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Abstract
In modern manufacturing, assembly tasks are a major challenge for robotics. In the manufacturing industry, a wide range
of insertion tasks can be found, from peg-in-hole insertion to electronic parts assembly. Robotic stations designed for this
problem often use conventional hybrid force-position control to perform preprogrammed trajectories, such as e.g. a spiral
path. However, electronic parts require more sophisticated techniques due to their complex geometry and susceptibility to
damage. Production line assembly tasks require high robustness to initial position and rotation variations due to component
grip imperfections. Robustness to partially obscured camera view is also mandatory due to multi stage assembly process. We
propose a stereo-view method based on reinforcement learning (RL) for the robust assembly of electronic parts. Applicability
of our method to real-world production lines is verified through test scenarios. Our approach is the most robust to applied
perturbations of all tested methods and can potentially be transferred to environments unseen during learning.

Keywords Reinforcement learning · Assembly · Industrial robotics · Electronic parts insertion · Stereo-view observation

1 Introduction

1.1 Background

Despite the progress in the robotization of the industry,
there are still many assembly tasks that are usually per-
formedmanually by productionworkers. The need for further
improvements in production efficiency and cost reduction
has inspired research for many years. Most of the work
has focused on an idealised assembly model, known as the
peg-in-hole problem [1]. However, due to the diversity of
assembled components’ shapes in the manufacturing indus-
try, this is a subject of ongoing research [2].
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In the electronicsmanufacturing industry, industrial robots
face challenges when assembling non-standardised elec-
tronic components in through-hole technology (THT). This
difficulty comes from the physical properties of these com-
ponents, which come in various shapes and have differing
numbers of leads arranged in non-standardised patterns. The
pins are also easily bent due to their susceptibility to applied
forces. Furthermore, the clearance of through-hole pins is
typically less than 1 mm, depending on the printed circuit
board (PCB) design, making inserting electronic parts chal-
lenging. Figure 1presents a close viewof theTHTcomponent
and the effect of damaged pins on the element.

A highly precise force control system is necessary to
mitigate potential damages. However, industrial assembly
systems must also account for errors introduced by the
grasping procedure and the PCB clamping mechanism. The
picking error arises from the way electronic parts are fed to
the robotic stations through profiled trays with large clear-
ance slots.

1.2 RelatedWork

Robotic stations used for assembly on production lines are
based mainly on compliance control systems. These stations
use impedance or admittance controllers to control industrial
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Fig. 1 A close view of the THT component with one of the pin bent

robots [3, 4] that perform programmed trajectories while
maintaining a constant downforce. Nevertheless, these con-
trol systems require manual parameter adjustment, which is
time-consuming.

The methods based on the compliance control system
require high sensor precision and well-prepared robotic
stations. However, machine vision and deep learning can
improve the performance of insertion tasks, even when deal-
ingwith imperfect hardware or the construction of the robotic
station. For example, Huang et al. [5] propose a puremachine
vision system with a feedback rate of 1000 Hz to align a
peg in a hole instead of a force control system. Meanwhile,
deep learning-basedmethods for insertion tasks are presented
by Triyonoputro et al. [6] and Yu et al. [7]. Both solutions
use the convolutional neural network (CNN) to precisely
compute the pose of the insertion target. Moreover, Triy-
onoputro et al. [6] use two images captured by the vision
tool attached to the robot end effector. The trajectory algo-
rithm then uses this computed pose as input.

Recently, reinforcement learning (RL) has gained atten-
tion as a solution to assembly problems [8–11]. These works
utilise RL algorithms for much more complex assembly
tasks than peg-in-hole insertion, such as connector or gear
insertion. The RL agent commands the robot controlled by
an impedance or an admittance control system in all these
methods. The agent’s observation mainly consists of propri-
oception and 6-axis force-torque (F/T) data. Another group
contains RL methods that rely solely on visual information.
In Schoettler et al. [11] work, the agent acquires the image
from an external camera placed in the workspace. In [12, 13],
visual information is captured from a single wrist camera and
preprocessed by a complex neural network pre-trained in a
supervised manner.

The aforementionedworks have addressed the solution for
peg-in-hole or connector insertion tasks. However, assem-
bly of electronic parts is considered a multiple peg-in-hole
task, which is more challenging for industrial robots due to
the complex geometry of the object [14, 15]. To tackle this

issue, Hou et al. [16] have proposed an RL-basedmethod that
employs a DDPG algorithm [17] supported by a fuzzy logic
system and variable time-scale prediction. In thismethod, the
RL agent computes the 6-dimensional action, which repre-
sents translations and rotations along the XYZ-axes based on
the object’s pose relative to the target and the 6-axis F/T data.
Similar approaches have been introduced by Hou et al. [18]
and Xu et al. [19]. In both works, DDPG is a core algorithm,
and the policy network’s output is used to correct the control
signal computed by the manually tuned PD force controller.
However, these works differ in the reward function they use.
Xu et al. [19] propose a fuzzy reward system instead of a
complex handcrafted reward function. The improvements
proposed in these works are intended to accelerate train-
ing and achieve safe exploration. However, the manipulated
objects used in those works were solidmetal blocks that were
more resistant to damage than electronic components. Addi-
tionally, in the presented experiments, those objects were
rigidly attached to the robot’s end-effector, simplifying the
problem by reducing the impact of uncertainties from the
grasping procedure.

