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Abstract

In this paper, the asymmetric bipartite consensus problem of a nonlinear multi-agent system is solved using Distributed
Nonlinear Dynamic Inversion (DNDI) based controller. The application of DNDI is new in the context of asymmetric
bipartite consensus, and it inherits all the advantages of NDI and works efficiently to solve the asymmetric bipartite problem.
The mathematical details presented provide theoretical proof of its efficiency. A realistic simulation study is performed to
establish the claims. The controller’s performance has been tested in the presence of communication noise, and the results

are promising.
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1 Introduction

The consensus among agents is a key mechanism for
networked multi-agent operations. The consensus process
brings the states of all agents to an agreement to achieve a
common goal. The consensus control algorithm is designed
with different branches of control theory and uses the
information the neighbouring agents share. The widespread
application of consensus includes distributed computation
[1], cooperative mobile robotics [2], tracking [3], synchro-
nization [4], sensory networks [5] etc. It can be mentioned
that the application of consensus is not limited to the engi-
neering domain only. It extends to application in biology,
ecology and social sciences (for example, flocking [6, 7] and
dynamics of opinion-forming [8]). There are many papers
where various consensus problems have been solved, con-
sidering communication issues (switching topology, delays,
noise), disturbance, and fault [9-19].

The consensus of the states of the agents is achieved when
they interact on a nonnegative graph. However, cooperation
and competition (antagonistic interactions) may exist among
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agents when they interact on a signed network with positive
and negative edge weights. Altafini [20] showed coopera-
tion and competition result in a division of a group into
two with the same consensus value but opposite sign, i.e.,
two consensus values are symmetric. This type of consensus
is named bipartite consensus. The bipartite consensus was
applied to the social network and opinion dynamics [21].
Many papers exist where bipartite consensus was designed
for agents with linear dynamics [22-33]. A few research were
done for nonlinear agents [34—41]. However, the consensus
does not need to be symmetric always because trust/distrust
and cooperation/competition between the groups may be at
different levels. Therefore, agents in one group may have a
non-symmetric consensus value, i.e., the consensus values
of two groups are different both in magnitude and sign. This
type of bipartite consensus is named asymmetric bipartite
consensus. This problem was addressed by Guo et al. [42],
where a new class of general Laplacian matrices was pro-
posed. The authors solved a finite time asymmetric bipartite
problem [43] to guarantee that all agents could achieve the
asymmetric bipartite consensus in a fixed time. Next, they
proposed pinning asymmetric bipartite consensus protocol
for multi-agent systems considering communication delays.
Liang et al. [44] presented an iterative learning-based control
protocol for nonlinear agents. It can be noticed that the bipar-
tite consensus can be regarded as a special case of asymmetric
bipartite consensus. Therefore, the asymmetric bipartite con-
sensus is applied to solve problems which are solved using
bipartite consensus.
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The asymmetric consensus protocols proposed so far have
been considered mostly for linear agents. The only work that
considered nonlinear agent dynamics explained the iterative
learning approach. We propose a nonlinear consensus con-
troller based on Distributed Nonlinear Dynamic Inversion
(DNDI) [17], which is designed using Nonlinear Dynamic
Inversion (NDI) [45-47]. DNDI is used to solve consensus
problems for nonlinear agents with external disturbance [41]
and faults [19]. DNDI inherits the advantages of NDI, like
closed-form control expression, easy mechanization, global
exponential stability, the inclusion of nonlinear kinematics
in the plant inversion, and minimization of the need for indi-
vidual gain tuning or gain scheduling. The contribution of
this work is summarized as follows.

e A variety of NDI-based distributed controllers (DNDI) is
proposed in this paper to solve the asymmetric bipartite
consensus problem of nonlinear agents. The application
of an NDI-based controller for the asymmetric bipartite
problem is new.

e Mathematical details for the controller’s convergence are
included, which provides a theoretical basis for its effec-
tiveness.

e The performance of the proposed controller is evaluated
using a simulation study in MATLAB.

e Moreover, we added communication noise to make the
simulation scenario more realistic. Results are obtained
with and without noise to prove the effectiveness of the
controller.

