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Abstract
Wildfires are a common problem in many areas of the world with often catastrophic consequences. A number of systems
have been created to provide early warnings of wildfires, including those that use satellite data to detect fires. The increased
availability of small satellites, such as CubeSats, allows the wildfire detection response time to be reduced by deploying
constellations of multiple satellites over regions of interest. By using machine learned components on-board the satellites,
constraints which limit the amount of data that can be processed and sent back to ground stations can be overcome. There are
hazards associated with wildfire alert systems, such as failing to detect the presence of a wildfire, or detecting a wildfire in the
incorrect location. It is therefore necessary to be able to create a safety assurance case for the wildfire alert ML component
that demonstrates it is sufficiently safe for use. This paper describes in detail how a safety assurance case for an ML wildfire
alert system is created. This represents the first fully developed safety case for anML component containing explicit argument
and evidence as to the safety of the machine learning.

Keywords Machine learning · Safety case · Safety assurance · Wildfire · Satellite

1 Introduction

Wildfires are a common and often catastrophic occurrence
in many parts of the world. In the 2019 and 2020 Australian
bushfire season, over 18million hectares of forest and 10,000
buildingswere destroyed and six people killed [1]. TheGang-
won wildfire in South Korea in 2019 burnt 500 hectares of
land and destroyed several hundred buildings [2]. 2020 and
2021 were the worst years for wildfires in the USA in at least
10 years with an average of 69,000 wildfires burning over
2.5 million hectares each year, based on data compiled by
the National Interagency Fire Center (NIFC). As well as loss
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to life, there is also an immense financial cost, as well as a
huge environmental impact from uncontrolled wildfires [3].
So effectivelymanaging the prevention and response to wild-
fires is crucial. Early detection of emerging wildfires enables
them to be suppressed and managed, reducing the require-
ment for costly and dangerous firefighting.

There are three types of system used for wildfire detec-
tion: terrestrial, airborne, and spaceborne systems [4]. In this
paper we focus on spaceborne wildfire detection. Services
such as the Fire Information for Resource Management Sys-
tem (FIRMS) [5], the Global Wildfire Information System
(GWIS) [6] and the Copernicus Emergency Management
System (EMS) [7] have been created to provide early warn-
ings, statistical data and coverage maps for wildfires. Such
services rely heavily on satellite data to provide the per-
spective, spectral content and temporal frequency needed for
regular and accurate detection and reporting of wildfires. As
these services rely on existing satellite missions, however,
they are subject to the limitations of these missions in terms
of visit frequency, information latency and quality of data.
For example, FIRMS reports a lead time of 3 hours from
observation (not the fire actually starting or being observ-
able) to reporting on the ground [5], a geolocation precision
of 375 m [8] or 1 km [9] and a false positive error of 1.2%
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[10]. The source satellites used for FIRMS (Terra, Aqua,
Suomi NPP and NOAA-20) have a revisit time of between
14 hours and 2 days. This makes the worst-case scenario for
a detection response time around 51 hours, assuming a fire
becomes observable immediately following a satellite pass.
While emergency services do not rely exclusively on plat-
forms such as FIRMS, the ability to provide warnings even a
few hours earlier could make a huge difference to the preser-
vation of human, animal and plant life and infrastructure.

The detection response time on fire alerts can be reduced
by increasing the revisit frequency of the satellites or deploy-
ing a constellation that is intentionally sized and designed
to meet specific revisit and latency requirements. This has
become possible with the increased availability of space
assets, such as CubeSats (the most popular form factor for
small satellites). There are, however, constraints on resources
such as power and bandwidth when using CubeSats which
limit the amount of data that can be processed and sent back
to ground stations. In the case studywe consider in this paper,
such bottlenecks are overcome by using machine learned
(ML) components on-board the satellites to detect wildfires
and generate timely and data-efficient alerts which are trans-
mitted to a ground station. Without on-board intelligence
such as that provided by the ML component, it would not be
possible to detect the presence of fire on-board, meaning that
images need to be sent to the ground for manual analysis.
The benefits to data latency can be quantified. Consider a 10
Mbit downlink and 50% probability of fire being present in
a captured image frame. The average file size for a multi-
spectral image frame is 20.4MB; for a text alert it is 5kB.
In an 8-minute ground station pass, assuming optimal condi-
tions and minimal connection overheads, 30 full images can
be downlinked in a traditional downlink scenario. This has
two major issues. Firstly, assuming all new on-board data is
downlinked and neglecting the timeliness of the acquisition
operations, images showing wildfires could have a downlink
latency of up to 8 minutes. Secondly, the assumption that all
new on-board data is downlinkedmay be incorrect, andmore
recent data may need to wait for a subsequent ground station
passes before downlink. With ML on-board, the lightweight
fire alerts are prioritised and the bulky source data is moved
to the back of the downlink queue. The ML system can
downlink all 30 fire alerts in 0.12s. The remainder of the
downlink bandwidth can be used to retrieve richer data prod-
ucts for only the affected areas of the ROI for verification
and validation purposes. The response authority (such as the
fire service) will then consider the alerts and determines an
appropriate response based on a number of factors such as
the number of fires detected in a specific catchment area, the
distribution of the fires and distance from both each other
and the response team’s base.

There are potential hazards associated with a wildfire alert
system such as this. Failure to detect the presence of a wild-

fire or detecting a wildfire in the incorrect location could lead
to a delay in the response to the fire, a larger and less con-
trolled fire, and thus potentially increasing the risk of harm
to people and property or putting firefighting teams in dan-
ger. Conversely, raising an alert for a wildfire that doesn’t
actually exist could result in fire response resource being
mis-assigned and thus unavailable to respond to real wild-
fires in a timely manner. It is necessary therefore to be able
to provide confidence in the alerts generated by the satellite-
based fire detection system such that they can be trusted. To
do this, for theML component that is used for wildfire detec-
tion and alerting, we need to create a safety assurance case
that presents a compelling argument that the component is
sufficiently safe, supported by rigorous evidence.

