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Abstract
Flip ambiguities are a notorious issue with distance-based formation control due to the presence of unwanted equilibrium
points in the formation dynamics. We propose a switched control system for preventing these ambiguities in 3D formations
composed of tetrahedra. The approach contains a switching strategy that steers the formation of mobile robots towards
the desired configuration for all initial positions, excluding certain collocated, collinear, or coplanar cases, by applying the
standard distance-based controller and/or rigid-body maneuvers to subformations. Simulations demonstrate that the proposed
formation control system can lead to faster formation acquisition and less control effort than an existing method.

Keywords Multi-agent systems · Formation control · Nonlinear Control

1 Introduction

A basic problem in the field of formation control is for a
team of mobile robots to maintain a desired configuration in
space [4, 15]. This requirement is intrinsic to tasks such as
patrolling, monitoring, surveying, and element tracking over
large geographical areas, and co-transporting large, heavy
objects. One solution to this problem is regulating a group
of inter-robot distances encoded by the prescribed configu-
ration [4, 10]. The advantage of this approach, commonly
called distance-based formation control (DBFC) [16], is its
ability to be implemented in a distributed fashion. Unfortu-
nately, there may not be a one-to-one relationship between
the desired spatial configuration and the set of inter-robot
distances, leading to the system possibly converging to an
incorrect formation. This manifests itself mathematically as
multiple equilibrium points for the distance dynamics of the
multi-robot system. One is then left with the challenge of
avoiding the undesired equilibria and steering the robots
toward the equilibrium point associated with the desired for-
mation shape.
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The issue mentioned above is partly resolved by imposing
a sufficient number of controlled distances so that the for-
mation graph becomes rigid [1, 4]. Graph rigidity reduces
the undesired equilibria to formations that are flipped or
reflected variants of the desired shape. In this situation, the
convergence to a formation that is isomorphic to the desired
formation or to a flipped/reflected one is dependent on the
agents’ initial positions. That is, DBFC utilizing rigid graphs
only ensures local stability.

Recently, a few methods have been proposed to handle
the local stability nature of rigid DBFC. This was achieved
by introducing another controlled variable that discerns the
desired formation from an ambiguous one. For instance, [5,
12, 17] increased the region of attraction to the desired planar
formation by utilizing distance and angle-type constraints. In
[2], the signed area of a triangle was employed as the other
controlled variable. This idea was later generalized in [11] to
triangulated 2D formations. Other results based on the signed
area approach can be found in [3, 19] . For 3D formations,
[6] applied constraints to the signed volume of a tetrahe-
dron. The results discussed above all necessitate conditions
on the number of agents, control parameters, and/or the trian-
gulations or tetrahedralizations of the desired formation. A
method named the orthogonal basis approach avoided these
restrictions by projecting the states and control inputs onto
orthogonal spaces [13, 14].

In this paper, we reexamine the original challenge posed
above. Specifically, the contribution of this paper is a solution
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for avoiding flip ambiguities that does not utilize additional
controlled variables and is founded mainly on the conven-
tional DBFC of [10] for 3D formations. Furthermore, our
solution ensures attraction to the desired shape for any initial
condition excluding certain collocated, collinear, and copla-
nar cases. We consider here that the topology of the desired
and actual formations are based on the type I Henneberg
insertion for 3D graphs [7] which starts with three connected
vertices and is grown by adding a vertex and three edges to
the graph. The rigidity of the graph remains intact with these
insertions since the graph is formed by tetrahedra (i.e., trian-
gular pyramids). We propose a control system that includes a
switching strategy based on characterizations of the region of
attraction to the desired formation and to the flip-ambiguous
formation. In particular, we formulate a metric for determin-
ing in what region of attraction a robot is present at all times.
This determines if DBFC is applied or if subformations need
to be maneuvered as a virtual rigid body to relocate the robot
in the desired region of attraction. The control scheme is
illustrated via computer simulations and compared with the
orthogonal basis control of [14]. An early version of this
paper was published in [18] where the formation controller
was applied to sequentially-grown2D formations by employ-
ing triangulations in the formation graph. In comparison to
[18], the present result considers the more complicated 3D
case and includes a proof of stability for the controller.

