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Abstract
Swarm robotic systems comprising members with limited onboard localization capabilities rely on employing collaborative 
motion-control strategies to successfully carry out multi-task missions. Such strategies impose constraints on the trajectories 
of the swarm and require the swarm to be divided into worker robots that accomplish the tasks at hand, and support robots that 
facilitate the movement of the worker robots. The consideration of the constraints imposed by these strategies is essential for 
optimal mission-planning. Existing works have focused on swarms that use leader-based collaborative motion-control strategies 
for mission execution and are divided into worker and support robots prior to mission-planning. These works optimize the plan of 
the worker robots and, then, use a rule-based approach to select the plan of the support robots for movement facilitation – resulting 
in a sub-optimal plan for the swarm. Herein, we present a mission-planning methodology that concurrently optimizes the plan 
of the worker and support robots by dividing the mission-planning problem into five stages: division-of-labor, task-allocation 
of worker robots, worker robot path-planning, movement-concurrency, and movement-allocation. The proposed methodology 
concurrently searches for the optimal value of the variables of all stages. The proposed methodology is novel as it (1) incorporates 
the division-of-labor of the swarm into worker and support robots into the mission-planning problem, (2) plans the paths of the 
swarm robots to allow for concurrent facilitation of multiple independent worker robot group movements, and (3) is applicable 
to any collaborative swarm motion-control strategy that utilizes support robots. A unique pre-implementation estimator, for 
determining the possible improvement in mission execution performance that can achieved through the proposed methodology 
was also developed to allow the user to justify the additional computational resources required by it. The estimator uses a machine 
learning model and estimates this improvement based on the parameters of the mission at hand. Extensive simulated experiments 
showed that the proposed concurrent methodology improves the mission execution performance of the swarm by almost 40% 
compared to the competing sequential methodology that optimizes the plan of the worker robots first and, then, the plan of the 
support robots. The developed pre-implementation estimator was shown to achieve an estimation error of less than 5%.
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1 Introduction

Swarm robotic systems (SRSs) are a category of multi-robot 
systems (MRSs) that are distinguished by their use of a 
high number of simpler robots and the dependence of these 
on collaborating with each other to achieve mission goals 
[1–3]. SRSs have been proposed for search and rescue [4], 

surveillance [5], and manufacturing [6], among other applica-
tions. Further operational limitations, such as computational, 
locomotion and localization limitations, may be imposed on 
SRSs depending on the robots and application at hand.

In this paper, the use of a SRS, subject to localization 
limitations, is considered for multi-task missions. Each task 
in the mission is expected to be accomplished by a subset 
of the SRS at hand, commonly referred to as a coalition of 
robots [7, 8]. In this regard, the successful overall comple-
tion of a multi-task mission can be achieved through effec-
tive mission-planning, which can be formulated to optimize 
a mission execution performance index through two primary 
stages: (1) task-allocation and (2) trajectory planning [9].
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The task-allocation stage, typically, focuses on the dynamic 
subgrouping of the swarm into coalitions for the tasks at hand. 
Membership in the formed coalitions is dynamic in the sense 
that individual robots may be part of different coalitions as 
the operation is ongoing. The outcome of this stage comprises 
time-phased routes for all individual swarm robots. Once a 
task-allocation solution is adopted, the subsequent trajectory-
planning stage converts the time-phased routes into motion 
trajectories for the individual robots. These trajectories would 
be determined based on the swarm motion execution strategy 
that is in use, subject to all operational constraints.

Herein, we propose a mission-planning methodology for 
swarms whose members are unable to localize individually 
(i.e., estimate their positions with respect to a global ref-
erence frame). This could be the case due to an operating 
environment that prevents access to external measurement 
devices, and due to the limited onboard sensing capabili-
ties of the member robots (e.g., short-range sensing, limited 
field-of-view, etc.). In such cases, the swarm would need to 
rely on using a collaborative motion-control strategy that 
allows the member robots to compensate for their localiza-
tion limitations. These strategies, however, impose various 
constraints on the trajectories of the member robots that 
must be satisfied for effective motion control. This repre-
sents a constrained mission-planning problem, where the 
task-allocation stage of mission-planning is constrained to 
solutions that allow for determining executable swarm tra-
jectories in the trajectory-planning stage. Conversely, the 
unconstrained mission-planning problem would simply 
involve swarms that operate without trajectory constraints. 
For the latter swarms, it is assumed that executable trajecto-
ries can be planned for any task-allocation solution consid-
ered, which frequently may not be the case.

This paper begins with a detailed discussion of related 
works and summarizes our novel contributions in Section 2. 
The swarm mission-planning problem is formally defined in 
Section 3, and the proposed mission-planning methodology 
is detailed in Section 4. Section 5 presents multiple simu-
lated examples to illustrate the proposed mission-planning 
methodology, and to validate its performance. The paper is 
concluded in Section 6.

2  Related Works

Existing approaches to SRS mission-planning can be cat-
egorized based on the operational limitations considered 
in their formulation, including computational, locomotion, 
and localization ones. Studies that are most similar to the 
work proposed in this paper, typically, address locomotion 
[10–16] and localization [17–20] limitations of the swarm. 
These along with other works related to swarm mission-
planning are reviewed below in detail.

2.1  Computational Limitations

The task-allocation stage of mission-planning is a NP-hard 
combinatoric optimization problem [21]. Existing solu-
tions to task-allocation include decentralized market-based 
[22–26], probabilistic [27–33], and behavior-based [34–45] 
methods. Optimization-based methods that utilize various 
exact or heuristic algorithms have also been proposed [46, 
47]. The noted approaches assume that the computational 
limitations of the robots only affect the task-allocation stage, 
and the corresponding robot trajectories can be planned after 
the optimal task-allocation is determined. This could also be 
the case when dynamic reallocation due to the changes in the 
mission [48–58], limited battery life [59, 60], task synchroni-
zation [61–64], and heterogeneity in task requirements [65] 
are addressed. However, such a sequential methodology is 
effective only when the executability of the found trajectories 
is independent of task-allocation. This does not apply when 
locomotion and localization limitations are considered.

2.2  Locomotion Limitations

The locomotion limitations of swarm robots would affect 
the executability of the trajectories that are planned for a 
task-allocation solution considered. In such cases, the lit-
erature advocates that if a robot trajectory is not executable 
within the limits of its capabilities, changes must be made 
to the mission plan at the task-allocation level [10–16]. This 
represents a constrained mission-planning problem and calls 
for a strategy that searches for the optimal task-allocation 
and swarm trajectories concurrently. For example, in [14], 
inter-robot and robot-obstacle collisions are considered as 
locomotion limitations, and a concurrent methodology is 
utilized to plan the mission as some task-allocations may 
increase the number of potential collisions that need to be 
avoided. In [15] and [16], a scenario where the trajectories 
of the robots may be blocked by debris in the environment 
is considered. This work also considers the collaboration of 
the swarm with other debris-removal support agents that can 
clear the environment.

