
https://doi.org/10.1007/s10846-023-02003-0

REGULAR PAPER

A Reinforcement Learning Approach for Continuum Robot Control

Turhan Can Kargin1 · Jakub Kołota2

Received: 22 April 2023 / Accepted: 16 October 2023 / Published online: 22 November 2023
© The Author(s) 2023

Abstract
Rigid joint manipulators are limited in their movement and degrees of freedom (DOF), while continuum robots possess a
continuous backbone that allows for free movement and multiple DOF. Continuum robots move by bending over a section,
taking inspiration from biological manipulators such as tentacles and trunks. This paper presents an implementation of
a forward kinematics and velocity kinematics model to describe the planar continuum robot, along with the application of
reinforcement learning (RL) as a control algorithm. In this paper, we have adopted the planar constant curvature representation
for the forward kinematicmodeling. This choice wasmade due to its straightforward implementation and its potential to fill the
literature gap in the field RL-based control for planar continuum robots. The intended control mechanism is achieved through
the use of Deep Deterministic Policy Gradient (DDPG), a RL algorithm that is suited for learning controls in continuous
action spaces. After simulating the algorithm, it was observed that the planar continuum robot can autonomously move from
any initial point to any desired goal point within the task space of the robot. By analyzing the results, we wanted to recommend
a future direction for research in the field of continuum robot control, specifically in the application of RL algorithms. One
potential area of focus could be the integration of sensory feedback, such as vision or force sensing, to improve the robot’s
ability to navigate complex environments. Additionally, exploring the use of different RL algorithms, such as Proximal Policy
Optimization (PPO) or Trust Region Policy Optimization (TRPO), could lead to further advancements in the field. Overall,
this paper demonstrates the potential for RL-based control of continuum robots and highlights the importance of continued
research in this area.

Keywords Reinforcement Learning · DDPG algorithm · Continuum robot

Highlights

• Implementing the forward kinematics and velocity kine-
matics model for the planar case of a continuum robot

• Reinforcement learning has been applied as a control
algorithm for continuous robot control

• Validating results obtained by applying the Deep Deter-
ministic PolicyGradient (DDPG) reinforcement learning
algorithm

1 Introduction

The concept behind continuum robots is inspired by the nat-
ural abilities of certain biological organisms, such as snakes,

B Jakub Kołota
Jakub.Kolota@put.poznan.pl

1 Izmir, Turkey

2 Poznan University of Technology, Institute of Automatic
Control and Robotics, Piotrowo 3A, Poznan 60-965, Poland

elephant trunks, octopus tentacles, and similar creatures [1].
Unlike traditional rigid-jointmanipulators, continuum robots
bend individually for each section by creating a sequence
of continuous non-joint arcs [2]. After extensive research
and development in academic settings, these designs have
recently been applied to large-scale grasping,movement, and
positioning in industrial contexts, as well as search and res-
cue operations in confined spaces [8]. They have also gained
popularity in surgical applications [9], as they offer adapt-
able qualities that are particularly advantageous in medical
contexts. With the ability to manipulate objects with an infi-
nite number of degrees of freedom (DOF) on small scales,
continuum robots provide flexible access for the target and
less intrusion for the patient.

Conventional rigid joint manipulators, also known as
discrete manipulators, have a limited number of operable,
series-independent, rigid connections [2]. Despite their lim-
itations, they are highly practical for many tasks. However,
in constrained environments, they may not be able to reach
the desired end-effector position, resulting in failure to meet
location criteria. Another disadvantage of discrete manipu-

123

Journal of Intelligent & Robotic Systems (2023) 109: (2023) 109:77

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-02003-0&domain=pdf
http://orcid.org/0000-0002-2177-1555

Fig. 1 Class of manipulators[2]

lators is that they require a specific tool, such as a gripper
or hand, to manipulate an object. In some cases, it may be
preferable to use a manipulator in sections, such as the ele-
phant trunk, to hold objects. Adding more joints to discrete
manipulators increases their flexibility and maneuverability,
resulting in redundancy and maneuverability. This elevates
them to the second category of manipulators, known as
serpentine robots, which includes hyper-redundant manipu-
lators. Continuum robots, on the other hand, lack rigid joints
and bend continuously along their length, similar to biologi-
cal bodies and tentacles. This makes continuum robots more
maneuverable than discrete and serpentine manipulators, but
also makes their kinematics more complex. See Fig. 1.

There are numerous methods for controlling continuum
robots, such as PID and predictive control, which are based
on explicitly implemented kinematics or dynamics [3–6].
Continuum robots, with their inherent flexibility and high
degree of freedom, present unique control challenges that
are not adequately addressed by existing techniques. As
highlighted by [7], the soft and continuously deformable
nature of continuum robots introduces significant complexi-
ties in their control. Traditional control methods often rely on
precise mathematical models and struggle to handle the non-
linear dynamics and uncertainties associated with continuum
robots. Furthermore, these methods are typically designed
for rigid robots and do not fully exploit the potential of soft
robots’ embodied intelligence.

In contrast, Reinforcement Learning (RL) offers a promis-
ing alternative for controlling continuum robots. RL algo-
rithms learn from interactions with the environment and
adapt their control policies accordingly, making them well-
suited to handle the complexities and uncertainties of contin-
uum robots. Moreover, RL does not require a precise model
of the robot and can learn effective control policies even in the
presence of model inaccuracies. Therefore, we believe that
RL holds significant potential for advancing the control of
continuum robots and addressing the limitations of existing
techniques.

RL is a cost-effective approach for controlling robots or
solving complex control problems. It involves training a

learnable architecture based on generated reward or penalty
values through trial and error. RL has become increasingly
popular due to its ability to handle control problems, make
challenging sequential decisions, and solve a wide range
of issues, even before being combined with deep learning.
However, combining deep learning techniques with RL has
increased the number of problems that have been solved,
as well as their success rate [10]. This combination works
better for high-dimensional state and action spaces. Deep
reinforcement learning (Deep RL) has been used in many
applications to surpass human levels. There have been several
significant experiments using deep RL in games, including
beating even the best poker players in the world [11, 12],
playing video games from pixels [13, 14], and mastering the
game of Go with programs like AlphaGo [15]. RL and Deep
RL are used in a variety of academic and commercial con-
texts, including robotics [16–19], autonomous vehicles [20],
banking [21], smart grids [22], and the energy sector [23].
RL in robotics allows robots to interact with their environ-
ment and learn the optimal path or behavior through trial and
error. Instead of explicitly defining the mathematical details
of a problem’s solution, the control task designer in RL pro-
vides feedback in the form of a scalar objective function
that measures the robot’s performance over one step. There
exist multiple RL techniques that can be employed to address
the control problem in continuum robots [24–27]. For exam-
ple, [26] employed a control strategy grounded in deep Q
learning to successfully accomplish 2D position reaching.
Additionally, [27] proposed a control method that does not
rely on a specific model, utilizing Q learning. This method
was then applied to amulti-segment softmanipulator in order
to achieve 2D position reaching.

