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Abstract
Cyber-physical systems are taking on a permanent role in the industry, such as in oil and gas or mining. These systems are 
expected to perform increasingly autonomous tasks in complex settings removing human operators from remote and poten-
tially hazardous environments. High autonomy necessitates a more extensive use of artificial intelligence methods, such 
as anomaly detection, to identify unusual occurrences in the monitored environment. The absence of data characterizing 
potentially hazardous events leads to disruptive noise displayed as false alarms, a common anomaly detection issue for haz-
ard identification applications. Contrastingly, disregarding the false alarms can result in the opposite effect, causing loss of 
early indications of hazardous occurrences. Existing research introduces simulating and extrapolating less represented data 
to expand the information on hazards and semi-supervise the methods or by introducing thresholds and rule-based methods 
to balance noise and meaningful information, necessitating intensive computing resources. This research proposes a novel 
Warning Identification Framework that evaluates risk analysis objectives and applies them to discern between true and false 
warnings identified by anomaly detection. We demonstrate the results by analyzing three seismic hazard assessment methods 
for identifying seismic tremors and comparing the outcomes to anomalies found using the unsupervised anomaly detection 
method. The demonstrated approach shows great potential in enhancing the reliability and transparency of anomaly detection 
outcomes and, thus, supporting the operational decision-making process of a cyber-physical system.

Keywords Anomaly detection · Risk assessment · Risk analysis · Sensor systems · Autonomous systems · Imbalanced data

1 Introduction

The environment’s safety is ever more reliant on cyber-
physical systems that have applications in, among others, 
intelligent drones, remote sensing, and smart sensor sys-
tems. These systems are taking on permanent roles in vari-
ous industries such as oil and gas, energy, and mining. They 

are replacing various human operations and carrying out 
critical responsibilities, including inspecting and monitoring 
remote, possibly hazardous environments. The increasing 
growth of sensor-collected data grows a need for artificial 
intelligence (AI) and data-oriented technologies along with 
the requirements for more autonomous systems that are 
safer, more perceptive, and more financially viable.

Autonomy is described as the capability of a system to 
operate independently from external factors [1]. Increased 
autonomy necessitates a more significant usage of AI [2] 
methods that copy intelligent human behavior [3]. With 
various sensors, the cyber-physical systems can efficiently 
gather data during ongoing operations and use AI meth-
ods to analyze the data in real time and gain situational 
awareness. Consequentially, increased autonomy has the 
potential to replace constant human supervision. As a form 
of AI, machine learning (ML) uses high volumes of data to 
learn how to execute tasks rather than being programmed 
to do them, allowing computing systems to become more 
intelligent as they encounter additional data [3]. Similarily, 
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anomaly detection, as a data-oriented method, detects unu-
sual trends in data that can give insight into potentially 
hazardous occurrences. Detecting critical trends in good 
time allows for the opportunity to take necessary correc-
tive actions in advance to ensure safe operations. Consid-
ering the variety of hazards that can affect these systems, 
many techniques might increase their ability to operate 
safely under all conditions. Therefore, AI technology must 
be reliable in order to responsibly integrate it into existing 
systems and operations.

The challenges inherent in unsupervised anomaly 
detection emphasize the necessity for further research 
into semi-supervised or alternative methodologies [4]. 
Although sensor data and data-driven methods are becom-
ing essential in many safety–critical or high-risk engineer-
ing systems, data-driven methods may not be sufficient 
to ensure safety because they lack the underlying causal 
knowledge [5]. Additionally, benchmarking and comparing 
anomaly detection methods is eminently challenging. Due 
to these challenges, early warning indicator of potential 
hazardous events may be missed, possibly placing assets 
or the environment in jeopardy during operations [6].

In cyber-physical systems, particularly autonomous sys-
tems, that form decisions based on data-oriented methods, 
the safety and responsibility of the methods and the data 
that trains the methods cannot be overemphasized. There-
fore, this paper proposes the development and evaluation 
of a Warning Identification Framework (WIF) as an exten-
sion of previous work [7, 8]. The purpose of the WIF is to 
facilitate the decision-making of a cyber-physical system 
that uses anomaly detection methods to identify warning 
signs of an ongoing operation. Such applications include 
autonomous underwater drones for inspecting pipelines 
and observing potential surface corrosion or cracking or 
intelligent sensor systems for monitoring drilling opera-
tions in mines and listening for potential seismic tremors, 
shaking of the ground under the stress of mining or drill-
ing. To facilitate the decision-making of a cyber-physical 
system, another objective of WIF is to address the inter-
related challenges of unlabeled, contextless, biased data, 
unsupervised methods, and consequentially unreliable 
anomaly detection results. WIF is anchored in risk analysis 
and comprises three main steps: characterization, analysis, 
and ranking of warning impacts detected through anomaly 
detection. To compare the standard hazard assessment and 
anomaly detection methods, we examine unlabeled seismic 
data with varied sensor values for tracking seismic tremors 
and three distinct hazard assessment methods for identify-
ing low, medium, and high-impact hazardous occurrences.

The following is a summary of the primary contribution 
of this paper,

Warning Identification Framework:

1. Novel risk assessment perspective on seismic hazard 
identification’s training and assessment role in unsu-
pervised anomaly detection approach.

2. Identification of overlapping methods and roles in risk 
assessment and anomaly detection.

3. Preliminary results of three seismic hazard identifica-
tion methods and their assessment role for unsupervised 
anomaly detection results.

This paper’s structure is as follows. Section 2, Back-
ground, introduces the term anomalies, their taxonomy, and 
the structure of anomaly detection methods. This section 
also introduces the concept of risk, the phases of risk analy-
sis, and their relationship to anomaly detection. Section 3, 
Challenges, discusses the context and data imbalance con-
tributing to an ever-increasing trust mismatch inside AI and 
ML-based systems. Section 4, Existing Approaches to the 
Challenges, addresses three of the most current approaches 
to the challenges previously discussed: simulations for data 
extrapolation, rule-based anomaly detection and classifica-
tion, and decision boundaries and thresholds for data and 
procedures. Section 5, Warning Identification Framework, 
introduces the framework’s concept, steps, and goals. Sec-
tion 6, Case Study, analyzes seismic data for tracking seis-
mic tremors, compares three hazard assessment methods 
to anomaly detection results, uses WIF to comprehend the 
differences between the methods and discusses the results. 
Section 7 discusses the results and conclusions from the case 
study, while Sect. 8 summarizes and concludes the paper. 
Finally, Sect. 9 highlights future research.

2  Background

2.1  Anomalies and Anomaly Detection

Anomalies (in literature often interchangably referred to as 
outliers, novelties, abnormalities, discordants or deviants) 
are occurrences in a dataset that are odd in some sense and 
do not fit the dataset’s general or expected trend [9]. They 
apply to a wide range of desired and undesired phenomena, 
appearing as static occurrences, time-related events, single 
and grouped occurrences. Despite being interchangebly 
used, the terms anomaly and outlier are distinguished in 
some studies [10–12]. For an example, Hawkins [11] pro-
vides a definition of an outlier: “An outlier is an observation 
which deviates so much from the other observations as to 
arouse suspicions that it was generated by a different mecha-
nism.” In the recent study on anomaly classification, Foor-
thius [13] describes that the definition of anomaly is vague 
and dependent on the application domain due to the wide 
variety of ways anomalies manifest themselves. In order to 
understand how unsupervised anomaly detection methods 
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in relationship with knowledge from risk analysis can be 
utilized to improve true anomaly discovery and potentially 
avoiding missed out early warning signals, it is important to 
understand how anomalies manifest themselves.

A broadly accepted classification of anomalies, described 
by Chandola et  al. [14], differentiates three general 
categories:

1. Global anomaly (also described as point and content 
anomaly [15, 16]) one or several individual data points 
that are deviant with respect to the rest of the data.

2. Contextual anomaly (also described as conditional 
anomaly [17]) data points that are deviant when an 
explicitly selected context is taken into account.

3. Collective anomaly (also described as group or aggre-
gate anomaly) a collection of data points that belong 
together, as a group deviate from the rest of the data.

The methods that detect anomalies highly depend on the 
available labels in the dataset, i.e., if the data is identified 
with certain characteristics and classified. As illustrated on 
Fig. 1, Goldstein et al.[18]. describe three main setups of 
anomaly detection:

1. Supervised anomaly detection refers to a situation 
in which the training and test sets are fully labeled. 
A conventional classifier can be first taught and then 
implemented. This scenario is comparable to traditional 
pattern recognition, except classes are frequently imbal-

anced. Due to the assumption that anomalies are rec-
ognized and adequately labeled, however, this setup is 
practically irrelevant. For many applications, anomalies 
are either unknown beforehand or may emerge spontane-
ously during testing.

