Journal of Intelligent & Robotic Systems (2023) 108:70
https://doi.org/10.1007/5s10846-023-01911-5

REGULAR PAPER

®

Check for
updates

ROS End-Effector: A Hardware-Agnostic Software and Control
Framework for Robotic End-Effectors

3 5

Davide Torielli2@® - Liana Bertoni'3@® - Fabio Fusaro*> - Nikos Tsagarakis'® - Luca Muratore’

Received: 25 August 2022 / Accepted: 7 June 2023 / Published online: 22 July 2023
© The Author(s) 2023

Abstract

In recent years, several robotic end-effectors have been developed and made available in the market. Nevertheless, their
adoption in industrial context is still limited due to a burdensome integration, which strongly relies on customized software
modules specific for each end-effector. Indeed, to enable the functionalities of these end-effectors, dedicated interfaces must be
developed to consider the different end-effector characteristics, like finger kinematics, actuation systems, and communication
protocols. To face the challenges described above, we present ROS End-Effector, an open-source framework capable of
accommodating a wide range of robotic end-effectors of different grasping capabilities (grasping, pinching, or independent
finger dexterity) and hardware characteristics. The ROS End-Effector framework, rather than controlling each end-effector in a
different and customized way, allows to mask the physical hardware differences and permits to control the end-effector using a
set of high-level grasping primitives automatically extracted. By leveraging on hardware agnostic software modules including
hardware abstraction layer (HAL), application programming interfaces (APIs), simulation tools and graphical user interfaces
(GUIs), ROS End-Effector effectively facilitates the integration of diverse end-effector devices. The proposed framework
capabilities in supporting different robotics end-effectors are demonstrated in both simulated and real hardware experiments
using a variety of end-effectors with diverse characteristics, ranging from under-actuated grippers to anthropomorphic robotic
hands. Finally, from the user perspective, the manuscript provides a set of examples about the use of the framework showing
its flexibility in integrating a new end-effector module.
Keywords End-effector control - Hardware abstraction - Robotics software architecture -
Robot operating system (ROS)

Grasping primitives -

1 Introduction

Even considering the research’s effort made, it is still diffi-
cult to see an effective deployment of complex robotic hands
in real use-case scenarios [1], where usually only simple 2-
pad and single-motor grippers are adopted. In fact, there is
a significant barrier that prevents a wider use of more dex-
terous end-effectors, due to the lack of frameworks and user
interfaces that permit to abstract the end-effector characteris-
tics enabling a transparent integration of these more capable
end-effectors in industrial lines.

Motivated by the limited capabilities of existing end-
effector software tools, we have developed ROS End-
Effector, an open-source software framework to facilitate

< Davide Torielli
davide.torielli @iit.it

Extended author information available on the last page of the article

the control and integration of new and diverse robotic end-
effectors, thanks to an automatic extraction of grasping skills
and to the exploitation of hardware-agnostic software mod-
ules. To synthesize the grasp poses at a higher-level, ROS
End-Effector leverages on the concept of primitive grasping
actions, inspired by the relevant works in the fields of syner-
gies and manipulation primitives. The main contributions of
the ROS End-Effector software framework are summarized
below:

e Automatic extraction of end-effector capabilities through
an identification of primitive grasping actions from the
end-effector model, e.g. fingers configuration, their pos-
sible motions and their interactions. The extracted primi-
tives permit to control the end-effector in a dimensionality-
reduced subspace, following the concept of the synergies.

e Accommodation of a wide range of end-effectors with
different hardware characteristics and grasping capabil-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-01911-5&domain=pdf
http://orcid.org/0000-0002-9711-3006
http://orcid.org/0000-0002-4611-1430
http://orcid.org/0000-0002-3909-7941
http://orcid.org/0000-0002-9877-8237
http://orcid.org/0000-0002-1265-3370

70 Page2of18

Journal of Intelligent & Robotic Systems (2023) 108:70

ities, effectively facilitating their integration through an
Hardware Abstraction Layer (HAL).

e Setof software tools like Application Programming Inter-
faces (APIs), simulation tools, and Graphical User Inter-
face (GUI), to effectively exploit the grasping actions
extracted and syntetized to perform manipulation tasks.

Thanks to the above functionalities, the proposed software
framework is able to mask the end-effector physical hard-
ware differences (e.g. kinematic and dynamic model, number
of actuators, number of fingers, finger transmission princi-
ples, and communication protocols) permitting to seamlessly
command the end-effector using a set of high level primi-
tive grasping actions exploiting the Robot Operating System
(ROS) middleware.

The automatic extraction of primitive grasping action,
synthesis of complex actions and their execution in simulated
environments has been validated with end-effectors with
different kinematics and capabilities: SCHUNK SVH [2],
Robotiq 2F-140 [3], Robotiq 2F-85 [3], Robotiq 3F [4],
Dagana, gb SoftHand [5], OnRobot 3FG15 [6], and HERI
I [7]. Furthermore, the framework has been validated in
real environment with some of the above-mentioned end-
effectors (Dagana, Robotiq 2F-85, OnRobot 3FG15, gb
SoftHand, and HERI II). Finally, the ROS End-Effector pack-
age has been released in the ROS official repositories, making
it available for both ROS and ROS2.

1.1 Manuscript Overview

This manuscript is an enhanced version of our previous
work [8]. In particular, we have expanded the methods sec-
tions (Sections 4, 5 and 6), providing more details on the
framework. New figures and code snippets have been added
to help the reader in better understanding the concepts and
the software tools, like the ROS End-Effector Graphical
User Interface (Section 6.1). Furthermore, we have made the
validation richer by integrating new and diverse robotic end-
effectors and by performing more manipulation tasks in real
scenarios (Fig. 12, Fig. 13). Finally, we have added a com-
plete new Section 8 providing a tutorial with a lot of practical
explanations and code examples.

In this work, we do not consider the aspect of the grasp
planning. Hence, we do not deal with the object geometries
and the fingers movements necessary to synthesize a stable
grasp. This aspect has been taken into account in a paral-
lel work [9], where we have developed a new generic grasp
planner using the concept of primitive grasping action for the
grasp synthesis. This permits to automatically define a suit-
able composition of primitive grasping actions able to grasp
an arbitrary object.

The paper is structured as follows. Section 2 recaps the
relevant works in the field; Section 3 introduces the ROS End-

@ Springer

Effector framework; Section 4 explains the theory behind
the primitive grasping actions and their automatic extrac-
tion from the end-effector model; Section 5 describes how to
generate more complex end-effector motions from the prim-
itive grasping actions; Section 6 details how the grasping
actions are requested to the end-effector; Section 7 illus-
trates the experiments conducted with various end-effectors;
Section 8 gives a short practical tutorial about the ROS End-
Effector framework; Finally, in Section 9, conclusions and
future works are discussed.

2 Literature Review

The research developments of robotic end-effectors is endorsed
by the necessity to improve how robots manipulate objects
and interact with their unstructured surroundings. This need
comes from heterogeneous scenarios, from industrial to
healthcare [10]. As a result, a lot of effort has been spent in
realizing end-effectors with various capabilities, from sim-
ple grippers to complex hands with human-like dexterity and
strength, leading to the exploration of new grasping princi-
ples.

Many works in the robotic field are inspired by neuroscien-
tific studies on human hands and their grasping abilities [11,
12]. These studies show that humans simplify the grasping
of an object by controlling their hands in a smaller sub-
space of the space where normally the human degrees of
freedom (DoF) lie. From these observations, the concept of
synergies and its exploitation in robotics emerged. In the
literature, the definition of synergy can be intended as the
“common patterns of actuation of the human hand” [13],
and as a map between the higher-dimensional complexity
of the mechanical architecture of the human hand and the
lower-dimensional control space of the action and perfor-
mance [14]. Thanks to the dimensionality reduction of the
controlling space, the grasp planning is more efficient and
more adaptable to various kinds of end-effectors [15]. This
can lead to the development of general frameworks to control
robotic hands of different kinematic design. Indeed, control
algorithms for anthropomorphic hand with predefined syner-
gies can be developed and the resulting finger motions can be
mapped onto various robotic hands. This mapping has been
explored at the Cartesian space level [16] and at the joint
space level [17]. Another approach introduces the concept
of virtual objects, for a mapping in the “object domain” [18,
19]. The idea is to study a virtual object held by a human
hand and to transform its parameters to create a virtual object
held by a robotic hand. Nevertheless, using a synergy-based
approach does not automatically imply that the end-effector
will be compliant with respect to the object to grasp. To cope
with this issue, the concept of soft-synergies has been intro-

Journal of Intelligent & Robotic Systems (2023) 108:70

Page30of18 70

duced. By exploiting the soft-synergies, the hand modifies
its final pose according to the object shape [20, 21]. Even if
the soft-synergy is an elegant theoretical solution, in prac-
tice, implementing a combination of natural synergies and
compliance is very challenging. For this reason, adaptive-
synergies have been employed for the design parameters of an
under-actuated hand (that will become the gb SoftHand) [5].

Alongside the synergies, the concepts of grasping/
manipulation primitives has emerged. Various studies give
slightly different definitions of grasping/manipulation primi-
tives, but, in general, a primitive is an end-effector capability
that is exploited as an atomic unit to compose more com-
plex grasping actions. The primitive is then employed by
high-level grasping and manipulation interfaces to abstract
the low-level end-effector capabilities and hardware details.
Since their importance, grasping actions have been employed
in different ways. In a pioneer work a Manipulation Task
Primitive is classified as the relative motion between two
(rigid) parts. By classifying the primitives, a library of
robot capabilities in the manipulation domain is built, thus
providing a higher level of abstraction for more complex
manipulation tasks [22]. Based on Manipulation Primi-
tives, a generic framework for sensor-based robot motion
control has been developed. An adaptive selection matrix
switches between multiple sensors and open/closed-loop
controllers. The control signal are chosen based on the
Manipulation Primitives, which hence constitute the inter-
face from high-level applications to the low-level controller
of robotic manipulators [23]. Grasping capabilities has also
been designed as Control Primitives, which constitute an
abstract layer built as a vocabulary, which can be coordinated
using state machines to describe complex actions. The state
machines are then automatically translated to specific mod-
els, such that the full capabilities of each robotic platform
can be exploited [24].