2.3  Localization Limitations

Localization limitations also affect the executability of the 
planned trajectories, and a swarm with such limitations 
would benefit from a concurrent mission-planning meth-
odology. Such limitations commonly burden swarms that 
have limited onboard sensing hardware and are operating 
in environments that prevent access to external measure-
ment devices (e.g., millirobot-based swarms [66–73]). These 
swarms depend on leader-based or tether-based motion-con-
trol strategies that allow them to localize and execute their 
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trajectories by interacting with each other. These strategies 
divide the swarm into worker robots that accomplish the 
tasks at hand, and support robots that facilitate the move-
ment of the worker robots.

Leader-based motion control strategies [74–77] use 
leader robots that are equipped with enhanced localization 
technology, such as access to ground positioning systems 
(GPS) or complex onboard sensors. These leaders oper-
ate as support robots, and facilitate the movement of the 
remaining follower (worker) robots, that localize by fusing 
their measured distance to the leader, and the position of the 
leader [78–80]. This constrains the motion of the followers 
as they need to wait to be ‘picked up’ and accompanied to 
their destinations by a leader. Tether-based strategies utilize 
a secondary team of mobile sensors as support robots which 
form a wireless tether to maintain connectivity between the 
worker robots and the environment [81]. Measurements 
made to the environment are, then, used in conjunction with 
an a priori known map to localize the worker robots. Tether-
based motion strategies also required the worker robots to be 
‘picked up’ by a tether. As such, a task-allocation stage that 
does not consider the subsequent trajectory-planning stage 
could yield coalitions and corresponding time-phased routes 
that cannot be executed as optimally planned.

The use of collaborative motion-control strategies was 
addressed in [17–19], where it is assumed that task-allo-
cation is provided, and the problem is to plan for effective 
coalition execution. They suggest a rule-based approach to 
allocating the support robots to the movements of the swarm 
that need to be facilitated through leader-based methods. 
These methods were extended to include task-allocation 
within the planning framework in [20]. Therein, a market-
based task-allocation procedure is used to form coalitions for 
the tasks at hand and once completed, the abovementioned 
rule-based approach is applied and used to determine the 
trajectories of the member robots.

2.4  Challenges and Contributions

Limited past mission-planning works for swarms with 
localization limitations, commonly, propose sequential 
approaches that, first, allocate worker robots to the tasks 
at hand, and, then, use a rule-based strategy to allocate the 
support robots to the worker robot movements that need to 
be facilitated [17–20]. Such approaches, typically, result in 
sub-optimal motion plans, as they do not allow for changes 
to the task-allocation of the worker robots to accommodate 
for the constraints imposed on their trajectories. Further-
more, these methods are only applicable to leader-based 
motion-control strategies.

Past works that do advocate for concurrent optimization 
of the task-allocation and trajectory-planning stages, on 
the other hand, have, typically, only focused on addressing 

the locomotion limitations of the swarm that constrain the 
trajectories of the robots to being planned for avoiding 
inter-robot and robot-obstacle collisions [10–16]. These 
methods cannot be directly applied to swarms with locali-
zation limitations since the constraints imposed by a col-
laborative motion-control strategy are different than those 
imposed by collision avoidance. Thus, there, specifically, 
exists a need to develop a concurrent mission-planning 
methodology for swarms that rely on collaborative motion-
control strategies due to their localization limitations. 
Such a methodology must also be adaptable to any col-
laborative swarm motion-control strategy. Herein, we, 
thus, present a concurrent mission-planning methodology 
that addresses the constraints imposed by collaborative 
motion-control strategies required by swarms with locali-
zation limitations.

Our proposed methodology plans robot trajectories 
to allow for concurrent facilitation of the worker robot 
movements through an adopted collaborative motion-
control strategy. This contrasts past works that consider 
collaboration among worker and support robots, but limit 
the support robots to facilitating one movement/job at a 
time [15–20]. Our methodology is also applicable to any 
swarm motion-control strategy that requires collaboration 
with support robots, in contrast to past works that are only 
applicable to leader-based methods [17–20]. Finally, the 
proposed methodology incorporates the division-of-labor 
of the swarm (into worker robots and support robots), 
directly, into the solution of the mission-planning prob-
lem. This mechanism for optimizing the swarm’s mission 
has not been considered in the past, where the division-
of-labor for the swarm is assumed to be given [15–20].

The proposed methodology also incorporates a pre-
implementation estimator to limit unnecessary use of 
computational resources. While a concurrent methodol-
ogy is more suitable to the constrained mission-planning 
problem than a sequential one, it can be more computa-
tionally intensive. The pre-implementation estimator, thus, 
estimates the improvement that can be achieved through a 
concurrent methodology, and allows the user to decide if 
the expected improvements justify its additional computa-
tional requirements. In contrast, other works that address 
the constrained mission-planning problem assume that 
a concurrent methodology always provides significant 
improvements [10–16].

3  Problem Definition

This paper addresses the problem of mission-planning for 
robotic swarms. We, specifically, target swarms comprising 
robots with localization limitations, which consequently rely 
on collaborative motion-control strategies. As noted in the 
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Introduction, this represents a constrained mission-planning 
problem.

3.1  Pre‑Implementation Estimator

When constraints are present, a concurrent planning meth-
odology may tangibly improve the mission execution per-
formance compared to the sequential planning methodology. 
However, occasionally, this improvement may be deemed 
insignificant by the user, especially since a concurrent meth-
odology can be computationally more intensive. The first 
issue that needs to be addressed is, thus, the development 
and use of a pre-implementation estimator to estimate the 
potential improvement in mission execution performance 
that a concurrent planning methodology may achieve. Uti-
lizing such an improvement metric, one can decide whether 
the computational challenges of a concurrent methodology 
would justify the improvement it may yield.

In this regard, let I represent the improvement in mission 
execution performance that may be achieved using a concur-
rent planning methodology versus a sequential one. In our 
work, the mission execution performance index is formu-
lated as the mission-completion time (i.e., makespan), tC , 
defined as the time it takes to complete the mission at hand 
in its entirety. Herein, the improvement in mission execu-
tion is formulated as the difference between the mission-
completion times achievable via the sequential and concur-
rent planning methodologies, tCS versus tCC , respectively, 
normalized with respect to the mission-completion time of 
the sequential methodology:

The problem at hand is, thus, to develop a function, f () , 
that can estimate the improvement in mission-completion 
time, Î  , as a function of the mission parameters at hand, V:

The parameters of the mission at hand, V, include the num-
ber of robots in the swarm, nR , and the parameters that define 
the mission’s nV tasks, 

{
Vi

}nV

i=1
 . Each task, Vi , is, in turn, 

defined by its Cartesian position with respect to a global 
reference frame, GxVi

 , the number of worker robots required 
to complete it, nWVi

 , and its working time (i.e., the time that 
the worker robots must spend to complete it), tWVi

.