In contrast, Ma et al. [20] propose a reinforcement
learning-based solution for the assembly of electronic com-
ponents, such as the pin header. Their solution uses high-
quality cameras and a precise 6-axis F/T sensor. Neverthe-
less, the agent’s observation space consists of only F/T data,
and cameras are used for the pre-policy control step. The
action space compared to the abovementioned works com-
putes only translations along XYZ-axes.

1.3 Contribution

This paper presents a method for the precise assembly of
non-standardised THT electronic components using rein-
forcement learning and stereo-view observation. We employ
Soft Actor-Critic (SAC) [21] as the core algorithm, as it has
been shown [22] to be more efficient for real-world robotics
applications than other continuous control algorithms such as
PPO [23] and TD3 [24]. We refer to our method as SAC with
stereo-view observation space (SAC-SV). Furthermore, we
used two separate convolutional neural networks to extract
features from input images, as opposed to the single network
used in previous work [6].

Moreover, this work provides test scenarios that are suit-
able for evaluating the potential of a method to be used in
a real-world production line. We collected the requirements
specified by production personnel and identified potential
sources of errors that could occur in robotic stations. Our test
scenarios assess the robustness of the methods to position
and rotation disturbances. Furthermore, the proposed pro-
cedures verify whether the trained agent can be transferred
from experimental to production scenarios. Specifically, for
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the electronic parts assembly task, we check if the policy
trained on the empty PCB can be applied to the PCB after
the automatic assembly stages.

The paper is organised as follows. Section 2 introduces a
method for assembling THT electronic parts. We start by
describing the environment for the electronic component
assembly task. Next, we present the industrial robot con-
trol system and the technique for asynchronous learning.
Section 3 presents the experiments along with a detailed
description of the robotic system used for the experiments
and the training procedure. In this section, we compare
SAC-SV to state-of-the-art approaches for vision-driven
reinforcement learning driven by a single camera vision sys-
tem acquired from an external camera or the tool-mounted
camera. We also validate our solutions against conventional
methods and the force-based RL method. Following these
experiments, we report the performance of the proposed
method in transferring the policy trained on the empty PCB
to a scenario with a partially assembled PCB. Finally, we
discuss the results obtained and plans for future work.

2 Method

2.1 Reinforcement Learning

We model our problem as a standard RL setting [25], where
interaction between the agent and the environment can be
described as a Markov decision process (MDP). In each dis-
crete timestamp t , the agent is in state st ∈ S, performs
the action at ∈ A, and receives the scalar reward rt sam-
pled from the reward function rt (st , at ), where S defines the
state space of the environment, andA defines the continuous
action space. After performing an action at , the environment
moves to the next state, which is drawn at random from an
unknown state transition distribution st+1 ∼ p(· | st , at ).
The objective of theRL agent is to learn the policy at = π(st )
from the collected data by maximising the expected return
R = ∑T

t=0 γ t rt , where T is the length of the planned trajec-
tory and γ ∈ (0, 1) is a discount factor.

2.2 Soft Actor-Critic

The Soft Actor-Critic [21] is an actor-critic off-policy algo-
rithmbased onmaximal entropy. Entropy controls the agent’s
exploration ability by augmenting the reward at each step.
SAC uses neural networks as approximations for soft Q-
function Qψ(st , at ) and policy πφ(at | st ), which are
parameterized respectively by ψ and φ. The soft Q-function

parameters can be updated by minimising the soft Bellman
residual

JQ(ψ) = E(st ,at ,st+1)∼D
[
1

2
(Qψ(st , at ) − (r(st , at )

+VQψ1,ψ2
(st+1))

2
]

, (1)

where D is an experience replay buffer that stores tran-
sitions (st , at , rt , st+1), VQψ1,ψ2

(st+1) denotes the value
function implicitly defined by Q-functions and policy as

Eat∼πφ

[

min
i∈{1,2} Qψ̄i

(st , at ) − α logπφ(at | st )
]

. Qψ̄ is a tar-

get soft Q-function, and α is an entropy temperature coef-
ficient. The parameters ψ̄ of the target soft Q-function are
obtained as an exponential moving average of the weights of
the soft Q-function. The Gaussian policy parameters φ are
trained by minimizing

π(φ)=Est∼D,at∼πφ

[

α logπφ(at | st )− min
i∈{1,2} Qψi (st , at )

]

(2)

using the reparameterization trick [26]. Finally, the entropy
temperature coefficient α can be fixed during training or
dynamically adjusted, as proposed by [27]. This coefficient
can be optimised by solving the following objective:

J (α) = Eat∼D
[
α logπφ(at | st ) − αH̄]

(3)

where H̄ is a target entropy that is usually set empirically to
H̄ = dim(A). We follow the implementation proposed by
Haaranoja et al. [27], where two soft Q functions with inde-
pendent parameters Qi are used to mitigate positive bias in
the policy improvement steps. The target Q-value is com-
puted by taking the minimum value from the Q-function
approximations. Both networks are independently optimised
by solving the JQi (ψi ) objectives.