So far, the cited works aim to analyse methodologies to
extract the fundamental motions (embedded in the synergies
or in the primitives) of an end-effector in such a way to sim-
plify the planning of the grasping task. In parallel, some other
works focus on the development of generic software tools for
motion analysis, planning, and control of different kinds of
end-effectors by applying the concepts of synergy and prim-
itive. Grasplt! [25] is a simulator for grasping research that
can accommodate arbitrary hands and objects. The imple-
mented collision detection and contact determination system
permits to create a set of grasps for a specific object. Each
grasp is then evaluated with a set of grasp quality metrics
as well as visualization methods which allows the user to
understand the weak points of the grasp. Grasplt! focuses on
grasp planning and analysis, but it does not consider dexter-
ous manipulation, and it does not provide soft contact models
or sensors simulation support. Syngrasp [26] is a MATLAB
toolbox focused on grasping analysis. It features several func-

tions to investigate the grasp properties: 1) controllable forces
and object displacement, 2) manipulability analysis, and 3)
grasp stiffness and quality measures. This toolbox is intended
to be used by applications that range from neuroscience to
the design of robotic hands. Another software tool is Open-
GRASP: A Framework for Robot Grasping Simulation [27].
Its aim is, like Grasplt!, to provide a planner, an analyser
and a simulator for grasping with robotic hands. It includes
the modeling of actuators, sensors and contact and it per-
mits to choose among a set of available physics engines for
the simulation. The same authors developed OpenHand: A
Framework for Human Grasping Simulation [28], a simu-
lation engine to analyse object grasping with human hand,
modelled as similar as possible to real human hands, with its
skeleton structure, muscles, tendons, skin and neuromuscular
control.

The aim of the above-mentioned software is to examine the
possible interactions between the end-effector and the object
to grasp. They are not designed with the main intent of com-
municating with the real hardware, i.e. commanding the hand
actuators and receiving feedback from sensors. To answer to
these problems there exist more hardware-orientend software
frameworks. Movelt [29] is a well-known motion planner
platform for robotic manipulators, fully integrated in ROS
(Robotic Operating System) [30, 31]. Movelt provides a
set of plugins to enhance its functionalities. One of them,
Movelt Grasps [32], consists in a basic grasp generator to
grasp simple objects (only blocks or cylinders) with parallel
or suction grippers. Another Movelt based tool, the ROS2
Grasp Library [33], provides a grasp planner for industrial
purposes, focusing on deep learning grasp detection algo-
rithms for intelligent visual grasp solutions. The provided
grasping functionality of the last two mentioned ROS tools
is limited to pick and place operations. They do not support
complex multi-fingered hands, and their focus is mainly the
planning of a grasp, without including features to ease the
integration of a new end-effector.

3 Software Framework

The ROS End-Effector framework is composed by two main
components, as schematized in Fig. 1:

e With the offline component, the end-effector motion
capabilities are automatically extracted resulting in a set
of primitive grasping actions. In brief, based on a partic-
ular end-effector mechanical configuration (e.g. number
of finger, degrees of actuation of each finger, joint lim-
its, and so on), our framework provides the ready-to-use
primitive grasping actions. Furthermore, more complex

@ Springer

70 Page4of18

Journal of Intelligent & Robotic Systems (2023) 108:70

Offline Component
*VV\—@

ROS End-Effector
Primitive Extractor

Primitive
Grasping
Actions

URDF, SRDF Online Component

S =)
ROS End-Effector ROS End-Effector
Grasping Actions Executor GUI

‘ ROS
*VVN\—@

(Abstract Class»
ROS End-Effector HAL
‘? ‘? ‘? ‘? ‘? ‘?

L

HERI II HAL SoftHand HAL 3FGlS HAL 2F- 85 HAL Dagana HAL Dumm

For Slmu/atsd

End -Effector
amm
@ Other
? ‘ HALs

Gazebo

Fig.1 Overall scheme of ROS End-Effector framework, with its prin-
cipal software modules divided in offline and online components

custom grasping actions can be built from the extracted
primitives.

e With the online component, the user can execute manipu-
lation tasks by requesting the grasping action commands
(instead of directly commanding the end-effector actu-
ators). Moreover, a GUI, dynamically loaded for the
end-effector in use, is provided, while the communication
with the robot is performed by the implemented HAL.

In the following sections, we will describe these compo-
nents in detail.

4 Offline Component: Primitive Grasping
Actions

A primitive grasping action is a particular collection of fin-
gers movements inducted by the actuators as a mean to
grasp an object. Therefore, the end-effector fundamental
capabilities are embedded in its primitive grasping actions.
This permits to execute manipulation tasks by just com-
manding these semantically significant grasping actions (like
“pinch”), instead of considering at the low-level which actu-
ator must be activated to control particular fingers. Indeed,
the relationship between actuators and end-effector fingers
movements is hidden to the user because it is taken into
account automatically by the framework.

We divide the primitive grasping actions into three main
categories:

@ Springer

e Trig-type primitive grasping actions are dedicated to
move a single finger or a phalanx. Even though mov-
ing a single finger is not enough to grasp an object, these
movements are important as components to perform more
complex grasping actions, as we will see later in Section
5. This category includes: Trig, TipFlex, and FingFlex
primitive grasping actions.

e Pinch-type primitive grasping actions are suitable for pre-
cise grasps. With them, the fingertips move towards each
other to pick narrow or small objects. It is important
to note that a pinch-type primitive can not be decom-
posed into Trigs, because it is not always true that two
or more separate Trigs can establish contacts between
fingertips or make them move towards each other. This
category includes: PinchTight, PinchLoose, and MultiP-
inchTight_N primitive grasping actions.

e SingleJointMultipleTips_N primitive grasping action has
been included to synthesize finger motions that do not fit
in other primitives. This primitive takes care of the char-
acteristic of some end-effectors (like the gb SoftHand and
the SCHUNK SVH hand) of having an actuator coupled
with more fingers.

As an example, some of the primitive grasping actions
performed by the SCHUNK SVH hand from each of the
listed categories are shown in Fig. 2.

Each primitive grasping action contains the following
data:

e The primitive grasping action name.

e The end-effector’s bodies involved in the primitive grasp-
ing action, like the fingers names or the actuator names.
They are used to discriminate the primitive grasping
actions with the same name (e.g. a trig can be performed
with different fingers, like the index or the middle).

e The position set-points of the actuators, i.e. the reference
positions which are requested to the actuators when the
grasping action is demanded.

4.1 Extraction of the Primitive Grasping Actions

The ROS End-Effector Primitive Extractor node depicted in
Fig. 1 is in charge of exploring the robot model and auto-
matically extracting the primitive grasping actions. Only two
configuration files representing the robot model are necessary
in this phase: the well-known Unified Robot Description For-
mat (URDF) file and the Semantic Robot Description Format
(SRDF) file. More information about these formats and their
relationship with ROS End-Effector are given in Section 8.1.
After providing the robot model to the ROS End-Effector
node, the primitive grasping actions available for the specific

Journal of Intelligent & Robotic Systems (2023) 108:70

Page50f18 70

Fig.2 Some primitive grasping
actions extracted from
SCHUNK SVH. Please note
that the two
SingleJointMultipleTips_3
primitives in the bottom row
have the “3” suffix because the
finger_spread joint and the Trig
thumb_opposition joint index
actuators are coupled to three
fingers, respectively: index, ring,
little and thumb, ring, and little

PinchLoose
index, little

end-effector in use are extracted with a dedicated algorithm
for each primitive.

A Trig done with a finger is possible if there is at least
one actuator dedicated to move only that finger. In this case,
this/these actuator/s coupled to the finger is/are taken into
consideration for the Trig primitive.

If a single finger is moved by more than one actuator,
usually it means that some of its phalanges can be moved
independently. Hence, the end-effector has additional motion
capabilities that we embed in the TipFlex and FingFlex prim-
itives. The TipFlex primitive considers the actuator which
moves the farther part of the finger from the palm. This actua-
tor usually makes the fingertip bend, hence the name TipFlex.
The FingFlex primitive, instead, considers the first actuator
of the finger, beginning from the palm. This actuator usually
flexes the finger, thus maintaining the finger straight. For both
of them we say “usually”, because it is not always true that
the first and the last actuators rotate the phalanges along an
axis which induces a bending toward the palm. For example,
there could exist an actuator that rotates a finger along an
axis perpendicular to the palm, like in a scissor movement.
In this case these primitive names are misleading, but they
remain useful as building blocks for more complex actions,
as we will see later.

To automatically extract these three trig-type primitives
from the URDF and SRDF models, the ROS End-Effector
Primitive Extractor node explores the fingers kinematic
chains, and, for each actuator, i.e. a URDF joint which is
not mimic nor passive (Section 8.1), we extract the linked
phalanges, i.e. URDF links. For each finger or phalange that
moves independently we have a trig-type primitive. The posi-
tion set-points of the actuators stored in the primitive are the
maximum excursion limit from the starting position for the
actuator(s) that move the finger or phalange, and the starting
position for the not-involved actuator(s).

For the pinch-type primitives a collision checking is per-
formed, thanks to the Movelt collision checker [29] which is

TipFlex FingFlex
middle index

PinchTight
thumb, index

SingleJointMultipleTips_3 | SingleJointMultipleTips_3

MultiPinchTight_3

thumb, index, ring finger_spread joint thumb_opposition joint

based on Flexible Collision Library (FCL) [34]. A PinchTight
is found when two end-effector fingertips can perform a
movement that causes them to collide. The reason is that, if
two fingertips can collide, they can pinch very little or narrow
objects. To find this primitive grasping action, we look at M
random hand’s configuration: for each couple of fingertips,
we choose the configuration where their meshes compen-
etrate more, because more co-penetration will mean more
maximum force applicable to the object, hence resulting in
a more stable pinch. If, for a certain couple of fingertips, no
collision is found among the M random hand’s configura-
tion, we say that two fingers can not perform a PinchTight.
The pseudocode in Code 1 schematizes these steps.