The rest of the paper is organized as follows. Prelimi-
naries are given in Section 2. The problem description is
given in Section 3. The mathematical details of the DNDI for
asymmetric bipartite consensus are shown in Section 4. The
convergence study of the controller is presented in Section 5.
The simulation results are discussed in Section 6. Finally, the
conclusion is given in Section 7.

2 Preliminaries

In this section, we present a few topics to support the work
in this paper.

2.1 Asymmetric Bipartite Consensus

Definition 1 A group of agents achieve asymmetric
bipartite consensus if there exists a constant « such that

o lim; oo (xi(1)) = p, Vi € Q.
o lim;oo (xj(1)) = —kp,Vj € Q.
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are satisfied, where x; (¢) and x;(¢) denote the states of the
i"" and j'" agents respectively. k > 0,

Q1 ={vi,v2,...vm}, 22 = {vm+1, Um+2, ... N}, and
Q=QUQs.

2.2 Graph Theory

The communication topology is described using a weighted
graph, givenby G = {V, £}. The vertices V = {vy, va, ..., vy}
represent the agents. The edges £ € V x V represent the
connection among the agents. The elements of weighted
adjacency matrix A = [a;;] € WYV of G are ¢;; > 0 if
(vi,vj) € &, otherwise a;; = 0. We do not consider any
self loop. Therefore, the adjacency matrix A has zero diag-
onal elements, i.e., v; € V, a;; = 0. The degree matrix
can be given by D € WV*N = diag{d, d ...dy}, where
di = Zj eN; dij- Therefore, the Laplacian matrix is written
asL=D—- A

Generally, the synchronization of networked agents is
explained using the Laplacian matrix £ of a nonnegative
graph. However, the Laplacian matrix for a signed graph is
defined differently. In the case of a signed graph, we define
the laplacian matrix as signed laplacian (L) given by

N N
Ly=diag Y Jaijl.....> laj||-A ()
j=1

j=1
2.3 Communication Noise

The communication noise perturbs the information shared
among the agents. Therefore the perturbed information is
received by i’ agent from its neighbours. We present an addi-
tive noise model by X ;; = X; + oj;w;; which represents
the noise added to information received by i’ agent from
neighbouring j'* agents j € N;. X;, X; € " are states.
wji; i,j €1,2,..., N denotes independent white noises,
and o; is the noise intensity.

2.4 Theorems and Lemmas

A few useful lemmas are presented here.

Definition 1 [20, 48] A signed graph is structurally balanced
if it has a bipartition of the nodes V1, V,,i.e., VI UV, =V
and V1NV, = @suchthata;; <0,Vv; € V), v; € V, where
p.q € 1,2, p # g, and {J is empty set; otherwise a;; > 0.

Lemma 1 [49] A spanning tree is structurally balanced.

Lemma 2 [50] Let us consider that the signed graph G(A)
has a spanning tree. The signature matrices set as

D ={D =diag (01, 02, ...,0n);0; € {1, —1}} 2)
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Then the following statements are equivalent.

1. G(A) is structurally balanced.

2. ajjaj; = 0 and the associated undirected graph G(A,)
is structurally balanced, where G(A,) = A+TAT

3. 3D € D, such that A = [a;j]1 = DAD is a nonnegative
matrix.

Lemma 3 [51] Suppose the signed digraph G(A) has a span-
ning tree. If the graph is structurally balanced, then 0 is a
simple eigenvalue of its Laplacian matrix, and all its other
eigenvalues have positive real parts, but not vice versa.

Corollary 1 [28] Suppose the signed graph G(A) is undi-
rected and connected. The graph is structurally balanced,
if and only if 0 is a simple eigenvalue of L and all other
eigenvalues have positive real parts.