RL can be categorized as either model-based or model-
free. Two different methods are used in the model-free
approach,which are value-based and policy-based. In policy-
based methods, we directly train a policy function, while in
value-based methods, we train a value function that maps a
state to the expected value of being in that state. The founda-
tions of these RL approaches and methods are based on the
Markov decision process. TheMarkov decision process is an
approach to predicting the best next state (s

′
) by dynamically

computing the rewards (Q(s, a) = E[R[s, a]]) of possible
action options (a) for discrete-time scholastic events with
respect to the current state (s).

The deep deterministic policy gradient (DDPG) algorithm
intersects two different methods, combining the ideas of the
deterministic policy gradient (DPG) and the deep Q-network
[28]. DDPG consists of two deep neural networks, similar to
the Actor-Critic method. The actor suggests an action given
a state, while the critic predicts whether the action is good
or bad with a continuous numeric value given a state and an
action. Therefore, DDPG can solve the continuous state and
action space. DDPG has become a frequently used algorithm

123

77 Page 2 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

in the literature [29–32]. For example, it has been used to
stabilize the end-effector of a humanoid robot with 27 DOFs
during its movement [29]. In another study, a specialized
DDPG architecture called the twin-delayed DDPG structure
was used to perform an inverse kinematic solution of a 5-
DOF robot arm [30]. Detecting whether an object is in the
workspace and touching an object in the workspace of a 7
DOF robot was achieved using a DDPG structure in another
study [31]. Altitude control has been achieved not only in
articulated robots, but also in systems such as unmanned
aerial vehicles with the help of DDPG [32].

This paper aims to demonstrate the implementation of a
forward kinematic model using a constant curvature repre-
sentation and a velocity kinematics framework to simulate
the planar continuum robot environment. The objective is to
solve a 2D position-reaching task using the RL approach to
control a continuum robot in a simulation environment. The
DDPG algorithm is employed to learn controls in continu-
ous action spaces, which is crucial for the intended control
mechanism.The algorithm’s featureswere examined through
several simulations, and the results are presented. The sim-
ulations involved the continuum robot reaching a goal state
whileminimizing distance error. To our knowledge, the com-
bination of the DDPG algorithm with our chosen kinematic
model is a unique contribution to the field. This research not
only underscores the immediate applicability of our approach
but also paves the way for its potential expansion to more
complex robotic systems in the future.

2 Kinematics Modeling of Continuum Robot

Real-world applications of continuum robotics require the
usage of robot shape and motion models. To simulate the

control based on RL described in this paper, it’s neces-
sary to define the forward kinematic model, which provides
the correct shape of the continuum robot, and the velocity
kinematics, which provide the correct motion. This section
provides an overview of forward and velocity kinematics
design for continuum robots.

The forward kinematics of continuum robots contains
three spaces that can be decomposed into two mappings,
which are a mapping between the robot’s actuator space and
the configuration space, and a mapping between the configu-
ration space and the task space [1]. You can see the mapping
in Fig. 2.

Several kinematic frameworks have been presented for
continuum robot modeling. [33] discussed some of these
models, such as variable curvature representation, con-
stant curvature representation, pseudo-rigid body, and modal
approach, in detail and shared the models implemented as
open source. The planar constant curvature representation is
chosen as the kinematic model in this paper due to its ease of
implementation and a novel choice for the kinematic model
in the context of RL-based continuum robot control. This
simple model captures the key features of continuum robots,
like their continuous structure and high degree of freedom.
By focusing on the basics of continuum robot control, we
could test our RL approach. The planar model is also rele-
vant to real-world scenarios where continuum robots operate
in two-dimensional spaces. The insights we gained from this
study apply not only to the planar model, but also to more
complex continuum robots.

2.1 Forward Kinematics with D-HMethod

In this section of the paper, the solution for the geometric
shape of a three-section continuum robot using the Denavit-

Fig. 2 Three space of
continuum robot and the
mapping directions

123

Page 3 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Hartenberg (DH) method, which is one of the forward
kinematics frameworks, is presented. The purpose of deriv-
ing the forward kinematics model of the continuum robot
is to calculate the new position of the robot as a result of
the actions taken by the robot in the control problem with
the RL approach. In order to infer the shape of continuum
designs, it is necessary to obtain a description of their move-
ment. Because of the continuous nature of the design, joint
angles and joint lengths do not provide a simple and physi-
cally feasible description of themanipulator’s shape. Instead,
a kinematic model that describes the manipulator’s geometry
using curvatures can offer a more realistic and understand-
able description. When using a constant curvature approach,
a planar curve can be thought of as moving in three coupled
movements.

1. rotation by an angle θ

2. translation by an amount of ‖ x ‖, and
3. rotation by the angle θ once more,

where x is referred to as the position vector of the curve’s end-
point.With the above information, we have a discrete motion
description of how the curve moves. [34] obtained the homo-
geneous transformationmatrix in Eq. 1 using amodifiedD-H
approach for forward kinematic analysis, just as is applied
for conventional rigid joint manipulators.

A3
0 = A1

0A
2
1A

3
2 =

⎡
⎢⎢⎣
cos(κl) − sin(κl) 0 1

κ
{cos(κl) − 1}

sin(κl) cos(κl) 0 1
κ
sin(κl)

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (1)

The homogeneous transformation matrix for the curve
from frame 0 to frame 3 can be written in terms of the cur-
vature κ and the total arc length l. This representation gives
us the shape of only the first section. In order to know the
endpoint position of the three-section robot, the product of
the matrix of each partition must be calculated. The frames
for a three-section continuum robot can be setup as a com-
bination of three sections. The homogeneous transformation
matrix used for forward kinematics is the product of three
matrices of the form of Eq. 1. Therefore, the transformation
matrix from frame 0 to frame 9 is shown in Eq. 2.

A9
0 = A3

0A
6
3A

9
6

=

⎡
⎢⎢⎣
cos (ω1 + ω2 + ω3) − sin (ω1 + ω2 + ω3) 0 A14

sin (ω1 + ω2 + ω3) cos (ω1 + ω2 + ω3) 0 A24

0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ (2)

where κi and li are the curvature and total arc length,
respectively for section i and ωi = κi li for i = {1, 2, 3}.