In this paperwe describe in detail how the safety assurance
case for an ML wildfire alert system was created. This is the
first detailed structured safety assurance case that has been
developed for any ML component. The paper is structured
as follows. Section 2 discusses safety cases for ML software
and how they can be created. Section 3 provides a descrip-
tion of the wildfire alert system. The safety case is presented
in Section 4. Section 5 provides conclusions and discusses
future work directions.

2 Safety Assurance Cases for Machine
Learning

In order to demonstrate that a system is acceptably safe to
operate, it is common to provide a safety case for that system.
A safety case comprises “a structured argument, supported by
a body of evidence, that provides a compelling, comprehensi-
ble and valid case that a system is safe for a given application
in a given environment” [11]. For systems that contain soft-
ware, the safety case must consider the contribution of the
software to the safety of the overall system. Creating a an
explicit safety case containing a structured argument and evi-
dence helps to provide explicit safety justification, making it
easier to understand, review and criticise the reasoning and
evidence presented. One approach that is commonly used
to present the safety arguments for a safety case is the Goal
StructuringNotation (GSN) [12]. The basic elements ofGSN
are shown in Fig. 1.

These GSN elements can be used to construct a safety
argument by showing how safety claims are broken down
into sub-claims, until eventually they canbe supported by evi-
dence. The strategies adopted, and the rationale (assumptions
and justifications) can be captured, along with the context in
which the goals are stated. Confidence arguments relating to
various aspects of the safety case can be provided. Assur-
ance claim points (ACPs) can be used to indicate where such
arguments are provided. In this paper GSN is used to present
the safety arguments.
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Fig. 1 Key to GSN notation

Previous work has been undertaken looking at how to
develop safety cases for safety-related software systems, such
as [13] and in a number of domains, standards require the
production of a safety case for software elements of a system
[11, 14]. However this previous work has focused on tradi-
tional software and not considered machine learning. These
existing software safety assurance approaches do not apply
well to ML software for a number of reasons including:

1. They assume a development process based around the
decomposition of requirements down to the level of imple-
mentation.

2. They assume the software generated can be understood
and analysed by humans.

3. They assume that defined test coverage metrics can be
used to judge the sufficiency of the testing undertaken.

None of these assumptions hold for ML software, where
a completely different development approach is adopted,
the resulting software algorithm is opaque to human inter-
pretabilty, and traditional coverage metrics are meaningless.

Although there is extensive existing research into the use
of machine learning for safety applications, as discussed in
[15], this work explicitly does not consider the safety of ML
systems. There has been a lot of work looking at approaches
for verification of neural networks including formal verifica-
tion techniques, as discussed in literature surveys such as [16]
and [17]. Verification is however just one part of the safety
assurance process. There has been some work that proposes
how safety approaches may be developed for the use of ML
in specific domains such as automotive [18] or healthcare
[19] and on assurance of the learning lifecycle more gener-
ally [20]. There has also been a limited amount of work on

safety case structures for ML components [21, 22]. There
has been no other work however that describes a detailed
safety assurance process for ML components and describes
how that process can be used to create an explicit safety case
for ML.

In response to this the authors, in previous work, devel-
oped an approach for safety assurance of machine learning
(AMLAS) [23]. AMLAS was developed with input from
industry experts from a range of sectors and issued as a
publicly accessible resource1 to influence industry practice
and regulation2. The scope of AMLAS is limited to the ML
component. As such, it is intended to be complimentary to
other standards and guidelines that specify best practices
in safety-critical systems (e.g. ARP4754A [24]), domain-
specific requirements (e.g. CONSORT-AI [25] or ISO/PAS
21448 [26]) or safe autonomy considerations (e.g. UL4000
[27] or SCSC-153A [28]). For example, the system-level
safety requirements, including acceptable risk targets, are
a fundamental input to the AMLAS process. These require-
ments are expected to be generated by domain experts or
derived from the relevant regulatory requirements.

AMLAS is a process that consists of 6 stages, as shown
in Fig. 2. For each stage the AMLAS process describes a set
of activities that can be followed, and the artefacts that are
generated. It then details how these artefacts may be used to
create a safety case for the ML component. In Section 4 we
apply each stage of the AMLAS process to a satellite-based
wildfire alert ML component to create a compelling safety
case.

1 https://www.york.ac.uk/assuring-autonomy/guidance/amlas/
2 The AMLAS guidance document has been downloaded over 1,000
times.
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Fig. 2 Overview of the AMLAS Process

3 Wild Fire Alert SystemDescription

The concept of operations for the detection system is shown
in Fig. 3. A satellite with a multi-spectral imager passes over
a region of interest that may contain wildfires. The imager
operates on a set frequency, capturing images of the sub-
satellite environment and classifying them using a neural
network trained on satellite images of fires in the spectrum
of the imager. The neural network detects the presence of
any fires in the image, and transmits a lightweight text alert
containing the location of the fire and time of detection to the
groundstation. The fire alerts are prioritised and downlinked
to the ground ahead of all other data. This alert is then passed
to the response authority.

In order to maximise the time during which a satellite is
available to obtain images of a particular area of interest,
multiple CubeSats are used for this application. 8 standard

6U platforms are employed, each hosting identical instru-
ment payloads and subsystems. The orbit of the satellites
and their instruments will reflect those of Sentinel-2 and
Landsat 8, which are the sources of the training data for
the ML component. The satellites are in a sun-synchronous
low Earth orbit (LEO) at 450km altitude and 97.2◦ inclina-
tion. They orbit the Earth approximately every 94 minutes
and are evenly distributed around the ascending node, such
that revisit times between satellites for a given location are
constant. The satellites use a generic 30x10 cm platform
with standard attitude determination and control components
including inertial sensors, coarse and fine sun sensors, reac-
tion wheels and magnetorquers. They are capable of fine
pointing at specific ground targets or along the satellite nadir
and velocity vectors.