3 Problem Description

The objective of this work is to design a consensus protocol
to solve asymmetric bipartite consensus problems among the
agents having nonlinear dynamics. The consensus controller
designed here is the modification of Distributed NDI (DNDI),
which is derived in the following section. The dynamics of
i agent is given in Egs. 3-4.

X = f(Xi) + g(Xn)U; 3)
Y, = X; “®

The state and control of i’" agent is given by X; € %" and
U; € R respectively. The output of i’ agent is given by

Y,’:X[Gmn ©)

Assumption 1 The system is perfectly known and the
matrix g(X) is invertible for all time.

Assumption 2 The agents share information over the
communication topology described by a signed digraph
G(A) having a spanning tree, and the topology is
structurally balanced.

Also, the controller’s performance is tested in the presence
of noise.

4 Asymmetric Bipartite consensus using
Distributed Nonlinear Dynamic Inversion
(DNDI) Controller

The Distributed Nonlinear Dynamic Inversion (DNDI) con-
troller [17] is designed to solve the ordinary consensus
problem of nonlinear agents. Also, DNDI can handle com-
munication issues and external disturbance [18] in consensus
problems. DNDI is modified to solve the bipartite consensus
problem for nonlinear agents with communication noise [41].
We consider an undirected signed graph in this study to anal-
yse the asymmetric bipartite problem and the convergence of
the controller.

The agents are split in two groups 1 = {vy, v2, ... Up},
Q2 = {Vm+1, Un+2, - .- vn}, and = Q1 U Q5. The error in
states X; € \"; n > 1 of i' agent is given as follows.

Sig, = di la, Xig, — aiq Xq,, if i € Q1. (6)
Sig, = | di l9, Xig, — Gig, Xy, ifi € Q. (7

in igz
where | d; |g,= (I d;i o, ®L, + & | di |g, ®L,) € K",
| di loy= (X 1dilg, ®Li+ | di lg, ®L) € R, scal-
ing factor k > O, &iﬂl = (a,~QI ®IL,) € |rxnmm, Etin =
(@ig, ®1y) € prxn(N=m) g, — laiq, ®1n aig, ®L,], Xq, =
[X1 X2 ... Xin] € W, Xq, = [Xmt1 X2 ... Xn] €
R N=m 1, is n x n identity matrix. | d; |q,= >
aj 1€ W1 di loy= Yyt | aj l€ %, ag =

lair aiz... aim]l € W, aig, = [aimt1 Gims2 .- aiN] €
gRN—m

Laig = lan aix ... Gim Gimy1 - .. aiyl € (Y.

The agents have different control expression depending
on which group they belong €21 or €2;. Let us construct a
Lyapunov function Vj, as given below.

Ler
‘/iQI = 551‘9161'9] (8)
Differentiation of Eq. 8 yields

Vig, = 8y, dig, ©)

According to the Lyapunov stability theory, the time deriva-
tive of the Lyapunov function should be

Vig, = =81, Kig, 8ig, (10)

where, ki, € "Xm> 0 is a diagonal gain matrix. The
expression of ViQ] in Egs. 9 and 10 are equated to obtain

815, 8ia, = 81, Kig, Sic, (11)
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Equation 11 is simplified as follows.

3,'91 + Kig, 3,'91 =0 (12)
Differentiation of Eq. 6 yields

dig, = I di lig, Xig, — aig, Xg,

= 1d; lia, |/ (Xia)) + 8 (Xig)Uig, | = g, X, (13)
Substitution of the expressions $ ig, in Eq. 12 yields

14 lia, (f(Xig)) + 8(Xia) Uig, ) = dig, Xe,

+ g, (1di |y Xig, = Gig, Xa,) =0 (14)

The resulting expression of Ui, for i th agent is obtained by
simplifying Eq. 14 as follows

U,'Ql = <g(XiQ1 ))71 I:* S (Xigl)

+1di 15} (dia, Xia, —i, (14 lay Xig, ~iq, Xa1) ) |(15)

Similar expression can be obtained for Uj,, . It is given as
follows.