The following are the elements of the matrix that were not
previously defined:

A14 = 1

κ1
{cosω1 − 1} + 1

κ2
{cos (ω1 + ω2) − cosω1}

+ 1

κ3
{cos (ω1 + ω2 + ω3) − cos (ω1 + ω2)}

A24 = 1

κ1
sinω1 + 1

κ2
{sin (ω1 + ω2) − sinω1}

+ 1

κ3
{sin (ω1 + ω2 + ω3) − sin (ω1 + ω2)}

(3)

Equation 3 captures the spatial relationships and transfor-
mations as the continuum robot moves in the planar space.
The components A14 and A24 of the transformation matrix
are derived from the robot’s configuration and kinematic con-
straints. A14 represents the x-coordinate transformation and
A24 represents the y-coordinate transformation. Note that the
total arc length for i = {1, 2} must be used so that Section 3
is properly positioned, but any arc length can be used for
the final section depending on where the point of interest
lies in the section. The total arc length for the final section
gives the kinematics in terms of the end point. To provide a
clearer understanding of the planar continuum robot used in
our study, we present the kinematics parameters in Fig. 3 for
a single section of the continuum robot. r defines the radius
of the resulting arc, which is equal to 1

κ
.

2.2 Velocity Kinematics

Positions are not enough to create movement. Therefore,
velocities are needed for a better interaction. Given curvature
velocities, we can calculate how fast the endpoint moves and
how fast each curvature must move to guarantee a desired
endpoint velocity using the velocity kinematics framework.

The velocity kinematics of a continuum robot can be
expressed similar to traditional kinematic analysis as Eq. 4

ẋ = J q̇ (4)

where x ∈ R
m×1 is the vector of the task space that corre-

sponds to position and / or orientation, and the dot notation
represents differentiation with respect to time, denoting the
time derivative of the position and/or orientation variables.
For the sake of simplicity, we have not taken orientation into
account in our currentwork.While orientation is an important
aspect of robot control, our primary focus in this study is on
position control. By simplifying the control task to exclude
orientation, we aim to establish a foundational understand-
ing of the robot’s planar movement dynamics using our RL

123

77 Page 4 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Fig. 3 Illustration of specified
kinematics parameters

approach.However,we acknowledge that in real-world appli-
cations, orientation can play a crucial role, and we plan to
incorporate it in our future work to provide a more compre-
hensive control solution. To be clear for our three-section
planar robot:

q̇ = [κ̇1, κ̇2, κ̇3]
T , ẋ = [ẋ, ẏ]T (5)

The matrix J called as Jacobian matrix, and is a function
of the ’joint’ variables q. The Jacobian matrix represents
the linear sensitivity of the tip point of the continuum robot
velocity ẋ to the curvature velocity κ̇ , and it is a function
of curvature variables κ . When taking partial derivatives of
forward kinematic equations, as in Eq. 6, one can obtain the
components of the Jacobian Ji j :

[
ẋ
ẏ

]
=

[
J11 J12
J21 J22

] [
q̇1
q̇2

]
(6)

Equation 7 will result from writing it using the chains rule.

dx

dt
= ∂x

∂q1

dq1
dt

+ ∂x

∂q2

dq2
dt

dy

dt
= ∂ y

∂q1

dq1
dt

+ ∂ y

∂q2

dq2
dt

(7)

If this case in Eq. 7 applied to the continuum robot, Eq. 8 is
obtained.

dx

dt
= ∂x

∂κ1

dκ1

dt
+ ∂x

∂κ2

dκ2

dt
+ ∂x

∂κ3

dκ3

dt
dy

dt
= ∂ y

∂κ1

dκ1

dt
+ ∂ y

∂κ2

dκ2

dt
+ ∂ y

∂κ3

dκ3

dt
(8)

We can extract the Jacobian Matrix elements as below:

J =
[

∂x
∂κ1

∂x
∂κ2

∂x
∂κ3

∂ y
∂κ1

∂ y
∂κ2

∂ y
∂κ3

]
(9)

Finally, we obtain Eq. 10.

[dx
dt
dy
dt

]
=

[
∂x
∂κ1

∂x
∂κ2

∂x
∂κ3

∂ y
∂κ1

∂ y
∂κ2

∂ y
∂κ3

] ⎡
⎣

dκ1
dt
dκ2
dt
dκ3
dt

⎤
⎦ (10)

Robotics and control theory often rely on Jacobian matrices.
In short, a Jacobian helps to explain how two different system
representations interact dynamically. In our specific example,
this connection is based on both position and curvature. The
aim of velocity kinematics is to describe the motion of an
endpoint. However, the motion of the endpoint is heavily
restricted by curvatures. As a result, describing the motion
of the endpoint also means describing the states of motion at
those curvatures.

The velocity kinematics plays a pivotal role in generat-
ing movement. In our approach, the action is defined as
the derivative of curvature with respect to time (κ̇). By
incorporating the Jacobian matrix derived from the forward
kinematics, we are able to calculate the movement at each
time step, thus facilitating a smooth and controlled move-
ment of the robot. This integration of velocity kinematics is
crucial in creating a dynamic and responsive control system.

3 Reinforcement Learning

Both humans and animals learn best through trial and error.
They interact with their surroundings, make small changes,

123

Page 5 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

and observe the outcomes. For example, consider how a new-
born learns to walk. It may take a few days of attempting
different actions before they can stand up and walk without
falling. During this process, the baby learns from rewards
and penalties - they are rewarded for making progress and
penalized for falling [35]. This incentive system is innate to
humans and animals and encourages us to pursue behaviors
that result in positive rewards and avoid behaviors that result
in negative ones. This type of learning is called reinforcement
learning and is modeledmathematically based on human and
animal learning patterns. In a reinforcement learning frame-
work, an agent interacts with the environment E by receiving
observations st and executing actions at . After each t time
step, the agent receives a scalar reward rt and a new state
st+1. Figure 4 illustrates this process.

Algorithms for reinforcement learningcanbebroadly divided
into two groups.Model-based andmodel-free approaches are
the names for these. Model-based algorithms are constructed
using the environment’s prior knowledge or a mathematical
model that represents it. Algorithms for model-free rein-
forcement learning are unaware of their environment. By
simulating the environment with a Markov decision pro-
cess, which is typically a random process, algorithms are
created and learned. The agent investigates the environment,
acquires knowledge about them, and then chooses the best
course of action. This procedure is an example of reinforce-
ment learning that involves trial and error as well as reward
accumulation. Today, reinforcement learning is used inmany
different fields, and one of the key factors in its success is that
it doesn’t need an environment model. It interacts with the
environment in this way to find solutions to a variety of engi-
neering issues. However, it has often been used in robotics
and control problems.