2. Semi-supervised anomaly detection employs train-
ing and test datasets, with training datasets containing 
only normal, anomaly-free data. Principally, anomalies 
are identified by deviating from a model of the normal 
class. A dataset comprising normal, or non-anomalous, 
data can be acquired either through manual curation or 
through frequency analysis methods, in which the most 
often gathered data is deemed normal due to the rarity 
of hazardous events [6].

3. Unsupervised anomaly detection is the most flexible 
technique because it does not require labels. In addi-
tion, no distinction is made between a training dataset 
and a test dataset. An unsupervised anomaly detection 
approach evaluates data only based on the inherent prop-
erties of the dataset. Typically, distances or densities 
distinguish between normal and abnormal behavior.

2.2  Risk and Risk Analysis

Risk is defined as the effect of uncertainty on objectives, 
where the effect can be positive, negative, or both, result-
ing in opportunities and threats [19]. Typically, the risk is 
expressed in terms of risk sources, future occurrences, their 
effects, and the probability they will occur. Earlier guidelines 

Fig. 1  Supervised, semi-super-
vised and unsupervised anomaly 
detection [18]
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for the inclusion of safety aspects in standards [20] define 
risk as a combination of the probability of occurrence of 
harm and the severity of that harm, where harm is an injury 
or damage to people’s health, property, or environment [20].

In his book, Risk Assessment Theory, Methods, and 
Applications, Rausand [21] describes risk analysis as one of 
the three main elements of risk management (see Fig. 2), the 
continuous process to reveal, analyze, and assess potential 
hazardous events in a system, and identify and introduce effi-
cient risk control measures to eliminate or reduce possible 
harm [21]. The risk analysis is responsible for:

• the identification of hazards and threats related to the 
system of interest;

• the identification of potential hazardous events that may 
occur;

• the identification of causes of hazardous events;
• the identification of barriers and safeguards to prevent 

or reduce the hazardous events and assessment of their 
reliability;

• the identification of accident scenarios related to each 
hazardous event and their consequences.

The other two main elements of risk management are 
[21]:

1. Risk evaluation for assessing risk picture, comparison 
of the risk with established risk acceptance criteria, con-
siderations of alternative systems.

2. Risk control and risk reduction for making decisions 
regarding introducing new risk-reducing measures, 

implementing the measures, monitoring, and commu-
nicating the risk.

Risk analysis systematically uses available information 
to identify hazards and estimate risk where the hazard is 
a potential source of harm [20]. Therefore, risk analysis 
can be observed as a tool to inform decision-making con-
cerning future welfare since the risk is always related to 
what can happen in the future [21]. As illustrated in Fig. 2, 
the analysis of risk is carried out to answer the following 
questions:

• Hazard identification: What can go wrong ?
• Frequency analysis: What is the likelihood of that hap-

pening ?
• Consequence analysis: What are the consequences?

The risk analysis results have great potentials for 
assessing or improving the data for anomaly detection 
models. These potentials may be observed using the risk 
analysis for rule-based labeling in classification problems 
or transferring its knowledge to train the new models. As 
described by [22], transfer learning comprises different 
techniques that aim to gather the knowledge gained at the 
source problem to develop a new model using the gathered 
knowledge, thus minimizing the efforts of developing that 
new model. To the best of our knowledge, these potentials 
have not been leveraged effectively in prior studies (see 
Sect. 4) that would tackle the existing challenges in the 
anomaly detection methods (see Sect. 3).

Fig. 2  Elements of Risk Management, adapted from [21]
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2.2.1  Hazard Identification

Identifying the hazard is a critical first step toward prevent-
ing or mitigating it. Certain hazards require a triggering 
event to grow into a hazardous event, whilst others may 
develop into a hazardous event gradually [21]. A triggering 
event is an event or situation that must occur in order for 
a hazard to cause an accident [21]. Hazard identification 
techniques determine [23]:

• Possible cause of the harm;
• How the harm will manifest itself;
• What measures are in place to avoid or mitigate harm;
• The extent to which the harm is tolerable;
• What further actions or resources are required to avoid 

or mitigate harm.

The What-If Checklist, the Hazard and Operability Study, 
and the Failure Modes and Effects Analysis are three of 
the most often used techniques for hazard detection [23]. 
Knowing what can go wrong and identifying the properties 
of hazards is a crucial step in labeling the training sets for 
supervised classification or anomaly detection.

2.2.2  Consequence Analysis

A consequence is an adverse event that may occur due to a 
hazard [23]. As a result, consequence analysis examines the 
predicted impacts of incident outcome situations regardless 
of their frequency or likelihood. There is a specific amount 
of energy or material released in the event of containment 
failure. This is referred to as the source term [23]. Assume 
the effects are instantaneous, as with an explosion. In that 
situation, the analysis uses inputs such as the material type, 
the release pressure, and other factors to determine the 
impact effects. If the effects are delayed, the source term 
characteristics are used as inputs in a dispersion analysis 
followed by an analysis of the impact effects. Anomaly 
detection can detect anomalies representing significant 
information about the ongoing operation or anomalies that 
do not require any insight or resource allocation. Conse-
quence analysis provides critical information on the impact 
of hazards or anomalies that can aid operators in allocating 
necessary resources.

2.2.3  Likelihood Analysis

Risk cannot be accurately assessed without first analyzing 
the likelihood of an event occurring, which can be challeng-
ing. Analyzing the likelihood becomes progressively more 
challenging for complex systems, and hazard scenarios [23]. 
The likelihood of often occurring events may be evaluated 
and validated using statistical analysis that requires large 

amounts of data. The common methods for likelihood analy-
sis are fault propagation modeling methods event tree analy-
sis and fault tree analysis. The situations, conditions, and 
protective mechanisms, together referred to as intermediate 
events that should have prevented the accident, are listed, 
along with their associated probability of occurrence. In 
anomaly detection, the likelihood and frequency analysis 
bring invaluable information on the underlying knowledge of 
detected anomaly or hazard. Although not all detected anom-
alies require reaction response or allocation of resources, 
knowing the likelihood or frequency of certain undesired 
events is smaller or larger under a particular operational con-
text may eliminate the need for conjecture when classifying 
or labelling observed anomalies.

2.2.4  Warning Management

While warning management is not explicitly included in risk 
analysis, it is necessary to employ risk analysis insights as a 
layer of protection. A warning is used to notify the operator 
of a malfunctioning piece of equipment, a process deviation, 
or an unexpected state that demands operator intervention 
[23]. Alarms assist the process in remaining within normal 
operating parameters and ensuring its safety, differentiat-
ing between negligible, tolerable, and unacceptable risks. 
A risk level that is considered acceptable suggests that the 
risk level is usually recognized as insignificant [21]. Typi-
cally, additional risk-reduction measures are not necessary. 
Tolerating a risk, or tolerable risk, implies that we do not 
perceive it as negligible or something to be overlooked, but 
rather as something to be monitored and mitigated further 
as and when possible [21]. Except in exceptional circum-
stances, activities with an unacceptable level of risk are con-
sidered unsuitable, regardless of their advantages. Activities 
that create such risk would be prohibited, or the risk would 
have to be mitigated at all costs [21]. To assist in determin-
ing which alarms should be addressed first, each warning is 
assigned a priority, often based on the severity of the poten-
tial consequences.

Figure 3 depicts the operator response to warning. The 
operator must be capable of promptly detecting, diagnos-
ing, and appropriately responding to the warning to avoid 
a hazardous event. A warning management system is a 
crucial component of cyber-physical systems involved in 
safety–critical activities. In increasingly complex systems, 
an autonomous system, such as a UAS, is anticipated to con-
duct detection, diagnostics, response, and reaction depend-
ing on the scenario. UAS, such as underwater drone or 
smart sensor systems, offer warnings to the operators if the 
ongoing activity requires further attention. In this instance, 
the UAS can autonomously determine if a given monitored 
occurrence is an early warning indicator and whether to 
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sound a warning using data-driven approaches, particularly 
AI.