Ui, = (g(xmz))fl [ - /(Xiay)
+1di | (éiQZXz’QZ —Kig, (I di o, Xig, *L_h'gzxszz)) } (16)

nxn

where, kip, € N > ( is a diagonal gain matrix.

5 Convergence of DNDI for Asymmetric
Bipartite Consensus

Theorem 1 A group of nonlinear agents (dynamics given in
Egs. (3)-(4) along with the assumptions 1 and 2, achieve
asymmetric bipartite consensus using the consensus protocol
obtained in Egs. (15)-(16). The Uniformly Ultimate Bound-
edness (UUB) of the consensus error ( Siﬂl and 8,-92 ) ensures
the convergence and asymmetric bipartite consensus.

Proof:

In this section we present the convergence proof of the pro-
posed controller. We define a Lyapunov function

1
v =X (LS ® In)XQ (17)

@ Springer

where, Xq = [Xq, Xq,17 € W In this study, a undirected
and connected graph considered. Therefore, we write L, ® I,
as

Ly @I, =0ne’ (18)

where, ® € RNV *1N ig the left eigenvalue matrix of Ly ®

L, IT = (diag{0, Aa(Ls), A3(Ls), ..., An(Ls)} ® L) €
RN XN g eigenvalue matrix, 0Te =067 =I,nxn.

v = %xg (LS ®IH)XQ
= %Xg@l’[@TXQ
= %Xé@x/ﬁx/ﬁ 0'Xq
- %xé@/ﬁ\/ﬁﬂ fn e’Xq
= %Xg@nﬁ*‘n@ﬂxg

- %Xé@l‘l (@TG)) ! (@Tca) ne’Xq

1 _
55 (@n@T) (@)n—l(aT) (@n@T) X

= —XST2(LS ® In)T(Ls ® In)XQ

e'rE (19)

N — N —

where 1 = (diag(ia(Ly), A2(Ls), 23(Ly), - AN (LOI®
= T T T T T

I,) e SR"anN, d:_l:algl 8291 Ce amQ] 8m+192' .. SNQZ]

e WV, and T = @M 1OT € finh>nN,

Remark 1 Using Eqgs. 17 and 19, we can write

Amin (1) | E ”25 v < Amax (1)

- 2
) 20
> > el (20)

1 T 1 T~
¥ = oXo(Ls ®1)Xe = SX4E 1)

Remark 2 According to Lemma 4, A, > 0. Hence, I is
invertible.

Remark 3 It can be observed that Y = OIT~'®7 is positive
definite matrix. Therefore, W is positive definite subject to
consensus error and qualify for a Lyapunov function.

Differentiation of Eq. 17 yields

¥ =X§(Ls @ 1)Xo = E Xg

=Y 60, [f(Xia)) + 8(Xia ) Uig, |
i=1
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N

+ 3 8k [ Kiay) + 8(Xig, Ui, | (22)

i=m+1

Substitution of the control expression of Ui, and Ui, in
Eq. 22 gives

m

. _ .

V= ZaiTﬂl [l di " e (Gig, Xig, — Kiﬂlaiﬂl)]
i=1

N
+ Y 8 [| 0" 1oy (g, Xia, _Kigzsigz)] (23)
i=m+1

We have two similar terms in Eq. 23 for two groups. We
show the convergence of controller for group 2 . For group
25, the convergence can be obtained similarly. The term for
group €21 is written as

P 6?;]] [l g;] ol (C_linXigl _Kinlsigl)]

m m
T 7—1 - Y T 7—1
=D 80 1" oy dig Xig, — Y 8%, 1d " I, kg, 8ig,
i=1 i=1
(24)

We have mentioned a few Lemmas (4-6) which help us to
proceed further with the derivation.

Lemma4 The Laplacian matrix L in an undirected graph is
semi-positive definite, it has a simple zero eigenvalue, and
all the other eigenvalues are positive if and only if the graph
is connected. Therefore, L is symmetric and it has N non-
negative, real-valued eigenvalues 0 = A < Ay < ... < Ay
[43].