Notation In the following, ‖·‖ denotes the Euclidean norm
of a vector, |·| is the cardinality of a set, and projuv := v·u

‖u‖2 u
denotes the projection of vector v onto vector u.

2 Graph Theory

An undirected graph G is described by the pair (V, E),
where V = {1, 2, . . . , N } is the set of vertices and E =
{(i, j)| i, j ∈ V, i �= j} ⊂ V × V is the set of undirected
edges. The set of neighbors of vertex i ∈ V is given by
Ni (E) = { j ∈ V|(i, j) ∈ E}. If qi ∈ R

3 is the coordinate of
vertex i of a 3D graph, then a framework F is the pair (G, q)

where q = [q1, . . . , qN ] ∈ R
3N .

Let T : R3 → R
3 be such that T (x) = Qx + d where

Q ∈ SO(3) and d ∈ R
3. Framework F = (G, q) is rigid

in R
3 if all of its continuous motions satisfy qi (t) = T (qi )

for i = 1, . . . , N and ∀t ≥ 0 [8]. A 3D rigid framework is
minimally rigid if and only if |E | = 3N − 6 [4]. The edge
function of a minimally rigid framework γ : R3N → R

3N−6

is defined as

γ (q) =
[
. . . ,

∥∥qi − q j
∥∥2 , . . .

]
, (i, j) ∈ E . (1)

The rigidity matrix R : R3N → R
|E |×3N is defined as

R (q) = 1

2

∂γ (q)

∂q
(2)

where rank[R(q)] ≤ 3n − 6 [4]. A 3D framework is said to
be infinitesimally rigid if and only if rank [R (q)] = 3N −6
in R

3 [4]. Frameworks (G, q) and (G, q̂) are equivalent if
γ (q) = γ (q̂), and are congruent if

∥∥qi − q j
∥∥ = ∥∥q̂i − q̂ j

∥∥
for all distinct vertices i and j in V [9]. If infinitesimally
rigid frameworks (G, q) and (G, q̂) are equivalent but not
congruent, they are flip- or flex-ambiguous [4]. In this paper,
we focus on flip ambiguities (see Fig. 1 for an example)
because flex ambiguities result from a momentary loss of
graph edges, which we consider cannot happen here.

A 3D minimally rigid framework can be built using the
type I Henneberg insertion in 3D [7]. Beginning with tri-
angular framework, this technique grows the graph by the
successive addition of a vertex with three undirected edges,
leading to a tetrahedralized, polyhedron framework. Here-
after, such a framework is called a 3DHenneberg framework.

Fig. 1 Flip ambiguity in 3D: edges (2,5), (3,5), and (4,5) are reflected
about the plane formed by vertices 2, 3, and 4 producing equivalent
frameworks. Note that the frameworks are not congruent since distance
‖q1 − q5‖ is not the same in the two frameworks
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3 Problem Statement

We consider an N-robot system where N ≥ 4 that needs
to acquire a 3D formation encoded by 3N − 6 desired dis-
tances di j . The desired formation is modeled by framework
F∗ = (G,q∗) where G = (V, E), |V| = N , |E | = 3N − 6,∥∥∥q∗

i − q∗
j

∥∥∥ = di j , (i, j) ∈ E with q∗
i ∈ R

3, and q∗ =[
q∗
1 , ..., q∗

N

]
. The following assumptions are made regard-

ing the desired framework:

A1. F∗ is a 3D Henneberg framework with edge set
E={(1, 2), (1, 3), (2, 3), (1, 4), (2, 4), (3, 4), . . . , (k−3, k),

(k − 2, k), (k − 1, k), . . . , (N − 3, N ), (N − 2, N ), (N −
1, N )}. 1

A2. F∗ is known to all robots beforehand.

