTI system Eq. 62.

5 Results and Discussion

The quadrotor selected to assess the proposed controller per-
formance was an AR. Drone 2.0, which offers the capability
to deploy custom software that overrides the factory con-
trol through a Simulink package [30], granting access to the
Pulse Width Modulation (PWM) of each motor. The vehicle
is equipped with four propellers. The dynamics of the system
can be described by Eqs. 1-4, where the resultant thrust T and
torque τ can be determined as a function of the four thrusts
Ti , i = 1, 2, 3, 4, produced by four different propellers, for
instance

[
T
τ

]
=

⎡
⎢⎢⎣

1 1 1 1
l −l −l l

−l −l l l
cd −cd cd −cd

⎤
⎥⎥⎦

⎡
⎢⎢⎣
T1
T2
T3
T4

⎤
⎥⎥⎦ , (64)
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where l represents the distance from the propeller axis to
the center of gravity of the body, and cd = 0.0033m
[31] is a parameter that linearly relates the thrust of each
motor to the moment produced along the axis of the rotor.
The relevant physical quantities are m = 0.5Kg, J =
diag (0.0027, 0.0029, 0.0053) Kg.m2 [31], l = 0.127m. The
simulation and the control onboard of the quadrotor is ran at
a frequency of 100 Hz.

In the next two subsections, simulation and experimen-
tal results are shown to assess the feasibility of the control
strategy proposed, Eqs. 33 and 47-63, designed in Section 3.

5.1 Simulation Results

The vehicle starts with the states at zero and takes off at t =
2s. At t = 10s, the following “8-shaped” curve trajectory is
generated

pd(t) =
⎡
⎣
2 cos

( 3π
32 t

)
sin

( 3π
16 t

)
1
3 cos

( 3π
32 t

)

⎤
⎦ +

⎡
⎣

−2
0

−1.13

⎤
⎦ , with

ψd(t) = 2atan2

(√
ṗ2d1 + ṗ2d2 − ṗd1 , ṗd2

)
.

(65)

The controller parameters are presented in Table 1. The
use of the LTI systems Eqs. 11 and 46 governed by the con-
ditions in Eq. 60, enables a straightforward procedure for the
tuning of the control gains. To test for robustness of the pro-
posed tracking law, disturbances and parameter uncertainties
have been taken into account. Specifically, the transformation
Eq. 64 from τ to Ti is assumed to be biased by some con-
stant, white noise is added to every measurement to mimic
sensor noise. Finally, it is considered a moment of inertia
10% higher than the nominal one.

The simulation results are displayed from Figs. 5 to 7. The
actual 3D and 2D trajectory and the desired path are shown in
Figs. 5 and 7, respectively, and exhibit the system converging
to the reference path. As seen in Fig. 8, the tracking errors
exponentially converge to zero. The transient convergence
to the path occurs within 3s. The controller presents zero

Table 1 Controller parameters

Subsystem Ql Rl

ep diag (5, 5, 2.5) × 103

ev diag (3, 3, 3) × 103 110

eη diag (8, 8, 8) × 10

eq diag (65, 65, 150) × 104

eω diag (5, 5, 2) × 104 92

eqi diag (30, 30, 30) × 105

Fig. 5 Simulated spatial trajectory response with the proposed control
approach

position and velocity errors in steady-state. The thrust and
moments actuations are depicted in Fig. 6.

5.1.1 Performance test

In order to thoroughly assess the performance of the pro-
posed controller, two distinct experiments were conducted
in simulation.

The first experiment involved intentionally introducing
variations of ±30% in the nominal moment of inertia J .
Figure 9 presents the results of the experiment, showing that
there is minimal difference in both the position and atti-
tude errors when varying the moment of inertia. Despite
the controller’s dependence on the accurate estimation of
J to mitigate cross-term effects in the dynamics, the results

Fig. 6 Simulated actuations of the quadrotor
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Fig. 7 Simulation responses obtained with the quadrotor during trajec-
tory tracking with the proposed nonlinear control approach

demonstrate its ability to handle uncertainties in the inertia,
primarily attributed to the integrator component. This finding
underscores the robustness of the controller in compensating
for variations in the moment of inertia and its effectiveness
in achieving desirable control performance.