3.2  Mission‑Planning

Following a decision that a concurrent planning meth-
odology could indeed yield a better solution, it would, 
then, need to be applied to solving the constrained swarm 

(1)I =
tCS − tCC

tCS
× 100%.

(2)Î = f (V).

mission-planning problem. As noted above, mission-plan-
ning for swarms with localization limitations must consider 
the constraints imposed by the collaborative motion-control 
strategies that are used to compensate for these limitations.
Sub‑problem #1 – Division‑of‑labor The use of collaborative 
motion-control strategies requires the swarm to be divided into 
two functionally different groups: a group of worker robots that 
accomplish the mission’s tasks, and a group of support robots 
that facilitate the movement of the worker robots. Herein, we 
consider the use of a homogeneous swarm with nR robots, 
whose members can be designated to operate in either role. 
Thus, as one of the goals, the mission-planning problem needs 
to (optimally) select the number of robots in each role, nW 
worker robots and nS support robots, respectively.

Following a division-of-labor choice, mission-planning, 
as formulated herein, would comprise three sub-problems:

(1) collaboration amongst the worker robots,
(2) collaboration amongst the support robots, and
(3) collaboration between these two groups.

Sub‑problem #2 – Task‑allocation Collaboration between the 
worker robots is necessary for accomplishing the mission’s 
tasks, where each task is addressed by a coalition of worker 
robots (i.e., a group of worker robots that collectively work on 
the task). Membership in the coalitions is dynamic in the sense 
that individual robots may be part of different coalitions as the 
mission progresses. As such, a key variable in planning the 
mission is determining the specific coalitions that each worker 
robot belongs to, denoted herein by an [(nV + 1) × (nV + 1)] 
matrix A , where nV is the number of tasks in the given mis-
sion. The elements of this task-allocation matrix would rep-
resent the (worker) robots arriving from different past tasks to 
form the specific coalition of robots needed to accomplish the 
task at hand. Thus, the goal of the task-allocation stage is to 
determine the collaboration amongst the worker robot group.

Sub‑problem #3 – Movement‑allocation To form the above-
mentioned coalitions, the worker robots are required to move 
to the locations of their respective allocated tasks by execut-
ing a number of movements. These movements are to be 
facilitated by the support robots through the adopted col-
laborative motion-control strategy, which may require mul-
tiple support robots to collaborate with each other. The allo-
cation of the support robots to these movements is denoted 
herein by an 

[(
nM + 1

)
×
(
nM + 1

)]
 matrix S , where nM is the 

number of movements. The elements of this movement-allo-
cation matrix would represent the (support) robots needed 
to facilitate the movements of the worker robots in their 
attempt to form the necessary coalitions. Thus, the goal of 
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the movement-allocation stage is to determine the collabora-
tion amongst members of the support robot group.

Sub‑problem #4 – Trajectory‑planning An adopted motion-
control strategy would also impose connectivity constraints 
that must be maintained between the worker robots that are 
executing their movements, and the support robots that facili-
tate these movements. Thus, to achieve collaboration between 
the worker and support robot groups, their respective trajecto-
ries must be planned for the task and movement-allocations, 
where the strings PTW and PTS are the trajectory of the worker 
and support robots, respectively. Thus, the goal of the swarm 
trajectory-planning stage is to determine the collaboration 
between members of the worker and support robot groups.

Thus, in this work, it is proposed to solve the above defined 
sub-problems by minimizing the mission-completion time:

Minimize: 

 
Subject to:

Above, v() is a function that evaluates the mission-com-
pletion time, tC , based on the following variables: the num-
ber of worker robots, nW ; the allocation of worker robots to 
the tasks, A ; the allocation of support robots to the move-
ments of the worker robots, S ; and the trajectories of the 
worker and support robots, PTW and PTS , respectively. It 
must be noted that the number of support robots, nS , is cal-
culated based on the number of worker robots, nW , and the 
number of robots in the swarm, nR (i.e., nW + nS = nR).

The mission-completion time is the time at which the last 
task is completed:

where tCVi
 is the completion time of Task i, Vi . The objective 

function v() in Eq. (3) is constructed based on the trajectories 
of the worker robots, as these determine when they arrive 
at their final destinations, based on which the start and end 
time of the tasks can be determined. However, worker robot 
trajectories are dependent on all other variables discussed 
above and as such, the construction of the objective function 
requires a candidate solution for all these variables. Further-
more, g() and h() in Eqs. (4) and (5) are general functions 
that describe the inequality and equality constraints on the 
variables. These functions correspond to the connectivity 
requirements of the adopted collaborative motion-control 

(3)tC = v
(
nW ,A,S,PTW ,PTS

)
,

(4)g
(
nW ,A, S,PTW ,PTS

)
≤ 0,

(5)h
(
nW ,A, S,PTW ,PTS

)
= 0.

(6)tC = max
{
tCVi

}nV

i=1
,

strategy, the number of worker robots required for each task, 
the number of support robots required for each movement, 
precedence constraints on the movements, etc.

4  Proposed Methodology

The proposed mission-planning methodology, summarized 
in Fig. 1 below, starts by obtaining an estimate of the poten-
tial improvement in mission-completion time that can be 
achieved by employing the proposed concurrent optimiza-
tion methodology versus a sequential one, Section 4.1. This 
improvement is deemed satisfactory if it is above a user 
defined minimum threshold, in which case the proposed 
concurrent planning methodology is applied. Otherwise, a 
sequential methodology can be used.

The proposed concurrent planning methodology tries to 
minimize the mission-completion time of the swarm by con-
sidering the following (interdependent) five planning stages: 
(1) division-of-labor, (2) task-allocation, (3) determining 
worker robot paths, (4) determining movement-concurrency, 
and (5) movement-allocation. Each stage is responsible for 
optimizing its corresponding variable through a provided 
objective function that relates it to the mission-completion 
time, via a specific search engine.

The interdependence of the five stages noted above implies 
that a candidate solution considered at any stage would affect 
the next (on the five-stage process). For example, a possible 

Fig. 1  Overview of the proposed concurrent mission-planning meth-
odology
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solution for task-allocation can only be generated for a candi-
date solution already chosen during the division-of-labor stage, 
which indicates the number of worker robots that are avail-
able to be allocated to the tasks at hand. Similarly, a candidate 
solution for worker robot paths can only be generated when a 
possible solution to task-allocation is available, which indicates 
the sequence of coalitions that each worker robot is a part of.