The robot system is represented by F(t) = (G,q(t))
where q = [

q1 , ..., qN

]
and qi ∈ R

3 is the ith robot posi-
tion. Edge (i, j) ∈ E in F indicates that robots i and j can
both measure their relative position and can communicate
with each other to exchange information. We assume each
robot is governed by the following equation of motion

q̇i = ui , ∀i ∈ V (3)

where ui ∈ R
3 is the control input. We use the notation

Fk(t) = (Gk,qk(t)) ⊆ F(t), where Gk = (Vk, Ek), Vk =
{1, . . . , k}, Ek ⊆ E , qk = [

q1 , ..., qk
]
, and k < N , to denote

subformation k. A similar notation is used for subformations
of F∗.

The objective is to synthesize a control scheme that avoids
flip ambiguities by only utilizing distance constraints. That
is, we do not enforce other constraints (e.g., the signed vol-
ume) on the 3D formation.

4 Flip Ambiguity

To demonstrate how flip ambiguities can occur in the given
problem, let us consider the conventional DBFC [4, 10].
Define the relative position of two robots as qi j = qi − q j

and the corresponding distance error-like variable as

si j = ∥∥qi j
∥∥2 − d2i j , ∀(i, j) ∈ E . (4)

Consider the Lyapunov function candidate

W = 1

4

∑
(i, j)∈E

s2i j = 1

4
sᵀs (5)

1 This way of constructing the edge set leads to |E| = 3N − 6.

where s = [s12, . . . , s(N−1)N ] ∈ R
|E | is the vector of all the

si j ’s. The time derivative of Eq. (5) is given by

Ẇ =
∑

(i, j)∈E
si j q

ᵀ
i j

(
ui − u j

)
. (6)

where Eq. (3) was used. From the form of Eq. (6), the con-
ventional DBFC is designed as [4, 10]

ui = −α
∑

j∈Ni (E)

qi j si j , ∀i ∈ V (7)

where α > 0 is a control gain. After substituting Eq. (7) into
Eq. (6) and applying Eq. (2), we get [4]

Ẇ = −αsᵀR (q) Rᵀ (q) s ≤ −αλmin
(
RRᵀ)

sᵀs (8)

where λmin (·) is the minimum eigenvalue. It can be shown
that since λmin (RRᵀ) is positive for sufficiently small initial
errors, s(0), then R is full row rank for all time and RRᵀ

is positive definite [4]. Therefore, we conclude that s = 0
is locally exponentially stable from E qs. (5) and (8), which
means the formation converges to the desired formation or
to its flip-ambiguous version. That is, if we let q∗ and q∗a
be the equilibrium points of the desired and flip-ambiguous
formations, respectively, then F(t) → F∗(q∗) or F(t) →
F∗(q∗a) as t → ∞.

To determine if F will approach F∗(q∗) or F∗(q∗a), con-
sider that robots 1, . . . , k − 1 have formed the desired shape
and robot k is a new approaching robot that may create a flip
ambiguity. In this case, Eq. (8) will simplify to

Ẇ ≤ −αλmin

(
RRT

) [(∥∥q(k−3)k
∥∥2 − d2(k−3)k

)2

+
(∥∥q(k−2)k

∥∥2 − d2(k−2)k

)2 +
(∥∥q(k−1)k

∥∥2 − d2(k−1)k

)2]
(9)

where the terms that meet the desired distance are zero,
including s(k−2)(k−1), s(k−3)(k−1), and s(k−3)(k−2). Note that
Eq. (9) is related to three edges of the tetrahedron com-
posed by robots k − 3, k − 2, k − 1, and k. Also, Ẇ = 0
only when

∥∥q(k−3)k
∥∥ = d(k−3)k ,

∥∥q(k−2)k
∥∥ = d(k−2)k , and∥∥q(k−1)k

∥∥ = d(k−1)k which can be accomplished at F∗
k (q∗

k )

or F∗
k (q∗a

k ). We can now state the following conjecture.
Conjecture: The region of attraction (RoA) to either equi-

librium point is on the corresponding side of the plane
containing qk−3, qk−2, and qk−1; see Fig. 2.