2.3 Assembly Process Environment

In our environment for assembling electronic parts tasks, the
RL agent’s observation contains two images acquired from
cameras attached to the end-effector. Figure 2 illustrates the
concept of obtaining these images from this vision tool. The
camera’s view angle was empirically chosen to achieve a
view that gives information about the assembly place and its
surroundings. Each output image is of size 1024×512 pixels
in the RGB colour space. However, to enable the use of the
neural network in a real-time control scenario, the desired
images are resized to the resolution of 128 × 128 pixels.
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10 Hz outer

control loop

Fig. 2 Images acquisition visualisation from the vision tool

Due to the specificity of the task and direct control of the
real robot,we have implemented constraints for theRLagent.
A workspace is defined as a cylinder with a radius of 7 mm
and a limitless height. The insertion pose of electronic parts
determines the reference frame of the workspace. Addition-
ally, the assumed maximum rotation about each axis is 15◦.
At the start of each episode, the agent is positioned 2 mm
above the PCB surface.

Each trial lasts up to 50 steps. During a single step,
the agent executes the action at = [�xt ,�yt ,�zt , θ

z
t ],

where�xt ,�yt ,�zt are displacements along theXYZ-axes,
respectively, and θ zt is a rotation on the Z-axis. Thus, the

Fig. 3 The block diagram of the RL-basedmethod for assembling elec-
tronic parts: a) Ape-X distributed architecture that allows asynchronous
training; b) the environment for assembling electronic parts with pre-
sented control diagrams. In this setup Actor (the RL agent) sends the
Cartesian motion trajectory to the admittance controller, which directly
controls the robot’s joints

action space is 4-dimensional. The range of action space
is [−1.0, 1.0] mm for displacements and [−0.5◦, 0.5◦] for
rotations. For each non-terminal step, the agent receives a
reward

r = − tanh (α · d) (4)

where d is a 	2-distance between the tool center point (TCP)
and full insertion pose, and α is a reward sensitivity coef-
ficient. Full insertion occurs when the robot reaches the
assembly position in the XY-axes and the defined posi-
tion in the Z-axis below the surface of the PCB. To ensure
safety, we designed a penalisation mechanism in the envi-
ronment. The episode is interrupted when the agent leaves
the workspace, exceeds the time limit, or exceeds the rota-
tion limit. If the episode is terminated due to leaving the
workspace or exceeding the time limit, the agent receives
the same reward as during nonterminal steps. If termination
occurs due to exceeding the rotation limit, the agent receives
a reward of r = −2 to prevent damage to camera cables
connected to the vision tool. The task is completed when the
relative position of the TCP pz on the Z-axis is less than
or equal to 0.0 mm, which means that the electronic part is
inserted into the target position. In this situation, the reward
received is r = 10.0.

2.4 Smart Assembling

Wedeveloped anRL-basedmethod for assembling electronic
parts, integrating the SACalgorithmwith the admittance con-
trol system. The presented system consists of two control
loops. The block diagram is presented in Fig. 3. In the outer
loop, the controlling element is the SAC algorithm, and in the
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inner control loop, the admittance control system [28] is used.
TheRLagent sends commands to the admittance controller at
10Hz, receiving feedback information at the same frequency.
The pose information required for the reward function is
received from the admittance controller. At the same time, the
images are acquired from the camera’s drivers running inde-
pendently from the controller. To ensure the reliable real-time
control loop that sends commands with a given frequency,
we integrated the SAC algorithm with a distributed learning
architecture called Ape-X [29]. In this architecture, multiple
actors are spawned, eachwith its instance of the environment.
Those actors generate the experiences and store them in the
shared replay buffer. The learner samples mini-batches from
this shared replay buffer and updates the network parame-
ters. The actors’ parameters are periodically synchronised
with the latest learner’s parameters. Our experiments were
conducted with only one robot, so we used Ape-X architec-
ture with one spawned actor.

2.5 Policy Model

We represented the control policy as a neural network, as
introduced in Section 2.2. As described in Section 2.3, the
observation space consists of RGB images. Each image is
pre-processed by an independent 5-layer convolution neural
network (CNN) with filters of size 32. Then, the computed
features are concatenated and passed directly to the actor
πφ and the critic Qψ . Both function approximators are
neural networks with two fully connected layers of 256 neu-
rones per layer size. For every layer in the model, we use
LeakyReLU [30] as an activation function. The concept dia-
gram of the model is depicted in Fig. 4

The CNN backbones are shared between the actor and
critic networks in variants with visual information. We fol-
lowed an optimisation procedure proposed by Yarats et al.
[31], where the parameters of the vision network are updated
by the gradient calculated from the critic loss function.

2.6 Admittance Controller

We implemented a standard admittance controller [28] oper-
ating in the task space to safely assemble the electronic parts
susceptible to applied forces. This controller is part of the
control scheme depicted in Fig. 3. Compared to hybrid force-
position control, this control system allowed us to control
the robot with high precision in the task space and minimise
the contact force detected during trajectory execution. The
admittance controller is described by

Mẍ(t) + Dẋ(t) + K(x(t) − xd) = Wext (t) (5)

where K, D, and M represent stiffness, damping, and iner-
tia matrices, respectively. Wext = [F, τ ] represents the

Fig. 4 SoftActor-Criticwith stereo-viewobservation (SAC-SV): archi-
tecture built with two separate convolution neural networks for each
view and two fully connected neural networks, respectively, for actor
and critic. Features computed by vision networks are concatenated and
passed directly to the actor and critic

contact forces and torques, xd is the motion of the target
end-effector, and x = [p, θ ] is the control output, which
represents the pose of the robot’s fingertip. The coefficients
di j of the damping matrix can be calculated using the for-
mula di j = 2ζi j

√
mi j ki j , where ζi j is a damping ratio for

each degree of the control system. The control signal is first
computed by integrating the acceleration ẍ and the obtained
velocity ẋ. The control acceleration ẍ is given by

ẍ(t) = M−1(Wext (t) − Dẋ(t) − K(x(t) − xd)) (6)

Finally, the robot’s joint positions q(t) are computed from
inverse kinematics applied to the resulting control output.