BasicRL algorithms such asQ learning and Sarsa learning
are called tabular methods in the literature [37]. For discrete

state and action spaces, these techniques are appropriate. The
control problem’s state space and the control signal are actu-
ally stated in continuous time. The derivative values of the
curvature, which is our control signal, in the continuum robot
control problem discussed in this paper are defined continu-
ous. By discretizing the continuous state and action spaces,
Q learning and Sarsa learning algorithms can be used as
practical implementations of reinforcement learning, how-
ever in reality, the errors caused by discretization constitute
a concern in control applications. Another problem with the
tabular method of reinforcement learning is the computa-
tional cost. Increasing the size of our discrete state and action
space leads to an increase in computational complexity and
computational cost.

As the amount of accessible data grows exponentially
every year and the hardware quality of computers improves
(especially GPUs), deep learning methods have started to
develop rapidly, and thus deep reinforcement learning was
born from the combination of artificial neural networks with
reinforcement learning [10]. Thus, algorithms that can oper-
ate in continuous state and action space have been developed.
The application of RL to the control of continuum robots
offers several potential advantages and disadvantages com-
pared to other existing control methods. Pros of RL for
Continuum Robot Control as follows:

• Adaptability tochangingenvironmentsandsystemdynamics.
• Flexibility for complex and nonlinear systems.
• Autonomous learning without relying on human-engineered
controllers.

• Scalability to high-dimensional state and action spaces.
• Generalization to similar tasks or robot platforms.

Cons of RL for Continuum Robot Control as follows:

Fig. 4 Agent and Environment
interaction in Reinforcement
Learning

123

77 Page 6 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

• Sample inefficiency, requiring numerous interactions
with the environment.

• Exploration-exploitation trade-off, challenging in contin-
uous and flexible systems.

• Safety concerns due to trial and error learning.
• Hyperparameter tuning for optimal performance.
• Lack of interpretability in learned policies.

In conclusion,whileRLoffers potential advantages for the
control of continuum robots in terms of adaptability, flexibil-
ity, autonomy, scalability, and generalization, it also has limi-
tations in termsof sample efficiency, exploration-exploitation
trade-off, safety concerns, hyperparameter tuning, and inter-
pretability. Careful consideration of these pros and cons is
necessary when applying RL to the control of continuum
robots, and further research and development are needed
to address the challenges and improve the performance and
safety of RL-based control methods for continuum robots.

3.1 Deep Reinforcement Learning

Deep reinforcement learning combines deep neural networks
with reinforcement learning algorithms to solve continuous
state control problems. While table-based algorithms like Q-
learning do not work well for these types of problems, deep
reinforcement learning methods are often used. One popu-
lar algorithm is deep Q-learning, but it is not effective for
continuous action space due to its reliance on a single neural
network. To address this issue, new algorithms with two neu-
ral networks that work well for both continuous state space
and continuous action space have been introduced [28, 38,
39].

As mentioned earlier, the environment of the continuum
robot is characterized by continuous control action and state.
This is an important factor to consider when choosing a rein-
forcement learning algorithm. To address this issue, we have
employed theDDPG algorithm, which is capable of handling
continuous action and state space. The DDPG algorithm uses
neural networks approximations to represent the actor-critic
algorithm. Based on the policy π , which is determined by the
present state, the actor chooses the current action. The critic
takes the current state and action as input, and is described by
an action-value function Q. In this paper, a deep neural net-
work with several layers is used to approximate the functions
Q and π .

A DDPG algorithm is a model-free off-policy algorithm
formed by combining the deterministic policy gradient and
deep Q Learning. It is built on DPG, which can operate
over continuous action spaces, and uses Experience Replay
and slow-learning target networks from deep Q learning. To
give a detailed mathematical background of the DDPG algo-
rithm, robot performs an action at ∈ RN in the environment

where the agent is in discrete time steps and records st+1, rt .
The aim of the agent is to maximize the sum of all rewards
Rt = ∑T

t=1 γ (t−1)rt (st , at) that it will create in the future.
Depending on ourπ policy, the actionwe take in a given state
and the reward valueswewill obtain accordingly change. The
expression of the policy can be deterministic or stochastic.
Equation 11 describes the expected return of taking an action
at in a certain state st , expressed by following a policyπ . This
return is represented by the action value function [28].

Qπ (st , at) = E [Rt | st , at] (11)

Extending Eq. 11 with the Bellman equation as a recursive
approximation, we obtain Eq. 12 for deterministic politics.

Qπ (st , at) = E
[
r (st , at) + γ Qπ (st+1, π (st+1))

]
(12)

The π (st+1) policy in the off-policy algorithms like Q learn-
ing algorithm is the ε− greedy approach. Parametric writing
of Eq. 12 to minimize the loss is shown in Eq. 13.

L
(
θQ

)
= E

[(
Q

(
st , at : θQ

)
− yt

)2]
(13)

where

yt = r (st , at) + γ Q
(
st+1, π (st+1) : θQ

)
(14)

It is possible to approximate Eq. 13 with multi-layer
neural networks. Equation 13 cannot be calculated in high-
dimensional action space with the Q learning algorithm.
The actor-critic approach is used to solve this problem. The
deterministic policy gradient maps states to actions using a
deterministic parametric policy function π (s | θμ). Using
the Critic Q(s, a) Bellman equation, Q is calculated as in
learning. The actor updates his parameters using a gradient-
based update using Eq. 15.

∇θπ J = E
[
∇aQ

(
s, a | θQ

)
|s = st ,

a = π (st)∇θπ π
(
st | θπ

)∣∣∣ s = st
]

(15)

Equation 15 is called the policy gradient. The π (st | θπ)

function is created with the deterministic policy gradient
algorithm and the deep Q learning algorithm approach. Deep
neural networks are used to approximate theπ (st | θπ) func-
tion. The values D = (st , at , rt , st+1) are saved in the created
memory. The st states are the current position and goal
position values for our robot. These different quantitative
characteristics in the data cause different scaling. By pro-
viding normalization of the data formed in the memory, it
is ensured that the artificial neural networks to be trained

123

Page 7 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Table 1 Noise parameters of
the DDPG Algorithm

Parameter Value

μ 0.00

θ 0.15

σ 0.20

optimize their parameters. The biggest challenge in continu-
ous action space is to discover the environment in which the
agent is located by applying appropriate actions. Since the
DDPG algorithm is an off-policy, it allows us to create the
discovery problem independently of the algorithm. To pro-
vide exploration, an Ornstein-Uhlenbeck process is added to
generate noise to the policy value produced by the actor, as
demonstrated in Eq. 16.