Once candidate solutions for all the five stages are gen-
erated, the corresponding support robot paths and swarm 
robot trajectories can be determined and used to calculate 
the mission-completion time that is used to guide the search 
for the optimal values of the variables in each stage. Details 
of the specific stages, the proposed approach to constructing 
and optimizing their respective objective functions, and their 
interdependence are detailed in Sections 4.2 to 4.5.

It must be noted that a swarm may indeed be subject to 
uncertainties during mission execution, as detailed in Sec-
tion 4.6. These uncertainties, however, need not be considered 
during mission-planning [82, 83], as it is conjectured herein 
that the optimality of the proposed mission-planning method-
ology, over the competing sequential methodology is main-
tained even in the face of potential real-time uncertainties.

The competing sequential planning methodology, consid-
ered herein, contrasts the proposed concurrent methodology 
in that it optimizes the plan of the worker robots, which 
includes the number of worker robots selected, their alloca-
tion to the tasks at hand, and their paths, while assuming 
that they are not constrained to using a collaborative swarm 
motion-control strategy to address their localization limita-
tions. Once a worker robot plan is determined, the plan of 
the support robots, which includes movement-concurrency 
and their allocation to the movements at hand, is optimized 
based on the adopted collaborative swarm motion-control 
strategy. The sequential methodology uses the same stages 
shown in Fig. 1. Unlike the proposed concurrent methodol-
ogy, however, it optimizes the variables in these stages in a 
sequential order and does not consider their interdependence.

The optimal solution found through a sequential-plan-
ning method results in (1) a division-of-labor that selects 
the maximum number of robots to operate as worker robots, 
and the minimum number of robots to operate as support 
robots, (2) determining worker robot paths that move the 
worker robots directly to their allocated task locations, and 
(3) determining a support robot plan that does not facilitate 
multiple worker robot movements concurrently. This poten-
tially would result in a sub-optimal plan for the swarm.

4.1  Pre‑Implementation Estimator

An estimate of the improvement in mission-completion 
time that can be achieved by implementing the proposed 
concurrent-planning methodology over a sequential one 

would allow a user to justify the additional computational 
challenges of this methodology. As shown in Fig. 1, once 
the improvement in mission-completion time is estimated, 
it is compared to a user defined threshold. If the improve-
ment is estimated to be greater than this threshold, a con-
current-planning methodology is implemented. Otherwise, a 
sequential-planning methodology can be deemed adequate. 
It must be noted that the improvement in mission-completion 
time is estimated while assuming the swarm is not subject to 
uncertainties during mission execution.

The user defined threshold would be selected based 
on the computational power available to the user. If the 
concurrent planning methodology takes negligible time 
due to the availability of extensive computational power, 
then the threshold would be set to a low value, and the 
concurrent planning methodology would be applied to all 
missions. With limited computational power, however, the 
concurrent planning methodology would take significantly 
longer than the sequential methodology. In this case, the 
threshold would be set to a higher value to ensure the 
user is rewarded with significant improvement in mission-
completion time if he/she chooses to spend additional time 
to optimize the swarm’s plan through the concurrent meth-
odology. This approach, typically, results in the threshold 
being selected as a higher value in dynamic scenarios that 
require mission re-planning during execution, compared 
to offline mission-planning. This is true since the available 
computational power during mission execution is limited 
by the onboard hardware of the member robots, whereas 
an external computer can be used in an offline setting. It 
must be noted that this paper does not consider mission 
re-planning during execution.

Herein, a multi-layer perceptron (MLP) is proposed 
for obtaining an estimate of the improvement in mission-
completion time that can be achieved through a concurrent 
methodology versus a sequential one, Î  . MLPs are a class 
of fully connected neural networks that consist of an input 
layer, one or more hidden layers, and an output layer [84].

Herein, the inputs to the model are selected based on an 
ablation study, where potential model inputs are systematically 
removed to evaluate their contribution to the estimation pro-
cess. Inputs that are found to increase the estimation error of 
the model are removed. The model architecture is determined 
through a random-search strategy for selecting the loss func-
tion of the model, the number of hidden layers, and the number 
of neurons in each hidden layer.

Model Inputs The proposed model estimates the improve-
ment in mission-completion time that can be achieved 
through a concurrent optimization methodology versus a 
sequential one, Î  , based on the parameters of the mission at 
hand, V , as detailed in Eq. (2), and the mission plan found 
through a sequential planning methodology.
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In this regard, the mission parameters used as input to the 
model include the number of robots in the swarm, nR , and the 
following task-specific parameters:

1. The positions of the tasks:

where 
(
GxVi

, GyVi

)
 is the position of task Vi with respect to 

a global reference frame, GF . It is assumed that the starting 
position of the swarm (i.e., the home base), V0 , is located 
at the origin for all missions.

2. The number of worker robots, nWVi
 , required per task:

3. The working time, tWVi
 , of each task (i.e., the duration 

that the worker robots must work on the task to complete 
it):

The model also makes use of the number of worker robots, 
number of support robots, and the mission-completion time as 
found through the sequential planning methodology:

Above, nWS and nSS are the optimal number of worker and 
support robots that are selected by the sequential planning 
methodology, and tCS is the mission-completion time that 
the swarm achieves with the sequential plan. The sequential 
planning methodology would select the number of worker 
and support robots as:

where nSmin is the minimum number of support robots 
required for the mission at hand. The minimum number of 

(7)xxV =
[
GxVi

, GyVi
,…

]
, i = 1, .., nV ,

(8)xnW =
[
nWVi

,…
]
, i = 1, .., nV .

(9)xtW =
[
tWVi

,…
]
, i = 1, .., nV .

(10)xS =
[
nWS, nSS, tCS

]
.

(11)nWS = nR − nSmin, and

(12)nSS = nSmin,

support robots would depend on the adopted swarm motion-
control strategy.

Model architecture The proposed model, Fig. 2, uses a sin-
gle fully connected layer between the input and output layers 
of the network. The number of robots in the swarm, nR , the 
parameters of the mission at hand, Eq. (7)—Eq. (9), and the 
parameters of the sequential solution, Eq. (10), are concat-
enated into one vector, and passed through a hidden layer 
with 2,000 neurons. The results are, then, passed through an 
output layer with one neuron that estimates the improvement 
in mission-completion time that can be achieved through 
the proposed concurrent methodology to swarm mission-
planning, Î  . All neurons in the hidden and output layers use 
the rectified linear activation function. The model is trained 
using the mean absolute error as its loss function.