[Code 1: Pseudocode to extract the Pinch Tight]
primitives

1 while i < M

2 pose = hand.setRandomPose ()

3 //cfp : colliding fingertip pairs

4 cfp.update (moveit.checkCollisions (pose))

6 foreach p in cfp
if p.compenetration > p.old_compenetration
8 cfp.storeNewPinchTight (pose)

Some fingertips can move toward each other but with-
out any contact between them, because of some structural
hand constraints (like joint limits). Nevertheless, this kind
of finger motion can be useful to grasp some not-so-little
objects. Hence, we have defined the PinchLoose primitive.
A PinchLoose is searched for all the fingertips pairs that can
not perform a PinchTight, which is more versatile because
the fingertips have more excursion towards each other.

The procedure to extract this primitive is similar as the one
for PinchTight, but instead of using the mesh compenetration
as the measure, we consider the minimum distance to which
the two fingertips can arrive before the physical limit. To
understand if the fingertips effectively move towards each
other (i.e., their trajectories are not parallel) we consider

@ Springer

70 Page6of18

Journal of Intelligent & Robotic Systems (2023) 108:70

Table 1 Table which recaps the characteristics of the primitive grasping actions

Name End-Effector’s Description Constraints
Bodies Involved
Trig A finger Move all fingers actuators At least one actuator providing
toward their bounds decoupled motion only to the finger
TipFlex A finger Move the last actuator of At least two actuators providing
the finger toward its bound decoupled motion only to the finger
FingFlex A finger Move the first actuator of At least two actuators providing
the finger toward its bound decoupled motion only to the finger
PinchTight Two fingers Contact between two fingertips
PinchLoose Two fingers Movement of two fingertips
towards each other but
without contact
MultiPinchTight N N(>3) fingers Contact between three or more fingertips

SingleJointMultipleTips_N An actuator

Move an actuator (that influences
N(>2) fingertips) toward its bound

The actuator provides coupled

motion to N(>2) fingertips

a robot model where the joints have more excursions (i.e.
increased joint limits), and we see if some contact happens
among the M random configuration. If neither in this case
a collision happen, the fingertips trajectories are said to be
parallel, hence the two fingers can not perform any pinch
motions.

With a MultiplePinchTight_N primitive grasping action,
N(>3) fingertips collide, providing a more stable pinch than
a PinchTight in some situation. The extraction method is
similar to the one used for the PinchTight primitive.

For the pinch-type primitives, the position set-goals of
the actuator stored in the primitive are the ones that make
the hand to reach the found configuration, excluding all the
actuators not coupled with the considered fingers.

SingleJointMultipleTips_N primitive grasping actions are
extracted exploring the kinematic tree given by the URDF
and SRDF files, in a analogous manner as the trig-type prim-
itives.

In Table 1, we sum up the characteristics of each primitive
grasping action.

To understand better the automatic extraction phase, the
reader can follow the Fig. 3. In this example, we have mod-
ified the HERI II hand model to show how from various
fingers and actuators configurations different primitive grasp-
ing action are extracted. On the left part of the figure, four
different configurations are shown with a the top view of the
hand. Each colored box represents the presence of a finger
while each curved arrow an actuator. The arrow direction
symbolizes in which direction the actuator moves the fin-
ger(s), assuming that an actuator can move the finger(s) in
a unique direction, in both senses. On the right part of the
figure, some primitive grasping actions extracted from each
configuration are shown (for simplicity, TipFlex, FingFlex,
and SingleJointMultipleTips_N primitives are not shown).

@ Springer

In the first configuration, a single actuator is coupled to
both fingers (as in common industrial 2-finger grippers). So,
the only extracted primitive is a PinchTight (because we
see that the fingers can collide, otherwise we would have
only a PinchLoose). In the second configuration, we have a
slightly more complex end-effector, indeed, it has an actuator

2 Fingers - 1 Actuator
PinchTight

3 Fingers - 3 Actuators /
Trig

4. 7
[_J 3 ;"A.s—'PinchTight'}
B

3 Fingers - 4 Actuators

Fig. 3 Schematic end-effector configurations and the primitive grasp-
ing actions extracted (excluding the SingleJointMultipleTips, TipFlex,
and FingFlex for simplicity). On the left, each finger is represented
by a colored box, while each actuator by a curved black arrow. The
arrow direction represents the direction in which the actuator move the
finger(s). On the right, the automatically extracted primitive grasping
actions are shown

Journal of Intelligent & Robotic Systems (2023) 108:70

Page70f18 70

for each finger. So, in this case, other than the PinchTight,
also two Trig primitives are available. In the third config-
uration, the presence of a third finger permits to have three
Trig primitives, but not any PinchTight anymore because fin-
gertips does not ever collide. There are not any PinchLoose
neither, because the fingers have all parallel trajectories. In
the last configuration, we have an additional actuator for the
opposing finger (in blue) which can generate finger motion
in another direction. In this case, the fingertips may come in
contact and so two more PinchTight primitives are available.

5 Offline Component: Custom Grasping
Actions

With the primitive grasping actions of an end-effector, some
simple objects can be grasped thanks to the fundamen-
tal motions extracted and embedded in the primitives. For
example, a PinchTight, if available, can be performed to
grasp a little object. Nevertheless, these primitives can be
not enough to exploit the full potential of complex multi-
DoF end-effectors, like the SCHUNK SVH hand, where
complex combinations of finger motions can grasp com-
plex shapes. For this reason, ROS End-Effector facilitates
the creation of complex motions from the primitive grasping
actions extracted, by defining three kinds of custom grasping
actions: composed grasping action, timed grasping action
and generic grasping action.

TipFlex TipFlex

Composed Grasping Action

Fig.4 A composed grasping action generated from three different prim-
itive grasping actions

Composed grasping actions, as the name suggests, are
created by combining primitives or other custom grasping
actions, resulting in a more complex fingers motions. The
actuator position set-points of the composed grasping action
will be the composition of the position set-points of the
inner grasping actions. For example, in Fig. 4, a composed
grasping action is defined composing three primitives: Trig
performed with the thumb, TipFlex performed with the index,
and another TipFlex performed with the middle. Since the
SCHUNK SVH hand is an end-effector with a high number
of DoFs, it is useful to exploit this feature to adapt the fin-
gers to the shape of a particular object to grasp by bending
specific fingers parts.

Timed grasping actions are a collection of grasping actions
executed in sequence, with an optional time delay between
two consecutive ones. The reason of the introduction of
the timed grasping actions is that, for some manipulation
tasks, a composed grasping action can be not the best option.
Indeed, there are situations in which the fingers must be
moved in a particular sequence to reach a pre-grasp pose
before effectively close the fingers. Alternatively, some in-
hand manipulation tasks can be performed after a successful
grasp. For example, in Fig. 5, a timed grasping action is used
to perform a in-hand manipulation task with the HERI II

drill
GRASP3f TrigOn TrigOff
0 - GRASP3f -0 3--TrigOn-0 4 - TrigOff -0

Fig.5 An example of timed grasping actions, “drill”’, where the HERI
II hand has executed an in-hand manipulation task. The first grasping
action of the sequence (“GRASP3t”) is used to grasp the drill, and the
other two (“TrigOn” and “TrigOft”) to press and release the trigger
button of the drill. The first two loading bars are not fully completed (to
100%) because of small final errors in the actuator positions respect to
the references

@ Springer

70 Page80f18

Journal of Intelligent & Robotic Systems (2023) 108:70

hand: first the drill is grasped with the “GRASP3f” action,
then the drill is switched on and off with the “TrigOn” and
“TrigOff” grasping actions. Please note that this experiment
is part of our previous paper [8].

If the composition is not sufficient to exploit a particular
end-effector capability, generic grasping actions can be cre-
ated from scratch, hence not built starting from other grasping
actions, but setting directly the actuator position set-points,
as explained later in Section 8.3 with Code 8.

ROS End-Effector provides C++ API methods and ROS
Services to facilitate the creation of these custom grasping
actions. We give examples about the exploitation of this fea-
ture in the tutorial Section 8.2.

Primitive and custom grasping actions are stored in YAML
files, where the information about the grasping actions are
written, like the name, the elements involved, and the position
set-points of the actuators. This permits to create them once
per hand (during the offline phase) and to execute them later
(in the online phase) re-utilizing the stored data.

6 Online Component: Demanding the
Grasping Actions

The online component of ROS End-Effector permits to com-
mand the grasping actions defined offline for the specific
end-effector in use (Sections 4 and 5). This component is
in charge of recognizing the grasping action requested and
sending to the robot the commands necessary to execute the
requested grasping action. This is made possible thanks to the

Fig.6 ROS End-Effector GUI
(1st tab) showing the grasping

Action | RobotState

Grasping Action Executor node and to the HAL, represented
in Fig. 1.

The grasping actions executor performs an initialization
step where the robot model, described by the URDF and
SRDF files, is parsed, together with all the grasping actions
(primitive and custom), described by the YAML files. After
this step, through the provided ROS topics, services and
actions, information about all the available grasping actions
can be retrieved and the commands to execute them can be
sent.

When commanding a grasping action, fundamentally two
information are necessary to be sent to the ROS End-Effector
framework: the name of the action and a 0% — 100% intensity
value. The intensity value is used to scale all the position set-
points of the actuators before sending the command to the
robot. In this way we can perform partial movements of the
fingers, for example to grasp a big object without generating
too much forces on the object.

A specific primitive grasping action can be usually per-
formed with different fingers. For example, a Trig with an
human-like end-effector, like the SCHUNK SVH hand, can
be performed with any of the five fingers; or a little object can
be pinched with different fingers pairs (with the primitives
PinchTight and PinchLoose) or groups (with the primitive
MultiPinchTight_N). Hence, to command a primitive grasp-
ing action, a third information is necessary: the end-effector’s
body/bodies involved in the primitive. For Trig, TipFlex,
and FingFlex, it must be specified the finger’s name; for
PinchTight, PinchLoose, and MultiPinchTight_N, the names
of the fingers that moves toward each other; for SingleJoint-
MultipleTips_N the name of the actuator which moves the

actions specifically defined for

the for the SCHUNK SVH hand. ﬁngF[eX multlplePlncthght_3 pinchLoose plncthght
For the timed grasping action
(bottom row), the numbers) i)) index | middle
. . . index middle index middle : A
below the inner grasping action index middle))) pinky [Iring
.. . ring thumb pinky ring
names indicate the time delay to % I thumb
. . 0% |* 0% |+ % &
wait before and after executing 0%
the correspondent inner
grasping action
i i A i < trig
singleJointMultipleTips_3 tipFlex grasp
index middle

left_hand_Finger_Spread . .