In the second experiment, a slung load mass mp with
length l p = 1m was attached to the center of mass of the
vehicle, following the dynamics derived in [32]. This experi-
ment aimed to examine the ability of the controller to stabilize
the system with an additional dynamic coupling. The results
of the experiment are shown in Fig. 10. One can notice that by
considering a pendulum of mass up to mp = 50g, i.e. 10%
of the vehicle’s mass, there is minimal difference in terms
of position and attitude error. However, as the ratio between
masses increases, the attitude angles, particularly the roll and
pitch angles, exhibit more fluctuations during the simulation,
as observed in Fig. 10. This indicates that the proposed con-
troller is able to cope with dynamic uncertainties to maintain
consistent performance and to asymptotically stabilize the
system.

5.2 Experimental Results

The experimental results attained with the coupled position
Eq. 33 and attitude controller Eqs. 47-63, onboard of an

Fig. 8 Simulation errors

AR.Drone 2.0, are presented from Fig. 13-14. The con-
troller is implemented on-board the vehicle using a Simulink
package [30], which enables compilation and deployment of
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Fig. 9 Simulation error responses obtained in the moment of inertia
variation test

the controller. For the experiment, a position tracking sys-
tem (Qualisys) alongside the onboard IMU and ultrasound
of the vehicle has been employed to provide real-time accu-
rate measurements of position, velocity, quaternion angles
and angular velocity, at a rate of 100 Hz. To allow a fair
comparison, the controller parameters and the path used in
simulation is the same as for the real-time experiment.

The quadrotor lifts off at 2 s from the ground floor and
aims to follow a desired path Eq. 65. The Figs. 11 and 13,
show that the controller was successfully able to track the
reference path displayed in red.

The actual trajectories are displayed inblack.The transient
convergence to the path occurs within 3 s and the steady-
state is overall less than 10cm. The system errors, depicted in
Fig. 14, converge to zero and remain bounded. The actuations
are plotted in Fig. 12. Despite the overlooked non-linearities
in the dynamic model, the experimental results match prop-
erly with the simulation, see Figs. 7 and 13. The proposed

Fig. 10 Simulation responses obtained in the pendulum test with the
control approach

Fig. 11 Experimental spatial trajectory responsewith the proposed con-
trol approach

control strategy demonstrates to be effective in practical
applications. Furthermore, another similar experiment was
recorded and the result can be seen in https://youtu.be/
wcoelQo6Fjs.

5.2.1 Performance test - Slung load

To conduct a comprehensive assessment of the proposed
controller’s performance under laboratory conditions, two
different slung load masses were affixed to the quadrotor
setup to replicate the scenarios studied in simulations, see
Fig. 15. The trajectory remained consistent with the one
described in Eq. 65. However, a modification was made to
the trajectory in the Z-axis by raising it by 30cm to prevent
contact between the slung load and the ground, and only

Fig. 12 Experimental actuations of the quadrotor
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Fig. 13 Experimental responses obtained with the quadrotor during
trajectory tracking

one lap was performed. The cable has the same length as in
the simulation, l p = 1m, while the slug load masses weight
mp1 = 21g and mp2 = 49g.

The experiment aimed to examine the ability of the con-
troller to stabilize the system with an additional dynamic
coupling in a laboratory environment. The results of the
experiment are shown in Fig. 16. As observed in the results,
the controller effectively handled the presence of the slung
load, with only a marginal increase in position error noticed.
Despite the simulations results of Fig. 10, the controller
demonstrated its ability to handle both sets of pendulum
masses, with minimal differences observed in the attitude
angles compared to the experiment without the slung load,
as depicted in Fig. 10. This underscores the capability of
the proposed controller to manage the considered dynamic
uncertainties, ensuring consistent performance, and asymp-
totically stabilizing the system.Furthermore, the experiments
with the slung load were recorded and made available in
https://youtu.be/NWmEOzTzzjc.