3 Experiments and Results

3.1 Experimental Setup

We built a real-world laboratory stand to carry out experi-
ments, depicted in Fig. 5. This laboratory stand consists of the
following devices: the Universal Robot UR5e-series indus-
trial robot1, the servo-electric gripper2, a 6-axis F/T sensor3,
and a custom-made tool with vision sensors. We placed PCB
panels and electronic components in the robot’s workspace.
In the production lines, PCBs are delivered in panels, where
a single panel can contain different numbers of boards. The
electronic parts are placed on the 3D printed trays. Such a
setup allowed us to ensure conditions similar to those on the
production line.

1 https://www.universal-robots.com/products/ur5-robot/
2 https://robotiq.com/products/hand-e-adaptive-robot-gripper
3 https://www.ati-ia.com/products/ft/ft_models.aspx?id=Axia80-
M20&campaign=axia80
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Fig. 5 The laboratory stand used for experiments. It consists of 1 -
industrial robotUniversalRobotUR5e-series; 2 - a toolwith gripper, F/T
sensor and cameras; 3 - various PCBs panels used for the experiments;
4 - trays with electronic parts

In our experiments, we used two distinct PCB panels,
one designed for research purposes and one sourced from
the production line. We selected three types of electronic
parts, namely: component type 1a/b (Fig. 6a and b), com-
ponent type 2 (Fig. 6c), and component type 3 (Fig. 6d).
The letters a and b denote the various types of PCB for spe-
cific electronic parts. These elements differ in their geometry,
appearance, and arrangement of the leads. Figure 6 presents
the electronic parts and their corresponding insertion places.

We used ROS 2 [32] middleware to control the industrial
robot and operate peripheral devices. Furthermore, we used
RLlib [33] as software to manage the learning process and
implement theRLagents. The advantage ofRLlib is the avail-
ability of out-of-the-box software for distributed algorithms
like Ape-X. We performed all experiments on the worksta-
tion with NVIDIA Titan X GPU4.

3.2 Training and Evaluation

During the training process, the agent’s task was to insert
the electronic component into the target pose on the PCB.
The agent was trained for 50000 steps in an asynchronous
manner, as described in Section 2.4, which took an average
of 3 hours. In this setup, the actor sends a rollout with 10
transitions to the replay buffer while the learner synchro-
nises model parameters every 50 environment steps. Each
episode began with picking an electronic element from the
tray. Followed by the robot moved to the initial pose, which
is the electronic part’s assembly pose 2 mm above the PCB

4 https://www.nvidia.com/en-us/geforce/products/10series/titan-x-
pascal/

surface. Moreover, to ensure that each episode was unique
and improve the robustness of the RL agent, the initial posi-
tion on the XY-axes and the initial rotation on the Z-axis
were disturbed with the noise sampled, respectively, from
pxynoise ∼ U(−2, 2) mm and θ znoise ∼ U(−2◦, 2◦). After the
termination of the episode, the robotwould return the grasped
electronic part and pick up another one.

Next, we evaluated each trained model with respect to its
robustness to environmental disturbance. We designed a test
scenario that reflects the cumulative errors in the produc-
tion machinery. There are three primary sources of errors in
robotic assembly system on the production line: determining
the picking pose of the electronic parts placed in the trays, a
picking procedure with universal fingers, and a panel clamp-
ing system precision.

The test scenario consisted of 7 tests. These tests dif-
fered in the continuous uniform distribution range applied
to the XY-axes’ initial position and the Z-axis’s initial rota-
tion. At first, the model was evaluated without any applied
noise. Afterwards, the robustness of the model against posi-
tion disturbance was tested by applying noise samples from
pxynoise ∼ U(−2, 2) mm and pxynoise ∼ U(−5, 5) mm.
Subsequently, we performed the evaluations against the rota-
tion disturbance sampled from θ znoise ∼ U(−3◦, 3◦) and
θ znoise ∼ U(−7◦, 7◦). Finally, the model was subjected
to tests with compound perturbations. For each test, we run
100 trials of insertion. During the evaluation, we collected
data on the insertion status (success or failure) and assem-
bly time of the successfully completed trial. On the basis of
these data, we calculated the success rate and averaged the
assembly time for each test.