Lemma5 [52]Letyri(t), Y2(t) € R™ be continuous positive
vector functions, by Cauchy inequality and Young’s inequal-
ity, there exists the following inequality:

Vi@ v20) =< | i@ [l Y2 (@) ||

_ @ I”* n I Y20 I
< - :

(25)

Lemma6 [53] Let R(t) € 9N be a continuous positive
function with bounded initial R(0). If the inequality holds
R(1) < —BR(t) + n where, B > 0,1 > 0, then the follow-
ing inequality holds.

R(t) < R(O)e P! + % (1—eFr). (26)

Using Lemma 5, the first term of Eq. 24 can be written as

T | -1 -y -1 = <
80, 147" oy dig, Xia, =1 8ig, 1111 dig) | dig, Xig, |

L
_ i I N e dio Xig, 12
- 2 2

27

Substituting Y} —87, | " |q, Kig, 8ig, in Eq. 23 with
inequality relation, we get

I I 8ig, 12
DY —8ig, 1d7" lig, Kig, §ig, + ———
i=1
I d™" lig, dig, Xiq, II? 08)
2
By designing the gain k;q, as
- 1 pi
ki, =I d lig, (5 + %Amaxor)) : (29)

Pig, > 0. Equation 28 can be written as

m 7—1 - . 2
. i Nd™" lig, Gig, Xig, |
=Y [—j‘xmm I 8ig, 17+ S

i=1

—pig, ¥ + g, . (30)

IA

7—1 = Y 2
m ld ‘iQIaiQIXiQI I
2

where, I, = 370, . Applying Lemma

6 we get
I; Iy .

W< 2 (w) - 2] e P! 31)
IOiQ] pin

Hence, we conclude that W is bounded as t — oo. In addi-
tion, we show the Uniformly Ultimate Boundedness (UUB)
here. Using Eqgs. 20, 31, and Lemma 6 presented by Ge
et al. [53] we can write

; Iy Iy A
A L ] LU P
2 pi Pig,

lQl

(32)

Equation 32 is simplified as

. I I )
)\mm(T) ” o ||2§ o + \I—’(O) _ Iy e—p,glt
2 pigl in

@ Springer
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Therefore,

T r; .
2% +2 (\IJ(O) - %) e Piey!
E|< ! ' 33
I &< o (D) (33)

I
If W(0) = ﬂﬁ then we can write

| El<o. (34)

Vt > 0and o* = _ ey Ifw(0) # Doy then for any
- Pin Amin () © pigl

given 0 > o™ there exist a time 7 > 0 such that V¢ > T,
E|<o.

T T; .
22 42 (W) — 2L ) P
piQ] pigl
o= . (35)
)\-min(T)

Therefore, we can conclude

lim || E |=0%. (36)
11— 00

i.e., the consensus error for the proposed controller converges
to o *. Hence, the consensus error converges, and the agents
achieve the asymmetric bipartite consensus.

6 Simulation Study

The simulation results are presented here. We have used a
signed graph to represented the communication topology
given as follows.

6.1 Communication topology

The communication topology is represented by a signed

graph. The adjacency matrix corresponding to the graph is
given in Eq. 37.

0 3 0 -5 0 —1
30 4 0 0 —1
0 4 0 —-150 0
A=1_50_-15 0 250 (37)
0 0 0 25 0 1
“1-1 0 0 1 0

The graph obtained using the adjacency matrix is shown
in Fig. 1. The weights are assigned to each edge. It can

@ Springer

Fig.1 Signed graph corresponding to .A

be observed that the adjacency matrix gives an undirected
signed graph. In Fig. 2, we have shown the distinct eigen-
values of the Laplacian matrix (Lg) of this signed graph. It
is clear that one eigenvalue is zero, and the rest have a posi-
tive real part. Therefore, we can conclude that the graph has
a spanning tree and is structurally balanced (according to
Corollary 1).