3  Challenges

3.1  Missing Context and Data Imbalance

We observe a growing interest in research within the con-
text of ML strategies for knowledge sharing and organizing, 
such as [24–26]. Righteously so, we witness a more perma-
nent role of autonomous systems and ML in the industry. 
However, integrating ML into existing systems involves 
heterogeneous teams of, amongst others, software engi-
neers, data analysts, and domain specialists. Every domain 
specialist and analyst in a heterogeneous team developing 
a software system that integrates ML should comprehend 
the context underlying ML methods and data. This context 

specifies the relationship between code and data, as well as 
the relationship between data and intent of the operation. 
Lacher et al. [27] point out that the context is critical to 
a system’s capacity to respond satisfactorily as it becomes 
increasingly autonomous. In a framework for discussing 
trust in increasingly autonomous systems by [27], context is 
represented as a binding point between people, environment 
and the machine (i.e., the autonomous drones) (as seen in 
Fig. 4). People have varying perspectives of the machine 
which is based on their roles and greatly influenced by their 
culture (such as age and professional affiliation). The opera-
tion’s context is established by the environmental factors 
because the machine will identify the situations based on the 
data received from sensor inputs. The machine is designed 
to perform required tasks at a high level of performance, 
which can be observed, measured or assessed. The results 
of these assessments will have an impact on people’s confi-
dence in a machine’s competence. If the machine produces 

Fig. 3  Operator and Process 
Reaction Time, adapted from 
[23]

Fig. 4  A Framework for Dis-
cussing Trust in Increasingly 
Autonomous Systems [27]
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expected results, the human confidence in the machine will 
increase, answering the question of the machine’s reliabil-
ity. Lacher et al. [27]. conclude that most of the machines 
will have a degree of human collaboration and the degree 
of trustworthiness between people and machines is a cul-
tural, organizational and sociological challenge. According 
to [27], calibrated trust is founded in our perception and 
expectation of system performance, which has become an 
engineering, social, cultural, and organizational challenge. 
Yet, as machines become increasingly complex, trustworthi-
ness becomes more challenging to maintain due to the dif-
ficulty to understand the functioning and set the expectations 
on the machine performance.

Hayes et al.[16]. offers an example of an anomaly detec-
tion algorithm missing context in the circumstance of a 
sensor reading detecting that a particular electrical box 
consumes an abnormally high quantity of energy. However, 
when examined in the context of the sensor’s location, pre-
sent weather conditions, and time of year, it is well within 
normal boundaries. There are various explanations for these 
shortcomings, which we loosely divide into two categories: 
technical and people/process-related. The technical reasons 
as the often unpredictable malfunctions of the system. How-
ever, the people/process-driven reasons for ML shortcom-
ings are due to the more complex methodologies that the 
individuals or teams use to organize and transfer knowledge, 
including designing, developing, and maintaining the sys-
tems that employ ML. Lee et al. [28] argue that the short-
comings, particularly due to biases caused by imbalances 
in data, can be removed not by niche methods but rather by 
informing the appropriate mitigation strategy, whether tech-
nical or people/process-driven. Nevertheless, the previous 
studies inform that practitioners struggle to integrate newly 
proposed tools and methods into existing processes [28]. 
Authors [28] suggest that identification and categorization 
of different types of shortcomings, such as biases, can help 
to understand the roots of the unintended ML outcomes.

Due to the wide range of anomalies that can disrupt 
operations and the large amount of data produced by envi-
ronmental sensors, real-time anomaly detection is becom-
ing more challenging. Imbalanced or underrepresented data, 
such as high consequence and low probability hazardous 
event data, is particularly problematic because the data pro-
cessing methods form biases in favor of more represented 
data. Classification methods, entrusted with effectively pre-
dicting outcomes from the sensor data, tend to reproduce 
these biases [29]. Furthermore, underrepresented data can 
be disregarded as noise due to the anomaly methods’ inclina-
tion toward efficiency and sacrificing anomalies as tolerable 
collateral damage [30]. False alarms, or noise, are another 
known drawback of anomaly detection [31]. False alarms 
fall into two categories: false positives and false negatives 
[32]. When a normal or non-hazardous event is recorded 

as a hazardous event, this is called a false positive. A con-
sequence of false positives is that a potentially hazardous 
event may go undiscovered due to prior false positives. A 
false negative is defined as the inability to notice a hazardous 
event. Due to the high proportion of false alarms created by 
anomaly detection, it is difficult to correlate specific alarms 
with the events that triggered them [32]. Additionally, cur-
rent methods for anomaly detection focus primarily on data 
content, with no regard for the context behind the data [16]. 
These methods yield conclusions that are based on correla-
tion without causation. Causation is the situation in which 
one event, a cause, causes another event to happen an effect. 
A correlation is the situation in which two or more events 
appear to be related. Therefore, basing conclusions solely on 
correlations is one of the critical problems in data analysis 
[5], as it might result in misleading predictions. However, 
many datasets lack labels or supervision that provides addi-
tional information and context about the data [33] making 
the training and testing of anomaly detection methods even 
more challenging.

3.2  Trust Imbalance

Many judgments made by cyber-physical systems in various 
scenarios are based on its analysis of the environment [34]. 
The biased and unjust consequences of data-driven methods 
are frequently the result of opaque or black-box methods that 
lack transparency. As a result, anomaly detection methods 
have recently piqued the interest of industry and academics 
in the hopes of gaining greater transparency and offering 
more context to the data and the anomaly detection methods 
[13]. The three of the biggest challenges of evaluating these 
systems are user acceptance and trust, adequate evaluation, 
and defining autonomy comprehensively and quantitatively 
[35]. Autonomous drones, for example, must operate safely 
and be resilient in changing environments and complex sce-
narios. The ability to successfully manage disturbances and 
emergent needs during the system’s mission resilience deter-
mines the efficacy and reliability of autonomous systems 
[36]. A resilient and reliable system can alter its functioning 
in advance of or in response to changes and disturbances, 
allowing it to continue working even after a severe incident 
or in the face of persistent stress, primarily by being proac-
tive on safety [37]. Hollnagel has outlined the three funda-
mental functions of a resilient system [1]:

1. Anticipate disturbances, prospective threats (Hollnagel 
uses the terms threat and hazard synonymously), and 
any other destabilizing conditions. This function enables 
the system to forecast the future and adjust risk toler-
ance.

2. Monitor performance, risks and threats while constantly 
improving its own risk identification model. This func-
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tion enables the detection of nonpermanent transient 
impacts that, despite not being permanent, can still cause 
failures and accidents.

3. Respond to threats, whether they are regular, irregular, 
unexpected or unexampled. This function denotes a 
resilient system’s preparedness, flexibility, and adapt-
ability.

O’Neil [38] argues that data-driven methods should be 
prejudice-free, produce objective results, judge according to 
universal norms, and eliminate biases. However, since the 
methods are based on historical data, they not only incorpo-
rate biases, they reinforce them [38]. Since highly autono-
mous systems rely heavily on data-driven methods, these 
systems must include humancentered features to ensure that 
they society, industry, and the economy while adhering to 
ethical norms.

4  Existing Approaches to the Challenges

With supervised anomaly detection and labeled datasets, 
discriminating between anomalous and non-anomalous 
data is supposed to be straightforward. The dataset contains 
labels for anomalous and non-anomalous data points, ena-
bling anomaly detection methods to classify the data more 
precisely. Distinctively, unlabeled data are analyzed using 
distances, density, and trends between data points. How-
ever, the difficulty of underrepresented data, or minor data 
(see Fig. 5), has recently eroded faith in supervised meth-
ods as well. The classifier or anomaly detection method is 
unable to distinguish between more represented or major 
and minor classes in the data, favoring the major data and 

thus overlooking the minor data, potentially omitting critical 
information.

Numerous approaches to the problem of underrepresented 
data have been developed, and the following paragraphs 
allude to recent studies while summarizing the approaches 
as follows:

• Extrapolating minor data through simulations, causal and 
physics data

• Setting decision boundaries and thresholds for normal 
data

• Semi-Supervised and Rule-Based Anomaly Detection 
and Classification

4.1  Extrapolating Minor Data and Simulations

Due to the rarity of hazardous occurrences with high con-
sequences, there is a sparse indication of their properties in 
the sensor-collected data during environment or asset moni-
toring. This lack of data necessitates using simulations to 
replicate the natural world and generate artificial hazards 
and hazardous events, further extrapolating imbalanced 
datasets with the artificially generated data from simulations 
so that machine learning models can train on less imbal-
anced data. Eldevik et al. [5] highlight in their work on AI 
and safety that data-driven models alone are insufficient. 
Although sensor data and data-driven models are becom-
ing an integral part of a growing number of safety–critical 
and high-risk engineering systems, the high-consequence 
and low-probability scenarios are not well reflected by data-
driven models. The authors [5] propose the use of causal and 
physics-based knowledge for extrapolation robustness. The 
data-generating processes consist of stochastic and deter-
ministic elements, providing an opportunity to utilize the 
deterministic processes, or those governed by known prin-
ciples, and extrapolate the naturally underrepresented data 
with the existing causal and physics-based knowledge. The 
authors [5] argue that the combination of data-driven models 
and the causal knowledge of industry experts is essential for 
decision-making processes within AI systems.