For every performed experiment, we set the admittance
controller’s desired stiffness and inertia as the followingdiag-
onal matrices:
K = diag{1000, 1000, 1000, 20, 20, 20},
M = diag{3, 3, 3, 0.04, 0.04, 0.04}.
and a one-damping ratio ζ = 2.8 for every degree of free-
dom. To ensure smooth motion and stability of the control
system, we limited linear velocities to 0.1 m/s and angu-
lar velocities to 1.0 rad/s. Moreover, we used a low-pass
filter with a cut-off frequency of 25 Hz for data acquired
from the F/T sensor and applied the following constraints:
5 N for forces and 1 Nm for torques. We use the default
joint-torque limits provided by the vendor5. The parameter
values were empirically determined to maximise move-
ment speed while maintaining compliance. Further details
on the SAC algorithm hyperparameters are available in
Table 1.

5 https://www.universal-robots.com/articles/ur/robot-care-
maintenance/max-joint-torques/
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Fig. 6 Electronic parts (above)
and their corresponding
insertion positions (below) used
for the experiments. This work
proposes the following naming
convention for electronic parts:
a) component type 1a, b)
component type 1b, c)
component type 2 and d)
component type 3. All shown
components have four leads

(a) (b) (c) (d)

3.3 Performance Comparison

In these experiments, we evaluate the suitability of our
dual-camera robotic vision system for assembling non-
standardised electronic parts by comparing the method to the
other vision-driven RL methods with different visual infor-
mation sources and conventional methods, which are widely
used in the industry. The following methods and setups are
compared:

1) Straight down - The robot moves straight down from the
starting position until successful insertion or exceeding
the limit of contact force, which we set to 2 N.

2) Random search - The robot moves randomly in the
XY plane until the insertion or trial termination signal
is detected. The displacements on those axes are sam-
pled from the uniform distribution. The force controller
controls the displacement in the Z-axis by holding a con-
stant contact force of 2 N.

3) Spiral search - The robot follows the spiral trajectory
[34] on the XY plane until successful insertion or a trial

Table 1 SAC algorithm hyperparameters used for experiments

Hyperparameters Value

Replay buffer size 50000

Batch size 256

Discount γ 0.95

Optimizer Adam

Actor learning rate 0.0003

Critic learning rate 0.0003

Temperature learning rate 0.0003

Initial temperature 0.1

Critic soft-update rate τ 0.005

termination signal occurs. The force controller controls
the displacement in the Z-axis by holding a constant con-
tact force of 2 N.

4) SAC with the combined view (SAC-CV) - SAC-CV,
like our SAC-SV, learns the policy that takes multiple
images on the input to the neural network. However, the
input images are combined into one, as was presented
by Triyonoputro et al. [6]. A detailed description of this
operation is given in Appendix A.1.

5) SAC with the mono view (SAC-MV) - SAC-MV uses
an image acquired from a single camera vision system
attached to the robot’s end-effector like it was presented
in [12]. However, in our experiments, we used SAC
instead of DDPG, which was initially introduced in the
work mentioned.

6) SAC with the external view (SAC-EV) - SAC-EV dif-
fers from the previous in the source of visual information.
Images for the action computation are acquired from an
external camera placed in the robot workspace [11]. The
testbed for this experiment is presented in Appendix A.2.
However, in this setup, the camera’s field of view was set
so that the agent could see only one PCB from the entire
panel, consisting of a group of PCBs.

7) SACwith F/T feedback (SAC-Force) - The SAC-Force
[20] differs from previous methods by taking 6-axis F/T
data [Fx , Fy, Fz, Mx , My, Mz] to compute the output
action. Input F/T data were acquired by averaging 24
received samples. Here, we use the same actor and critic
neural networks as vision-based agents.

In this section, we present results only for component type
1a (Fig. 6a), while in Appendix B, we show results for the
remaining electronic parts. We followed all the evaluation
procedures for all the experiments described in Section 3.2.
The methods mentioned were evaluated based on the success
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rate and the average assembly time. The results obtained for
component type 1a are reported in Table 2.

Due to the approach to image acquisition by SAC-EC,
we have only provided the results of the tests performed on
the PCB used for training. During the experiments, we also
evaluated the effectiveness of this method on other PCBs
from the panel. However, we omitted them in Table 2 since
the agent was unable to perform the task. Additionally, we
attempted to train an RL agent whose external camera returns
the image of the entire panel and not a single PCB. However,
the agent barely achieved more than 20% efficiency during
learning. Therefore, we decided to stop further experiments
with it.

The only methods that were able to achieve an almost
100% success rate were those driven by visual observation
space. Moreover, our method was the most reliable among
them. The RL agent with F/T feedback information reported
poor performance in all test scenarios. We assume that this
was caused by the fact that Ma et al. [20] did experiments for
precise electronic parts assembly tasks with a more complex
test bed consisting of a specialised industrial robot and high-
resolution cameras. Furthermore, their experimental object
was a pin header with pins aligned in a line instead of a more
complex pattern.

Additionally,we examined another approach to the stereo-
view observation space called SAC-CV. We modified the
image processing technique presented by Triyonoputro et al.
[6] to fit into the reinforcement learning domain. SAC-CV
achieved comparable results to our method and even scored
slightly lower average assembly times for the test scenarios
withminor perturbations. However, overall, SAC-SV ismore
robust to the increasing applied disturbances. In terms of
the production application, our solution does not need addi-
tional devices, like vision systems, that reduce the error that
occurs.