4.2  Division‑of‑Labor

The division-of-labor stage determines the number of 
robots that should operate in worker and support roles, 
respectively, for the mission at hand. When a homogene-
ous swarm is used, where the roles of the member robots 
are interchangeable, the division must strike an (optimal) 
balance between the number of worker and support robots. 
An increase in the number of worker robots, at the expense 
of support ones may at first appear as allowing for the 
faster parallel completion of more tasks by increasing the 
number of distinct coalitions. However, swarm constraints 
may lead to significant degradation in mission-comple-
tion time due to the lack of sufficient number of support 
robots required to accomplish the desired parallelism. In 
the case of a heterogeneous swarm, one could expect that 
the numbers of worker and support robots be individu-
ally constrained by their respective availability. One may 
note that division-of-labor does not change during mission 
execution – once the role of a robot is selected, it remains 
the same until the mission is completed. This may be due 
to the robots’ specific onboard hardware.

Fig. 2  Mission-completion time 
improvement estimation model 
architecture
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For a homogeneous swarm of nR robots, the search for the 
optimal number of worker and support robots, n∗

W
 and n∗

S
 , 

respectively, can be completed through a discrete search engine, 
where nW + nS = nR . Herein, the selection objective function 
is the overall goal of minimum mission-completion time, tC:

subject to:

Above, Eq. (14) states that the overall total number of 
worker robots must be equal to or greater than the number 
of worker robots required for each task, nWVi

 . Equation (15), 
in turn, states that there must be a sufficient number of 
robots remaining to operate in a support role, nSmin , as 
required by the adopted swarm motion-control strategy.

The mission-completion time in Eq. (13) can be cal-
culated only once the four planning stages that follow 
division-of-labor, in Fig. 1, optimize their associated vari-
ables for the candidate division-of-labor solution passed 
on downward. The search for optimal division-of-labor 
begins by generating a candidate solution, nW , Fig. 3. This 
candidate solution is, then, passed downward to the task-
allocation stage, where the corresponding optimal task-
allocation, A∗

(
nW

)
 , as well as the optimal worker robot 

paths, movement-concurrency, and movement-allocation, 
P∗
PC

(
nW ,A

∗
)
 , Q∗(nW ,A

∗
,P∗

PC
) , and, S∗

(
nW ,A

∗
,P∗

PC
,Q∗

)
 , 

respectively, are determined. These are used to determine 
the support robot paths and swarm trajectories, and to cal-
culate the mission-completion time in Eq. (13) for guid-
ing the search for the optimal division-of-labor, n∗

W
 . The 

swarm trajectories corresponding to the optimized variables 
of all stages, n∗

W
 , A∗

(
n∗
W

)
,P∗

PC

(
n∗
W
,A∗

)
 , Q∗(n∗

W
,A∗

,P∗
PC
) , 

and S∗
(
n∗
W
,A∗

,P∗
PC
,Q∗

)
 , are passed forward to the mission 

execution stage, Section 4.6. It must be noted that the details 
of the variables are omitted in Fig. 3 for simplicity.

4.3  Task‑Allocation and Path‑Planning for Worker 
Robots

A mission plan for the worker robots comprises the specification 
of which robots work on which tasks as well as their respec-
tive paths during the entirety of the mission. Both issues are 
addressed below in Sub-Sections 4.3.1 and 4.3.2, respectively.

4.3.1  Task‑Allocation

The task-allocation stage focuses on the optimal grouping of 
worker robots into coalitions (i.e., teams of robots that collec-
tively work on a task). The number of worker robots available 

(13)min tC = v
(
nW

)
,

(14)nW ≥ max
{
nWVi

}nV

i=1
, and

(15)nW ≤ nR − nSmin.

for this stage, nW , is passed down by the division-of-labor 
stage, Section 4.1 above.

For a given mission of nV tasks, 
{
Vi

}nV

i=1
 , the allocation of 

the nW worker robots to the tasks at hand is described by an 
[(nV + 1) × (nV + 1)] matrix, A

(
nW

)
 – a possible task-alloca-

tion solution. The search algorithm, thus, needs to identify the 
optimal solution, A∗(nw) , that minimizes the mission-com-
pletion time, tC , for the number of worker robots considered:

The above formulation is subject to providing each coalition 
with the number of worker robots required for their respective 
task, Eq. (17), and ensuring the number of worker robots leav-
ing a coalition (for other coalitions/tasks) is less than or equal 
to the number of worker robots in that coalition, Eq. (18):

Above, aij is an element of the task-allocation matrix 
A
(
nW

)
 , and it represents the number of (worker) robots that 

are part of sub-coalition, cij , which breaks-off from the Coa-
lition i, Ci , for Task i, once it is completed, and subsequently 
joins the Coalition j, Cj for Task j. Equation (17) indicates 
that the number of robots allocated to a task, comprising dif-
ferent sub-coalitions, must be equal to the number of robots 
required to complete it. Equation (18), in turn, indicates that 
the number of robots leaving a task, through different sub-
coalitions, must be less than or equal to the number of robots 
in the coalition for this task.

One may note that a solution to the task-allocation sub-
problem, as described above, only indicates the number of 
worker robots in each sub-coalition, and does not specify 

(16)min t
C
= v

(
A
(
n
W

))
.

(17)
∑nV

i=0
aij = nWVj

, j = 1,… , nV ,

(18)
∑nV

j=1
aij ≤ nWVi

, i = 0,… , nV .

Fig. 3  Division-of-labor optimization process
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the robots’ identities. This is true since the worker robots are 
homogeneous and interchangeable, and as such, the specific 
worker robots for each sub-coalition can be arbitrarily selected.

The search space of the task-allocation stage consists of 
n2
V
 discrete variables that must be selected to supply each 

task with the required number of worker robots. These 
variables represent all the elements of the task-allocation 
matrix, excluding those belonging to the diagonals and to 
the first column (associated with home base), which must 
be equal to zero. The number of discrete values that each 
element aij can take on is calculated based on the minimum 
number of worker robots required by either Vi or Vj , and 
a base parameter, b , that indicates the grouping of worker 
robots into sub-coalitions. For example, b = 5 indicates that 
the sub-coalitions must be grouped in teams of base 5 (i.e., 
mod

(
aij, b

)
= 0 ). Thus, the search space of task-allocation 

has nsolA number of solutions:

The base parameter, b , can be used to reduce the size of 
the search space of task-allocation for computational effi-
ciency. Furthermore, the search space for task-allocation 
can be searched through using any combinatoric optimiza-
tion search engine, such as Genetic Algorithms [85].