N . index middle pinky fing

eft_hand_Thumb_Opposition T Hhumb 0% |-

0% |+ 0% [=
SEND
timed_wide_grasp
FingerSpread Opposition TipFlexes
0 - FingerSpread -- 0.7 0 - Opposition - 0.7 0.6 - TipFlexes - 0.2
SEND

@ Springer

Journal of Intelligent & Robotic Systems (2023) 108:70

Page90f18 70

Action = RobotState

pinchTight trig cacual T
finger_1 finger_2
finger_2 thumb .
finger_3 thumb 0% |- 0%
0% 0% |~
SEND SEND
drill
Grasp3f TrigOn TrigOff
0-Grasp3f -0 3-Trigon-0 4-Trigoff -0 Reset GUI |
SEND

Fig. 7 ROS End-Effector GUI (Ist tab) showing the grasping actions
specifically defined for the for the HERI II hand

N fingers. Please note that for custom grasping action, this
third information is not necessary.

A grasping action command, composed as described
above, must be sent as a message through ROS topics,
which are named communication channels over which
nodes exchange messages unidirectionally, with a publisher-
subscriber design. More precisely, we exploit the ROS
actions, which, in practice, are aggregators of multiple ROS
topics. With ROS actions, we can send through a topic the
grasping action command, and receive through another one
a feedback about its completion. We show some examples
on how to command a grasping action in the tutorial of Sec-
tion 8.3.

6.1 ROS End-Effector GUI

To facilitate the execution of the grasping action commands,
we have developed the ROS End-Effector Graphical User
Interface (GUI), shown as an additional node in the scheme

Action | RobotsState

Fig.8 ROS End-Effector GUI
(2nd tab) showing and plotting

Field name

of Fig. 1. The GUI’s layout is specific for each end-effector:
when it is launched, it dynamically loads only the grasping
actions available (i.e., extracted primitives and defined cus-
tom grasping actions) for the end-effector in use. Hence, the
layout will be different for each robotic end-effector as shown
in the two different GUIs of Figs. 6 and 7. GUI elements are
self-explanatory: below the grasping action name, a loading
bar (empty in the two figures) shows the completion status of
the grasping action while it is being executed; for primitive
grasping actions, the end-effector body/bodies involved must
be chosen by means of the checkboxes; finally, the intensity
value can be set with the slider.

We have also implemented a second GUI tab (Fig. 8)
where the robot states (like joints positions and velocities)
can be monitored. Furthermore, the same data can be drawn
in real-time in the integrated plot.

6.2 Hardware Abstraction Layer

The Hardware Abstraction Layer (Fig. 1) is the mean with
which the ROS End-Effector Executor node communicates
with the robotic end-effector. This layer abstracts the details
of the end-effector in use, like specific hardware compo-
nents, protocols and data fields. Thanks to this abstraction,
it is possible to generalize the way the position set-goals
of the actuators are sent to the robot, making the commu-
nication simple and safe, despite all the possible hardware
differences in each end-effector. Since the HAL, and not
the ROS End-Effector Executor node, must communicate
directly with the robot, only the HAL must be specialized for
the end-effector in use. To facilitate the integration of a new
end-effector, a C++ abstract class, EEHa 1, is provided by our
framework. A specific HAL for any real end-effector can be
implemented deriving the provided EEHal. The communi-
cation between the ROS End-Effector Executor node and the

left_hand_Finger_Spread (ID: 0)

: Joint Positi Positi Pl
the end-effector states in joint Position Joint Position 023 ot
. . Joint Velocity 0,00 plot
real-time. This ﬁgure shows the left_hand_Finger_spread (activ [JI>.23 M left_hand_j12 (mimic) 0.00 B jointEffort 0,00 Plot
GUI of the SCHUNK SVH hand o - s = s
left_hand_Index_Finger_Distal (< [Jl] 032 | M| teft_hand j13 (mimic) 0.00 n
left_hand_Index_Finger_Proximz| 000 | | teft_hand_j14 (mimic) [l 033 m
left_hand_Middle_Finger_Distal W teft_hand_j1s (mimic) (RN W
e
left_hand_Middle_Finger_Proxin 000 [left_hand_j16 (mimic) 0.00 i aleft
et
et
left_hand_Pinky (active) 000 B teft_hand_j17 (mimic) 0.00 n =
alert
left_hand_Ring_Finger (active) 000 M left_hand_j3 (mimic) [oleft
et R
= 8 eft_hand_Thumb_Oppo:
teft_hand_Thumb_Flexion (active [JOLCN | | teft_hand_j4 (mimic) [HNNNMNECIN W
left_hand_Thumb_Opposition (ar [[lJ46 | | teft_hand_js (mimic) (NG 46 [|
— 102.1 104.6 107.1 109.6
left_hand_index_spread (mimic) [[lD-12 | | teft_hand_ring_spread (mimic) [{llD-12 |

Remove all Autoscroll 10011 FPS

Reset view

@ Springer

70 Page100f 18

Journal of Intelligent & Robotic Systems (2023) 108:70

EEHal is already implemented, hence only the robot-side
communication must be defined. In the practice, only two
methods must be implemented: a sense () and amove (),
as shown in Code 2.

[Code 2: C++ methods of EEHal abstract class |
to be implemented for a new end-effector

1 class EEHal {

3 public:

4 [...]

5 // Here the motor position arriving from the robot
6 // must be copied into a EEHal member

7 virtual bool sense() = 0;

9 // Here the motor position references (stored in a
10 // EEHal member) must be sent to the robot
11 virtual bool move() = 0;

Inthe sense (), actuator positions must be gathered from
the end-effector, to then fill a member of the class with this
data. This permits to the already implemented methods to
send back the feedback to the Executor node. Inthe move (),
the end-effector commands must be sent, in according to
follow the position set-points of the actuator, coming from
the Executor node, and extracted from the requested grasping
action command.

As a use case, we have implemented some HAL that
are available within our software package. A DummyHal
is present to communicate with any simulated robotic end-
effectors. Indeed, the framework offers built-in support for
RViz [35], the ROS standard kinematic visualization tool, and
Gazebo [36], the de facto ROS dynamic simulator. The simu-
lation in Gazebo is obtained thanks to dedicated plugins. An
additional feature is present to integrate a ROS tool called
dynamic reconfigure [37] which permits to tune online the
PID gains of the simulated robotic end-effector.

Another HAL, the XBotHAL, has also been implemented
to control a robot with XBot [38], a real-time software frame-
work adaptable quickly to different hardware.

Fig.9 The end-effectors used to
validate the ROS End-Effector
framework (in simulation and/or
with real hardware); from top to
bottom and from left to right:
SCHUNK SVH, Robotiq
2F-140, Robotiq 3F, Dagana,
Robotiq 2F-85, gb SoftHand,
OnRobot 3FG15, and HERI IT

@ Springer

Finally, specific HALs have been added for the exper-
iments that we have conducted with the Dagana, Robotiq
2F-85, gb SoftHand, OnRobot 3FG15, and HERI II end-
effectors.

7 Experimental Validation

The framework flexibility and adaptability to different end-
effectors, from simple grippers to complex human-like hands
(Fig. 9), are validated both in simulation and on real end-
effectors.

The SCHUNK SVH is a complex humanoid hand with 9
actuators and 20 DoF. Due to the lack of dynamic parameters
for the simulation, we have been able to test this hand only in
a set of pure-kinematic experiments. Nevertheless, the large
number of possible fingers movements permitted us to vali-
date the automatic extraction of primitive grasping actions.
We have already reported some grasping actions performed
with this hand as examples in the previous Figs. 2 and 4.

Some demonstrations with the Gazebo simulator have
been performed with the Robotiq 2F-140, and Robotiq 3F
end-effectors. In Fig. 10, the Robotiq 3F is performing a
timed grasping action, called “timed_wide_grasp”. This end-
effector can move the two near fingers laterally, other than
closing all of them toward the palm. So, we take advantage of
this feature to perform a wide grasp. With the firstinner grasp-
ing action “Open_Wide”, the two near fingers are spread, as
visible in the second image of Fig. 10. With the second inner
grasping action “Grasp”, all the fingers are closed, as visible
in the third and fourth images. The two inner grasping actions
are executed in sequence when the user requests the defined
timed grasping action.

Validations with real end-effectors in extracting the grasp-
ing primitives and executing them through the ROS End-
Effectors modules have been performed with the Dagana,
Robotiq 2F-85, gb SoftHand, OnRobot 3FG15, and HERI II

Journal of Intelligent & Robotic Systems (2023) 108:70

Page 110f18 70

timed_wide_grasp

Fig. 10 The Robotiq 3F

simulated in Gazebo, open.wide o

performing a custom timed
grasping action, where the
fingers are spread to execute a
wide grasp. At the top of each
image, the GUI loading bars
show the execution state of each
inner grasping action

end-effectors. In Fig. 11, the framework is used to command
the Dagana gripper with the ROS End-Effector GUI. This
end-effector is a single-actuator gripper with a unique mov-
ing part to open and close the beak. In the figure, the first tab
of the GUI (at the top-right on the image) shows the grasp-
ing actions extracted for this particular end-effector and the
table for a quick look at the joint states. The second tab (at
the bottom-right) shows the live plot of the joint states of the
end-effector.

In Fig. 12, we show the same pick and place task per-
formed with three different end-effectors, Robotiq 2F-85, qb
SoftHand, and OnRobot 3FG15. Once the primitive grasp-
ing actions are extracted from each one and their respective
HAL implemented, in no-time it has been possible to com-
mand these different end-effectors. At the top of each image,
the GUI shows the primitives extracted and the current prim-
itive in execution.