The satellite payload comprises a generic multispectral
instrument (MSI) which is similar to the MSIs used on

Fig. 3 Concept of Operations
for Wildfire Alert System
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Fig. 4 Spectral bands for Sentinel-2 and Landsat-8 MSIs

Sentinel-2 and Landsat-8. The bands of the instrument are
also common to both Sentinel-2 and Landsat-8, shown in
Fig. 4.

The MSI has the following properties:

• Ground footprint: 32.5 x 19.6 km
• Max ground resolution: 10 m/px

A single ground station is used, which will be located at
the far end of the region of interest (RoI) with respect to the
direction of travel of the satellite as shown in Fig. 5. This
ensures that fire alerts in the RoI are downlinked as soon
as possible after identification. Although the model that has
been created has been developed to be deployed globally in
diverse ROIs, in this paper the ROI to which the deployment
was considered is Oregon in the US.

Figure 3 also indicates how the satellite can be used
for other commercial applications by providing larger data
products to commercial customers such as burnt area identifi-
cation and asset damage information as well as more detailed
fire mapping. This may include sending full images to the
groundstation. These applications require more data pro-
cessing and transmission and therefore take longer than the
prioritised fire alerts, however since these are commercial
use cases that have no direct safety impact they are not time-

Fig. 5 Ground station location in region of interest

critical in the same way as the fire alerts. These commercial
applications are not considered in this paper.

Figure 3 also indicates that verification of the on-board
fire detection can be performed on the ground during opera-
tion through (non-real-time) verification against groundtruth
data from other fire detection sources. Where necessary this
verification could lead to software updates to improve the
operational performance of the ML component.

4 The Safety Case for theWild Fire Alert ML
Component

4.1 ML Assurance Scoping

The objectives at this first stage are to define the scope of the
safety case and of the safety assurance process for the wild-
fire alert ML component. This stage establishes the top-level
safety assurance claim of the safety case and specifies the
relevant contextual information for the ML safety argument.
Since the safety of the ML component cannot be assured in
isolation from the broader wildfire alert system, this stage
ensures the assurance of the ML component takes account of
the overall system and the system-level safety process.

There are a number of key artefacts that are required for
this stage of the safety case. This includes the documented
descriptions of the system and the operating environment as
summarised above. In addition, the system safety require-
ments for the wildfire alert system must be specified. These
safety requirements were generated from following a system
safety assessment process, the details of which are outside of
the scope of this paper. The system safety assessment process
identified 2 hazards for the wildfire alert system as shown
below. Against each hazard a number of safety requirements
were defined in order to manage those hazards as detailed in
Table 1.

The responsibility for satisfying each of these system level
safety requirements lies withmultiple elements of the overall
system such as the satellite itself and its sensing and hard-
ware components, the ground station and its components, the
communication links between the elements, and so on. The
safety case for the overall system considers the assurance of
all of these elements, including their integration and inter-
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Table 1 System safety requirements for wildfire alert system

Hazard 1 - Services Miss
an Emergency

REQ-SAFE-ER-1 The Emergency Response Service shall
determine the location of an active wildfire
within 200 m of its true location.

REQ-SAFE-ER-2 The Emergency Response Service shall
inform emergency services of an active
wildfire with 3 hours of it starting.

REQ-SAFE-ER-3 The Emergency Response Service shall
positively identify 95% of all active wild-
fires acquired by the satellite instrument
within the area of interest.

Hazard 2 - Services are Directed to a False Emergency

REQ-SAFE-ER-4 The Emergency Response Service shall
falsely indicate active wildfires in the area
of interest at a rate not exceeding current
fire alert service (avergae for FIRMS of 52
per month).

action. This overall system safety case for the wildfire alert
system is outside of the scope of this paper.

Some of the responsibility for assuring that the system
safety requirements are met can also however be seen to lie
with the ML component onboard the satellite. Specifically,
requirements 1, 3 and 4 above can be partly allocated to the
ML component3. It is important to note here however that at
this stage there is nothing in these safety requirements that
relates in particular to ML. These safety requirements rep-
resent what the component is required to do in order to be
safe, and the requirements could equally apply to a tradi-
tional (non-ML) component if that was being used instead.
These system safety requirements were turned into specific
ML requirements later in the AMLAS process.

As for all stages of the AMLAS methodology, the arte-
facts discussed above were then used to create the relevant
part of the safety argument for the wildfire alert ML com-
ponent as shown in Fig. 6. The argument explicitly lays out
the system safety requirements that the ML component must
satisfy (C1.2), as well as clearly scoping both the system and
operating context for which the safety case is valid (C1.1).
The safety argument also explicitly states the assumption
upon which the safety case for the ML component relies
(A1.1), which is that the system safety process has correctly
identified the system safety requirements. The validity of
this assumption is demonstrated as part of the overall system
safety case (not shown here).

It can be seen in Fig. 6 that this top-level safety claim
for the ML component is supported by further argument and

3 Satisfaction of safety requirement 2 is dominated by factors such as
the re-visit time of the satellites and communication times. As such it
does not need to be allocated to the ML component

evidence from the other stages of the AMLAS process (the
ML safety requirements argument and the ML deployment
argument) discussed in the Sections 4.2 and 4.6.

4.2 ML Requirements Assurance

The next stage of the process takes the system safety require-
ments that relate to the ML fire alert component that were
defined at the previous stage and from those, derives a set
of specific ML safety requirements. This requires that the
informal, technology-agnostic safety requirements that have
already been identified are translated into a format, and a
level of detail that is amenable to ML implementation and
verification. The definition of the ML safety requirements
must take account of the concept of operations of the wild-
fire alert system and the overall system and operating context
described at the previous stage.

TheML safety requirements include requirements for per-
formance and robustness of the ML model. We present in
Table 2 each of the ML safety requirements that was spec-
ified for the wildfire alert ML component. In this case the
robustness requirement is defined with respect to a set of
classes. Table 3 provides each of these classes. Any values
for each class that were determined not to be in scope for the
ML component in this particular application are indicated in
the table with an ‘x’ in the final column.