This conjecture can be demonstrated by considering a for-
mation with N = 5 for example where the desired formation
is two back-to-back regular tetrahedra (triangular bipyramid)
and robots 1-4 have already formed one half of the triangular
bipyramid. The left panel of Fig. 3 shows robot 5 initially in
the RoA to F∗(q∗). As a result, F(t) → F∗(q∗) as t → ∞
aswe can see from the right panel of Fig. 3. In the left panel of
Fig. 4, robot 5 is initially in the RoA to F∗(q∗a) and outside
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Fig. 2 Regions of attraction to F∗
k (q∗

k ) and F∗
k (q∗a

k )

of the tetrahedron formed by robots 1-4. Now, the formation
converges to F∗(q∗a) instead (see Fig. 4 right panel). Lastly,
Fig. 5 depicts a variation of the second case where robot 5 is
initially positioned within the tetrahedron and near the bor-
derline of the two RoAs. Again, the formation is attracted
to F∗(q∗a). In the following, we design a switched control
scheme to prevent robots from converging to a flip ambiguity
despite robot k being initially in the RoA to F∗

k (q∗a
k ).

5 Switched Control System

In this section, we present a switching control logic which
when paired with the DBFC of Eq. (7) and certain rigid-

body-like maneuvers avoids flip ambiguities. Therefore, the
stability region of the closed-loop system is enlarged relative
to the use of DBFC alone. Next, we explain the reasoning
behind the proposed control system.

Let the RoA to F∗
k (q∗

k ) and F∗
k (q∗a

k ) be represented by
R(q∗

k ) andR(q∗a
k ), respectively. The control system involves

robots k = 4, . . . , N continuously checking if they are
located in R(q∗

k ) or R(q∗a
k ). If qk ∈ R(q∗

k ), robot k sim-
ply employs the conventional DBFC. If qk ∈ R(q∗a

k ), then
a maneuver is introduced in the formation to force robot k
towardsR(q∗

k ). The type of maneuver is dependent on where
robot k is located inR(q∗a

k ). Specifically, let the convex hull
of q∗

l (i.e., the desired position of robots 1, . . . , l) be denoted
by C(q∗

l ). If robot k satisfies the condition qk ∈ R(q∗a
k ) ∩

C(q∗
k−1), then it should translate towards the plane formed

by robots k − 3, k − 2, and k − 1 (the specific direction
of translation will be given later) while Fk−1 remains sta-
tionary until qk ∈ R(q∗

k ). If qk ∈ R(q∗a
k )∩ C̄(q∗

k−1) where
C̄(·) is the complement of the convex hull, then Fk−1 should
undergo a rigid body rotation about a vector on the plane
formed by robots k − 3, k − 2, and k − 1 (the vector calcula-
tion will be specified later) while robot k remains stationary
until qk ∈ R(q∗

k ). An implicit condition for these maneuvers
to be triggered is that subformation Fk−1(t) has successively
converged to F∗

k−1(q
∗
k−1) because then there exists a bound-

ary plane between R(q∗
k ) and R(q∗a

k ) (see Fig. 2). Thus, if
more than one robot, e.g. robots l and m where l < m, are
in the RoA to their respective ambiguous equilibrium point,
then the necessary maneuver is applied to robot l first and,
once ql ∈ R(q∗

l ), the necessary maneuver is applied to robot
m. That is, the logic is applied sequentially to all robots who

Fig. 3 Robot 5 initialized in the RoA to F∗(q∗). Crosses and circles denote initial and final positions, respectively
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Fig. 4 Robot 5 initialized in the RoA to F∗(q∗a) and outside of the tetrahedron formed by robots 1-4. Crosses and circles denote initial and final
positions, respectively. Robots 1 and 5 ocupy same final position due to convergence to the ambiguous formation.

are located inR(q∗a
k ). A summary of the algorithm is shown

below.