The above results show that the insertion of electronic
components is a challenge for conventional methods. The
holes for non-standardised THT electronic parts have tight
clearance, significantly complicating the assembly process.
Traditional techniques perform programmed trajectories,
which rely only on pose feedback information; therefore,
their effectiveness decreases with increasing disturbances.
Furthermore, the standard implementation of these algo-
rithms cannot handle compound and orientation perturba-
tions. With the feedback from the vision system, our method
learns the features that enable it to be robust against all
applied disturbances. In addition, off-policy algorithms like

Table 2 Summary of the experiments comparing the performance of the methods for the component type 1a (Fig. 6a)

Methods Without noise Position Orientation Mix

±2 mm ±5 mm ±3◦ ±7◦ ±2 mm, ±3◦ ±5 mm, ±7◦

Assembly success rate

SAC-SV (ours) 100% 100% 70% 100% 100% 100% 62%

SAC-CV 100% 100% 60% 100% 98% 100% 53%

SAC-MV 100% 98% 66% 94% 87% 97% 53%

SAC-EV 100% 94% 48% 100% 85% 93% 56%

SAC-Force 60% 10% 2% 38% 18% 2% 0%

Straight down 69% 0% 0% 42% 8% 0% 0%

Random search 81% 23% 4% 46% 28% 13% 0%

Spiral search 77% 26% 4% 52% 19% 6% 0%

Assembly time [s]

SAC-SV (ours) 1.90±0.19 1.79±0.22 3.45±1.44 1.95±0.21 2.52±0.78 2.07±0.32 4.16±1.49

SAC-CV 1.82±0.19 1.87±0.19 3.19±1.37 1.85±0.18 2.27±0.85 1.92±0.25 3.79±1.29

SAC-MV 2.03±0.48 2.12±0.63 3.37±1.34 2.22±0.91 2.91±1.23 2.22±0.71 3.95±1.46

SAC-EV 2.07±0.28 2.20±0.62 3.05±1.05 2.18±0.25 2.97±1.14 2.57±0.88 4.16±1.09

SAC-Force 3.27±1.51 4.62±0.81 5.44±1.30 3.88±1.52 4.53±1.11 4.85±0.48 −
Straight down 2.44±0.96 − − 2.46±0.82 2.62±0.89 − −
Random search 2.35±0.74 3.11±0.92 3.16±1.04 2.63±0.78 2.59±0.62 2.92±0.80 −
Spiral search 2.89±0.94 3.21±1.10 2.09±0.18 2.55±0.70 2.63±0.79 2.38±0.62 −
The 100 trials of the insertion validated each method. Conventional methods such as spiral or random search cannot achieve high success rates due
to the complexity of the task. Only vision-driven RL-based solutions achieve high success rates. Nevertheless, our method is the most robust to the
applied disturbances. The bottom part of the table shows the average assembly times with standard deviations
Bold entries highlight the best results in a single column to improve visualization for the reader. In the column’s top part, positions with the highest
success rates are bolded. The positions with the lowest assembly times are highlighted in the bottom part
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SAC decide on the next action at each time step to quickly
correct the trajectory.

3.4 Transfer to Partially Assembled PCB

In the previous experiments, the agents were trained on
the empty PCB. However, in real-world scenarios, the final
production stage is an assembly of the non-standardised
THT parts. The ideal approach would be to train the pol-
icy offline, outside the production line, and then transfer it to
the robotic station at the factory. In this particular exper-
iment, we evaluated vision-based RL agents in terms of
their possible transferability to the partially assembled PCB
(Fig. 7.)

Table 3 presents the obtained results.All RL agents trained
from scratch with the visual feedback acquired from the
vision sensors attached to the end-effector achieved an almost
100% success rate. However, the variant’s performance using
an external camera as the observation space source was sig-
nificantly worse because of other components’ occlusion of
the assembly place. When evaluating the performance of
the policy transfer from an empty PCB, none of the agents
achieved a 100% success rate. Nevertheless, our method
achieved the highest efficiency among them. This experi-
ment showed that the stereo-viewobservation space can score
relatively good transfer efficiency without additional modi-
fications, such as input enhancements.

3.5 Real-World Applicability

We analysed the vision-based RL methods presented in
Section 3.3 in terms of their usage on real-world production
lines. In production scenarios, multiple PCBs are packed into
a single panel. Hence, the policy that operates on the visual
information acquired from the external camera placed in the
robot workspace poorly scales to the PCB not used during the
training. Each PCB from the panel would require a separate
camera, and it is challenging to acquire similar images across
all vision sensors. RL algorithms are known to be sensitive to

Table 3 Success rate on test scenario with partially assembled PCB

Method Transferred policy Trained policy

SAC-SV 81% 100%

SAC-CV 58% 100%

SAC-MV 18% 99%

SAC-EV 0% 73%

All methods trained from scratch with visual information acquired from
tool cameras achieved a 100% success rate. Nevertheless, in terms of
transferability, SAC-SV performed best among them, indicating that
our method is robust to visual perturbation
Bold entries highlight the best results in a single column to improve
visualization for the reader. In the column’s top part, positions with the
highest success rates are bolded. The positionswith the lowest assembly
times are highlighted in the bottom part

changes in the observation space [35, 36]. A slight difference
in the background causes a significant decrease in perfor-
mance. We confirmed this statement through experiments in
which SAC-EV for other PCBs of the panel failed to insert
any electronic part.