In another experiment, we present a grasping scenario
with the HERI II hand mounted on the IIT-INAIL arm [39]
(Fig. 13). The goal is to grasp three objects, which require
different grasping actions due to their different shapes. The
arm trajectories were predefined according to the locations
of the objects since object detection was not the focus. We
have exploited a different grasping action for each object, as
visible in Fig. 14. At the top, the first object is picked up
with a primitive grasping action, PinchTight. For the other
two objects (middle and bottom images of Fig. 14), custom

Fig. 11 The Dagana gripper,
performing a grasping action.
On the right side the two tabs of
the ROS End-Effector GUI,
loaded dynamically for the
end-effector in use: at the top the
grasping actions available and a
summary of the joint states, at
the bottom the joint states
together with a plotting control

timed_wide_grasp timed_wide_grasp timed_wide_grasp

Open_wide Gasp Open_wide Grasp Open_wide Grasp

grasping actions have been defined beforehand, composing
some Trigs primitives. Please note that the “3f_grasp” is com-
manded with a percentage below 100% to not exert too much
force in vain. All three grasping actions are commanded to
the HERI IT hand through the ROS End-Effector GUI, whose
snapshots are visible in the right parts of Fig. 14. In Fig 15,
the plots of the actuator positions and actuator currents of
the end-effector are shown; we have highlighted the time
sections where the three grasping actions are executed.

With the presented experimental demonstrations, we
have shown the ROS End-Effector framework flexibility
to automatically extract the capabilities of very different
end-effectors under the form of primitive grasping actions.
Furthermore, we show how the primitive grasping actions can
be utilized to define in a simple way more complex custom
grasping actions.

The user was able to command different types of grasp-
ing actions to both simulated (only kinematic in RViz and
dynamic in Gazebo) and real end-effectors, in an agnostic
way. Indeed, the framework permitted to abstract the hard-
ware details such that the user had not deal at all with position
or current actuator references, but just with the grasping
actions. Moreover, the GUI simplified furthermore the com-
munication with the end-effector. The demonstration showed
the flexibility, the portability and the ease of use of our pro-
posed framework, by obtaining different particular grasps
using different kinds end-effectors and grippers.

Active Joints

g orgpercam ot |0.68

pinchTight trig

0% [oox |

0% = 100%

seno ¥ position velodity effort

¥ active joints mimic joints. passive joints.

dagana_gripper_claw joint (1D:0)

Joint pos 068 plot

Joint Velocity 000 plot

Joint Effort 025 plot

Fault ok Plot

dagana_gripper_claw_join! (X W
8 dagana_gripper_claw_joint/joi.

137

Reset view Remove all ¥ Autoscroll 767FpS

@ Springer

70 Page120f18

Journal of Intelligent & Robotic Systems (2023) 108:70

Fig. 12 Three different grippers

| pinchTight singleJointMultipleTips_2
are used for a pick and place = o
task with the same object. ROS) s |||
— % =
End-Effector has extracted §o0

automatically the primitive
grasping actions of each gripper
and three HALs have been
implemented to communicate
with the low level gripper
interfaces. The GUISs at the top
are used to command the
extracted primitives

Robotiq
2F-85

8 Tutorial

In this section, we present the fundamental steps to integrate a new
end-effector in the framework. For more detailed guidelines,
see the general documentation at https://advrhumanoids.
github.io/ROSEndEffectorDocs and the Doxygen [40] gen-
erated API documentation at https://advrhumanoids.github.
10/ROSEndEffector/index.html.

8.1 Prepare your Model

As stated, a few configuration files describing the end-
effector, the URDF and SRDF files, are necessary to let
ROS End-Effector automatically extract the primitive grasp-
ing actions. We will skip explanations about URDF file, since
it is the well-known format to describe a robot in the ROS
world. Instead, we will focus on some information that is

IIT-INAIL Arm|

{

,L~

Fig. 13 The setup of the experiment with HERI II hand and IIT-INAIL
arm. Three objects of different shapes must be picked up and placed
in a container by commanding the grasping actions synthesized for the
HERI II hand

@ Springer

pinchLoose pinchTight || singleJointMultipleTips_5 multiplePinchTight_3 || pinchTight || singleJointMultipleTips_3

T oger1 toger2 tingec1 finger 2
index T little index " middle
¥/ abhand_synergy_joint ioger3

tinger3

necessary to have in the SRDF file. The SRDF is a ROS
standard format that adds some information not included in
the URDF file. For ROS End-Effector, two features of the
SRDF are used. The first feature is used to group joint and
links, so that the framework can retrieve them as kinematic
chains. The second feature defines the passive joints, i.e.,
joints that are not moved by any actuator, but only by exter-
nal forces. In Code 3, we provide a self-explanatory example
of the SRDF file for the SCHUNK SVH hand.

pinchTight

/} @& finger_ & thumb

3fF_grasp
[——

—_— 64% .

handle_grasp
— i

— | | 100 %

SEND

Fig. 14 The three grasping actions performed during the experiment
with HERI II hand and IIT-INAIL arm. On the right side, the GUI
shows the grasping actions in execution. The loading bars are not fully
completed (to 100%) because of small errors in tracking the actuator
reference positions

https://advrhumanoids.github.io/ROSEndEffectorDocs
https://advrhumanoids.github.io/ROSEndEffectorDocs
https://advrhumanoids.github.io/ROSEndEffector/index.html
https://advrhumanoids.github.io/ROSEndEffector/index.html

Journal of Intelligent & Robotic Systems (2023) 108:70

Page 130f18 70

Fig. 15 Actuators positions and
currents of HERI II hand during
the experiment with the

=
0
T

HERI Il Hand Motors Positions
1 1
1 I (

e

i i i i
=l 1 1 1 1
£ 1 1 | 1
§ 1L ! Motor Finger 1 Position ! ! !
IIT-INAIL robot arm. In the plot S 1 Motor Finger 2 Position 3 grasp 1 1 | handie_grasp | !
o Motor Fi 3 Positi
are enlightened the time T osk : Hotor Tumb Posiion’ 1 i :
sequences where the hand is 2 ! : 1 : :
holding an object with a fe— ‘ ———— I L
X R 0 10 20 30 40 50 60 70 80 %0 100
grasping action Time [s]
HERI Il Hand Motors Currents
T T T
150 - { pinchTigth 3 y 3f_grasp ' | handle_grasp 3 n
T 1 1 1 1 1 1
E 001~ 1 1 1 1 1 1 7
2 5o 1 1 I 1 1 1 ~
g L I ! 1 L 1
3 1 1 1 [| |
5 O 1 Motor Finger 1 Current 1 1 1 7
2 -100 - 1 I I 1 .
150 - ! lotor Thumb Current 1 1 1 i
1 L 1 L I L L
0 10 20 50 60 70 80 20 100
Time [s]

Code 3: Example of a SRDF file

1 <robot name="schunk_svh">

<group name="thumb">

3
4 <chain base_link="left_hand_el"

5 tip_link="left_hand_c"/>

6 </group>

7 <group name="index">

8 <chain base_link="left_hand_h"

9 tip_link="left_hand_t"/>

10 </group>

11 [...]

13 <group name="end_effector_fingers">
14 <group name="thumb" />

15 <group name="index" />

16 <group name="middle" />

17 <group name="ring" />

18 <group name="little" />

19 </group>

21 <end_effector name="schunk_end_effector"
22 parent_link="base_link"
23 group="end_effector_fingers"/>

25 <!-- SCHUNK SVH does not have these -->
26 <!-- <passive_joint name="passivel" /> -->
27 </robot>

8.2 Run the Offline Phase

After the robot URDF and SRDF are ready, we can run the
Primitive Extractor node (Fig. 1) with the dedicated ROS
launch file that can be run in a bash terminal with the com-
mand shown in the Code 4 .

Code 4: Running the primitive extraction]

2 hand_name :=<my_hand>

1 roslaunch end_effector findActions.launch J

Where <my_hand> is the name of the robot defined in
the URDF and SRDF files. This command will automatically
extract the primitive grasping actions of the loaded hand, as
described in Section 4.1. The generated YAML files of the
primitives will be stored locally in a system’s folder.

If necessary, ROS End-Effector C++ API methods can
be exploited to create additional custom grasping actions

(Section 5). As an example, we report the definition of
a “schunkGrasp” composed grasping action for SCHUNK
SVH in the C++ Code 5.

[Code 5: Composed grasping action definition]

// VWe load the previously extracted primitives, and
// we use them to create the composed grasping action
MapActionHandler mapsHandler;
mapsHandler.parseAllPrimitives(

folderForActions + "/primitives/");

GUs o e

// Let's create the ActionComposed object
8 ActionComposed schunkGrasp ("schunkGrasp");

10 // We fill the action with trigs

11 schunkGrasp.sumAction (

12 mapsHandler.getPrimitive("trig", "index"));
13 schunkGrasp.sumAction (

14 mapsHandler.getPrimitive("trig", "middle"));

16 // For the thumb, we do not want a complete closure,
17 // so we pass a scale factor < 1 (0.3)

18 schunkGrasp.sumAction (

19 mapsHandler.getPrimitive ("trig", "thumb"), 0.3);

21 // We store the new action into a YAML file, so it
22 // can be retrieved in the online phase

23 YamlWorker yamlWorker;

24 yamlWorker.createYamlFile (&schunkGrasp,

25 folderForActions + "/generics/");

Timed grasping actions and generic grasping actions
can be created with C++ methods in a similar way. For
generic grasping actions, we must directly indicate the posi-
tion set-points of the actuators, instead of “summing” some
previously defined grasping actions. Alternatively, generic
grasping actions can be defined during the online phase,
through ROS Services, as explained in Section 8.3 with the
Code 8.

8.3 Run the Online Phase

Like for the offline phase, a single command is necessary to
run the ROS launch file of the online phase, as shown in Code

6.

@ Springer

70 Page 140f 18

Journal of Intelligent & Robotic Systems (2023) 108:70

[Code 6: Running the online phase]
1 roslaunch end_effector rosee_startup.launch
2 hand_name:=<my_hand> hal_lib:=<my_hal>

As before, <my_ hand> must be substituted with the
name of the robot. This command will run both the Grasping
Actions Executor node and the HAL shown in the bottom part
of Fig. 1. The wanted <my_hal> library must have been
previously implemented for the specific End-Effector hard-
ware, as explained in Section 6.2. When launching the online
phase, the selected HAL will be loaded dynamically by ROS
End-Effector. If the robot is only simulated (with RViz and/or
Gazebo), we can use the available DummyHal.

Grasping actions available for the end-effector can be
retrieved through a dedicated ROS service, with the com-
mand in Code 7.