4.2.1 Rationale for ML Safety Requirements

In this section the rationale for how each of the ML
safety requirements was derived is provided. The ML safety
requirements were derived based on an input image frame
being processed every 5 seconds. This is necessary for the
component to successfully process each image received as
the satellite passes over the ROI at a rate of 7.14 kilome-
tres per second. Each input frame is of size 2100 x 1575
pixels. Note that there were noML safety requirements spec-
ified relating to system safety requirement REQ-SAFE-ER-2
since this requirement relates to the revisit rate of the satellite
and the communication time of the generated fire alert to the
emergency services. As such the ML component does not
contribute to the satisfaction of this requirement.
MLSR1 - This requirement is derived from system safety
requirement REQ-SAFE-ER-1. For the images used on these
type of CubeSat satellites, 6 pixels represents 180m, so this
requirement will ensure that the actual fire is never more than
180m from a reported position.
MLSR2 - This requirement is derived from system safety
requirement REQ-SAFE-ER-3. The current standard for
image-based fire detection is that provided by the Fire
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Fig. 6 ML Assurance Scoping Argument for wildfire alert component

Information for Resource Management System (FIRMS)45.
FIRMS achieves an omission error rate of 5% [30], which
the on-board fire alert system must match. The Schroeder
conditions represent an accepted threshold for labelling of
active fires in satellite data [29].
MLSR3 - This requirement is derived from system safety
requirement REQ-SAFE-ER-4. The key consideration for
this requirement was that false alerts shouldn’t happen so
frequently that they become hazardous. This could happen
either through diverting fire response resource to a region
of no fire and away from areas where the fire response is
required. Or it could become hazardous through becoming a
nuisance to operators who then start to ignore genuine alerts
or even turning the system off. It should be noted that the fire
alerts provided by the satellite would not be the only source
of information available to responders, who may have the
opportunity to corroborate with more local ground-based fire
observation. Again FIRMSwas taken as the current standard
for false positive performance in fire detection in the ROI
(Oregon). We use the detections for the US as indicative of
the required performance in Oregon. In an average month,
FIRMS detects around 5,000 wildfires in the US, approxi-
mately 52 of which, on average, are false positives.

4 https://earthdata.nasa.gov/earth-observation-data/near-real-time/
firms
5 FIRMS provides active fire data from NASA’s Moderate Resolu-
tion Imaging Spectroradiometer (MODIS) andVisible Infrared Imaging
Radiometer Suite (VIIRS) instruments

MLSR4 The performance of fire detection algorithms can
vary substantially depending on a number of key factors [29].
Table 3 captures features of the image data that represent the
variation in these factors that must be considered in the data
sets in order to provide coverage of the operating domain of
the system.

4.2.2 ML Requirements Assurance Argument

Figure 7 shows the part of theML component argument relat-
ing to the ML safety requirements. The argument splits into
two safety claims:

Table 2 ML safety requirements for wildfire alert system ML compo-
nent

Performance

MLSR1 All points of the mask generated by the ML com-
ponent shall be less than 6 pixels outside the
boundary of the area of the real fire.

MLSR2 The ML component shall correctly identify the
presence of a fire that satisfies the Schroeder [29]
conditions in a frame for 95% of real fires.

MLSR3 TheML component shall not identify the presence
of a fire in a frame where there is not a real active
fire more than 52 times per month.

Robustness

MLSR4 ML performance requirements shall be satisfied
for all data across the range of classes identified in
Table 3.
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Table 3 Relevant Robustness Classes for Wildfire Alert Model

Element Value In-context?

Land type Temperate rainforest

Agricultural

Urban

Industrial

Grassland

Desert x

Sea x

Fire size Small <30x30m x

30x30m<=Small-
medium<60x60m

60x60m<=Medium-
large<90x90m

Large >=90x90m

Fire intensity Low <Schroeder condi-
tions1

x

Medium >Schroeder condi-
tions

High >>Schroeder condi-
tions1

Clouds None

Low coverage<25% of tile

25% of tile<=Low-medium
coverage<50% of tile

50% of tile<=Medium-high
coverage<80% of tile

High coverage >80% of tile

Time of day Early morning 7-9 am

midday 12-14

late afternoon 4-6

Night x

Time of Year Winter

Spring

Summer

Autumn

• A claim that the ML safety requirements are correctly
defined (G2.3). This is supported by evidence regarding
the rationale for the requirement definition (Sn2.1).

• A claim that the ML model satisfies the defined ML
requirements (G2.2). Here the argument is split to sepa-
rately consider the performance and robustness require-
ments. For each of these safety claims, verification will
be used to generate evidence to demonstrate that the ML
safety requirements are satisfied. This is discussed further
when describing the verification argument in Section 4.5.

The ML requirements satisfaction claim (G2.2) can be
seen to be presented in the context of the ML model and the
MLdata. Arguments regarding the sufficiency of the data and

the learned model have been developed, and are presented in
Sections 4.4 and 4.3. These argument connect to Fig. 7 at
the assurance claim points (ACPs) indicated by the black
squares.