In contrast, methods that use visual information acquired
from the vision sensor attached to the robot tool provide a
stable background independent of the location of the PCB.
The results presented in the previous sections showed that our
method is the most robust to pose and visual disturbances.
Therefore, SAC-SV meets the requirements of applicability
in real-world production applications.

4 Conclusion

This paper presents a stereo-view RL approach for the elec-
tronic part insertion task. We chose Soft Actor-Critic as our
core algorithm. Our experiments show that vision-driven RL
methods, combined with a compliance control system, can
assemble delicate components that are vulnerable to applied
forces. We evaluated the performance of the RL agent with
different visual information sources used in existing works.

Fig. 7 Partially assembled PCB
used for the experiments. The
surrounding elements
significantly modify the view
observed by the policy
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All of them achieved a success rate of more than 95% for
test scenarios with low values of applied disturbances of
initial position and rotation on the Z-axis. However, when
the disturbances’ limits were increased, our method out-
performed the others in terms of the percentage of tasks
successfully completed.

We also showed that our stereo vision system attached
to the robot’s end-effector to acquire visual information and
the method to extract features from the stereoview obser-
vation space is more suitable for real production scenarios
than the configuration with an external camera. In the case
of the method that uses an external camera for image acqui-
sition, the camera field of view is set up only for one PCB
from the panel. This method achieved a high success rate
only on the PCB used for training and failed to complete the
insertion task on other PCBs of the panel. The dual-camera
vision system focusses only on the assembly place and its
surroundings.

Following the experiments that evaluated performance
against pose disturbances, we also examined the transfer-
ability of the policy trained on the empty PCB to the
partially assembled PCB.The results showed that ourmethod
achieved the best performance during these test scenarios,
with a success rate of 81%. The performance of mono-view
methods dropped significantly when the view was partially
occluded. Moreover, in these experiments, we presented that
processing stereo-view observation space by separate neural
networks shows relatively high efficiency.

The advantages of RL algorithms for the assembly of elec-
tronic parts have also been demonstrated by comparison with
conventional methods such as straight-down insertion, ran-
dom search, and spiral search. Compared to the one presented
in thiswork, conventionalmethodswere not robust to the per-
turbations applied to the initial position and rotation over the
z-axis. It should be noted that our technique could be also
combined with other RL approaches for continuous con-
trol, such as TD3 or PPO. However, SAC is known for its
sample efficiency, which is a desirable feature for real-world
tasks.

In future research,wewill verify ourmethod in production
lines and gather more information on overall performance
and robustness. We are also planning to work on the prob-
lem of fast adaptation to the new tasks, defined as adjusting
trained policy to new products on the production lines and
new robotic stations placed in the factory without training
from scratch. Achieving adaptability to unseen environment
variants could significantly increase the usability of RL-
based methods on high-mix, low-volume production lines
where products are constantly changing. We believe that the
RL-based method will replace conventional methods on pro-
duction lines.

Fig. 8 Concept scheme of the image concatenation process for SAC-
CV method

Appendix A: Experimental Setup - Additional
Information

A.1 CombinedView Setup

In the SAC-CV experiments, we followed the procedure
described by [6] to obtain the combined view as a visual
observation. Images acquired from two cameras attached on
the robot’s end-effector are merged into an output image of
1024×1024 pixels and then down-sampled to 128×128 pix-
els. Camera 1 points to the left side of the gripper and camera
2 points to the right. Such an approach provides a 360-degree-
like vision in one image. The concept scheme is presented in
Fig. 8

A.2 External Camera Setup

For the SAC-EC experiments, we placed an external camera
in the robot’s workspace (the detailed setup is presented in
Fig. 9a). We set up the camera to get the field of view on the
one PCB from the panel. The image acquired from this setup
is illustrated in Fig. 9b (Tables 4, 5 and 6).
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Appendix B: Additional Results

Fig. 9 The test bed for external
camera experiments. The
test-bed for external camera
experiments. The camera was
set up in the robot’s workspace
to achieve the field of view
focusing on the one PCB from
the panel

(a) (b)

Table 4 Summary of the experiments comparing the performance of the methods for the component type 1b (Fig. 6b)

Methods Without noise Position Orientation Mix
±2 mm ±5 mm ±3◦ ±7◦ ±2 mm, ±3◦ ±5 mm, ±7◦

Assembly success rate

SAC-SV (ours) 100% 100% 59% 100% 95% 100% 45%

SAC-CV 100% 100% 57% 100% 93% 100% 44%

SAC-MV 100% 100% 48% 100% 95% 99% 39%

SAC-EV 94% 86% 68% 93% 77% 92% 48%

SAC-Force 0% 0% 0% 0% 0% 0% 0%

Straight down 86% 0% 0% 67% 26% 0% 0%

Random search 90% 26% 3% 75% 22% 14% 0%

Spiral search 98% 25% 1% 68% 26% 17% 0%

Assembly time [s]

SAC-SV (ours) 1.90±0.19 1.86±0.2 3.53±1.60 1.89±0.19 2.45±1.02 1.93±0.23 4.23±1.60