Algorithm 1 Control Logic
repeat

for Subformation F∗
k (q∗

k ), k = 4, ..., N do
if Subformation F∗

k−1(q
∗
k−1) is already acquired [Eq. (17)]

then
if qk ∈ R(q∗a

k ) ∩ C(q∗
k−1) then

Translate robot k towardsR(q∗
k ) [2nd row of Eq. (15)]

Keep robots k − 1 and k − 2 stationary [2nd row of Eq.
(14)]
Apply DBFC to all other robots [Eq. (13)]

else if qk ∈ R(q∗a
k ) ∩ C̄(q∗

k−1) then
Keep robot k stationary [3rd row of Eq. (15)]
Rotate Fk−1 to locate robot k inR(q∗

k ) [3rd row of Eq.
(14)]
Apply DBFC to all other robots [Eq. (13)]

else
Apply DBFC to all robots [Eq. (13) and 1st row of Eqs.
(14) and (15)]

end if
else

Apply DBFC to all robots [Eq. (13) and 1st row of Eqs. (14)
and (15)]

end if
end for

until F∗ is acquired

In order to mathematically formalize the algorithm, a few
variables need to be introduced. Let c be the position of robot
k relative to the centroid of the triangle composed of robots

k−3, k−2, and k−1 (Fig. 6). Since we desire to calculate c
from data local to the robots, we use the following formulas

c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

qk(k−3) − q(k−1)(k−3) + q(k−2)(k−3)

3
, for robot k − 3

qk(k−2) − q(k−1)(k−2) + q(k−3)(k−2)

3
, for robot k − 2.

qk(k−1) − q(k−3)(k−1) + q(k−2)(k−1)

3
, for robot k − 1

−q(k−3)(k) + q(k−2)(k) + q(k−1)(k)

3
, for robot k.

(10)

If we letZ denote the plane formed by robots k−3, k−2, and
k − 1, the vector p ∈ Z perpendicular to vector q(k−2)(k−1)

(see Figure 6) is defined by

p =
⎧⎨
⎩
q(k−3)(k−2) − projq(k−1)(k−2)

q(k−3)(k−2), for robot k − 2

q(k−3)(k−1) − projq(k−2)(k−1)
q(k−3)(k−1), for robot k − 1

(11)

where the first (resp., second) equation is utilized by robot
k−2 (resp., k−1). The vector normal to planeZ (see Fig. 6)
is defined by

n =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

q(k−1)(k−3) × q(k−2)(k−3), for robot k − 3;

q(k−3)(k−2) × q(k−1)(k−2), for robot k − 2;

q(k−2)(k−1) × q(k−3)(k−1), for robot k − 1

(12)

where the first, second, and third equations are used by robots
k − 3, k − 2, and k − 1, respectively. This vector will help
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Fig. 5 Robot 5 initialized in the RoA to F∗(q∗a) and inside of the tetrahedron formeded by robots 1-4. Crosses and circles denote initial and final
positions, respectively. Robots 1 and 5 ocupy same final position due to convergence to the ambiguous formation

characterize on which side of the plane robot k is located.
Finally, let r denote the distance from the centroid of the tri-
angle formed by robots k −3, k −2, and k −1 to the farthest
vertex of F∗

k−1(q
∗
k−1), as shown in Fig. 7. This parameter will

be used to as a conservative estimate of the convex hull of the
subformation. It is important to point out that r can be com-
puted in advance for any desired subformation F∗

k−1(q
∗
k−1).

The control scheme described above is implementable
through the control laws described next. For acquisition of
subformations F∗

k (q∗
k), k = 4, . . . , N , we use

ui = −α
∑

j∈Ni (E)

qi j si j , i = V − {k − 2, k − 1, k}, (13)

Fig. 6 Definition of vectors c, p, and n

ui =

⎧
⎪⎨
⎪⎩

−α
∑

j∈Nl (E)

qi j si j , if cᵀn̄ < 0

0, if cᵀn̄ ≥ 0 & ‖c‖ < r
ω

(
p × q(k−2)(k−1)

)
, if cᵀn̄ ≥ 0 & ‖c‖ ≥ r

, i = {k − 2, k − 1}

(14)

Fig. 7 Definitionof parameter r. Points denote the desired subformation
F∗
k−1(q

∗
k−1), and the sphere of radius r represents the convex hull estimate
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and

uk =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

−α
∑

j∈Nk(E)

qkj sk j , if cᵀn̄ < 0

−β
c

‖c‖ , if cᵀn̄ ≥ 0 & ‖c‖ < r

0, if cᵀn̄ ≥ 0 & ‖c‖ ≥ r

(15)

where

n̄ =
⎧⎨
⎩
n, if q∗

k and q∗
k−4 on same side of plane Z

−n, if q∗
k and q∗

k−4 on opposite sides of plane Z,

(16)

α, β > 0 are control gains,ω is a user-defined constant denot-
ing the angular speed of the rigid body rotation, and n was
defined in Eq. (12).