4.3 Data Management Assurance

Data plays a particularly important role in machine learning
since data encodes the requirements which will be embodied
in the resulting ML model. It is therefore crucial as part of
the safety case for theML component to demonstrate that the
data is sufficient to ensure that the learned model will satisfy
theMLsafety requirements.At this stagewe therefore carried
out the following activities:

1. Defined data requirements againstwhich the data sets pro-
duced could be assessed.

2. Generated data sets that satisfied the specified data
requirements.

4.3.1 Data Requirements

The ML data requirements relating to the wildfire detection
ML component are described below. ML data requirements
have been specified for relevance, completeness, accuracy
and balance of the data. Requirements relating to relevance
specify the extent to which the data must match the intended
operating domain into which the model is to be deployed.
Requirements relating to completeness specify the extent
to which the data must be complete with respect to a set
of measurable dimensions of the operating domain. This is
done by considering the dimensions of variation that were
identified in Table 3 as part of the ML safety requirements.
Requirements relating to accuracy specify how the accuracy
of the information in the data sets will be judged. Require-
ments relating to balance specify the required distribution of
samples in the data sets. A balanced data set is one with an
appropriate number of samples for each class or feature of
interest.Note that this does not necessarilymean that an equal
number of samples is required for each class; rare classes
may require fewer samples in order to be balanced. Table 4
presents theML data requirements specified for each of these
properties for the wildfire alert ML component.
Rationale for ML Data requirements
Here we describe the rationale for each of the data require-
ments.
DSR1 - The wildfire alert system is not expected to operate
over all areas. Images that represent areas out of the defined
intended scope of operation should not be included in the
data sets.
DSR2 - The satellite will provide images to the ML compo-
nent with a particular format. Therefore only images of that
format should be used in the development of the model.
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Fig. 7 ML Safety Requirements Assurance Argument for wildfire alert component

DSR3 - The satellite will provide images to the ML compo-
nent that are taken from a particular position and orientation.
Therefore only images that exhibit equivalent characteristics
should be used in the development of the model.

DSR4 - The operating domain of the satellite is defined by
the features in the table. We must ensure that the data sets
include data items for each combination of these features.
DSR5 - The satellite needs to avoid false positives so the data
sets must include examples of images without a fire present.
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Table 4 MLdata requirements for wildfire alert systemML component

Relevance

DR1 Only data samples of areas of the specified land
type shall be included in the data sets.

DR2 The format of each data sample shall be represen-
tative of images captured using sensors deployed
on the target satellite. This shall include a repre-
sentative resolution, spectral band and image size.

DR3 Each data sample shall represent a sensor position
which is representative of that to be used on the
target satellite. This shall include consideration of
the angle, height and field of view of the deployed
sensor.

Completeness

DR4 The data sets shall include samples representing
combinations of each of the in-context element
classes defined in Table 3.

DR5 Thedata sets shall include samples containingfires
and no fires.

Accuracy

DR6 All masks generated shall be sufficiently large to
include the entirety of the fire

DR7 All masks generated shall be nomore than 6 pixels
larger in any dimension than the minimum sized
mask capable of including the entirety of the fire

DR8 All data sample with fires present in the data sam-
ples must be correctly labelled

DR9 The labels for the position of fires within each
image must be no more than 6 pixels outside the
boundary of the area of the real fire.

Balance

DR10 The data sets shall include a suitable distribution of
samples for each combination of element classes
defined in Table 1 of ML safety requirements doc-
ument.

DSR6 - The mask must be big enough that none of the fire
is missed.
DSR7 - The mask must not be so big that any positions iden-
tified by the mask are too far from the actual position of the
fire.
DSR8 - If fires are present but not labelled then the data will
be incorrect.
DSR9 - The data must be labelled with sufficient accuracy,
see rationale for MLSR1
DSR10 - No element class should be under or over repre-
sented as this will result in inconsistent and biased perfor-
mance. The number of data items required of each class may
not be equal. The distribution across the classes in each data
set should be justified as part of data management.

4.3.2 Data Generation

Three separate datasetswere created development data, inter-
nal test data and verification data. The first two of these sets
are for use as part of the development of the model (see
Section 4.4). The verification set is used in model verifica-
tion. The focus of this data set is therefore not on creating
a model (as for the other two sets) but instead on finding
realistic ways in which the model may fail when used in an
operational system. It is crucial therefore that the verifica-
tion data is generated independently from the development
process. The verification data is discussed in more detail in
Section 4.5.

The development and internal testing data was generated
from the large Landsat-8 data set [31]. This was felt to be an
appropriate source of data for this application for a number of
reasons. Truth masks are available for the data which enables
pixel level classification of active fire. The truth masks are
arrays, which allows for configuration of image tile size. The
dataset is large in size and contains imagery covering all of
South America with a variety of land types and land uses.
It provides coverage of various fire sizes, distributions and
intensities. The imagery contains 10 spectral bands of data for
each capture. The Landsat-8 sensor has 30 metres of spatial
resolution,meaning one pixel is equivalent to 30m2 in ground
area. Labels on the image data are created using a complex set
of conditions, based on information contained in 7 bands of
the satellite data, plus associated meta-data. There were also
some limitations to this data that had to also be considered.
Firstly, the data set contains images captured in the year 2018
only and covers only South America. Also, the labels on the
data have not been manually corrected and will therefore
be expected to include a small level of error. In particular,
instances of intense heat in urban settings may be falsely
labelled as active fire.

Some pre-processing was carried out on the data before
creating the data sets. Firstly, of the 10 spectral bands
available 3 were chosen: Blue, SWI-1 and SWI-2. This com-
bination, including both short wave infrared channels, has
previously been shown to be successful for creating models
for active fire detection [32]. Secondly, the dataset contained
image tiles of 128 x 128 pixels. The learned model needs to
perform on continuous data on the satellite which is cropped
into tiles of 48 x 48 pixels. The selected image data was
therefore cropped from 128 x 128 to 48 x 48 image tiles.

Two sets of internal test data were created. Set 1 is a sub-
set of the same dataset from which the development data
was generated [31]. Set 2 is a collection of unlabelled data
captured by Landsat-8 over the US state of Oregon (a target
area of interest for the application), downloaded via Sentinel
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Hub6. Set 2 was used to carry out initial, internal testing of
the model performance on data from the area of interest, and
to introduce some edge cases.

4.3.3 Data Evaluation

Thedevelopment and internal testing data setswere evaluated
against the defined data requirements (Table 4). Below we
summarise the results of the data evaluation.
Relevance A subset of the Landsat-8 data was selected cov-
ering areas of South America including Chile and Argentina
as well as Oregon. These areas were chosen in particular
since they contain large areas of temperate rainforest ensur-
ing images relevant to the application domain are provided.
The size and spectral range of the images is equivalent to the
operational images generated on-board the satellite.