[Code T7: Retrieving the grasping actions]

1 rosservice call
2 /ros_end_effector/grasping_actions_available
3 "action_type: 0" #0 is for primitives

Where action_typeis anindex to indicate which kind
of grasping action we want to retrieve.

New generic grasping actions can be added online with
another ROS service. We have to indicate the new action
name (action_name), the actuator position set-points
(action_motor_position), and what actuators are
used in the grasping action (action_motor_count: 0
if the actuator is not used, hence no reference will be set) as
itis shown in Code 8. It is also possible to store the grasping
action (emitYaml: true)together with the other created
during the offline phase, to retrieve it for future tasks. Please
note that if a generic grasping action is created online in such
a way, the framework must be restarted to show it in the GUL

é 3
Code 8: Adding a new grasping action online
1 rosservice call
2 /ros_end_effector/new_generic_grasping_action
3 "newAction:

4 action_name: 'newFancyAction'
5 action_motor_position:
6 name:
7 - 'motor_1"
8 - 'motor_2'
9 position:
10 - 1.2
11 - 0.75
12 action_motor_count:
13 name:
14 - 'motor_1"'
15 - 'motor_2'
16 position:
17 -1
18 -1
19 emitYaml: true"
\ J

@ Springer

As explained in Section 6, the GUI is available to request
the grasping actions. To run the GUI, a ROS launch file can
be used, as shown in Code 9.

[Code 9: Running the GUI]

l 1 roslaunch rosee_gui gui.launch J

Instead of using the GUI, itis also possible to command the
grasping actions directly through the dedicated ROS topic.
In Code 10, we show the most important ROS message fields
to fill when demanding a grasping action.

[Code 10: Commanding a grasping action

1 rostopic pub

2 /ros_end_effector/action_command/goal
3 rosee_msg/ROSEECommandActionGoal

4 "[...]

5 goal:

6 goal_action:

7 [...]

8 action_name: 'pinchTight'
9 action_type: 0O
10 selectable_items: ['index', 'thumb']
11 percentage: 1"
. J

The field action_name is the name of the grasping
action (in this case, apinchTight); action_type must
be 0, 1, 2, or 3 for primitive, generic, composed and timed
grasping action, respectively; selectable_items, used
only for primitive grasping actions, indicates the body/bodies
involved in the primitive; percentage (with values from
0 to 1) is the 0% — 100% intensity value to perform only
partial movements of the fingers.

9 Conclusion and Future Works

We have presented ROS End-Effector, an open-source soft-
ware framework which facilitates the integration of robotic
end-effectors, abstracting the low-level hardware details.
This manuscript extends the preliminary presentation of the
framework of [8].

To achieve this functionality, ROS End-Effector automat-
ically extracts the specific end-effector motion capabilities
(e.g, precise pinching or single finger movements) in the form
of primitive grasping actions during an offline process. In
this offline phase the primitive grasping actions are extracted
from the end-effector model described in the ROS standard
formats URDF and SRDF (Section 4).

Given the extracted primitive grasping actions, the frame-
work permits to combine them for generating custom grasp-
ing actions with different and more complex postural con-
figurations that can be executed by the robotic end-effector.
These custom grasping actions are classified as: (1) com-
posed grasping action, created as the sum of others grasping

Journal of Intelligent & Robotic Systems (2023) 108:70

Page 150f18 70

actions (Fig. 4); (2) timed grasping action, created as mul-
tiple inner grasping actions executed in sequence (Fig. 5);
(3) generic grasping action, created/defined by the user (for
example, as in Code 8). Finally, the composition of custom
grasping actions is facilitated by the C++ API methods, inter-
faces, and ROS services provided by the ROS End-Effector
framework (Section 5).

Thanks to the above primitive grasping actions approach
as well as other user-created grasping actions that can be
added to the repertoire of the available grasping actions, ROS
End-Effector hides from the user the low-level interface of
the end-effector, permitting the user to command grasping
actions instead of sending directly the references necessary
to the end-effector’s actuators (Section 6). A grasping action
is sent to ROS End-Effector through ROS topics, either using
a ROS node or the dedicated GUI. The ROS End-Effector
GUI dynamically builds its layout showing only the grasping
actions extracted/defined for the specific end-effector in use.
The user can choose a particular grasping action to command
while receiving visual feedback about its completion during
the execution. The same GUI permits to monitor and plot at
run-time the available states of the end-effector (Section 6.1).
The ROS End-Effector framework takes into account the
grasping action command and communicates directly with
the end effector through the implemented Hardware Abstrac-
tion Layer. The implementation of the Hardware Abstraction
Layer, specific for the end-effector in use, is facilitated by the
C++ structures provided; indeed only the specific commu-
nication with the end-effector device must be implemented
(Code 2). In any case, the framework is ready to be used with
any simulated robotic end-effector thanks to the available
DummyHal, and with some real end-effectors for which the
HAL has been already implemented (Section 6.2).

The flexibility and adaptability of the framework have been
tested in simulation with various robotic hands, from com-
plex humanoid hands (SCHUNK SVH, kinematic visualiza-
tion only), to simpler grippers (Robotiq 2F-140, Robotiq 3F).
Tests with real hardware have been conducted with Dagana,
Robotiq 2F-85, OnRobot 3FG15, gb SoftHand, and HERI
II. All the tests include an offline phase, where the primi-
tive grasping actions have been automatically extracted (and
some custom grasping actions have been defined by the user),
and an online phase, where the grasping actions have been
commanded and executed by the end-effectors (Section 7).

Finally, a short practical tutorial for new ROS End-
Effector users has been included to demonstrate the simplic-
ity of the setting up process for a new end-effector using the
ROS End-Effector framework (Section 8).

Future works on the framework will consider the exten-
sion of the functionality towards autonomous grasping action
composition providing the necessary information of the
object to be grasped in terms of geometrical shape and
mechanical/dynamic properties.

Supplementary information

The ROS End-Effector package is available in the official ROS/
ROS2 repositories with the name ros-<ROS_DISTRO>
-end-effector. The C++ code of ROS End-Effector is
available open-source with the Apache—2.0 license at https://
github.com/ADVRHumanoids/ROSEndEffector. A video
presenting the features of ROS End-Effector and showing
the experiments carried out is attached with this article, and
it is also available at the following link: https://youtu.be/
X0gpSsFQgIM.

Acknowledgements This work was supported by the European Union’s
Horizon 2020 research and innovation programme (Grant numbers
732287 (ROS-Industrial)). The authors want to thanks Diego Vedelago
and Stefano Carrozzo for the support with the experiments on the HERI
II hand and Arturo Laurenzi for the guidance and the support in the
implementation of the GUIL

Author Contributions Conceptualization, Methodology, Formal Analysis,
and Investigation: Davide Torielli, Liana Bertoni, Nikos Tsagarakis,
Luca Muratore; Software: Davide Torielli, Liana Bertoni, Fabio
Fusaro, Luca Muratore; Writing - original draft preparation: Davide
Torielli; Writing - review and editing: Davide Torielli, Nikos Tsagarakis,
Luca Muratore; Validation: Davide Torielli, Fabio Fusaro, Luca Mura-
tore; Visualization: Davide Torielli; Supervision and Funding acquisi-
tion: Nikos Tsagarakis, Luca Muratore.

Funding Open access funding provided by Universita degli Studi di
Genova within the CRUI-CARE Agreement. This work was supported
by the European Union’s Horizon 2020 research and innovation pro-
gramme (Grant numbers 732287 (ROS-Industrial)).

Availability of data and materials The ROS End-Effector package
is available in the official ROS/ROS2 repositories with the name
ros—ROS_DISTRO—end—effector. A video presenting the fea-
tures of ROS End-Effector and showing the experiments carried out is
attached with this article, and it is also available at the following link:
https://youtu.be/X0qpSsFQg1M.

Code Availability The C++ code of ROS End-Effector is avail-

able open-source with the Apache—2.0 license at https://github.com/
ADVRHumanoids/ROSEndEffector.

Declarations

Ethics approval Not applicable.
Consent to participate Not applicable.
Consent for publication Not applicable.

Conflict of interest/Competing interests The authors have no relevant
financial or non-financial interests to disclose.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material

@ Springer

https://github.com/ADVRHumanoids/ROSEndEffector
https://github.com/ADVRHumanoids/ROSEndEffector
https://youtu.be/X0qpSsFQg1M
https://youtu.be/X0qpSsFQg1M
https://youtu.be/X0qpSsFQg1M
https://github.com/ADVRHumanoids/ROSEndEffector.
https://github.com/ADVRHumanoids/ROSEndEffector.

70 Page160f18

Journal of Intelligent & Robotic Systems (2023) 108:70

in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

10.

11.

12.

14.
15.

Negrello, F., Stuart, H.S., Catalano, M.G.: Hands in the real world.
Frontiers in Robotics and Al. 6 (2020). https://doi.org/10.3389/
frobt.2019.00147

Ruehl, S.W., Parlitz, C., Heppner, G., Hermann, A., Roennau, A.,
Dillmann, R.: Experimental evaluation of the schunk 5-Finger grip-
ping hand for grasping tasks. IEEE International Conference on
Robotics and Biomimetics. p 2465-2470 (2014). https://doi.org/
10.1109/ROBI0.2014.7090710

Robotiq.: 2F-85 and 2F-140 Adaptive Robot Gripper. (2023) Avail-
able from: https://robotiq.com/products/2{85- 140-adaptive-robot-
gripper

Robotiq.: 3-Finger Adaptive Gripper. (2023) Available from:
https://robotiq.com/products/3-finger-adaptive-robot-gripper
Catalano, M., Grioli, G., Farnioli, E., Serio, A., Bonilla, M., Gara-
bini, M., etal.: 8. In: From Soft to Adaptive Synergies: The Pisa/IIT
SoftHand. Springer International Publishing, p 101-125 (2016)
OnRobot.: 3FG15 Three Finger Gripper. (2023) Available from:
https://onrobot.com/en/products/3fg15-three- finger-gripper

Ren, Z., Kashiri, N., Zhou, C., Tsagarakis, NG.: HERI II: A Robust
and Flexible Robotic Hand based on Modular Finger design and
Under Actuation Principles. IEEE/RSJ International Conference
on Intelligent Robots and Systems, p 1449-1455 (2018) https://
doi.org/10.1109/IROS.2018.8594507