π ′ (st) = π
(
st | θπ

t

) + N (16)

You can find the parameters of the Ornstein-Uhlenbeck pro-
cess in Table 1.
where μ represents the mean value of the process, θ is a
positive constant that determines the speedofmean reversion,
and σ is a positive constant that determines the volatility of
the process.

3.1.1 Network Structure of the Reinforcement Learning
Approach

In our endeavor to develop a robust control mechanism for
planar continuum robots, we have adopted the DDPG algo-
rithm, a model-free, off-policy actor-critic algorithm that
operates in continuous action spaces. This section delineates
the structure of the actor and critic networks and the syner-
gies between them, offering a comprehensive insight into our
RL approach. The RL approach is grounded on a dual neural
network architecture comprising two primary components:
the Actor network and the Critic network. This architecture
is designed to seamlessly integrate the continuous control
capabilities of the actor network with the value estimation
proficiencies of the critic network, fostering a harmonized
learning environment.

The Actor network, responsible for determining the opti-
mal policy, is structured as a feedforward neural network. It
maps the current state of the robot to a specific action, aiming
to maximize the expected cumulative reward. The network
consists of:

• Input Layer: Accepts the state variables, initiating the
process of policy determination.

• Hidden Layers: Incorporates four hidden layers with
128, 256, 256, and 128 neurons respectively, facilitating
the learning of complex patterns in the data.

• Output Layer:Utilizes a tanh activation function to gen-
erate actions within a specified range, aligning with the
continuous action space of the problem.

The Critic network, on the other hand, evaluates the value
of the chosen action in the current state, aiding in the opti-
mization of the policy developed by the actor network. Its
structure is as follows:

• Input Layer: Receives both the state variables and the
actions proposed by the actor network as inputs.

• Hidden Layers: Comprises four hidden layers with a
similar configuration to the actor network, enhancing the
ability to learn intricate relationships between states and
actions.

• Output Layer: Produces a single output representing the
estimated Q-value of the chosen action-state pair.

ReLU (Rectified Linear Unit) activation functions are
employed in the hidden layers of both networks, promot-
ing efficient learning by mitigating the vanishing gradient
problem. The learning process is facilitated through the
backpropagation algorithm, complemented by the Adam
optimizer, fostering efficient convergence during the train-
ing phase. Training involves minimizing a loss function
that represents the difference between the predicted and
target Q-values, a process orchestrated by the critic net-
work. To prevent overfitting and foster model generalization,
batchnormalization anddropout techniques havebeen imple-
mented. A set of optimized hyperparameters, including actor
learning rate of 0.0001, critic learning rate of 0.0003 and a

Table 2 Hyperparameters of the DDPG Algorithm

Parameter Value

Optimizer Adam

Learning Rate Actor 0.0001

Learning Rate Critic 0.0003

Discount Factor (γ) 0.99

Batch Size 128

Replay Buffer Size 1000000

Actor Hidden Layer Number 4

Actor Hidden Layer Activation Function Relu

Actor Output Layer Activation Function Tangent Hyperbolic

Critic Hidden Layer Number 4

Critic Hidden Layer Activation Function Relu

Critic Output Layer Activation Function Linear

Maximum training steps 1000

Soft Update (τ) 0.001

123

77 Page 8 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

discount factor of 0.99, were determined through prelimi-
nary experiments to ensure stable and efficient learning. The
performance of the networks was assessed based on conver-
gence speed and the precision in achieving the desired goal
states in the simulation environment. Further insights into
performance metrics are elucidated in the "Simulations and
results" section. The Table 2 displays the hyperparameters to
summarize the discussion in this section.

3.2 Environment Design

The interaction between the environment, actors, and crit-
ics is well shown in the DDPG diagram in Fig. 5. In DDPG
based reinforcement learning, the environment responds to
an actor’s action by sending the critic an observation along
with a reward. The environment’s internal state encompasses
all observations made, and the reward reflects the action’s
success. To utilize this approach, two elements are required.
The first is the actor and critic networks, which are two dis-
tinct deep neural networks that determine the action and Q
value for the robot. The second is the environment, which is
a task or simulation that the Actor-Critic must solve in the
robot’s task space. This section provides details on our design
of the environment for implementing the DDPG algorithm,
which is an essential component of the process.

The aim of this task is to achieve the 2D position reach by
moving a three-section continuum robot from its initial state
qini to the goal state qgoal . The initial position of the robot,
denoted as (xini , yini), and the target position, denoted as(
xgoal , ygoal

)
, are randomly selected within the task space,

which is illustrated in Fig. 7. The task space is defined for a
continuum robot with a section length of 0.1 [m] and curva-
ture values ranging from −4[1

m] to 16[1
m]. Additionally, the

base of the continuum robot is mounted at the point (0,0).

Fig. 6 Three-section continuum robot with initial (orange) and goal
(red) state, goal tolerance δ. First section (blue), middle section (red)
and third section (red)

Figure 6 is included in the paper to provide readers with a
visual representation of the task that the robot is required to
perform. In this figure, du represents the Euclidean distance
between the robot’s current state and the target point, while
δ represents the tolerance or target circle that the robot must
enter in order to reach the target. This graphical representa-
tion helps readers better understand the criteria for successful
completion of the task (Fig. 7).

The environment specification is a crucial component of
the reinforcement learning methodology. In our study, we
directly apply the forward and velocity kinematics of the
robot, as covered in Section 2, to describe the planar con-

Fig. 5 Schematic diagram of
Deep Deterministic Policy
Gradient

123

Page 9 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Fig. 7 Task Space of three-section continuum robot

tinuum robot in the environment. The state consists of the
current position (x and y) and the goal position (xgoal and
ygoal) of the continuum robot in the planar coordinate sys-
tem. The state space is designed to be within the task space
of the robot. As the continuum robot moves in the environ-
ment, it will have three different curvature values (κ) since
it is a three-section robot. Therefore, we use κ̇ for each sec-
tion as the action space, with each κ̇ limited to the range of
[−1,+1].