Completeness As well as providing large areas of temperate
rainforest, the chosen regions is are sufficiently geograph-
ically diverse to provide image samples of urban land,
agricultural and grazing land. While the data was captured
across a single year, it has a temporal resolution of 16 days
and so contains samples taken at the same locations at dif-
ferent times throughout the year.Various cloud level samples
were gathered for both non fire and fire instances. Samples
containing large reflective surfaces were included to test for
false positive detection. Samples containing fire of various
size and spread were gathered.

Accuracy
The labelling conditions used to generate the truth masks in
theLandsat-8 data set are complex andwell documented [32].
To provide validation for the truthmasks, visual comparisons
were made between the truth masks and the images viewed
in the visual range. While a small level of error was seen
within the subset, this is a common and acceptable limitation
of large, labelled datasets.

Balance
A review showed that a good balance of the various features
and locations was achieved across the data sets. There are
far greater instances of non-fire pixels than of fire pixels in
the available images. The development data sets therefore
included more images featuring some fire pixels to ensure
better balance.

4.3.4 ML Data Assurance Argument

Figure 8 shows the part of theML component argument relat-
ing to the data. The argument presents a claim that the data
used to develop the ML model is sufficient from a safety
assurance perspective (G3.1). The context for this claim is the

6 https://www.sentinel-hub.com/

three datasets that were generated. The argument to support
the claim considers the data requirements. Two claims are
made. Firstly, that those data requirements are good enough
to ensure that theMLsafety requirements are satisfied (G3.2);
this is demonstrated using the documented rationale for the
data requirements (Sn3.1). Secondly, that the specified data
requirements are satisfied by the generated data (G3.3); this
is demonstrated through the results of the data evaluation
(Sn3.2).

4.4 Model Learning Assurance

At this stage of the process the development data created
at the previous stage was used to create candidate models
that were able to satisfy the defined ML safety requirements.
The candidate models that were created were tested using the
internal test data in order to select the best model to use.

4.4.1 Model Creation

Tensorflow7 was selected as the tool for developing the
wildfire alert model, since it is a well-established and well
documented tool. Tensorflow also comes with a visualisation
tool, Tensorboard8, which enables monitoring of different
metrics during the training process and allows easy com-
parison of differences between training runs with alternative
parameter settings.

The Unet architecture was used as it is a popular CNN
model for pixel classification (semantic segmentation) which
has been shown to be successful in performing active fire
detection on a large dataset [32]. The network consists of a
contracting path and an expansive path, which gives it a u-
shaped architecture. Two variations of Unet were developed:
Unet-128 and Unet-48. Initially the Unet 128 was selected
for training using data of size 128 x 128. It was found during
development however that significant pixel areas of active
fire were classified as false negative by the model. Data pro-
cessingwas therefore carried out to split the 128 x 128 images
into 48x48 samples, to address the lack of ‘clipped’ fire areas
in the labelled data and make it more representative of the
kind of real-world data the model will be applied to. To adapt
the model to work well with 48 x 48 input, the layer values
throughout the model were reduced incrementally to find the
optimal combination.

Binary Cross Entropy Loss is a popular and successful
loss function for binary classification problems. The pre-
dicted class probability is compared to the actual class, and
the resulting score considers how far apart these values are.
The Dice Coefficient represents the size of the overlap of the
segmentation class in each mask, divided by the total size of

7 https://www.tensorflow.org/
8 https://www.tensorflow.org/tensorboard
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Fig. 8 ML Data Assurance Argument for wildfire alert component

the two images. The sum of the Binary Cross Entropy Loss
and Dice Coefficient Loss was used as a custom loss func-
tion during training and was found to gain better results than
either metric used alone, or alternative loss metrics.

Both Stochastic Gradient Descent (SGD) and Adam were
used as methods for optimising the objective function during
model learning. Adam differs from SGD in that the learning
rate is not static throughout training. With the Adam opti-
miser, a learning rate is maintained for eachmodel parameter
and adapted as training progresses. It is an easily config-
urable optimiser, where the default parameters perform well
on most problems [33]. It is a popular optimiser for deep
learning with large datasets, as good results can be reached
quickly, and it was found to achieve the best performance
during development of the wildfire alert model.

The learning rate for the model was initialised at 0.1 and
incrementally decreased to find the best performing value. A

learning rate of 0.01 was found to yield the best performance
during training.

4.4.2 Internal Testing Approach

The performance of the candidate models created was mea-
sured using the Mean Intersection over Union (Mean IoU)
value between the label mask and the model output mask.
Intersection over Union (IoU) is the area of overlap, divided
by the area of union between the label and output masks. The
metric ranges from 0 to 1 with 0 signifying no overlap and 1
signifying perfectly overlap-ping masks. The Mean IoU for
the classification is calculated by taking the IoU of each class
(fire and non-fire) and averaging them. Mean IoU is a very
useful metric for semantic segmentation problems where
there is class imbalance, providing a much more meaningful
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representation of how well the model output mask matched
the truth mask than a simple pixel accuracy score.

4.4.3 Internal Test Results

Two internal test data sets were used. The first was a set of
1000 image tiles with corresponding truth masks. The Mean
IoU scores of the fire class and the non-fire class were calcu-
lated for the entire set. The average Mean IoU score on the
test set was 0.93. Figure 9 visualises the distribution of scores
across the set as awhole. Figure 10 shows a comparison of the
model output mask and the truth mask for randomly selected
sample of images from the data set along with a visual com-
parison of the difference. The Mean IoU score for each of
these samples is displayed.

To asses the performance of the models against the ML
safety requirements it was necessary to use the IoU scores to
quantify the false positives and the false negative detections
of active fires in the data samples. A threshold on the IoU
scores for both the active fire and non fire class was used
to generate false positive and false negative values for the
model performance. The values were calculated as follows:

• False Negative: model mask and truth mask have an IoU
score below threshold (calculated for active fire class).