The method of simulating, or extrapolating with causal 
and physics-based knowledge, has significant drawbacks, 
including runtime and curse-of- dimensionality [5]. For a 
high-consequence system, a model used to inform risk-based 
decisions must predict potentially catastrophic scenarios 
prior to the occurrence of the scenario. However, the runt-
ime of these complex models is often significant, commonly 
taking up to several days, making it nearly impossible to ini-
tiate necessary analysis in real or near real-time. Alternately, 
the models can be run in advance, but this again necessi-
tates sophisticated processes with many inputs, restricting 
the possibility of simulating every possible condition that 
an actual system can encounter before its operation. Eldevik Fig. 5  Major and minor data in a dataset
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et al. [5] emphasize that data-driven models should incorpo-
rate risk assessment into the decision-making processes as 
we rapidly progress toward more autonomous systems that 
employ AI for making safety–critical decisions.

In addition to computationally expensive simulations, 
Zhang et al. [39] argue that simulation experiments can be 
expensive to conduct in laboratories and frequently meet 
physical limitations for simulating the real world (i.e., simu-
lating scenarios in the ocean vs. in a laboratory water pool). 
The primary limitation of simulations, whether virtual or 
in laboratories, is their inability to reliably mimic the com-
plex interactions between the environment, the asset, and 
the ongoing hazard in the case of a hazardous occurrence.

4.2  Decision Boundaries and Thresholds

Anomalies are characterized in terms of previous behavior. 
This suggests that a novel behavior may first appear anoma-
lous but ceases to be anomalous if it persists, establishing 
a new normal pattern [40]. Lavin et al. [40] define anomaly 
windows to aid in early detection. Each window is a collec-
tion of data points centered on a ground truth label for an 
anomaly. The earlier a detector can reliably identify anoma-
lies, the better, which implies that these windows should be 
as large as possible. The trade-off with exceedingly large 
windows is that unreliable or random detections would be 
reinforced regularly [40]. This technique allows for a large 
window of opportunity for early detection and allows for 
partial credit for detections made shortly after the ground 
anomaly. The authors [40] emphasize that various applica-
tions may place a greater emphasis on true positives than 
on false negatives and false positives. For instance, in a 
manufacturing plant, a false negative may result in machine 
failure and costly production disruptions. Similarly, a false 
positive may necessitate an in-depth examination of the data 
by a technician.

Li et al.[41]. developed a novel data-driven approach to 
anomaly detection in cyber-physical systems by establish-
ing a decision boundary to classify new observations using 
a geometric structure non-convex hull. Convex hullbased 
methods define a closed boundary around the normal data 
points. These methods make no assumptions about the 
underlying distribution. The convex hull-based methods do 
not require extensive parameter tuning, making them use-
ful for boundary-based anomaly detection [41]. Since not 
all potential anomalies are known in advance, most data-
driven anomaly detection techniques depend on developing 
a model of the system’s normal behavior. This dependency 
may reduce the likelihood of noise or false alarms occurring 
during anomaly detection. The points within the convex hull 
are normal, whereas the points on its periphery are anoma-
lous. However, convex hull-based algorithms produce many 
erroneous classifications when the input normal data is not 

convex [41]. The authors [41] demonstrated that incorporat-
ing a non-convex hull as a decision boundary for anomaly 
detection in data with non-convex forms achieved significant 
improvements over typical convex hull-based approaches. 
Shin et al.[42]. studied data bias caused by underrepresented 
classes in datasets. They advised using decision bounda-
ries to increase the accuracy of anomaly detection genera-
tive adversarial network (AnoGAN) results produced from 
low-quality data. The primary challenge encountered by 
the authors [42] is the subjective nature of establishing the 
decision boundary. They evaluated the proposed method’s 
success using the Area Under the Curve (AUC) and the 
F-measure through testing multiple arbitrary values for the 
decision boundary. AUC evaluates a classifier’s ability to 
discriminate between classes. In contrast, F-measure evalu-
ates the performance of a binary classification model based 
on predictions for the positive class. The proposed model 
presented in the [42] research has a slightly greater AUC 
and F-measure value (0.023 and 0.0231, respectively) than 
the initially tested AnoGAN result. While decision bounda-
ries are frequently seen in classification and supervised 
algorithms that utilize labeled data, such as SVM [43], a 
similar approach can be applied to unlabeled data using 
semi-supervision.

The disadvantage of decision boundaries or thresholds 
is their construction. The boundaries are constructed either 
by an algorithm that learns from data patterns or by assum-
ing a geometrical shape (i.e., convex hull-based methods 
[41]). Forming context or application-specific boundaries, 
as opposed to dataset-specific ones, is one approach to miti-
gate the disadvantages and establish more reliable decision 
boundaries.

4.3  Semi‑Supervised and Rule‑Based Anomaly 
Detection and Classification

Rule-based classification is a method for classifying or labe-
ling data points using conditions such as ‘if–then’. The ben-
efit of rule-based classification resides in its interpretability 
and approach to generalization, rather than labeling each 
data entry individually. Nonetheless, this strategy requires 
manual inputs from domain experts and can soon become a 
complex task when applied to extensive data and unstruc-
tured sets.

Deng et al.[44]. explored a rule-based semi-supervised 
approach to anomaly detection due to a lack of labels in 
data and, consequentially, an emphasis on unsupervised 
methods that produce incomprehensible results. The authors 
[44] observed the challenge in selecting appropriate labels 
when training models for anomaly detection due to the vague 
definition of an anomaly being a data point that does not 
share a similar pattern with the rest of the data popula-
tion. Their approach to applying rule-based classification in 



 Journal of Intelligent & Robotic Systems (2023) 108:17

1 3

17 Page 10 of 23

anomaly detection consisted of visually presenting identified 
anomalies and allowing users to select, label, and describe 
the anomalies. Although this approach yields reliable and 
interpretable results, it becomes a complex task when data 
is scaled up. While the manual labeling and conditioning 
of anomalous points show promising results in preventing 
false alarms or mistaking frequently occurring anomalous 
points for normal points, the process makes the system less 
automated and more reliant on the continual engagement of 
domain experts.

A more automated yet interpretable method for anomaly 
detection is to have the model learn from normal data and 
report unusual deviations, a semi-supervision process. In 
this instance, the model’s reliability depends on the quality 
of the normal data it is trained on—the likelihood of fre-
quently occurring anomalies being misinterpreted as normal 
increases significantly.

5  Warning Identification Framework

The Warning Identification Framework (WIF) aims to sup-
port the decision making of a cyber-physical system that 
uses anomaly detection methods to detect warning signals 
during an ongoing operation. WIF targets anomalies with 
a low likelihood of occurring but can have severe conse-
quences. Typically, such anomalies are underrepresented in 
data, necessitating that WIF addresses data biases, a lack 
of labeled data, and a lack of context in data and anomaly 
detection methods to provide reliable results. The motiva-
tion behind WIF lies in key aspects of multiple disciplines 
towards operations of autonomous and intelligent sensing 
systems, adapted from [7]:

• Aspects of future Risk Assessment:

– The recognition of knowledge, the growth of data, 
and the requirement for robust frameworks for the 
safety assessment of cyber-physical systems [45].

– Focus on new events that become apparent in new 
conditions.

• Aspects of future Reliability Engineering, an engineering 
discipline for applying scientific know-how to a compo-
nent, product, plant, or process in order to ensure that it 
performs its intended function, without failure, for the 
required time duration in specified environment [46]:

– Fault prevention, removal, and tolerance.
– Fault forecasting.
– Reliable functioning under expected circumstances.

• Aspects of future Resilience Engineering, a discipline 
that brings together the system safety concepts, reliability 

of a system, analysis and handling uncertainties, risks, 
and survivability of a system (where a resilient system 
can recover quickly after a shock or an injury) [47]:

– Anticipation of hazardous events.
– Monitoring of hazardous events.
– Responding to hazardous events.

• Aspects of future Human–Machine Teaming, a relation-
ship between humans, the machine, and their interde-
pendencies aiming to build trustworthy, transparent, pre-
dictable, adaptable, and reliable systems that incorporate 
AI [48]:

– On-demand adjustment of autonomy.
– Explainable functioning of a system.
– Shared understanding of intentions.
– Multiple approaches to a single challenge.

Anomaly detection is frequently used in applications to 
identify unusual data patterns that might harm the system. 
In comparison, risk analysis identifies hazards as potential 
sources of harm. Risk analysis and anomaly detection have 
comparable objectives. As illustrated in Fig. 6, the two dis-
ciplines share a common interest in identifying low probabil-
ity events that may result in high consequences and require 
extensive data analysis. Therefore, the combination of risk 
analysis and anomaly detection provides a risk-informed 
approach to anomaly detection.