Torielli, D., Bertoni, L., Tsagarakis, N.G., Muratore, L.:
Towards an Open-Source Hardware Agnostic Framework for
Robotic End-Effectors Control. IEEE International Conference on
Advanced Robotics. (2021). https://doi.org/10.1109/ICAR53236.
2021.9659331

Bertoni, L., Torielli, D., Zhang, Y., Tsagarakis, N.G., Muratore, L.:
Towards a Generic Grasp Planning Pipeline using End-Effector
Specific Primitive Grasping Actions. IEEE International Con-
ference on Advanced Robotics. (2021). https://doi.org/10.1109/
ICAR53236.2021.9659402

Piazza, C., Grioli, G., Catalano, M.G., Bicchi, A.: A Century of
Robotic Hands. Annu. Rev. Control Robot. Auton. Syst. 2(1), 1-32
(2019). https://doi.org/10.1146/annurev-control-060117-105003
Santello, M., Flanders, M., Soechting, J.: Postural Hand Syner-
gies for Tool Use. The J Neurosc: The Official J Society Neurosci.
18, 10105-10115 (1998). https://doi.org/10.1523/INEUROSCI.
18-23-10105.1998

Bizzi, E., Cheung, V.C.K.: The neural origin of muscle synergies.
Front. Comput. Neurosci. 7, 51 (2013). https://doi.org/10.3389/
fncom.2013.00051

. Santello, M., Bianchi, M., Gabiccini, M., Ricciardi, E., Salvietti,

G., Prattichizzo, D., et al.: Hand synergies: Integration of robotics
and neuroscience for understanding the control of biological and
artificial hands. Phys. Life Rev. 17, 1-23 (2016). https://doi.org/
10.1016/j.plrev.2016.02.001

Latash, M.L.: Synergy. Oxford University Press, (2008)
Ciocarlie, M., Goldfeder, C., Allen, P.: Dimensionality reduction
for hand-independent dexterous robotic grasping. IEEE/RSJ Int.
Conf. Inte. Robot. Syst. 20, 3270-3275 (2007). https://doi.org/10.
1109/IROS.2007.4399227

@ Springer

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Peer, A., Stanczyk, B., Buss, M.: Haptic telemanipulation with dis-
similar kinematics. IEEE/RSJ International Conference on Intelli-
gent Robots and Systems. (2005). https://doi.org/10.1109/IROS.
2005.1545349

Ciocarlie, M.T., Allen, P.K.: Hand posture subspaces for dexterous
robotic grasping. Int. J. Rob. Res. 28, 851-867 (2009). https://doi.
org/10.1177/0278364909105606

Griffin, W.B., Findley, R.P., Turner, M.L., Cutkosky, M.R.: Cali-
bration and Mapping of a Human Hand for Dexterous Telemanip-
ulation. Hand The. (2000). https://doi.org/10.1115/IMECE2000-
2424

Gioioso, G., Salvietti, G., Malvezzi, M., Prattichizzo, D.: Mapping
synergies from human to robotic hands with dissimilar kinemat-
ics: An approach in the object domain. IEEE Transactions on
Robotics. 29(4), 825-837 (2013). https://doi.org/10.1109/TRO.
2013.2252251

Gabiccini, M., Bicchi, A., Prattichizzo, D., Malvezzi, M.: On
the role of hand synergies in the optimal choice of grasp-
ing forces. Autonomous Robots. (2011). https://doi.org/10.1007/
s10514-011-9244-1

Bicchi, A., Gabiccini, M., Santello, M.: Modelling natural and arti-
ficial hands with synergies. Philosophical Transactions of the Royal
Society B: Biological Sciences. (2011). https://doi.org/10.1098/
rstb.2011.0152

Morrow, J.D., Khosla, P.K.: Manipulation task primitives for com-
posing robot skills. Proc. Int. Conf. Robot. Autom. 4, 3354-3359
(1997). https://doi.org/10.1109/ROBOT.1997.606800

Kroger, T., Finkemeyer, B,, Wahl, EM.: Manipulation Primitives
— A universal interface between sensor-based motion control
and robot programming. Robotic Systems for Handling and
Assembly. p 293-313. (2011). https://doi.org/10.1007/978-3-642-
16785-0_17

Felip, J., Laaksonen, J., Morales, A., Kyrki, V.: Manipulation
primitives: A paradigm for abstraction and execution of grasping
and manipulation tasks. Rob. Auton. Syst. 61(3), 283-296 (2013).
https://doi.org/10.1016/j.robot.2012.11.010

Miller, A.T., Allen, P.K.: Graspit! A versatile simulator for robotic
grasping. IEEE Rob. Autom. Mag. 11(4), 110-122 (2004). https://
doi.org/10.1109/MRA.2004.1371616

Malvezzi, M., Gioioso, G., Salvietti, G., Prattichizzo, D.: Syn-
Grasp: A MATLAB toolbox for underactuated and compliant
hands. IEEE Rob. Autom. Mag. 22(4), 52-68 (2015). https://doi.
org/10.1109/MRA.2015.2408772

Leodn, B., Ulbrich, S., Diankov, R., Puche, G., Przybylski, M.,
Morales, A., et al.: OpenGRASP: A toolkit for robot grasping sim-
ulation. Simulation, Modeling, and Programming for Autonomous
Robots. p 109-120 (2010). https://doi.org/10.1007/978-3-642-
17319-6_13

Leén, B., Morales, A., Sancho-Bru, J.: From robot to human grasp-
ing simulation. Cognitive Systems Monographs. 19(May) (2014).
https://doi.org/10.1007/978-3-319-01833-1

Sucan, [.A., Chitta, S.:Movelt [Computer software]. (2023) Avail-
able from: http://moveit.ros.org

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J.,
et al.: Japan Kobe ROS an open-source Robot operating system.
ICRA Workshop on Open Source Softw. 3, 5 (2009)

Quigley, M., Gerkey, B., Conley, K., Faust, J., Foote, T., Leibs, J..
et al.: ROS Robot operating system [Computer software]. (2023).
Available from: https://www.ros.org/

Coleman, D., McEvoy, A., Lautman, M.: Movelt grasps [Com-
puter software]. (2023). Available from: https://github.com/ros-
planning/moveit_grasps

Liu, S., Yan, Y.: ROS2 Grasp library [Computer software]. (2023).
Auvailable from: https://github.com/intel/ros2_grasp_library

Pan, J., Chitta, S., Manocha, D.: FCL: A general purpose library
for collision and proximity queries. IEEE International conference

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3389/frobt.2019.00147
https://doi.org/10.3389/frobt.2019.00147
https://doi.org/10.1109/ROBIO.2014.7090710
https://doi.org/10.1109/ROBIO.2014.7090710
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/2f85-140-adaptive-robot-gripper
https://robotiq.com/products/3-finger-adaptive-robot-gripper
https://onrobot.com/en/products/3fg15-three-finger-gripper
https://doi.org/10.1109/IROS.2018.8594507
https://doi.org/10.1109/IROS.2018.8594507
https://doi.org/10.1109/ICAR53236.2021.9659331
https://doi.org/10.1109/ICAR53236.2021.9659331
https://doi.org/10.1109/ICAR53236.2021.9659402
https://doi.org/10.1109/ICAR53236.2021.9659402
https://doi.org/10.1146/annurev-control-060117-105003
https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
https://doi.org/10.1523/JNEUROSCI.18-23-10105.1998
https://doi.org/10.3389/fncom.2013.00051
https://doi.org/10.3389/fncom.2013.00051
https://doi.org/10.1016/j.plrev.2016.02.001
https://doi.org/10.1016/j.plrev.2016.02.001
https://doi.org/10.1109/IROS.2007.4399227
https://doi.org/10.1109/IROS.2007.4399227
https://doi.org/10.1109/IROS.2005.1545349
https://doi.org/10.1109/IROS.2005.1545349
https://doi.org/10.1177/0278364909105606
https://doi.org/10.1177/0278364909105606
https://doi.org/10.1115/IMECE2000-2424
https://doi.org/10.1115/IMECE2000-2424
https://doi.org/10.1109/TRO.2013.2252251
https://doi.org/10.1109/TRO.2013.2252251
https://doi.org/10.1007/s10514-011-9244-1
https://doi.org/10.1007/s10514-011-9244-1
https://doi.org/10.1098/rstb.2011.0152
https://doi.org/10.1098/rstb.2011.0152
https://doi.org/10.1109/ROBOT.1997.606800
https://doi.org/10.1007/978-3-642-16785-0_17
https://doi.org/10.1007/978-3-642-16785-0_17
https://doi.org/10.1016/j.robot.2012.11.010
https://doi.org/10.1109/MRA.2004.1371616
https://doi.org/10.1109/MRA.2004.1371616
https://doi.org/10.1109/MRA.2015.2408772
https://doi.org/10.1109/MRA.2015.2408772
https://doi.org/10.1007/978-3-642-17319-6_13
https://doi.org/10.1007/978-3-642-17319-6_13
https://doi.org/10.1007/978-3-319-01833-1
http://moveit.ros.org
https://www.ros.org/
https://github.com/ros-planning/moveit_grasps
https://github.com/ros-planning/moveit_grasps
https://github.com/intel/ros2_grasp_library

Journal of Intelligent & Robotic Systems (2023) 108:70

Page 170f 18 70

on Robotics and automation. p 3859-3866 (2012) https://doi.org/
10.1109/ICRA.2012.6225337

35. Hershberger, D., Gossow, D., Faust, J., Woodall, W.: RViz [Com-
puter software]. (2023). Available from: http://wiki.ros.org/rviz

36. Agiiero, C.E., Koenig, N., Chen, 1., Boyer, H., Peters, S., Hsu, J.,
et al.: Inside the virtual Robotics challenge: Simulating real-time
Robotic disaster response. IEEE Trans. Autom. Sci. Eng. 12(2),
494-506 (2015). https://doi.org/10.1109/TASE.2014.2368997

37. Gassend, B.: Dynamic Reconfigure [Computer software]. (2023).
Available from: http://wiki.ros.org/dynamic_reconfigure

38. Muratore, L., Laurenzi, A., Mingo Hoffman, E., Tsagarakis, N.G.:
The XBot real-time software framework for robotics: from the
developer to the user perspective. IEEE Rob. Autom. Mag. 27(3),
133-143 (2020). https://doi.org/10.1109/MRA.2020.2979954