To complete the environment, the reward function must
be designed. The proper design of the reward function is
crucial for the agent to take meaningful action in reinforce-
ment learning problems. Given that our aim is to control the
continuum robot for point-to-point access, it makes sense to
create a reward function that calculates the distance to the
goal position at each time step. To establish the reward func-
tion, we started by computing the Euclidean distance to the
goal state utilizing Eq. 17. The resulting distance value was
then multiplied by negative one, as demonstrated in Eq. 18.
This function multiplies the Euclidean distance between the
robot’s current state and the goal state by negative one to
increase the reward value as the robot gets closer to the target.
The reward is negative to discourage the robot from deviat-

ing from the goal state, with the penalty increasing as the
distance increases. This reward function is the foundation of
the RL algorithm for controlling the continuum robot, and
shapes its behavior during the learning phase.

du =
√

(x − xgoal)2 + (y − ygoal)2 (17)

r = −1 · (du)
2 (18)

4 Simulations and results

This section discusses the results of the RL algorithm used in
simulations. At the start of each simulation episode, the robot
is randomly spawned within the task space. The base of the
continuum robot ismounted at point (0,0), and each section of
the three-section robot starts from a random position relative
to this point. The simulation uses a time step of �T equal to
0.1 s. To accomplish the intended task, the robot was trained
using the DDPG algorithm with the keras-rl framework [36].

To successfully train the algorithm, at least 5000 episodes
are required, with a maximum of 1000 steps per episode to
prevent the robot from getting stuck. As a result, the robot
needs a maximum of 5,000,000 steps to perform good learn-
ing on the targeted region in the workspace. After training
the continuum robot on the NVIDIA TESLA P40 Graphical
Processing Unit (GPU) accelerator using cudatoolkit version
11.2 and cudnn version 8.1.0 for approximately 14 hours, the
2D position reach task was achieved. To effectively train the
neural networks of Actor and Critic, it is important to input
appropriate hyperparameters.

A 250-episode moving average of the rewards, along with
the rewards received for each episode, were saved to evaluate
the performance of the RL algorithm (See Fig. 8). The use of
a 250-episode moving average facilitates the interpretation
of the plots by smoothing out any fluctuations.

Fig. 8 Moving average and
episodic reward per episode

123

77 Page 10 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Fig. 9 General control scheme

After the training phase was completed, the neural net-
work weights were saved and made ready for use in the
control application during the testing phase. The control
scheme for the robot is presented in Fig. 9, where an actor
network, also known as the policy network, takes the current
and goal states as inputs to produce the action κ̇ for each of
the three robot sections at every time step.

Figure 10 depicts some examples of the robot’s motion
on the X-Y plane during test simulations. To evaluate the
performance of the control algorithm, multiple simulations

were conducted. Figure 11 (a) and (b) illustrate the total error
value and the error values for the X-axis and Y-axis at each
step of the continuum robot, respectively. The confidence
bands for these figures provide a statistical measure of the
consistency of the results across the multiple simulations.
The figures demonstrate that the robot is capable of reaching
the goal point and maintains its position in subsequent sim-
ulation steps. As a result, the error converges to nearly zero
after a certain point.

Fig. 10 Frames of a few sample episodes with the robot’s trajectory

123

Page 11 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

Fig. 11 Total error of the continuum robot (a), error in X and Y axis (b), position in X and Y axis (c), curvature values for each step (d)

Further analysis of the results can be observed in Fig. 11
(c) and (d) that are obtained from single test simulation. Fig-
ure 11 (c) shows the position for the X-axis and Y-axis at
each step, providing additional insight into the robot’s trajec-
tory. Figure 11 (d) displays the curvature value for the three
different robot sections at each step during a single simu-
lation. These figures offer a more detailed understanding of
the robot’s movement and provide evidence of the effective-
ness of the control algorithm in achieving the desired results.
Overall, the significant point of using RL for a continuum
robot is its ability to enable autonomous learning and adapt-
ability in the environment, providing a promising approach
for advancing the capabilities and applications of continuum
robots.

5 Conclusions

Reinforcement Learning (RL) has evolved from being a term
in psychology to becoming a common method of learning in
computer science. RL is often observed in nature, such as
when a cheetah runs at high speeds hours after birth without
any instruction. In summary, this paper has demonstrated the
application of reinforcement learning in the context of the
planar continuum robot control. This study presented a pio-
neering approach to continuum robot control by melding a

specific forward kinematics and velocity kinematics model
with anRL control algorithm. The results underscore the effi-
cacy of our method, especially in the context of the planar
continuum robot. While our immediate findings are promis-
ing, they also pave the way for future research. The novelty
of our approach is evident in its adaptability and potential
scalability to more complex robotic systems. As the field of
robotics continues to evolve, we believe that such integrative
methods will play a pivotal role in addressing the multi-
faceted challenges of robot control. The use of the constant
curvature representation for forward kinematics to describe
a shape as well as velocity kinematics for the robot’s motion
allowed for the creation of an environment for RL to learn the
motion of the robot from an initial point to a goal point. Tradi-
tional reinforcement learning algorithms are not suitable for
this problem due to its continuous state and action spaces,
which led to the application of the DDPG algorithm for the
control of the continuum robot. The paper also discussed the
selection of appropriate choices for the reward function, state
space, and action space, which are essential components of
reinforcement learning systems. Tuning the hyperparameters
of the two neural networks used in the DDPG algorithm was
also highlighted as necessary to obtain a suitable solution.
The results of the simulations show that the DDPG algo-
rithm was able to learn the control of the continuum robot
and move it from an initial point to a goal point efficiently.
Our future work involves extending our current model to

123

77 Page 12 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

include a spatial movement platform and orientation, which
will allow us to capture the full complexity of continuum
robot control and make our model more realistic. We will
also investigate the use of other reinforcement learning algo-
rithms, like PPO or TRPO, and integrate sensory feedback
to enhance the robot’s ability to navigate complex environ-
ments. Overall, this paper contributes to the growing body
of knowledge on reinforcement learning and its application
in robotics, particularly in the control of continuum robots.
The results demonstrate the potential of RL-based control of
continuum robots and highlight the importance of continued
research in this area to achieve significant breakthroughs in
robotics technology.