The interest in anomaly detection in combination with 
risk analysis is dependent on the capacity of anomaly detec-
tion to provide anomalous points that may be used to iden-
tify potential hazardous events, hazards, and threats. The 
combination of anomaly detection and risk analysis is par-
ticularly interesting for autonomous warning management. 
However, this paper demonstrates that the process’s reverse 
order is equally interesting, particularly in addressing the 
challenges caused by imbalanced data that contributes to 

Fig. 6  Risk analysis and anomaly detection overlap
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poor anomaly detection outcomes. By using insight from 
risk analysis, such as the list of possible hazards and their 
properties, anomaly detection can be guided in detecting the 
true anomalies that can be of interest for further inspection. 
The causal analysis, accompanied by an identified sequence 
of events leading to the potentially hazardous event, can aid 
in the detection of anomalies. With the analysis of the sever-
ity of potential consequences, the detected anomalies can be 
prioritized, consequentially decreasing the number of false 
alarms. In light of this, we propose selecting anomaly detec-
tion methods that consider the likelihood that true anomalies 
will occur infrequently. One such method is Isolation Forest, 
which attempts to eliminate reporting of noise by isolating 
rare points in the dataset on the assumption that there are 
fewer true anomalies. Isolation Forest is described in more 
detail in Sect. 6.2. We divide the process of using risk analy-
sis as a supervisory component to anomaly detection into 
three steps, with an assumption that historical data exists 
for risk analysis as an input to WIF (as illustrated in Fig. 7):

5.1  Step 1: Warning Characterization

Given the context and circumstances of the planned opera-
tion, such as the operation goals, the assets, expected envi-
ronmental compounds, location, time, and season, the first 
step is to answer the question, “What can go wrong dur-
ing the given operation and given the context and circum-
stances?”. By answering this question, the warning char-
acterization step, through risk analysis, aids in setting the 
objectives of anomaly detection, as illustrated in Fig. 7. 
Context and circumstances are crucial for minimizing false 
alarms during anomaly detection. Since not all occurrences 
are anomalous under all circumstances, distinguishing haz-
ards and their contextual occurrences makes it easier to 

overlook expected or insignificant disturbances detected 
by anomaly detection methods. In addition, it is essential 
to identify the events or circumstances that contribute to a 
hazardous event, known as triggering events. While some 
hazards develop gradually, others occur due to another event, 
a trigger, typically a technical failure or human error [21]. 
Furthermore, while a single anomalous phenomenon may 
not suggest a hazardous occurrence, a collection of several 
phenomena may. All known or expected variables that may 
constitute a hazardous occurrence, or an early sign of one, 
should be included in the step of warning characterization.

5.2  Step 2: Warning Analysis

After determining what can go wrong and compiling a list 
of hazardous and potentially hazardous occurrences, the 
second step is to answer the question “How does the hazard 
manifest?” to gain a more profound knowledge of hazards. 
It is essential to collect as many attributes as possible that 
can explain the hazard, such as the sequence of events that 
may lead to their occurrence, frequency, and the likelihood 
of appearance. The sequence of events can highlight changes 
in environmental components that may lead to a hazardous 
event. Inner corrosion in a gas pipeline is an example of a 
hazard that builds gradually until a gas leak, a hazardous 
event, occurs [21]. Accordingly, the sequence of events may 
consist of multiple sensor measurements with specific values 
and properties that are informative of hazardous occurrence, 
as determined by domain experts. Rausand [21] describes 
the first occurrence in a sequence of events that will lead to 
undesirable outcomes as an initiating event or the event that 
disrupts the normal operations of the system and may neces-
sitate a response in order to prevent subsequent undesirable 
outcomes.

Fig. 7  Architectural pattern for systems using WIF
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The second part of understanding how hazards manifest is 
by answering, “What is the likelihood of this hazard occur-
ring, and how frequently does it occur?”. While frequency 
tells us about the number of times an event has happened 
within a specific timeframe, likelihood answers how prob-
able it is that it will occur [49]. Knowing the frequency and 
likelihood of a hazard is valuable for dismissing false alarms 
and recognizing circumstances under which the hazardous 
events are more likely to occur. As illustrated in Fig. 7, the 
warning characterization step, through risk analysis, aids 
the anomaly detection outcome in distinguishing noise from 
hazards or true and false warnings detected in a group of 
anomalies. Nonetheless, unsupervised anomaly detection 
leads to identifying novelties that may have been overlooked 
during risk analysis.

5.3  Step 3: Warning Prioritization

Knowing whether to respond is the objective of the third 
step. Figure 7 illustrates the critical component of decision-
making of a cyber-physical system responsible for auton-
omously reporting hazards during ongoing operations. 
Warning priority is derived from consequence analysis and 
is responsible for determining the impact of an identified 
hazardous occurrence. The impact of a hazard prioritizes a 
response by the autonomous system to notify the operators 
or supervisory system if and when the situation necessitates 
it, allowing for early warnings with minimal false alarms.

Figure 7 formalizes the three phases of WIF into an 
architectural pattern for systems employing WIF and uti-
lizing anomaly detection (or comparable ML approaches) 
for safety-related decision-making. This type of architec-
ture permits decisions to be risk-informed instead of based 
on ML-discovered patterns that depend on often unreliable 
data. Risk analysis through WIF represents a supervisory 
component for anomaly detection, provided by domain spe-
cialists examining historical data and causal knowledge. 
Incorporating a supervisory component increases the oppor-
tunities to address the challenges associated with anomaly 
detection, such as a high number of false alarms and the ina-
bility to differentiate noise from hazards, and other general 
challenges associated with machine learning methods too, 
such as bias, lack of context, and lack of explainability. WIF 
enables anomaly detection to distinguish false alarms, true 
alarms (potentially hazardous occurrences), uncertainties, 
and novelties. Uncertainties and novelties represent anything 
unknown. While some publications use the terms anomalies 
and outliers interchangeably, other sources [50–52] use the 
term outliers to denote uncertainties or novelties captured 
by anomaly detection. As part of the architectural pattern 
for WIF-based systems, as illustrated in Fig. 7, it is rec-
ommended to include a backup decision plan that requires 

human intervention, Human In the Loop (HIL), if the system 
fails to operate autonomously.

The suggested methods for each WIF step depend on the 
data, case study, and objectives. The methods for our seismic 
data case study are described in the following paragraphs.

6  Case Study

The application of the WIF is demonstrated using data 
acquired by the geophysical station supporting system 
towards estimating the rock burst hazard using seismic and 
seismoacoustic techniques [53]. Seismic hazard is one of 
the most challenging natural hazards to detect and antici-
pate [54] and can result in devastating consequences dur-
ing underground activities such as mining and drilling. One 
of the primary responsibilities of geophysical stations is to 
determine the current level of seismic hazard, especially the 
probability of high-energy, destructive seismic tremors that 
might cause rock bursts during underground activities. For 
example, rock bursts pose a significant risk to humans on-
site during mining operations and can destroy longwalls and 
damage equipment. The complexity of seismic processes 
and the imbalanced distribution of favorable”hazardous 
state” and unfavorable”non-hazardous state” data points 
pose a significant challenge for predicting seismic hazards 
using machine learning approaches [54]. The original Seis-
mic dataset is a 19 attribute binary classification dataset. It is 
an unbalanced dataset in which the positive (hazard) class is 
in the minority and considered an anomaly class. In contrast, 
the negative (no hazard) class is considered normal [55]. The 
list of seismic dataset attributes is presented in Appendix A.

The prediction horizon of the data is eight hours. This 
eight-hour shift indicates that the prediction methods 
(anomaly detection and classifiers) make seismic hazard 
predictions one shift in advance. Continuous data collection 
necessitates the aggregation of raw data prior to analysis. 
The aggregation process replaces a series of measurements 
recorded at eight-hour intervals with a single value. For 
instance, aggregating measurement data collected over 100 
shifts yields a sequence of records or vector of variables  x1, 
 x2,…,  x100, where  xt is a vector of aggregated measurement 
values characterizing the eight-hour interval or one shift, 
as denoted in the dataset. After two-month data collection 
process and aggregation, the seismic dataset consists of 2584 
instances.

6.1  Seismic Data Hazard Assessment

Three hazard assessment methods are performed for the seis-
mic data: seismic hazard assessment, seismoacoustic hazard 
assessment, and seismoacoustic hazard assessment based on 
only the registration of maximum energy from a geophone 
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[54]. The main aim of the three hazard assessments is to 
predict increased seismic activity, which can cause a rock-
burst. There are four distinct categories of rockburst hazard: 
no hazard, low hazard, moderate hazard, and high hazard. 
The following are the primary assessment factors influenc-
ing the hazardous occurrence probability and the condition 
of rockburst hazard [56, 57]:

• Coal seam thickness;
• The distance between a coal seam and a probable seis-

mogenic layer;
• Maximum seismic energy of tremors from a particular 

coal seam.