A solution to the task-allocation sub-problem can be 
visualized through a directional graph, where the verti-
ces are the nV  tasks in the swarm’s mission, 

{
Vi

}nV

i=1
 , and 

the directed edges represent the sub-coalition of worker 
robots that form the coalitions of each task. For an exam-
ple mission of nV = 3 tasks, with nR = 30 robots avail-
able, two possible task-allocation solutions are shown in 
Fig. 4(a) and (b), respectively. The task-allocation matrices 

(19)nsolA =

nV�
i=0

⎛⎜⎜⎜⎝

nV�
j=1,j≠i

⎛⎜⎜⎜⎝

min
�
nWVi

, nWVj

�

b
+ 1

⎞⎟⎟⎟⎠

⎞⎟⎟⎟⎠
.

corresponding to these candidate solutions are given in 
Eq. (20) and Eq. (21), respectively. The columns of these 
matrices represent the individual sub-coalitions that form 
the coalition for each task, while the rows of these matri-
ces represent how the coalition for each task is divided to 
form the sub-coalitions for other tasks.

In Fig. 4(a), the coalition of worker robots for Task V2 , 
C2 , comprises only one sub-coalition of 15 worker robots 
that leave home base, V0 , to work on V2 . This is shown 
through a02 in Eq. (20). Upon completion of V2 , the Coali-
tion C2 is divided into two sub-coalitions: one of ten robots 
that move on to V1 , c21 , as shown through a21 in Eq. (20), 
and another of five robots that move on to V3 , c23 , as shown 
through a23 in Eq. (20).

The mission-completion time in Eq. (16) above can be 
calculated only once the three planning stages that follow 
task-allocation, in Fig. 1, optimize their associated variables 
for the candidate task-allocation solution passed on down-
ward. The search for optimal task-allocation begins by gen-
erating a candidate task-allocation solution for the division-
of-labor solution considered, A

(
nW

)
 , Fig. 5. This candidate 

task-allocation solution is, then, passed downward to the 
worker robot path-planning stage, where the correspond-
ing optimal worker robot paths, P∗

PC

(
nW ,A

)
 , as well as the 

optimal movement-concurrency and movement-allocation, 

(20)1A
�
nW = 20

�
=

⎡⎢⎢⎢⎣

0 0 15 5

0 0 0 0

0 10 0 5

0 0 0 0

⎤⎥⎥⎥⎦
,

(21)2A
�
nW = 25

�
=

⎡⎢⎢⎢⎣

0 0 15 10

0 0 0 0

0 0 0 0

0 10 0 0

⎤⎥⎥⎥⎦
.

Fig. 4  Worker robot task-alloca-
tion – two possible solutions

(a) (b)
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Q∗
(
nW ,A,P

∗
PC

)
 , and S∗

(
nW ,A,P

∗
PC
,Q∗

)
 , respectively, are 

determined. These are used to determine the support robot 
paths and swarm trajectories, and to calculate the mission-
completion time in Eq. (16) for guiding the search for the 
optimal task-allocation. It must be noted that the details of 
the variables are omitted in Fig. 5 for simplicity.

4.3.2  Worker Robot Path‑Planning

For a task-allocation solution considered, A
(
nW

)
 , the path-

planning stage determines the optimal paths of the worker robots. 
Herein, it is assumed that worker robot members of a sub-coalition 
travel together along the same path. Thus, paths are planned for 
sub-coalitions, and the paths of individual worker robots are 
inferred according to the sub-coalitions they are a part of.

The goal of path-planning is to find a balance between 
(i) aiming for each sub-coalition to get to its next task as 
quickly as possible and (ii) allowing the support robots to 
facilitate these paths efficiently. For example, if each sub-
coalition were to operate without collaborating with support 
robots, it would move along the shortest possible path. How-
ever, due to the need for collaboration, sub-coalition paths 
must be planned to also consider the support robots which 
may, potentially, be facilitating multiple paths concurrently 
for enhanced efficiency in mission execution. Herein, this 
goal is achieved by allowing the temporary/intermediate re-
location of sub-coalitions to task-stops that represent tasks 
that they are not allocated to, enroute to their allocated task. 
At these intermediate task-stops they remain as visitors, not 
participating in the work carried out by other worker robots 
allocated to this task.

In this regard, let the point-to-point (PTP) path that each 
sub-coalition travels along be defined as a string of task loca-
tions that it moves to:

where pPcij is the PTP path of sub-coalition cij corresponding 
to allocation aij of the task-allocation solution consid-
ered, A

(
nW

)
 , and mcijk

 is the kth task location that the sub-
coalition moves to. The PTP of the sub-coalition consists of 
npcij ≥ 2 points, where the first point is the task that the sub-
coalition starts from, Vi , the last point is the task that the 
sub-coalition is allocated to, Vj , and all points in between 
represent the task-stops that the sub-coalition visits.

This stage of mission-planning, thus, determines the opti-
mal paths of all sub-coalitions (of worker robots), P∗

PC
 , for 

the division-of-labor and task-allocation solutions consid-
ered, to minimize the mission-completion time, tC:

where PPC

(
nW ,A

)
=
{
pPcij

}
(∀i,j|aij>0)

.

The path of a sub-coalition is a variable length string of 
stops that it visits, as it moves from its current to its next 
task. Thus, for each sub-coalition, the path-planning stage 
must select (i) the number of stops it makes along its path, 
and (ii) the ordered sequence of stops for this path. This has 
to be completed for all sub-coalitions of the task-allocation 
solution considered. The search space of path-planning, 
thus, includes nsolPPC

 number of solutions:

Above, nc is the number of sub-coalitions for the task-
allocation considered and Perm is the permutation operator. 
The maximum number of stops that the sub-coalitions can 
make, nstops , can be selected to reduce the size of the search 
space for reduce computation time. Furthermore, the search 
space for worker path-planning can be searched through 
using any combinatoric optimization search engine, such as 
Genetic Algorithms [85].

A solution to the path-planning of worker robots can be 
visualized through a graph, where the nodes represent the 
successive task-locations of a sub-coalition’s path. Two 
possible example paths are shown in Fig. 6(a)-(b) for the 
task-allocation in Fig. 4(a), where each different color rep-
resents the path of a sub-coalition. The paths can also be 
visualized based on their decomposition into several move-
ments, where Mcijk

 represents the kth movement for the path 
of sub-coalition cij.

In Fig. 6(a), the sub-coalition c21 of 10 worker robots 
moves directly from V2 to V1 , as shown by the orange arrow, 
and movement M

c
21
1
 . This path is denoted by:

(22)pPcij =
{
mcijk

}npcij

k=1
,

(23)min t
C
= v

(
P
PC

(
n
W
,A

))
,

(24)nsolPPC
=

nC∏
i=1

(
nstops∑
j=0

Perm
(
nV − 1, j

))
.