Finally, to account for the situation where multiple robots
are in their respective ambiguous RoA, we need to determine
when subformation F∗

l (q∗
l ) has been successfully acquired

in order to initiate the acquisition of F∗
m(q∗

m) where m >

l ≥ 4. To this end, we utilize the error variables in Eq. (4 ) as
indicators ofsuccessful subformationacquisition. Specifically, if

max
(∣∣sl(l−1)

∣∣ , ∣∣sl(l−2)
∣∣ , ∣∣sl(l−3)

∣∣) ≤ δ, (17)

where δ is a sufficiently small, user-defined positive constant,
then we consider that F∗

l (q∗
l ) has been acquired and a signal

is transmitted by robot l to robots l + 1, l + 2, and l + 3.
This signal is propagated through the graph using multi-hop
routing until it reaches robot m.

Remark 1 Excluding robot 1, which always utilizes the con-
ventional DBFC, a certain robot may use Eqs. (13), (14), or
(15) depending on the subformation being acquired at the
time.

Remark 2 Robots k − 3, k − 2, and k − 1 play a distinctive
function in the acquisition of subformation Fk . Specifically,
the second rows in (14) and Eq. (15) correspond to robot
k translating towards the triangle formed by robots k − 3,
k − 2, and k − 1 along the direction of vector −c/ ‖c‖ with
linear speed β, while the third row corresponds to the rota-
tion of robots k − 2 and k − 1 about vector p with angular
speed ω. Since robots 1, . . . , k − 3 use Eq. (13), they follow
robots k−2 and k−1 and preserve the rigidity of subforma-
tion Fk−1 for the duration of the event. Finally, the location
of R(q∗

k ) relative to robot k is realized by the term cᵀn̄ in
Eqs. (14) and (15) whose sign indicates if qk(t) ∈ R(q∗

k ) or
qk(t) ∈ R(q∗a

k ) at any given time. The definition of n̄ in Eq.
(16) is solely for assuring that cᵀn̄ is always negative when-
ever qk(t) ∈ R(q∗

k ). Also, the conditions in Eq. (16) can
be computed in advance since they depend on the desired
formation only.

Remark 3 The above-described translation and rotationwere
selected because of their simplicity; i.e., they do not need path
planning or additional information exchange between robots.
Moreover, these maneuvers are free of collision. Observe
that translation happens towards the centroid of the triangle
formed by robots k − 3, k − 2, and k − 1; thus, robot k will
not collidewith these robotswhen they are coplanar. Rotation
happens when robot k is outside of rigid subformation Fk−1;
thus, robots 1, . . . , k − 1 will not collide with robot k.

Theorem 1 Control system Eqs. (13)-(15) ensures that F(t)
→ F∗(q∗) as t → ∞.

Proof It is well known that if theDBFC ui = α
∑

j∈Ni (E)

qi j si j

is used by all robots i ∈ V for all time, then F(t) → F∗(q∗)
or F(t) → F∗(q∗a) as t → ∞ [4, 10]. Thus, when this
control is applied to a subset of robots i ∈ V̄ ⊂ V for all time,
we have that

∥∥qi j (t)
∥∥ → di j (or equivalently si j (t) → 0) as

t → ∞, ∀(i, j) ∈ E such that i ∈ V̄ . When the distance-
based control is applied to robots i ∈ V̄ for a finite time
interval [0, T ], then

∣∣si j (t)
∣∣, ∀(i, j) ∈ E such that i ∈ V̄ ,

are bounded and decreasing over [0, T ]. Next, note that the
control laws in the second and third rows of Eqs. (14) and
(15) cause robots to move with finite velocity q̇i since β and
ω are constants. Since these control laws are only applied
for a finite period of time until robot i reaches R(q∗

i ), the
displacements experienced by the robots during this period
will be bounded. As each robot i = 4, . . . , N sequentially
reaches R(q∗

i ), its control system switches to the DBFC.
Therefore, DBFC is applied to all robots i ∈ V after some
finite period of time, after which no more switching occurs.
As a result, F(t) → F∗(q∗) as t → ∞.