6.1.1  The seismic hazard assessment method

The essence of seismic hazard assessment is observing 
changes in seismic activity and identifying an increase or 
decrease in the degree of hazard relative to a previously 
determined degree [54]. Seismic hazard assessment utilizes 
qualitative assessment (for low seismic activity) or quanti-
tative assessment (for high seismic activity) based on the 

strength of seismic tremors. The level of seismic activity is 
calculated by the quantity and magnitude of seismic tremors 
recorded in the vicinity of an observed longwall during a 
specific period (a shift) [54]. Table 1 provides the foundation 
for quantitative hazard assessment.

6.1.2  The seismoacoustic hazard assessment method

The seismoacoustic method for assessing seismic hazard is 
based on the relationships between seismoacoustic emission 
and seismic hazard. In the seismoacoustic method, the fol-
lowing criteria are essential for assessing earthquake risk:

• recording of the seismoacoustic emission;
• the number of pulses recorded by geophones or denoted 

by seismic energy.

Changes in recorded seismoacoustic activity and energy 
are the primary evaluation criteria. In addition, deviations 
(denoted as DEV in Table 2) of values calculated during 
subsequent time intervals also influence the classification 
of one of the four seismic hazard states (a,b, c, and d for 

Table 1  Basis of hazard assessment for quantitative method, adapted by [54]

Rockburst haard Caved faces Roadways

a
No hazard

1. No tremors or single tremors with energies E of the order 
of  102 J-103 J

E
max

≤ 10
4
J

1. No tremors or single tremors with energies E of the order of 
 102 J E

max
≤ 10

3
J

2. 
∑

E < 10
5
J per 5 m of longwall advance 2. 

∑

E < 10
5
J per 5 m of longwall advance

b
Low hazard

1. Occurrence of tremors with energies E of the order 
 102 J-105 J

1 ∙ 10
4
J < E

max
≤ 5 ∙ 10

4
J

1. Occurrence of tremors with energies E of the order 
 102 J-103 J

E
max

≤ 5 ∙ 10
3
J

2. 1 ∙ 105J ≤
∑

E < 10
6
J per 5 m of longwall advance 2. 1 ∙ 103J ≤

∑

E < 10
4
J per 5 m of longwall advance

c
Moderate hazard

1. Occurrence of tremors with energies E of the order 
 102 J-106 J

5 ∙ 10
5
J < E

max
≤ 5 ∙ 10

6
J

1. Occurrence of tremors with energies E of the order 
 102 J-104 J

5 ∙ 10
3
J < E

max
≤ 5 ∙ 10

3
J

2. 1 ∙ 105J ≤
∑

E < 10
7
J per 5 m of longwall advance 2. 1 ∙ 104J ≤

∑

E < 10
5
J per 5 m of longwall advance

d
High hazard

1. Occurrence of tremors with energies E of the order 
 102 J-106 J

E
max

> 5 ∙ 10
6
J

1. Occurrence of tremors with energies E of the order 
 102 J-105 J

E
max

> 10
5
J

2. 
∑

E < 10
7
J per 5 m of longwall advance 2. 

∑

E < 10
5
J per 5 m of longwall advance

Table 2  Seismoacoustic method for hazard assessment, adapted by [54]

Time 25 ≤ DEV ≤ 100 25 < DEV ≤ 100 Decrease of activity/energy after an 
increase of activity/energy such as 
100 < DEV ≤ 200

DEV > 200 Decrease of activity/energy after an 
increase of activity/energy such as 
DEV > 200

1 shift 2 shift  > 2 shift 1 shift 2 shift  > 2 shift

1 shift a b a a current hazard sate -1 
after 3 changes of 
activity/energy drop

c c c current hazard sate -1 
after 3 changes of 
activity/energy drop

1 shifts a c b b d d d
1 shifts b c c c d d d
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no, low, medium, and high-impact hazards). Identifying the 
hazard level is based on the percentage changes in activity/
energy value deviations (see Table 2).

6.2  Anomaly Detection for Seismic Data

In order to achieve the most credible results, it is essential 
to select the anomaly detection method that corresponds to 
the data description from among the vast number available. 
Our approach is firstly to determine if the data is Gaussian. 
If the data is Gaussian, anomalies often reside away from the 
peak of the normal distribution [58]. The normality test of 
the seismic dataset, performed with Python Library for sta-
tistical calculations Shapiro–Wilk Test for Normality [59], in 

our case study indicates that the seismic data is not Gaussian 
with p-value approaching 0. The data distribution contains 
more information than the covariance matrix, which meas-
ures how much two random variables change together and 
is helpful for normal data but less for non-Gaussian data. 
Plotting noise and artificial anomalies is more difficult for 
this type of data. Correlation between attributes or their rel-
evance to one another is an additional essential characteristic 
of data. Figure 8 demonstrates the heat map illustrating the 
magnitude of the correlation between attributes.

For this dataset we have selected an anomaly detection 
method Isolation Forest that isolates anomalies with minimal 
computational needs. [60] provides a comprehensive sum-
mary of each step of the Isolation Forest algorithm and the 

Fig. 8  Heat map correlations 
between dataset attributes

Fig. 9  Isolation Forest, illus-
trated. Adapted from [61]
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underlying equations. Since Isolation Forest is capable of 
isolating outstanding data points efficiently, it can also be 
used to determine if these points share similarities with haz-
ards, i.e., if hazards also appear as outstanding points and if 
they are apparent to both domain experts and anomaly detec-
tion methods. If they are difficult to detect, it indicates that 
the anomalies may not share contextual properties with haz-
ards, so the autonomous approach may need to be modified 
accordingly. This knowledge can be used to extract what is 
not apparent for anomaly detection to detect the hazards and 
determine what properties to introduce to increase apparency 
and improve autonomous detection, since not every anomaly 
is a hazard and vice versa. In our case study, Isolation For-
est provides a suitable testing environment for measuring an 
algorithm’s capacity in isolating anomalies and determining 
whether they are comparable to the anomalies that a human 
domain expert would identify as seismic hazards. Isolation 
Forest effectively solves high-dimensional problems with 
multiple non-correlated attributes by constantly and recur-
sively splitting instances until they are isolated by their nor-
mal common, normal uncommon, and anomalous occurrence 

[60], as illustrated in Fig. 9. Isolation Forest does not rely on 
distance or density metrics to identify anomalies, eliminat-
ing processing expenses and making it suitable for nonlinear 
datasets. It is expected that there are fewer true anomalies in 
the dataset; therefore, they are more susceptible to isolation, 
eliminating the overabundance of registered noise or false 
alarms. It is a widely applied and one of the most developed 
unsupervised anomaly detection methods. The efficiency of 
Isolation Forest is in the way it builds a normal data point 
profile and isolates the points that do not fit that profile, tak-
ing advantage of anomalous properties and uncommon val-
ues, as illustrated in Fig. 9. Algorithm Part 1, 2, and 3 show 
the algorithm details of Isolation Forest split into three parts: 
initialization of a forest, initialization of a single tree (more 
of which construct a forest), and calculation of traversal path 
length, a path between the tree node and the isolated anomaly. 
A group of isolation trees finds anomalies as points with path 
lengths, with numerous trees functioning as”domain experts” 
to target the anomalies [60]. Additionally, the Isolation Forest 
does not need to separate the majority of the training sample 
consisting of normal examples.

As described in the Algorithm Part 1 and 2, the trees are 
produced by iteratively splitting the data until instances are 
isolated or a predetermined tree height is attained, resulting 
in a partial model. The algorithm automatically determines 
the tree height limit based on the sub-sampling size, which 
is denoted as the height limit variable. Finding the average 
height limit is necessary because shorter-than-average path 
lengths are more likely to be anomalies. Sub-sampling size 
ψ that controls the data size is reliably detected by Isola-
tion Forest, keeping the performance, processing time, and 
memory size optimal. Algorithm Part 3 depicts the evaluat-
ing stage in which an anomaly score s is derived from the 
expected path length for each test instance, which is obtained 
by passing instances through each tree in the forest. A single 
path length is determined by counting the number of edges 

e from the root node to a terminating node as an instance 
traverses a tree.

When a single path is obtained for each tree in the for-
est, an anomaly score s is derived following the Eq. 1, 
where h(x) denotes the path length, E(h(x)) is the nor-
malized h(x) from a collection of isolation trees, and c(n) 
is the average of path lengths. Finally, the data are then 
sorted in descending order to identify the most significant 
anomalies. The results of Isolation Forest application of 
our case study are described in Sect. 6.3.