Acknowledgements This work was supported by the statutory grant
No. 0211/SBAD/0121.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Webster, R.J., Jones, B.A.: Design and kinematic model-
ing of constant curvature continuum robots: a review. Int. J.
Robot. Res. 29(13), 1661–1683 (2010). https://doi.org/10.1177/
0278364910368147

2. Robinson, G., Davies, J.B.C.: Continuum robots - a state of the art.
Proceedings 1999 IEEE International Conference on Robotics and
Automation (Cat. No.99CH36288C). 4, 2849–2854 (1999). https://
doi.org/10.1109/ROBOT.1999.774029

3. Gravagne, I.A., Rahn, C.D., Walker, I.D.: Large deflection dynam-
ics and control for planar continuum robots. IEEE/ASME Trans-
actions on Mechatronics 8(2), 299–307 (2003). https://doi.org/10.
1109/TMECH.2003.812829

4. Bailly, Y., Amirat, Y.: Modeling and control of a hybrid continuum
active Catheter for Aortic Aneurysm Treatment. In: Proceed-
ings of the 2005 IEEE International Conference on Robotics and
Automation. 924–929 (2005). https://doi.org/10.1109/ROBOT.
2005.1570235

5. Best, C.M., Gillespie, M.T., Hyatt, P., Rupert, L., Sherrod, V.,
Killpack, M.D.: A new soft robot control method: using model
predictive control for a pneumatically actuated humanoid. IEEE
Robot. Autom.Mag. 23(3), 75–84 (2016). https://doi.org/10.1109/
MRA.2016.2580591

6. Penning, R.S., Jung, J., Ferrier, N.J., Zinn, M.R.: An evaluation
of closed-loop control options for continuum manipulators. In:
2012 IEEE International Conference on Robotics and Automation.
5392–5397 (2012). https://doi.org/10.1109/ICRA.2012.6224735

7. Della Santina, C., Duriez, C., Rus, D.: Model-based control of soft
robots: a survey of the state of the art and open challenges. IEEE

Control Syst. Mag. 43(3), 30–65 (2023). https://doi.org/10.1109/
MCS.2023.3253419

8. Jones, B.A., Walker, I.D.: Practical kinematics for real-time imple-
mentation of continuum robots. IEEE Trans. Robot. 22(6), 1087–
1099 (2006). https://doi.org/10.1109/TRO.2006.886268

9. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for
medical applications: a survey. IEEE Trans. Robot. 31(6), 1261–
1280 (2015). https://doi.org/10.1109/TRO.2015.2489500

10. Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I.,
Wierstra, D., Riedmiller, M.A.: Playing Atari with deep reinforce-
ment learning. CoRR (2013). http://arxiv.org/abs/1312.5602

11. Brown, N., Sandholm, T.:Libratus: The superhuman AI for no-
limit Poker. Proceedings of the Twenty-Sixth International Joint
Conference onArtificial Intelligence, IJCAI-17, 5226–5228 (2017)

12. Moravčík, M., Schmid, M., Burch, N., Lisý, V., Morrill, D., Bard,
N., Davis, T., Waugh, K., Johanson, M., Bowling, M.: DeepStack:
expert-level artificial intelligence in heads-up no-limit poker. Sci-
ence 356(6337), 508–513 (2017) https://doi.org/10.1126/science.
aam6960

13. Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A.A., Veness,
J., Bellemare, M.G., Graves, A., Riedmiller, M., Fidjeland,
A.K.: Ostrovski: Human-level control through deep reinforcement
learning. Nature. 518, 529–533 (2015). https://doi.org/10.1038/
nature14236

14. OpenAI: Openai five. OpenAI, OpenAI (2021) https://openai.com/
five/

15. Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., van den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam,
V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbren-
ner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K.,
Graepel, T., Hassabis, D.:Mastering the game ofGowith deep neu-
ral networks and tree search. Nature 529(7587), 484–489 (2016).
https://doi.org/10.1038/nature16961

16. Levine, S., Finn, C., Darrell, T., Abbeel, P.: End-to-end training of
deep Visuomotor Policies. J. Mach. Learn. Technol. 17(1), 1334–
1373 (2015). https://arxiv.org/abs/1504.00702

17. Gandhi, D., Pinto, L., Gupta, A.: Learning to fly by crashing (2017)
https://arxiv.org/abs/1704.05588

18. Pinto, L., Andrychowicz, M., Welinder, P., Zaremba, W., Abbeel,
P.: Asymmetric actor critic for image-based robot learning (2017).
https://arxiv.org/abs/1710.06542

19. OpenAI: Solving rubik’s Cube with a robot hand. OpenAI (2022).
https://openai.com/blog/solving-rubiks-cube

20. Pan, X., You, Y., Wang, Z., Lu, C.: Virtual to real reinforce-
ment learning for autonomous driving (2017). https://arxiv.org/abs/
1704.03952

21. Deng, Y., Bao, F., Kong, Y., Ren, Z., Dai, Q.: Deep direct reinforce-
ment learning for financial signal representation and trading. IEEE
Trans. Neural Netw. Learn. Syst. 28(3), 653–664 (2017). https://
doi.org/10.1109/TNNLS.2016.2522401

22. François-Lavet, V.: Contributions to deep reinforcement learning
and its applications in smartgrids, ULiège - Université de Liège
(2017)

23. Liu, T., Tan, Z., Xu, C., Chen, H., Li, Z.: Study on deep rein-
forcement learning techniques for building energy consumption
forecasting. Energy Build. 208, 109675 (2020). https://doi.org/10.
1016/j.enbuild.2019.109675

24. Liu, J., Shou, J., Fu, Z., Zhou, H., Xie, R., Zhang, J., Fei, J.,
Zhao, Y.: Efficient reinforcement learning control for continuum
robots basedon Inexplicit PriorKnowledge.CoRRabs/2002.11573
(2020). https://arxiv.org/abs/2002.11573

25. Thuruthel, T.G., Falotico, E., Renda, F., Laschi, C.: Model-based
reinforcement learning for closed-loop dynamic control of soft
robotic manipulators. IEEE Trans. Robot. 35(1), 124–134 (2019).
https://doi.org/10.1109/TRO.2018.2878318

123

Page 13 of 14 77Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1177/0278364910368147
https://doi.org/10.1177/0278364910368147
https://doi.org/10.1109/ROBOT.1999.774029
https://doi.org/10.1109/ROBOT.1999.774029
https://doi.org/10.1109/TMECH.2003.812829
https://doi.org/10.1109/TMECH.2003.812829
https://doi.org/10.1109/ROBOT.2005.1570235
https://doi.org/10.1109/ROBOT.2005.1570235
https://doi.org/10.1109/MRA.2016.2580591
https://doi.org/10.1109/MRA.2016.2580591
https://doi.org/10.1109/ICRA.2012.6224735
https://doi.org/10.1109/MCS.2023.3253419
https://doi.org/10.1109/MCS.2023.3253419
https://doi.org/10.1109/TRO.2006.886268
https://doi.org/10.1109/TRO.2015.2489500
http://arxiv.org/abs/1312.5602
https://doi.org/10.1126/science.aam6960
https://doi.org/10.1126/science.aam6960
https://doi.org/10.1038/nature14236
https://doi.org/10.1038/nature14236
https://openai.com/five/
https://openai.com/five/
https://doi.org/10.1038/nature16961
https://arxiv.org/abs/1504.00702
https://arxiv.org/abs/1704.05588
https://arxiv.org/abs/1710.06542
https://openai.com/blog/solving-rubiks-cube
https://arxiv.org/abs/1704.03952
https://arxiv.org/abs/1704.03952
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.1109/TNNLS.2016.2522401
https://doi.org/10.1016/j.enbuild.2019.109675
https://doi.org/10.1016/j.enbuild.2019.109675
https://arxiv.org/abs/2002.11573
https://doi.org/10.1109/TRO.2018.2878318