We have considered two cases to demonstrate the perfor-
mance of the controller. They are given below.

e Case 1: Without noise
e Case 2: With noise

08r

06

0475

02

imaginary
Qo
=
=
=
E
=
=

021

04r

06

08r

real

Fig. 2 Eigen values of signed graph. One eigenvalue is zero and the
rest have a positive real part
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6.2 Agent Dynamics considered for Simulation
Study

The nonlinear dynamics considered for the i agents is given
by [41]
Xi, = X, sin2X;)) + U;, (38)

Xi, = X, COS(3X,’2) + U, (39)

where X; = [X i X ,-2]T. Substituting the dynamics of Eqgs.
38 and 39 in the form given in Egs. 3 and 4 we write

[ X, sin2X;,)

fXi) = [Xilz coS(3Xiz)} "
and

10
§(Xi) = [o 1} "
and
Ui
. [Uij (42)

where X; € 9% The states X, ; of all the agents are
denoted by X = [X, X2, ... Xe,]. Similarly, we denote
Xy = [X1, X2, ... X6,], Uy = [Ur, Uy, ... Ug,], and
Uy = [Uy, Uz, ... Usg,l. The errors in X and X is given
by e; in X1 and e; in X respectively.

The initial conditions for the agents (X and X») are given
in the Table 1.

6.3 Case 1: Without noise

The results for the asymmetric bipartite consensus without
noise are presented here. The control signals of the agents,
i.e., Uy and U, obtained using DNDI, are shown in Figs. 3
and 4, respectively. They drive the states of the agents, i.e.,
X1 and X>, to achieve the asymmetric bipartite consensus.
The states X| and X5 are shown in Figs. 5 and 6 respec-
tively. The proposed consensus protocol divides the agents
into two groups depending on the antagonistic interaction
on the graph. According to the graph, one group consists of
agents 1, 2, and 3. They reached a consensus value of —0.4

Table 1 Initial conditions of the agents

Agents 1 2 3 4 5 6
Xio 6 —-34 4.42 3.47 4.15 7.16
X0 7.73 2.9 7.4 2.93 —4.26 5.62

80 T T T T T T T T T

Agent1
Agent2 | |
Agent3
Agent4 | 7
Agent5
Agent6 |

2120 L L L L L L 1
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

time(s)

Fig.3 Control U; (Case 1)

and 0.458 for states X| and X, respectively. On the other
hand, agents 4,5 and 6 form another group. These agents
achieve the consensus values of 3.21 and —3.64 for the states
X1 and X», respectively. It can be noticed that the consensus
value of each state of one group is eight times the multiple
(k = 8) of the other group, which is in accordance with the
scaling factor we selected.

The convergence capability of the proposed controller is
understood by consensus errors in states X and X, of the
agents (shown in Figs. 7 and 8 respectively. These figures
explain the efficiency of the proposed DNDI controller.

6.4 Case 2: With noise

In this case, we consider the communication noise in the sim-
ulation study. The noise is added to all agents according to

Agent1
Agent2
Agent3 | |
Agent4
Agent5
Agent6

-150 £ L L L L | | L L L
0.2 0.4 0.6 0.8 1 1.2 14 1.6 1.8 2
time(s)