(1)s = 2 −
E(h(x))

c(n)

Algorithm  Part 1: Creating a forest, adapted from [60]
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6.3  WIF Steps: Application of Risk Definition

6.3.1  Step 1: Warning Characterization

Answering the question “What can go wrong during the 
given operation and given the context and circumstances?” 
necessitates domain expert observations. For the seismic 
dataset, this is answered through three hazard assessment 
methods. Tables 1 and 2 provide the hazards as the events 
that can go wrong. These hazardous events serve as the 
ground truth for testing the capability of anomaly detection 
method to detect the same events as anomalies. The results 
of the hazard assessment methods are shown in Table 3. The 
three methods do not yield the same amount of hazardous 
and non-hazardous states. Upon closer inspection, the num-
ber of equal instances of the non-hazardous state resulting 
from seismic and seismoacoustic hazard assessment methods 

is 1071, and the number of equally denoted hazardous states 
is 393. As suggested by [54], knowledge of the present haz-
ard state is essential for production process management and 
industrial safety. However, assessing and predicting seismic 
hazards is a highly complex procedure with a substantial 
element of randomness.

Algorithm Part 2: Creating a tree, adapted from [60]

Algorithm Part 3: Calculating path length, adapted from [60]

Table 3  Number of hazardous and non-hazardous instances labeled 
by hazard assessment methods

Hazard Assessment Methods

State Seismic Seismoacoustic Seismoacoustic by max
energy

Non-hazardous 1682 1580 2342
Hazardous 902 1004 242
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Treating each result of hazard assessment methods as 
different ground truths, the information derived by domain 
expert observations and known as the absolute truth, the 
anomaly detection results show significantly different 
numbers (see Fig. 10). Out of the 259 detected anomalies, 
159 are the hazardous state identified by seismic (Fig. 10 
(a)), and 108 are by the seismoacoustic hazard assessment 
method (Fig. 10(b)). These results lead to an early con-
clusion that approximately half of the anomalies detected 
by the anomaly detection method are considered hazard-
ous, and the other detected anomalies are of no signifi-
cance. Compared to the results of seismoacoustic by max 
energy results of 242 hazardous states, anomaly detec-
tion has identified only 32 (see Fig. 10 (c)). The Fig. 10 
illustrates the critical difference and the main shortcoming 
of the anomaly detection method, the inability to inde-
pendently detect true hazards and a substantial number of 
false alarms. The confusion matrices in Tables 4, 5, and 6 
provide additional insight into these results. Despite three 
distinct seismic hazard assessment methods representing 
hazard occurrences, seismic, seismoacoustic, and seismoa-
coustic by maximum energy, Isolation Forest demonstrated 
an insufficient understanding of hazards. This evidence 

may prompt an early proposition that unsupervised anom-
aly detection may not be appropriate for seismic hazard 
detection despite its widespread use for unusual patterns 
and threat detection and that seismic hazard assessment is 
required as an element of supervision.

6.3.2  Step 2: Warning Analysis

Warning Analysis intends to detect patterns in which the 
hazards may occur and the likelihood of their occurrence. 
Conditional probability P, Eq. 2, is the likelihood that an 
event A or outcome will occur given the occurrence of a 
prior event or outcome B, C, D [49]. Multiplying the like-
lihood of the preceding event by the updated probability 
of the subsequent, or conditional, occurrence yields the 
conditional probability.

Table 7 shows the results of conditional probability of 
each nonhazardous occurrence and hazard, categorized 
by their impact. Table 7 represents the probability for 

(2)P(A|B,C,D) =
P(A ∩ B)

P(B,C,D)

Fig. 10  Hazards identified by anomaly detection and (a) seismic hazard assessment, (b) seismoacoustic hazard assessment, (c) seismoacoustic 
by max energy hazard assessment methods

Table 4  Confusion Matrix with Seismic Hazard Assesment as True 
Values, Isolation Forest Anomalies as Test Values

Anomalies by Isolation 
Forest

Positive Negative Total

Hazards by 
Seismic

Positive 159 743 902
Negative 100 1582 1682
Total 259 2325

Table 5  Confusion Matrix with Seismoacoustic Hazard Assesment as 
True Values, Isolation Forest Anomalies as Test Values

Anomalies by Isolation 
Forest

Positive Negative Total

Hazards by 
Seismoac

Positive 108 896 1004
Negative 151 1429 1580
Total 259 2325
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each state (either no hazard, low, medium, high-impact) 
given the occurrence of the other states. The impact of 
the hazard is derived following the causal knowledge 
described in Tables 1 and 2 on hazard detection patterns 
with the task of hazard prediction based on the associa-
tion between the energy of recorded seismic tremors and 
seismoacoustic activity with the probability of seismic 
tremor occurrence [54].

Even though this case study has an exact number of 
seismic hazards, it is not always expected that seismic 
tremor monitoring operations will have sensor data for 
identifying hazards analyzed by domain experts. In the 
event of not having an exact number of hazards derived 
from sensor data by domain experts, knowing the fre-
quency of a hazardous occurrence in a given environ-
ment may help compensate for situations in which a large 
number of anomalies are reported in order to determine 
the likelihood of the anomaly being a true hazard or a 
false alarm.

6.3.3  Step 3: Warning Prioritization

The three approaches to hazard assessment for seismic 
data provide the impact of the hazard on four levels (haz-
ard impacts derived following the Table 1):

1. No hazard
2. Low-impact hazard
3. Medium-impact hazard

4. High-impact hazard

Table 8 shows the number of hazards, categorized by their 
impact, detected by the three hazard assessment methods. 
In comparison, Table 9 represents the number of anomalies 
detected by the unsupervised anomaly detection method, 
Isolation Forest, where each hazard assessment method is 
used to categorize the hazards and their impacts among the 
detected anomalies.

As presented in Table 8, during the hazard assessment, 
there were no records of high-impact hazardous occurrences. 
The seismic hazard assessment method has identified only 
low-impact hazards, and no medium or high impact hazards. 
According to the impact, the reactions during operations can 
be prioritized.

Anomaly detection has provided poor results concern-
ing the identification of various levels of hazard impacts, 
presented in Table 9. For low impact hazards, anomaly 
detection has, on average, identified only 14,2% of the 
low impact hazards, and for medium-impact hazards, only 
14,5% of the cases on average. These results indicate that 
unsupervised anomaly detection cannot reliably identify 
seismic hazards and distinguish them based on their 
severity impact. Therefore, a form of supervision, as dem-
onstrated with different hazard assessment approaches, is 
necessary to introduce.

Table 6  Confusion Matrix with Seismoacoustic by Max Energy Haz-
ard Assesment as True Values, Isolation Forest Anomalies as Test 
Values

Anomalies by Isolation 
Forest

Positive Negative Total

Hazards by Max 
Energy

Positive 32 210 242
Negative 227 2115 2342
Total 259 2325

Table 7  Conditional probability of hazard occurring, by hazard 
assessment methods

Conditional Probability by Hazard Impact, expressed in percentages

State Seismic Seismoacoustic Seismoacoustic 
by max energy

No hazard 65.09 61.14 90.63
Low-impact hazard 34.90 36.99 8.20
Medium-impact hazard 1.80 1.85 1.16
High-impact hazard 0 0 0

Table 8  Hazard impacts by hazard assessment methods

Hazard Assessment Methods: Hazard Impact

State Seismic Seismoacoustic Seismoa-
coustic by 
max
energy

No hazard 1682 1580 2342
Low-impact hazard 902 956 212
Medium-impact hazard 0 48 30
High-impact hazard 0 0 0

Table 9  Hazard impacts identified by anomaly detection methods, 
with hazard assessment methods as the ground truth

Anomalies detecting hazard impacts

State Seismic Seismoacoustic Seismoa-
coustic by 
max
energy

Low-impact hazard 166 104 29
Medium-impact hazard 0 6 5
High-impact hazard 0 0 0
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6.3.4  Case Study Summary and Opportunities 
for a Generalized Framework

The case study architecture of WIF, applied to identify seis-
mic hazards among detected anomalies by unsupervised 
anomaly detection, is illustratated in Fig. 11. Isolation For-
est, a method for unsupervised anomaly detection, analyzes 
unlabeled seismic sensor data and detects a group of anoma-
lies. However, within the detected anomalies, there is yet no 
knowledge of which ones are false warnings and the ones 
that are true warnings or hazards. In this case study, domain 
expert knowledge is leveraged through hazard assessment 
criteria based on three methods: seismic, seismoacoustic, 
and seismoacoustic with maximum energy. Hazards, or true 
warnings, can be extracted from the given dataset and com-
pared to anomalies detected by the unsupervised method 
to determine if the unsupervised method can capture the 
properties of hazards and report them as anomalies while 
ignoring false warnings. These hazard anomalies can be pri-
oritized based on their impact, such as none, low, medium, 
and high.