26. Wu, Q., Gu, Y., Li, Y., Zhang, B., Chepinskiy, S.A., Wang, J.,
Zhilenkov, A.A., Krasnov, A.Y., Chernyi, S.: Position control
of cable-driven robotic soft arm based on deep reinforcement
learning. Information. 11(6), 310 (2020). https://doi.org/10.3390/
info11060310 https://www.mdpi.com/2078-2489/11/6/310

27. You,X., Zhang,Y., Chen,X., Liu,X.,Wang, Z., Jiang,H., Chen,X.:
Model-free control for soft manipulators based on reinforcement
learning. In: 2017 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS), 2909–2915 (2017). https://doi.
org/10.1109/IROS.2017.8206123

28. Lillicrap, Timothy P. and Hunt, Jonathan J. and Pritzel, Alexan-
der and Heess, Nicolas and Erez, Tom and Tassa, Yuval and Silver,
David andWierstra, Daan: Continuous control with deep reinforce-
ment learning (2015) https://arxiv.org/abs/1509.02971

29. Phaniteja, S., Dewangan, P., Guhan, P., Sarkar, A., Krishna, K.:
A deep reinforcement learning approach for dynamically stable
inverse kinematics of humanoid robots (2018). https://arxiv.org/
abs/1801.10425

30. Shi, X., Guo, Z., Huang, J., Shen, Y., Xia, L.: A distributed
reward algorithm for inverse kinematics of arm robot. 2020 5th
International Conference on Automation, Control and Robotics
Engineering (CACRE), 92–96 (2020)

31. de la Bourdonnaye, F., Teulière, C., Chateau, T., Triesch, J.: Within
reach? learning to touch objects without prior models, 2019 Joint
IEEE 9th International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), 93–98 (2019)

32. Ghouri, U. H., Zafar, M.U., Bari, S., Khan, H., Khan, M.U.: Atti-
tude control of quad-copter using deterministic policy gradient
algorithms (DPGA). 2019 2nd International Conference on Com-
munication, Computing and Digital systems (C-CODE) 149–153
(2019)

33. Rao, P., Peyron, Q., Lilge, S., Burgner-Kahrs, J.: How to Model
Tendon-Driven ContinuumRobots and BenchmarkModelling Per-
formance. Frontiers in Robotics and AI 7(630245), 20 (2021).
https://doi.org/10.3389/frobt.2020.630245

34. Hannan,M.W.,Walker, I.D.:Kinematics and the implementation of
an Elephant’s Trunkmanipulator and other continuum style robots.
J. Robot. Syst. 20(2), 45–63 (2003). https://doi.org/10.1002/rob.
10070

35. Wang, S., Chaovalitwongse, W., Babuska, R.: Machine learning
algorithms in Bipedal Robot control. IEEE Transactions on Sys-

tems, Man, and Cybernetics, Part C (Applications and Reviews)
42(5), 728–743 (2012). https://doi.org/10.1109/TSMCC.2012.
2186565

36. Plappert, M.: keras-rl: Deep reinforcement learning for Keras.
GitHub (2019). https://github.com/keras-rl/keras-rl

37. Sewak, M.: Temporal difference learning, SARSA, and Q-
Learning. Deep Reinforcement Learning: Frontiers of Artificial
Intelligence. 51-63 (2019)

38. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: Soft actor-critic:
off-policy maximum entropy deep reinforcement learning with a
stochastic actor. CoRR abs/1801.01290 (2018). http://arxiv.org/
abs/1801.01290

39. Fujimoto, S., van Hoof, H., Meger, D.: Addressing function
approximation error in actor-criticmethods.CoRRabs/1802.09477
(2018). http://arxiv.org/abs/1802.09477

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Turhan Can Kargin received the M.Sc. degree from Poznan Uni-
versity of Technology, Poland, in 2022 (Faculty of Automatic Con-
trol, Robotics and Electrical Engineering). In 2020 he graduated Izmir
Katip Celebi University (Bachelors of Science, Electrical & Electron-
ics Engineering). His area of interests are AI, Robotics, Electron-
ics, Deep Learning, Control Theory, Machine Learning and Computer
Vision.

Jakub Kołota received the M.Sc. degree from Poznan University of
Technology, Poland, in 2005, and the Ph.D. degree from the same
university in 2009. He is presently a research scientist at the Faculty
of Control, Robotics and Electrical Engineering, Poznan University
of Technology in Poland. His main research area is control theory in
smart materials. Currently he is working with electroactive polymers
like IPMC and DEAP.

123

77 Page 14 of 14 Journal of Intelligent & Robotic Systems (2023) 109 (2023) 109:77

https://doi.org/10.3390/info11060310
https://doi.org/10.3390/info11060310
https://www.mdpi.com/2078-2489/11/6/310
https://doi.org/10.1109/IROS.2017.8206123
https://doi.org/10.1109/IROS.2017.8206123
https://arxiv.org/abs/1509.02971
https://arxiv.org/abs/1801.10425
https://arxiv.org/abs/1801.10425
https://doi.org/10.3389/frobt.2020.630245
https://doi.org/10.1002/rob.10070
https://doi.org/10.1002/rob.10070
https://doi.org/10.1109/TSMCC.2012.2186565
https://doi.org/10.1109/TSMCC.2012.2186565
https://github.com/keras-rl/keras-rl
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1801.01290
http://arxiv.org/abs/1802.09477

	A Reinforcement Learning Approach for Continuum Robot Control
	Abstract
	Highlights
	1 Introduction
	2 Kinematics Modeling of Continuum Robot
	2.1 Forward Kinematics with D-H Method
	2.2 Velocity Kinematics

	3 Reinforcement Learning
	3.1 Deep Reinforcement Learning
	3.1.1 Network Structure of the Reinforcement Learning Approach

	3.2 Environment Design

	4 Simulations and results
	5 Conclusions
	Acknowledgements
	References