39. Barrett, E., Hoffman, E.M., Baccelliere, L., Tsagarakis, N.G.:
Mechatronic design and control of a light weight manipulator
arm for mobile platforms. IEEE/ASME international conference
on advanced intelligent mechatronics (AIM). p 1255-1261 (2021)
https://doi.org/10.1109/AIM46487.2021.9517389

40. van Heesch D.: Doxygen [Computer software]. (2023). Available
from: https://www.doxygen.nl/index.html

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Davide Torielli received his Bachelor’s Degree in Computer Science
Engineering and Master’s Degree in Robotics Engineering at the Uni-
versity of Genova, in 2017 and 2019 respectively. He carried out part
of his Master Thesis at IRS Lab, Castellon de la Plana, Spain. Since
2019 he is working at Istituto Italiano di Tecnologia for the HHCM
research line, and since 2020 he is also a PhD student in Bioengi-
neering and Robotics with IIT and University of Genova. He actively
worked on the European project ROS End-Effector ROS-Industrial
Focused Technical Project (ROSIN FTP). Its PHD is involved in the
exploration of intuitive and smart teloperation interfaces for the con-
trol of complex mobile manipulators. He presented some of his works
at the ROSIN FTP Webinar Series 2020, International Conference on
Advanced Robotics (ICAR) 2021, IEEE International Conference on
Robotics and Automation (ICRA) 2022, ROS Conference (ROSCon)
2022, IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS) 2022, and IEEE-RAS International Conference on
Humanoid Robots (Humanoids) 2022. He is currently involved is some
European Projects (H2020 CONCERT, H2020 SOPHIA) and in the
Italian MISE founded project RELAX.

Liana Bertoni received his Bachelor’s and Master’s Degree, both at
the University of Pisa, in Software Engineering and Robotics and
Automation Engineering, respectively. She is currently enrolled as a
PhD student in the University of Pisa with working place at the Istituto
Italiano di Tecnologia (IIT) for the Humanoids & Human Centered
Mechatronics (HHCM) group. Her research interests focus the vari-
able impedance control for autonomous robotic systems working in
high dynamical environments as industrial application as well as harsh
environments where the key feature of adaptability is still a challeng-
ing topic in that research area. She is currently involved in the inter-
national project CONCERT (2021).

Fabio Fusaro was born on 9 March 1995 in Genova (Italy). He received
the BD in Bioengineering and the MD, with full mark, in Robotics
Engineering from the University of Genova, Italy, in 2017 and 2019,
respectively. In 2023, he defended his PhD thesis entitled “Dynamic
Task Allocation for Proactive Human-Robot Collaboration”, carried
out at the Human-Robot Interfaces and Physical Interaction (HRI2)
laboratory, in collaboration with Politecnico di Milano in the Neuro-
engineering and Medical Robotics Laboratory (NearLab). He received
his PhD degree, cum laude. He worked actively in the Horizon-2020
European projects SOPHIA and CONCERT, the ERC grant Ergo-Lean
and the Amazon Research Awards 2019. He was also involved in
transferring technology initiatives with various industrial partners, like
the JOiiNT LAB IIT-INTELLIMECH at Kilometro Rosso Innovation
District. He was finalist of Solution Award 2020 (MECSPE2020) and
of Best Student Paper Award Finalist (I-RIM 2021). He is working as
Robotics Engineer at Hiro Robotics focusing on the development of
robotics solutions for E-waste recycling.

Nikolaos G. Tsagarakis received the D.Eng. degree in electrical and
computer science engineering from the Polytechnic School, Aristotle
University of Thessaloniki, Thessaloniki, Greece, in 1995, the M.Sc.
degree in control engineering and the Ph.D. degree in robotics from
the University of Salford, Salford, U.K., in 1997 and 2000, respec-
tively. He is currently the Head of the Humanoids & Human Cen-
tred Mechatronics Lab, Istituto Italiano di Tecnologia, Genova, Italy.
His research interest is on humanoid robots, mechanism design, com-
pliant and variable impedance actuators, wearable assistive devices
and exoskeletons for poweraugmentation, and haptic Systems. He is
an author or co-author of over 350 papers in research journals and
at international conferences and holds 16 patents. He has received
the Best Jubilee Video Award at IROS (2012), the 2009 PE Publish-
ing Award from the Journal of Systems and Control Engineering and
prizes for Best Paper at ICAR (2003) and the Best Student Paper
Award at Robio (2013). He was also a finalist for Best Entertain-
ment Robots and Systems - 20th Anniversary Award at IROS (2007)
and finalist for the Best Manipulation paper at ICRA (2012), the Best
Conference Paper at Humanoids (2012), the Best Student Papers at
Robio (2013) and ICINCO (2014), Best Interactive Paper finalist at
Humanoids (2016) and Best Interactive Paper at Humanoids (2017).
He has been in the Program Committee of over 60 international con-
ferences including IEEE ICRA, IROS, RSS, HUMANOIDS BIOROB
and ICAR. Nikos Tsagarakis was Technical Editor of IEEE/ASME
Transactions on Mechatronics (2012-2015) and from 2014 served on
the Editorial Board of the IEEE Robotics and Automation Letters. He
is currently a Senior Editor of IEEE/ASME Transactions on Mecha-
tronics.

@ Springer

https://doi.org/10.1109/ICRA.2012.6225337
https://doi.org/10.1109/ICRA.2012.6225337
http://wiki.ros.org/rviz
https://doi.org/10.1109/TASE.2014.2368997
http://wiki.ros.org/dynamic_reconfigure
https://doi.org/10.1109/MRA.2020.2979954
https://doi.org/10.1109/AIM46487.2021.9517389
https://www.doxygen.nl/index.html

70 Page180f18 Journal of Intelligent & Robotic Systems (2023) 108:70

Luca Muratore is Technologist at Istituto Italiano di Tecnologia (IIT) in
the Humanoids and Human-Centered Mechatronics (HHCM) research
line. In 2020 He received his split-site Ph.D. degree in Electrical and
Electronic Engineering from the University of Manchester and IIT,
with a Ph.D. thesis entitled “A Flexible Cross-Robot Software Frame-
work for Robot Control: from on-board to Cloud Execution”. He
obtained his bachelor’s and master’s degrees, both in Software Engi-
neering at the University of Pisa in 2011 and 2014 respectively. He
carried out his Master’s thesis (on Distributed Systems and Cloud
Computing) at Universidad Politecnica de Madrid (UPM) after a six
months internship in the Distributed System Lab (LSD). Since May
2014 he has been working as a Lead Software Engineer at IIT for the
HHCM research line. In 2015 he participated in the DARPA Robotics
Challenge as a WALK-MAN team member. He was involved in sev-
eral EU projects as the main responsible for the software integra-
tion given the design and development of the XBot software frame-
work; the main ones are: FP7 WALK-MAN (with the EU innovation
radar award for the XBot software architecture) H2020 CENTAURO,
H2020 CogiMON and currently H2020 CONCERT, H2020 SOPHIA,
Horizon Europe HARIA, and Horizon Europe euROBIN. His main
research interests are software architecture for robotics, human-robot
collaboration, robotics teleoperation, cloud robotics, grasp planning,
and robotics manipulation. He was the coordinator of the European
project ROS End-Effector, a ROS-Industrial Focused Technical Project
and He is the co-coordinator of the Italian MISE founded project
RELAX (Robot Enabler for Load Assistive RelaXation). He is on the
Organization Committee of the IEEE Robotic Computing (IRC) con-
ference as program co-chair, and He is engaged as responsible for the
software architecture and integration in the Alberobotics IIT startup
(https://alberobotics.it/), the JOiiINT LAB IIT-Intellimech (https://www.
iit.it/it/tech-transfer/joint-labs/joiint-lab) and the IIT-Leonardo joint
lab.

Authors and Affiliations

5

Davide Torielli2@® - Liana Bertoni'3@® - Fabio Fusaro*> - Nikos Tsagarakis'® - Luca Muratore’

Liana Bertoni Department of Informatics, Bioengineering, Robotics, and
liana.bertoni @iit.it Systems Engineering (DIBRIS), University of Genova, Via

Fabio Fusaro All’Opera Pia, 13, Genova 16145, Italy

fabio.fusaro @outlook.it

Nikos Tsagarakis

Department of Information Engineering (DII), University of
Pisa, Via G. Caruso, 16, Pisa 56122, Italy

nikos.tsagarakis @iit.it 4 Human-Robot Interfaces and physical Interaction (HRI2),
Luca Muratore Istituto Italiano di Tecnologia (IIT), Via S. Quirico, 19d,
. Genova 16163, Italy
luca.muratore @iit.it
3> Department of Electronics, Information, and Bioengineering
1" Humanoids and Human Centered Mechatronics (HHCM), (DEIB), Politecnico di Milano, Via Giuseppe Ponzio, 34,
Istituto Italiano di Tecnologia (IIT), Via S. Quirico, 19d, Milano 20133, Italy

Genova 16163, Italy

@ Springer

https://alberobotics.it/
https://www.iit.it/it/tech-transfer/joint-labs/joiint-lab
https://www.iit.it/it/tech-transfer/joint-labs/joiint-lab
http://orcid.org/0000-0002-9711-3006
http://orcid.org/0000-0002-4611-1430
http://orcid.org/0000-0002-3909-7941
http://orcid.org/0000-0002-9877-8237
http://orcid.org/0000-0002-1265-3370

	ROS End-Effector: A Hardware-Agnostic Software and Control Framework for Robotic End-Effectors
	Abstract
	1 Introduction
	1.1 Manuscript Overview

	2 Literature Review
	3 Software Framework
	4 Offline Component: Primitive Grasping Actions
	4.1 Extraction of the Primitive Grasping Actions

	5 Offline Component: Custom Grasping Actions
	6 Online Component: Demanding the Grasping Actions
	6.1 ROS End-Effector GUI
	6.2 Hardware Abstraction Layer

	7 Experimental Validation
	8 Tutorial
	8.1 Prepare your Model
	8.2 Run the Offline Phase
	8.3 Run the Online Phase

	9 Conclusion and Future Works
	Supplementary information
	Acknowledgements
	References