• False Positive: model mask and truth mask have an IoU
score below threshold (calculated for non fire class).

The following threshold valueswere selected by analysing
the IoU scores for each class to define meaningful false pos-
itive and false negative values:

• False Negatives: where the IoU score for the fire class is
less than 0.3

• False Positives: where the IoU score for the non-fire class
is less than 0.99

For internal test set 1 (containing 1000 samples), 0 false
positiveswere found, and 8 false negativeswere found,which
translates to 0.8% of the set.

A second set of internal test data was generated to verify
the model performance against continuous data. Continuous
data is also more relevant to the way the model will be exe-
cuted in operation. Thiswas done by downloading a selection
of large images of size 2000 x 1600 pixels. The images were
split into 1428 tiles, of size 48 x 48 pixels, suitable for the
model. The model produced 1428 output masks which were
assembled to create a large output mask. A visual compar-
ison was then made between the large image and the large
model output mask with no false negatives identified.

The results obtained from internal testing were compared
to the defined ML saftey requirements in order to assess the
sufficiency of the model. Below we discuss each of the ML
safety requirements in turn.

• MLSR1 - From analysis of IoU and Mean IoU scores
between the model output masks and the truth masks, the
model is therefore seen to satisfy the requirement since
the recorded error was always less than 6 pixels in any
direction when executing the model against the internal
test data.

• MLSR2 - Across the internal test data, a false negative
rate of 0.8% was found. The model is therefore seen to
satisfy the requirement as it positively identified 99.2%
of all visible active fires across the test data.

• MLSR3 - The model was seen not to make any false
positive detections across the internal test data.

Fig. 9 Mean IoU score
frequency across internal data
set 1
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Fig. 10 Randomly sampled images from internal data set 1

4.4.4 ML Learning Assurance Argument

Figure 11 shows the part of the ML component argument
relating to themodel learning. The argument presents a claim
that the way in which the ML model was developed is suffi-
cient given the constraints that are imposed by the platform
to which the model is being deployed (G4.1). An argument is
made to support this by showing that the selected model sat-
isfies the definedML safety requirements (G4.2). The results
that are observed from executing the model with the inter-
nal test data are used as evidence for this, and a justification
is also provided as to how the observed results indicate that
the ML safety requirements are satisfied (J4.1). In addition a
claim is made that the development approach itself that was
used to create the model is sufficient (G4.3) This claim is

supported by consideration of the type of model used model
parameters, as well as the nature of the learning process
itself that was adopted. All of these ML development deci-
sions were recorded and justified in a model development
log.

4.5 Model Verification Assurance

4.5.1 Verification Data

Verification data was collected by a team of people who were
not involved in the development of the ML model. The ver-
ification data provided images for the ML model with the
following characteristics:
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Fig. 11 ML Learning
Assurance Argument for
wildfire alert component
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• Representative of images that may be observed by the
satellite during operation in locations and conditions
within the scope defined for the safety case of the ML
component in Section 4.1

• Provide examples across the range of the key features
relevant to the use of the ML component as identified in
Table 3

• Represent interesting or challenging cases within the
scope of use (i.e. edge cases)

With these criteria in mind, below we discuss the key fea-
tures considered in generating the verification data.

Land Type
The appearance of fire may be different if the fire occurs on
different types of terrain. To check that the model is gener-
alisable, a range of images of the different land types were
included in the verification data. Image samples of each land
type captured by the Landsat-8 satellite were downloaded via
Sentinel Hub. The areas from which images were chosen to
represent each land type were:

• Temperate rainforest - New Zealand, where all areas are
classed as temperate rainforest.

• Agricultural - North Dakota, where 90% of the land that
makes up North Dakota is used for farms and ranches.

• Urban - Greater Tokyo Area, which is the most populous
metropolitan area in the world

• Industrial - Southern New England, which has extensive
areas of diversified industrial growth

• Grassland - Canada Prairie, where large areas of Alberta,
Saskatchewan, andManitoba are temperate grassland and
shrubland.

By referring to information on the locations of active fires
in the FIRMS database it was possible to download images
within each of these geographical regions that were known
to contain wildfires.

Fire Size
In order to check whether the size of the fire affected the
performance of the learned model, images with fires of dif-
ferent sizes within each of the chosen regions were selected.
For the purposes of verification data we selected images that
had either small (<30m longest dimension) or large (>100m
longest dimension) fires. In addition, images were included
in the verification data set that did not contain active fires.
This was to provide verification of the false-positive perfor-
mance of the ML component. The development team were
not aware which of the images in the verification data set
contained fires.

Cloud Cover
In order to check whether the presence of cloud cover in the

image affected model performance, images containing dif-
ferent levels of cloud were selected. Images with no clouds,
with low cloud cover (<10% of image) and high cloud cover
(>50% of image) were selected.

Verification Test Cases
The images used as verification test cases were chosen by
considering combinations of the features discussed above in
order to provide sufficient coverage. Where relevant, in each
case the specific images chosen were assessed as containing
interesting or unusual features. Figure 12 identifies each of
the cases for which a verification image was obtained.

4.5.2 Verification Results

The results are presented in Fig. 12 for each of the verification
images. The results column shows colours to indicate the
result. Green indicates that all the MSRs were satisfied for
that image. The other colours indicate that one of the MSRs
was not satisfied as defined in the key.

Examples of the outputs for three of the verification
images are shown in Fig. 13. These show, for each case, the
test image, the output mask generated by theML component,
and the mask overlayed over the image.

Verification Findings
It can be seen from the results presented in Fig. 12 that none of
the verification images obtained from an urban area satisfied
the MSRs. In all cases there were a large number of false
detections observed in the output. These results indicate that
the model is not suitable for detecting active fires in urban
areas and this should be explicitly documented as a limitation
of use within the safety case.