SAC-CV 1.82±0.19 1.87±0.19 3.19±1.37 1.85±0.18 2.27±0.85 1.92±0.25 3.79±1.29

SAC-MV 2.03±0.48 2.12±0.63 3.37±1.34 2.22±0.91 2.91±1.23 2.22±0.71 3.95±1.46

SAC-EV 2.07±0.28 2.20±0.62 3.05±1.05 2.18±0.25 2.97±1.14 2.57±0.88 4.16±1.09

SAC-Force 3.27±1.51 4.62±0.81 5.44±1.30 3.88±1.52 4.53±1.11 4.85±0.48 −
Straight down 1.77±0.48 − − 2.18±0.86 1.93±0.69 − −
Random search 1.84±0.33 2.73±0.9 3.29±1.16 2.33±0.87 2.05±0.66 3.04±0.81 −
Spiral search 1.99±0.67 2.81±1.21 3.71±0.0 2.29±0.94 2.46±1.07 2.76±1.17 −
The 100 trials of the insertion validated each method. The second table shows the average assembly times with standard deviations
Bold entries highlight the best results in a single column to improve visualization for the reader. In the column’s top part, positions with the highest
success rates are bolded. The positions with the lowest assembly times are highlighted in the bottom part
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Table 5 Summary of the experiments comparing the performance of the methods for the component type 2 (Fig. 6c)

Methods Without noise Position Orientation Mix
±2 mm ±5 mm ±3◦ ±7◦ ±2 mm, ±3◦ ±5 mm, ±7◦

Assembly success rate

SAC-SV (ours) 100% 100% 53% 100% 99% 100% 58%

SAC-CV 97% 97% 50% 95% 91% 94% 43%

SAC-MV 97% 95% 58% 99% 99% 97% 51%

SAC-EV 100% 100% 91% 100% 99% 100% 78%

SAC-Force 0% 0% 0% 0% 0% 0% 0%

Straight down 79% 0% 0% 63% 28% 0% 0%

Random search 92% 18% 2% 67% 41% 13% 0%

Spiral search 90% 21% 0% 56% 26% 18% 0%

Assembly time [s]

SAC-SV (ours) 2.22±0.23 2.22±0.26 3.55±1.50 2.31±0.32 2.55±0.69 2.31±0.32 3.55±1.44

SAC-CV 2.44±0.73 2.29±0.65 3.50±1.38 2.52±0.73 2.84±1.01 2.54±0.79 3.58±1.32

SAC-MV 2.32±0.68 2.43±0.76 3.33±1.34 2.39±0.61 2.60±0.80 2.48±0.75 3.63±1.30

SAC-EV 2.02±0.20 2.01±0.21 2.93±1.11 2.05±0.25 2.35±0.58 2.03±0.29 3.31±1.23

SAC-Force − − − − − − −
Straight down 2.46±0.77 − − 2.82±0.83 2.71±0.71 − −
Random search 2.41±0.63 3.16±0.92 4.12±0.30 2.81±0.89 2.82±0.66 3.00±0.88 −
Spiral search 3.08±1.04 3.68±0.91 − 3.19±0.97 3.14±1.08 3.62±0.76 −
The 100 trials of the insertion validated each method. The second table shows the average assembly times with standard deviations
Bold entries highlight the best results in a single column to improve visualization for the reader. In the column’s top part, positions with the highest
success rates are bolded. The positions with the lowest assembly times are highlighted in the bottom part

Table 6 Summary of the experiments comparing the performance of the methods for the component type 3 (Fig. 6d)

Methods Without noise Position Orientation Mix
±2 mm ±5 mm ±3◦ ±7◦ ±2 mm, ±3◦ ±5 mm, ±7◦

Assembly success rate

SAC-SV (ours) 100% 100% 67% 100% 100% 100% 61%

SAC-CV 100% 100% 52% 100% 100% 100% 46%

SAC-MV 100% 100% 64% 100% 97% 100% 54%

SAC-EV 100% 100% 83% 100% 100% 100% 75%

SAC-Force 0% 0% 0% 0% 0% 0% 0%

Straight down 8% 0% 0% 9% 12% 0% 0%

Random search 12% 3% 3% 24% 17% 12% 0%

Spiral search 16% 3% 0% 22% 20% 7% 0%

Assembly time [s]

SAC-SV (ours) 1.90±0.17 1.91±0.21 3.22±1.54 1.87±0.22 2.08±0.43 1.89±0.20 3.50±1.54

SAC-CV 1.82±0.15 1.88±0.22 2.90±1.51 1.81±0.17 2.00±0.39 1.89±0.22 3.42±1.59

SAC-MV 1.83±0.18 1.92±0.22 3.14±1.50 1.93±0.25 2.28±0.88 1.93±0.25 3.45±1.55

SAC-EV 1.83±0.19 1.82±0.20 2.48±1.11 1.82±0.22 1.97±0.40 1.84±0.21 2.88±1.38

SAC-Force − − − − − − −
Straight down 3.20±0.84 − − 2.72±1.07 2.02±0.63 − −
Random search 2.71±0.80 2.28±0.35 3.59±0.44 2.05±0.50 2.47±0.86 2.10±0.60 −
Spiral search 2.92±0.94 3.34±0.67 − 2.65±0.94 2.42±0.98 4.41±0.45 −
The 100 trials of the insertion validated each method. The second table shows the average assembly times with standard deviations
Bold entries highlight the best results in a single column to improve visualization for the reader. In the column’s top part, positions with the highest
success rates are bolded. The positions with the lowest assembly times are highlighted in the bottom part
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