Remark 4 Since DBFC is a component of the proposed
control system, known restrictions on the initial conditions
associated with certain collocated, colinear, or coplanar sit-
uations still exist. However, the proposed control system
enlarges the stability region since it does not require the
robots to be initialized in the region of attraction to the desired
formation, as is the case when using Eq. (7) by itself.

6 Simulation Results

The proposed formation control system was evaluated via a
simulation conducted in MATLAB (version R2021a) script
and compared to the 3D orthogonal basis formation con-
troller of [14], which also has the ability to avoid flip
ambiguities. We refer the reader to [14] for the details
of the orthogonal basis control algorithm. The formation
objective in the simulation consisted of six robots forming
a 3D minimally rigid framework composed of three con-
nected triangular pyramids as shown in Fig. 8. As such,
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Fig. 8 Desired formation F∗
composed of three triangular
pyramids: first pyramid
composed of vertices 1-4,
second pyramid of vertices 2-5,
and third pyramid of vertices 3-6

N = 6 and the edge set of size 3N − 6 = 12 was E =
{(1, 2) , (1, 3) , (2, 3) , (1, 4) , (2, 4) , (3, 4) , (2, 5) , (3, 5) ,

(4, 5) , (3, 6) , (4, 6) , (5, 6)} where the desired distances
were d12 = d13 = d23 = d14 = d24 = d34 = d25 =
d35 = d45 = d36 = d46 = d56 = 10. For the chosen 3D
shape, the desired distances between robots (1, 5) and (2, 6),

although not explicitly controlled, would be equal to 20
√

2
3 .

These distances are important because they indicate if flip

ambiguities are avoided. In order to provide a proper basis for
comparison of the two controllers, we imposed the control
input constraint ‖ui‖ ≤ 10, i = 1, . . . 6.

Two simulations were conducted for different initial con-
ditions of the robots so that different switchings of Eqs.
(14) and (15) occurred. The initial positions of the robots
and the control gains of the switched controller for the two
simulations are shown in Table 1. The orthogonal basis con-

Table 1 Simulation cases
α β ω Initial Position

Simulation 1 0.01 10 10 [−10,−10,−10] Robot 1

[10, 0, 0] Robot 2

[5, 5, 0] Robot 3

[5, 2.887, 10] Robot 4

[14, 16, 16] Robot 5

[7, 2, 4] Robot 6

Simulation 2 0.003 375 10 [−100,−100,−100] Robot 1

[10, 0, 0] Robot 2

[5, 5, 0] Robot 3

[5, 2.887, 10] Robot 4

[−4,−6,−6] Robot 5

[−100,−107, −104] Robot 6
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Fig. 9 Simulation 1: distance errors, ei j , of the switched controller. Dashed vertical lines indicate switching instants

Fig. 10 Simulation 1: norm of
the control inputs, ‖ui‖, of the
switched controller
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Fig. 11 Simulation 1: distance errors, ei j , of the orthogonal basis controller

Fig. 12 Simulation 1: norm of
the control inputs, ‖ui‖, of the
orthogonal basis controller
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Table 2 Comparison of Metrics

Ts Ec Controller

Simulation 1 20.1 69.7 Switched

25.7 106 Orthogonal Basis

Simulation 2 22.9 581 Switched

41.6 861 Orthogonal Basis

troller was subjected to the same initial conditions and all its
gains were set to 0.25 in both simulations (see [14] for the
gain definitions). Two metrics were used to compare the per-
formance of the switched and orthogonal basis controllers.
First, if the actual, inter-robot distance errors are defined as
ei j (t) = ∥∥qi j (t)

∥∥ − di j , we computed the settling time Ts as
the time for all distance errors to reach and remain within 2%

of their corresponding desired distance, i.e.,
∣∣ei j

∣∣ ≤ 0.02di j .
Second, we computed the control effort as

Ec :=
∫ Ts

0

6∑
i=1

‖ui (t)‖ dt . (18)

Animations of the simulations showing the 3D motion of
the robots for each controller can be found in the YouTube
playlist [20].