6 Conclusions

This paper presented a trajectory tracking controller for a
quadrotor with steady-state optimal properties, developed

Fig. 14 Experimental errors

on the sensor and quaternion spaces. The controller stabi-
lizes the position and attitude of a rigid body robustly and
almost globally asymptotically. The position dynamics are
formulated in the body frame, which allows direct usage of
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Fig. 15 Quadrotor carrying the pendulum in redwithmp = 49g during
the experiment

sensor measurements, such as the combination of IMU and
optical flow. Through a specific set of transformation matri-
ces, the position system is rendered LTI, allowing the exploit
of linear control techniques that optimally stabilizes it. At
first, position and attitude are addressed separately. The ori-
gin of the position controller exhibits exponential stability
and ISS properties. The attitude controller, derived from a
set of nonlinear transformations and input to state feedback,
renders the attitude system almost globally stable. The tech-
nique enables the fine tuning of the attitude controller through

Fig. 16 Experimental responses obtained in the pendulum test with the
proposed control approach

a LTI system, while maintaining its properties. Furthermore,
by analysis of the Lyapunov function for the combined sys-
tem, and accounting for the interconnection term, the overall
closed-loop system exhibits exponential stability properties
when certain conditions are satisfied. Experimental and sim-
ulation results were shown to assess the performance of the
proposed controller.

Appendix A: Proof of Lemma 1

The thrust T is retrieved by setting

‖ut‖ = ‖v‖ ≡
T = m

∣∣∣∣
√

‖ϑ‖2 − u∗
1
2 − u∗

2
2 − u∗

3

∣∣∣∣ > 0
.

Furthermore, and due to the vehicle capabilities, the thrust
cannot be negative, which implies

T > 0 �⇒ ∥∥u∗∥∥ < ‖ge3 − p̈d‖ .

Then, in order to compute R1 Eq. 28 and R2 Eq. 30 the norm
of ut and ϑ must greater than zero, i.e.,

‖ut‖ = ‖ϑ‖ > 0,

which can be achieved by guaranteeing the following condi-
tion

g − p̈Td e3 �= 0.

Appendix B: Proof of Lemma 2

By using the definition of [ω×] = RT Ṙ and taking the time
derivative of Eq. 28, the following holds

R1[ω1×]e3 = d

dt

(
ut

‖ut‖
)

≡

ω1 =
[
−WRT

1
d
dt

(
ut‖ut‖

)

ω13

] ,

whereω13 = −bT1 ḃ2, since R1[ω1×]e2 = d
dt (b2). The com-

putation of ω2 follows the same approach, i.e.,

R1[ω2×]e3 = d

dt

(
ϑ

‖ϑ‖
)

≡

ω2 =
[
−WRT

2
d
dt

(
ϑ

‖ϑ‖
)

ω23

] ,
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where ω23 = −dT1 ḋ2, since R2[ω2×]e2 = d
dt (d2). The

expression for the desired angular acceleration ω̇1 and ω̇2

follows directly from derivative in order to time of ω1 and
ω2, respectively.

Then, by taking the derivative of Eq. 34, one can verify
that

ωd = RT
1 (ω2 − ω1).

The expression for the angular acceleration ω̇d is computed
by taking the time derivative of ωd .

By Assumption 1 and backed by Theorem 2, the variables
ω, ω̇, x1, ẋ1, and ẍ1 are bounded signals. Consequently, the
first and second time derivatives of ut are bounded functions
as well. Furthermore, from the assumptions on the references
pd andψd given in Section 2.2 and by considering that Eq. 32
holds true, one may conclude, by inspection of ωd and ω̇d ,
that

|ωd | ≤ �1 ∀ t ≥ 0, �1 ∈ R≥0

|ω̇d | ≤ �2 ∀ t ≥ 0, �2 ∈ R≥0.
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