As the use of data-driven and machine learning methods 
increases, the problem of unintended and harmful behavior 
of machine learning systems resulting from poor design of 
real-world AI systems becomes increasingly apparent [62]. 
Unsupervised anomaly detection, classification, and other 
data-driven machine learning methods face well-known 
challenges:

• biased data,
• false positives and false negatives (false alarms),
• prioritization of anomaly reporting for anomaly detection 

applications,

• lack of context that is tied to all of the previous chal-
lenges, and

• lack of explainability of the results produced by unsuper-
vised methods

Introducing a supervisory component to data-driven 
systems is a step toward providing context to the method, 
reducing biases and false reporting, adding prioritization 
knowledge, and improving the explainability of the results 
as they are derived from more traditional risk, and hazard 
assessment approaches. The approach studied in this paper 
can be generalized by observing risk assessment methods 
and properties of hazards for a specific operation, where haz-
ard properties may serve as a class label by which the unsu-
pervised data-driven method can be validated. According to 
a technical report and recommendations on AI and safety by 
ISO/IEC, 2022 [63], providing explainable algorithms and 
results and validating them in the real world characterizes 
the future of AI-related systems and safety.

7  Discussion

The results of the case study show shortcomings of an 
unsupervised anomaly detection method through a clear 
difference between the identified hazards by three seismic 
hazard assessment methods and their results with unsuper-
vised anomaly detection method Isolation Forest. The find-
ings from Step 1 Warning Characterization provide crucial 
insights into unsupervised anomaly detection and seismic 
hazard assessment differences. During safety–critical opera-
tions, such as seismic hazard monitoring, it is essential to 
assess the difference between the discovered hazardous 

Fig. 11  Case Study Summary Architecture
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states and adapt our expectations for the implementation of 
anomaly detection. Since it is not expected that an operation 
will have labeled training dataset, and identified hazards 
list by domain experts for each case, the analysis of the 
data becomes unsupervised. This step showed unexpected 
differences between the number of seismic hazards identi-
fied by domain expert inputs and anomalies identified by 
unsupervised anomaly detection. An unexpectedly low 
number of detected anomalies proved to be hazards when 
categorized following the hazard identification criteria pre-
sented in Tables 1 and 2. This leads to an assumption that 
unsupervised anomaly detection, despite being used for 
detection of threats and unusual patterns, cannot be trusted 
to detect all seismic hazards. An additional layer of context, 
namely through hazard assessment methods, is necessary to 
distinguish the anomalies that are only data discrepancies 
and offer no significance, from the ones that are hazardous.

The results of conditional probability obtained in Step 2, 
Warning Analysis, and based on hazard assessment meth-
ods, are crucial to setting the expectation of the occurrence 
of a hazard of varying degrees of impact. The seismic and 
seismoacoustic hazard assessment methods resulted in the 
highest probability of a non-hazardous event, followed by a 
low-impact hazard and a low probability of medium-impact 
hazard occurrence. The data in this case study provided no 
evidence of high-impact hazards, resulting in an expected no 
probability of high-impact hazardous occurrences. In com-
parison, the seismoacoustic by maximum energy method 
resulted in the highest probability of 90.53% of non-hazard-
ous occurrence, followed by a low probability of low impact 
and medium-impact hazards. This step showed a limitation 
in the case study data where the lack of high-impact hazard 
evidence resulted in a 0% probability of such hazards occur-
ring. This imbalance in hazard impacts can lead to biases 
during anomaly detection or hazard identification methods.

Further analysis in Step 3, Warning Prioritization, catego-
rized the identified hazards in the varying degrees of impact: 
no hazard, low-impact, medium-impact, and high-impact. 
The anomaly detection method resulted in fewer identi-
fied hazards than the hazard assessment methods. This step 
showed the low reliability of the anomaly detection method 
as an autonomous hazard identification approach.

The case study results have validated the assertion that 
unsupervised anomaly detection generates a considerable 
amount of false alarms, that may waste operator response 
resources if the methods are used as a part of an autonomous 
drone or smart-sensor system. These results provide valuable 
insight into the possibilities of addressing the shortcomings 
of unsupervised anomaly detection methods for seismic haz-
ard identification, where risk assessment approaches, such 
as hazard identification, can play a crucial role.

8  Conclusion

It is anticipated that cyber-physical and intelligent sensor 
systems will play a permanent role in industrial operations, 
including monitoring, inspecting, and intervening with assets 
and the environment, necessitating greater autonomy for 
making significant decisions in near-real and real-time. Cur-
rent challenges include a lack of context, the underutilization 
of causal knowledge, and an excess of imbalanced data. We 
discussed the growing need for employing data-driven meth-
ods in a more explainable, transparent, and reliable practice.

Recent research provides different approaches to handling 
discussed challenges through simulations, rule-based classifi-
cation, and decision boundaries. However, these approaches 
do not address the explain ability of the data-driven methods 
and introduce new complexities. The results and contribu-
tions of this paper can be summarized as follows:

1. A novel outlook on utilizing existing domain knowledge 
in seismic tremors through seismic hazard assessment 
methods as a supervisory component for unsupervised 
anomaly detection through the Warning Identification 
Framework based on risk assessment, resilience and reli-
ability engineering, and future human–machine teaming 
expectations.

2. Identification of overlapping tasks for risk assessment 
and anomaly detection objectives that can be utilized in 
addressing the shortcomings of anomaly detection results.

3. A case study examining the sensor-obtained seismic data 
for monitoring seismic tremors and analyzing three dif-
ferent hazard identification methods in comparison to 
unsupervised anomaly detection for hazard identification.

During our analysis, we identified significant anomaly 
shortcomings in detection methods to detect hazardous 
occurrences by their levels of impact and to distinguish 
anomalies of no significance from the anomalies that rep-
resent hazardous occurrences. The results of this research 
show significant opportunities in utilizing risk assessment 
insights to tackle the shortcomings of unsupervised anomaly 
detection methods and aid a more reliable and transparent 
hazard detection.

9  Future Work

Future work on the Warning Identification Framework con-
sists of testing more anomaly detection methods on different 
case studies and hazard identification inputs from domain 
experts and researching the role of uncertainty analysis for 
WIF applications. An additional task for WIF expansion is 
to utilize hazard identification or risk assessment picture for 
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anomaly detection training, using fuzzy logic to represent 
varying degrees of hazard impact. The evidence of a large 
number of detected anomalies not representing known haz-
ards additionally opens opportunities to observe these anom-
alies as a potential to uncover uncertainties not yet addressed 
by seismic hazard assessment methods. To expand the 
application, we plan to analyze the time-series image data 
of underwater pipeline inspections. We plan to interview 
domain experts in pipeline surveillance for risk assessment 
and hazard identification inputs and test the framework on 
streaming data, focusing on methods for anomalous change 
detection.

10  A Seismic dataset attributes

 1. seismic: result of shift seismic hazard assessment in the 
mine working obtained by the seismic method (a lack 
of hazard, b low hazard, c high hazard, d danger state);

 2. seismoacoustic: result of shift seismic hazard assess-
ment in the mine working obtained by the seismoa-
coustic method;

 3. shift: information about type of a shift (W coal-getting, 
N -preparation shift);

 4. genergy: seismic energy recorded within previous shift 
by the most active geophone (GMax) out of geophones 
monitoring the longwall;

 5. gpuls: a number of pulses recorded within previous 
shift by GMax;

 6. gdenergy: a deviation of energy recorded within pre-
vious shift by GMax from average energy recorded 
during eight previous shifts;

 7. gdpuls: a deviation of a number of pulses recorded 
within previous shift by GMax from average number 
of pulses recorded during eight previous shifts;

 8. ghazard: result of shift seismic hazard assessment 
in the mine working obtained by the seismoacoustic 
method based on registration coming form GMax only;

 9. nbumps: the number of seismic bumps recorded within 
previous shift;

 10. nbumps2: the number of seismic bumps (in energy 
range  [102,103)) registered within previous shift;

 11. nbumps3: the number of seismic bumps (in energy 
range  [103,104)) registered within previous shift;

 12. nbumps4: the number of seismic bumps (in energy 
range  [104,105)) registered within previous shift;

 13. nbumps5: the number of seismic bumps (in energy 
range  [105,106)) registered within the last shift;

 14. nbumps6: the number of seismic bumps (in energy 
range  [106,107)) registered within previous shift;

 15. nbumps7: the number of seismic bumps (in energy 
range  [107,108)) registered within previous shift;

 16. nbumps89: the number of seismic bumps (in energy 
range  [108,1010)) registered within previous shift;

 17. energy: total energy of seismic bumps registered within 
previous shift;

 18. maxenergy: the maximum energy of the seismic bumps 
registered within previous shift;

 19. class: the decision attribute ‘1’ means that high energy 
seismic bump occurred in the next shift (’hazardous 
state’),’0’ means that no high energy seismic bumps 
occurred in the next shift (’non-hazardous state’) gen-
erated during rule-based classification experiment by 
[54]
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