Fig. 5  Task-allocation optimization process
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In contrast, the sub-coalition c23 of five worker robots, 
moves along the red path (movements Mc231

 and Mc232
 ), which 

makes an intermediate stop at V1 . This path is denoted by:

While this path may be longer than necessary, it would 
allow the support robots to facilitate a portion of the path of 
this sub-coalition concurrently with the path of sub-coalition 
c21 . This choice may be beneficial in optimizing the mission-
completion time.

The mission-completion time in Eq. (23) above is calcu-
lated only once the two planning stages that follow worker 
robot path-planning, in Fig. 1, optimize their associated vari-
ables for the candidate worker robot paths solution passed 
on downward. The search for optimal worker robot paths 
begins by generating a candidate worker robot paths solu-
tion for the division-of-labor and task-allocation solutions 
considered, PPC

(
nW ,A

)
 , Fig. 7. This candidate worker robot 

paths solution is, then, passed downward to the movement-
concurrency stage, where the corresponding optimal move-
ment-concurrency, Q∗

(
nW ,A,PPC

)
 , as well as the optimal 

movement-allocation, S∗
(
nW ,A,PPC,Q

∗
)
 , are determined. 

These are used to determine the support robot paths and 
swarm trajectories, and to calculate the mission-completion 
time in Eq. (23) for guiding the search for the optimal worker 
robot paths. It must be noted that the details of the variables 
are omitted in Fig. 7 for simplicity.

4.4  Movement‑Concurrency, Movement‑Allocation, 
and Path‑Planning for Support Robots

The paths planned for the (worker robot) sub-coalitions can 
be divided into multiple movements that are facilitated by 

(25)pPc21 =
{
V2,V1

}
.

(26)pPc23 =
{
V2,V1,V3

}
.

the support robots. Namely, the path of a sub-coalition, cij , 
may comprise multiple movements, where each movement, 
Mcijk

 , indicates the task location that the sub-coalition must 
be picked-up from and dropped-off to. For example, in 
Fig. 6(a), the path of the sub-coalition c21 , as shown by the 
orange arrow, comprises one movement, Mc211

 , which 
requires this sub-coalition to be picked-up from V2 and 
dropped-off at V1 . Conversely, the path of the sub-coalition 
c23 , as shown by the red arrows, comprises two successive 
movements: Mc231

 , requiring the sub-coalition to be picked-
up from V2 , and dropped-off at V1 , and Mc232

 , requiring this 
sub-coalition to be picked-up from V1 and dropped off at V3.

In this regard, the plan for the support robots consists 
of determining the movements that are facilitated concur-
rently, Section 4.4.1, allocating support robots to these 
movements, Section 4.4.2, and planning the corresponding 
path of the support robots, Section 4.4.3.

Fig. 6  Sub-coalition paths – two 
possibilities for the task-alloca-
tion solution in Fig. 4(a)

(a) (b)

Fig. 7  Worker robot paths optimization process
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4.4.1  Movement‑Concurrency

As noted above, a worker robot paths solution considered, 
PPC

(
nW ,A

)
 , may include multiple movements that have 

the same pick-up and drop-off locations. For the example 
followed herein, Fig. 6(a), movement Mc211

 of the path for 
sub-coalition c21 and movement Mc231

 of the path for sub-
coalition c23 both require their respective sub-coalition to 
be picked-up from V2 , and dropped off at V1 . Similarly, 
movements Mc031

 and Mc021
 also share the same pick-up and 

drop-off locations. Such movements can be planned to be 
facilitated concurrently by the support robots. Multiple 
sub-coalition movements that are facilitated concurrently 
would (theoretically) start and end at the same time and 
would be facilitated by the same set of support robots. This 
allows the efficiency of the support robots to be enhanced.

The concurrency of the nM movements at hand can be 
defined by an 

[(
nM + 1

)
×
(
nM + 1

)]
 symmetrical matrix, 

Q
(
nW ,A,PPC

)
 , where the element qij�{0, 1} indicates 

whether the movements corresponding to Row i and Col-
umn j are executed concurrently (i.e., 1 for yes, 0 for no). 
The movements at hand can be arbitrarily ordered on the 
Rows/Columns of this matrix. Furthermore, the diagonal 
elements of Q

(
nW ,A,PPC

)
 are equal to one. The movement-

concurrency stage, thus, decides on the optimal concurrent 
execution of the movements, Q∗

(
nW ,A,PPC

)
 , that minimizes 

the mission-completion time for the division-of-labor, task-
allocation, and worker robot paths considered:

The above formulation is subject to the precedence con-
straints of the movements at hand, as multiple movements may 
have the same pick-up and drop-off location may not be executed 
concurrently if one corresponds to a sub-coalition that must be 
formed before the sub-coalition corresponding to the other.

The search space of the movement-concurrency consists 
of 
[(
n
2

M
− n

M

)
∕2

]
 binary variables that must be selected to 

indicate the movements that are planned for concurrent 
facilitation. This search space has nsolQ number of solutions:

The search space can be searched through using any combi-
natoric optimization search engine, such as Genetic Algo-
rithms [85].

Two example movement-concurrency candidates are 
shown in Eq. (29) and Eq. (30), respectively, for the worker 
robot path-plan in Fig. 6(a), where movement M0 represents 
the starting position of the support robots (i.e., the home 
base). The movements are ordered along the rows (left to 
right) and columns (top to bottom) as: M0 , Mc021

 , Mc031
 , Mc032

 , 
Mc211

 , Mc231
 , Mc232

 . In Eq. (29), movements Mc021
 and Mc031

 

(27)min t
C
= v

(
Q
(
n
W
,A,P

PC

))
.

(28)n
solQ

= 2(n
2

M
−n

M
)∕2.

are planned for concurrent facilitation, as shown through 
q12 = q21 = 1 . In this example, movements Mc211

 and Mc231
 

are also planned for concurrent facilitation, as shown through 
q45 = q54 = 1 . In contrast, the example in Eq. (30) does not 
plan for any of the movements to be executed concurrently 
as all non-diagonal elements are equal to zero.

The mission-completion time in Eq. (27) above is calculated 
only once the movement-allocation for the candidate movement-
concurrency solution considered is optimized. The search for the 
optimal movement-concurrency begins by generating a candi-
date movement-concurrency solution for the division-of-labor, 
task-allocation and worker robot paths solutions considered, 
Q
(
nW ,A,PPC

)
 , Fig. 8. The candidate movement-concurrency 

solution is, then, passed downward to the movement-allocation 
stage, where the corresponding optimal movement-allocation, 
S∗

(
nW ,A,PPC,Q

)
 , is determined. These are used to determine 

the support robot paths and swarm trajectories, and to calculate 
the mission-completion time in Eq. (27) for guiding the search 
for the optimal movement-concurrency. It must be noted that 
the details of the variables are omitted in Fig. 8 for simplicity.