Fig.4 Control U, (Case 1)
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T T T T T T 120 T T T T T T
Agent1 Agent1
Agent2 | 100 Agent2 | |
Agent3 Agent3
Agent4 Agent4
Agent5 80 Agent5 |
Agent6 | | Agent6
60 1
o
>
1 £ 40 |
5
20 b
0
_2 - -
-20 1
-4 L L L L L L f L | i . ’ . . . ; ’ y ’
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 .
o time(s)
. Fig.8 Consensus error in state X, (Case 1
Fig.5 Consensus of state X| (Case 1) 9 2 )
sF T T T T T T T T T . T T T T T T T T T
Agent1 60 Agent1 |
Agent2 Agent2
6 Agent3 | 40 Agent3 | |
Agent4 Agent4
Agent5 20 Agent5 | |
4 Agent6 | - Agent6
0 e
o 2 1 ~ 20 [ J
54 =]
-40 1
ol ]
-60 1
2r 1 -80 J
—— -100 F b
4 |
-120 [ . . . . . . . . . 1
| . . . L . . L .
0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.2 0.4 0.6 0.8 . 1 1.2 14 1.6 1.8 2 time(s)
time(s)
Fig.9 Control U; (Case 2)
Fig.6 Consensus of state X, (Case 1)
T T 1 § T T T T T T T T T T T T T T T
Agent1 Agent1
Agent2 Agent2
Agent3 50 Agent3 |
100 Agent4 Agent4
Agent5 Agent5
Agent6 Agent6
ol
50 1
~ 2
£ =)
s -50 )
® o0
-100 b
-50 R
-150 b
-100 1 L L L ! 1 L L L 1 1 L L L L L L L
02 04 06 08 1 12 14 16 18 2 02 04 06 08 1 12 14 16 18 2
time(s) time(s)
Fig.7 Consensus error in state X1 (Case 1) Fig. 10 Control U, (Case 2)
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T T T T T T T T T
Agent1
Agent2 i
6 Agent3
Agent4
Agent5
4 Agent6 | -
- 2 1
>
or o ]
e ——— |
,2 F L
-4 C 1 1 1 1 1 1 1 1 1 ¥

time(s)

Fig. 11 Consensus of state X| (Case 2)

the model provided in the preliminaries section. Moreover,
the noise started at the same time. It can be regarded as the
worst scenario. This study will help to understand the con-
troller’s efficiency in the presence of noise. The magnitude
of the white Gaussian noise is considered random and gener-
ated by 0 = rand x0.025. The control signals U and U; are
shown in Figs. 9 and 10, respectively. It can be observed that
the control signals are affected by random noise. Therefore,
the states are also affected by the noise.

The state trajectories X| and X are shown in Figs. 11 and
12 respectively. The effect of noise can be observed on the
consensus of states shown in Figs. 11 and 12. Agents 1, 2,
and 3 reached a consensus value of —0.395 and 0.447 for
states X1 and X respectively. On the other hand, the agents
4,5 and 6 form another group with the consensus value of
3.18 and —3.66 for the states X| and X», respectively. The

8 T T T T T T T T T
Agent1
Agent2
6 Agent3 | |
Agent4
Agent5
4 “Agent6 | |
2 i
o~
x - -
ot i

1 L L L L 1 L L 1

time(s)

Fig. 12 Consensus of state X, (Case 2)

T T T T T T T T T
Agent1
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Fig. 13 Consensus error in state X (Case 2)

consensus values for X; and X, of one group are almost
eight times (x = 8) multiple of the other. The effectiveness
of the controller can be verified by looking at the consensus
errors shown in Figs. 13 and 14. The errors converged to zero
within seconds, which gives proof of its capability.

7 Conclusion

The asymmetric bipartite consensus of nonlinear agents is
studied in the presence of communication noise. The impor-
tant modification of Distributed NDI (DNDI) is proved to be
effective in achieving the asymmetric bipartite consensus.
The mathematical details in this paper provide theoretical
proof of robustness, and the results are generated by realistic
simulation, supporting our claim. Moreover, the performance

120 T T T T T T T T T
Agent1
0 Agent2 | |
10 Agent3
Agent4
80 F Agent5 |
Agent6
60 71
o~
>
S 40§ 1
P
20 1
of
-20 [ 7
1 | 1 1 | I L 1 |

time(s)

Fig. 14 Consensus error in state X, (Case 2)
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of DNDI has been tested in the presence of random communi-
cation noise, and the results are very satisfactory. Therefore,
DNDI has been proved to be a powerful controller for solving
the asymmetric bipartite consensus of nonlinear agents with
noise.
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