Of the remaining cases therewas just one image that didn’t
satisfy the MSRs. This was case ID 4 where the position of
the output mask was not sufficiently aligned with the true
fire position. The reasons for this anomaly are unclear and
are the subject of further investigation.

4.5.3 Verification Argument

Figure 14 shows the part of the ML component argument
relating to the model verification. There are two main claims
that are made as part of the verification argument. Firstly
it is demonstrated that the verification of the ML model is
independent from the development of the model (G5.2). In
this case it can be shown that the verification data used was
collected by a team from another organisation that did not
develop the ML model. Secondly, a claim is presented that
when this data is provided to the ML model, the ML safety
requirements are satisfied (G5.3). This claim is supported by
providing the verification test results themselves, along with
an explanation as to how those results show satisfaction of the
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Fig. 12 Verification results
obtained for wildfire alert model

safety requirements. This also requires that the sufficiency of
the verification data that was used is demonstrated (G5.9).

4.6 Model Deployment Assurance

The aim of this stage of the process is to demonstrate that the
system safety requirements for which the model has been
developed continue to be satisfied when the model is inte-
grated into the overall satellite system and operates in the
real environment. Since the wildfire alert component has not
yet been deployed to the satellite, this stage of the process
has been limited to integration testing using hardware-in-
the-loop (HIL) simulation to recreate, as closely as possible
the deployment environment for the wildfire alert compo-
nent. The simulation employed real multi-spectral optical

data captured over the deployment region (Oregon) by the
Landsat-8 satellite and sourced from Sentinel Hub.

The simulations were performed using a number of dif-
ferent operational scenarios representing satellite passes over
Oregon at locations and times with different numbers of visi-
ble active fires. It is expected that thewildfire alert component
detects the fires and generates an alert indicating the size and
locations of the fires.

4.6.1 Integration Test Results

It was necessary to assess whether the integration tests indi-
cate that the system safety requirements were satisfied. The
preferred strategywas to undertake a comparisonwithNASA
FIRMS fire detections for the same date and location to
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Fig. 13 Example verification outputs

validate the geolocation accuracy of the processing chain.
However, the FIRMS detections were determined not to be
a reliable ground truth because there is a significant time
difference between the capture made by the VIIRS sensor
from which the FIRMS detections were made, and the cap-
ture made by the Landsat sensor which has been used as test
data. Instead, a visual inspection of the detections was made.
The masks were analysed along with the fire detection bands
of the data. When these fire detection bands are displayed,
active fire pixels appear as a bright blue colour. During analy-
sis, ambiguous cases were found. Three different approaches

were taken in order to try to eliminate subjectivity of such
cases when defining false negatives and false positives.

• Approach 1: Generous

– Pixels of a darker and/or duller blue which have not
been classified as containing active fire, are consid-
ered to be true negatives.

– Areas where the mask has union with but does not
cover the entirety of visible active fire, are considered
to be complete detections. Pixels not covered by the
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Fig. 14 ML Verification Argument for wildfire alert component

mask in these cases are not considered to be false
negatives.

– Pixels of a bright or middle shade blue that are
small in area and distant from other detections or
ambiguous/non-active fires are considered to be true
positives.

• Approach 2: Moderate

– Pixels of a darker and/or duller blue which have not
been classified as containing active fire, may be con-
sidered to be false negatives. This distinction depends
mainly on the brightness of the blue colour.

– Areas of pixels of a middle shade blue colour are
counted as discrete active fires if they are distant
or moderately close to another detection, or another
ambiguous fire.

– Pixels of a darker and/or duller blue may be consid-
ered a false detection if area is small and distant from

other detections. Small pixel areas that are bright blue
are considered as false positives if the general loca-
tion appears to be built up.

• Approach 3: Critical

– Pixels of a darker and/or duller blue which have not
been classified as containing active fire, may be con-
sidered to be false negatives. This distinction depends
mainly on the brightness of the blue colour, and in this
approach even a very dark/dull blue is considered a
false negative.

– Areas of pixels of amiddle and dark shade blue colour
are counted as discrete active fires if they are distant
or close to another detection, or another ambiguous
fire.

– Pixels of a middle shade blue may be considered a
false detection if the area is small and distant from
other detections.
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Table 5 Integration test results

Approach False - False + % False - % False +

Generous 0 0 0 0

Moderate 4 27 0.43 2.85

Critical 7 96 0.76 9.44

For each of the three approaches, an absolute value for
false positives and false negatives was calculated. To calcu-
late the false positives as a percentage of all detections, their
number was divided by all the discrete detections made dur-
ing the pass, which was 921. To calculate the false negatives
as a percentage of all detections, the number of false neg-
atives was divided by the sum of all the discrete detections
made during the pass and the false negatives. The results are
summarised in Table 5

The results indicate that false negatives are calculated to
be a maximum of 0.76% from the integration tests. This sat-
isfies the safety requirement to identify 95% of all active
wildfires in the area of deployment. The safety requirement
for a maximum of 52 false positive detections per month was
marginally missed using critical validation approach but was
met using the moderate and generous approaches.

5 Conclusions and FutureWork

In this paper we have described the application of a safety
assurance process to a machine learned satellite-based wild-
fire detection and alert component and shown how a com-
pelling safety case for the component was created as the
output of that process. The process applied was the AMLAS
approach [23] consisting of 6 steps, each of which generated
part of the safety argument for the ML component. Each of
these fragments of safety argument presented in this paper
are connected together to provide the complete safety argu-
ment and evidence for the ML safety case. This ML safety
case is then integrated as part of the overall safety case for
wildfire alert system. This overall safety case also considers
the assurance of other elements of the wildfire alert system
such as the satellite, the communications and the fire service
response.

As far as we are aware, the work presented in this paper
represents the first fully developed safety case for an ML
component containing explicit argument and evidence as to
the safety of theML.We intend to develop further the deploy-
ment aspects of the safety case, once the development of the
systemmoves further into the deployment phase. In addition,
we will extend this work to consider operational changes and
updates and the impact that these have on the validity of the
safety case during operation.
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