Simulation 1. The distance errors and norm of each con-
trol input for the proposed switched controller are shown in
Figs. 9 and 10, respectively. For t = [0, 1.17], the team of
robots attempts to acquire F∗

4 and F∗
5 using Eq. (13), the

first equation of Eqs. (14) and (15) with k = 5, and Eq. (17)
with δ = 1.5. At t = 1.17, Eq. (17) is met so the algorithm
switches to address the fact that q6 ∈ R(q∗a

6 )∩ C(q∗
5). This

triggers the second equation in Eqs. (14) and (15) with k = 6

Fig. 13 Simulation 2: distance errors, ei j , of the switched controller. Dashed vertical lines indicate switching instants
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Fig. 14 Simulation 2: norm of
the control inputs, ‖ui‖, of the
switched controller

Fig. 15 Simulation 2: distance errors, ei j , of the orthogonal basis controller
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Fig. 16 Simulation 2: norm of
the control inputs, ‖ui‖, of the
orthogonal basis controller

and robot 6 translates towards the plane formed by robots 3-
4-5. As seen from Fig. 10, the control inputs of robots 4 and
5 are zero during this period of time. At t = 6.3, q6 ∈ R(q∗

6)

and the control systems for robots 4, 5, and 6 switch to the
first equation in Eqs. (14) and (15) with k = 6. The desired
formation is acquired by t = 25 as all distance errors are
approximately zero; see Fig. 9. The distance errors and norm
of the control inputs for the orthogonal basis controller are
shown in Figs. 11 and 12, respectively. In this controller,
robot 1 serves as the formation “anchor” since its control
input is always zero. Notice that the desired formation takes
longer to be acquired with the orthogonal basis controller.
From Table 2, we can see that the switched controller out-
performs the orthogonal basis control by having a shorter
settling time with significantly less control effort.

Simulation 2. In this simulation, the initial conditions
were such that robots 1 and 6 were positioned far from the
rest of the robots at t = 0 . The distance errors and control
input norms of the switched controller are depicted in Figs. 13
and 14, respectively. Like in the first simulation, the robots
prioritize the acquisition of F∗

4 and F∗
5 during the first 10.3

units of time. When Eq. (17) with δ = 1.5 is met at t = 10.3,
we have that q6 ∈ R(q∗a

6 )∩ C̄(q∗
5). This triggers the third

equation in Eq. (14) and (15) with k = 6 and robots 4 and 5
begin rotating while robot 6 remains stationary. At t = 18,
q6 ∈ R(q∗

6) so the control for robots 4, 5, and 6 switch to
the first equation in Eqs. (14) and (15) with k = 6 and all
robots operate with DBFC until the formation is successfully
acquired at about t = 23. The results for the orthogonal
basis controller are shown in Figs. 15 and 16. Again here,
the switched control performs better by acquiring the desired
formation faster and with less control effort.

7 Conclusion

In this paper, we introduced a switched control system for
preventing flip ambiguities in distance-based 3D formation
problems. The novelty of the proposed approachwas bypass-
ing added variables, e.g. the signed volume, in the formation
controller. The control system was devised for 3D Hen-
neberg frameworks where each robot has control, sensing,
and communication channels with the previous three robots
in the vertex set, resulting in a tetrahedralized, minimally
rigid graph. The control scheme maneuvers the formation
away from the region of attraction to the flip ambiguity and
then switches to the conventional distance-based formation
controller. As a result, the control ensures formation shape
acquisition for a larger set of initial conditions. The proposed
control strategy is agnostic to the type ofmobile robot since it
is based on a high-level motion model defined by the single-
integrator equation. In practice, our control can be embedded
in a low-level control loop that accounts for the robot dynam-
ics.
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