4.4.2  Movement‑Allocation

Allocation of support robots to the movements of the sub-
coalitions are carried out at this stage for a movement-con-
currency solution considered, Q

(
nW ,A,PPC

)
 . The number 

of support robots available for this allocation, nS , would be 
defined based on the division-of-labor stage solution.

The allocation of the support robots is defined by an [(
nM + 1

)
×
(
nM + 1

)]
 matrix S

(
nW ,A,PPC,Q

)
 , where the 

element sij represents the number of support robots which 
facilitate the movement corresponding to Row/Column j, after 
facilitating the movement corresponding to Row/Column i. 
This stage, thus, determines the optimal allocation of the sup-
port robots to the movements at hand, S∗

(
nW ,A,PPC,Q

)
, for 

(29)1Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 1 0

0 0 0 0 1 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(30)2Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.
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minimum mission-completion time, for the division-of-labor, 
task-allocation, worker robot paths, and movement-concur-
rency solutions considered:

The allocation of the nS available support robots must 
be completed such that each movement is allocated the 
required number of robots, Eq. (32), and ensure the num-
ber of support robots leaving a movement (to facilitate 
another movement) is less than or equal to the number of 
support robots allocated to that movement, Eq. (33):

Above, nSMj
 is the number of support robots required to 

complete the movement corresponding to Row/Column j of 
S
(
nW ,A,PPC,Q

)
, As noted in Section 4.4.1, the movements 

at hand can be arbitrarily ordered on the Rows/Columns of 
this matrix. Equation (32) and Eq. (33) also reflect that the 
same support robots can be allocated to movements that are 
planned for concurrent facilitation. The movements of the 
worker-paths also have precedence constraints that must be 
satisfied when determining their support robot allocation. For 
example, for the worker path solution in Fig. 6(a), movement 
Mc231

 must be completed before movement Mc232
.

The number of support robots required for a movement 
would depend on the collaborative motion control strategy 
used. Leader-based methods would need at least one sup-
port robot for each movement, while the number of support 
robots required for the tether-based strategy would depend 
on the length of the tethers used. The minimum number of 
support robots required for facilitating the movements of the 

(31)min t
C
= v

(
S
(
n
W
,A,P

PC
,Q

))
.

(32)
∑nM

i=1

(
qij

∑nM

k=0
ski

)
= nSMj

, j = 1,… , nM ,

(33)
∑nM

j=0

(
qij

∑nM

k=1
sjk

)
≤ nSMi

, i = 0,… , nM .

sub-coalitions can be calculated as the maximum number of 
support robots required for any of the movements:

The minimum number of required support robots must be 
used in conjunction with the constraint in Eq. (15) to select 
a feasible division-of-labor in the swarm.

The search space of the movement-allocation stage con-
sists of n2

M
 discrete variables that must be selected to supply 

each movement with the required number of support robots. 
The search space has nsolS number of solutions:

where b is a base parameter that indicates the grouping of 
worker robots into sub-coalitions which, as described in Sec-
tion 4.3.1, can be used to reduce the size of the search space 
of movement-allocation for computational efficiency. The 
size of the search space of movement-allocation is calculated 
through the same approach as that of task-allocation detailed 
in Section 4.3.1. The search space for task-allocation can 
be searched through using any combinatoric optimization 
search engine, such as Genetic Algorithms [85].

As for the (worker robot) task-allocation sub-problem, a solu-
tion to the movement-allocation sub-problem can be visualized 
through a directional graph, where the vertices are the movements 
that must be completed for the adopted sub-coalition paths, and 
the directed edges represent the allocation of support robots to 
these movements. The vertices may include multiple movements, 
indicating that these are planned for concurrent facilitation.

Two example movement-allocation solutions are shown 
in Fig. 9(a) and (b), for the worker path solution shown in 
Fig. 6(a). The movement-allocation in Fig. 9(a) corresponds to 
the movement-concurrency solution in Eq. (29), and the move-
ment-allocation solution in Eq. (36) below, while the move-
ment-allocation in Fig. 9(b) corresponds to the movement-
concurrency solution in Eq. (30), and the movement-allocation 
solution in Eq. (37) below. The movements are ordered along 
the rows (left to right) and columns (top to bottom) in Eqs. (36) 
and (37), as they were in Eq. (29) and (30) in Section 4.4.1: 
M0 , Mc021

 , Mc031
 , Mc032

 , Mc211
 , Mc231

 , Mc232
.

In Fig. 9(a), the movements Mc021
 and Mc031

 are synchro-
nized, as shown through q12 = q21 = 1 of Eq. (29). The sup-
port robots allocated to these movements were previously at 
home base, M0 , as indicated by s01 , Eq. (36). Movements Mc211

 
and Mc231

 are also planned for concurrent execution in this 
example, as shown through q45 = q54 = 1 , Eq. (29). The sup-
port robots allocated to these movements are the same ones 
that facilitated movements Mc021

 and Mc031
 , s14 , Eq. (36).

(34)nSmin = max
{
nSMi

}nM

i=1
.

(35)nsolS =

nM�
i=0

⎛
⎜⎜⎜⎝

nM�
j=1,j≠i

⎛
⎜⎜⎜⎝

min
�
nSMi

, nSMj

�

b
+ 1

⎞
⎟⎟⎟⎠

⎞
⎟⎟⎟⎠
,

Fig. 8  Movement-concurrency optimization process
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The search for the optimal movement-allocation begins 
by generating a candidate movement-allocation solu-
tion for the division-of-labor, task-allocation, worker 
robot paths, and movement-concurrency considered, 
S(nW ,A,PPC,Q) , Fig. 10. These are then used to deter-
mine the support robot paths and swarm trajectories, and 
to calculate the mission-completion time in Eq. (31) for 
guiding the search for the optimal movement-allocation. It 
must be noted that the details of the variables are omitted 
in Fig. 10 for simplicity.

4.4.3  Support Robot Path‑Planning

The path-planning stage for support robots determines the 
paths that allow them to facilitate the movement of the worker 
robots. This stage, followed by the robot trajectory planning 
stage, Section 4.5, is invoked every time the mission-com-
pletion time needs to be calculated for a combination of the 
variables determined in the planning stages detailed above.

The paths of all the support robots are planned to facili-
tate the worker robot movements and to optimize the 

(36)1S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 5 0 5 0 0 0

0 0 0 0 5 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 5

0 0 0 0 0 0 0

0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(37)2S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 0 5 0 0 0 5

0 0 0 0 0 5 0

0 5 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 5 0 0

0 0 0 5 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

swarm-motion control strategy adopted. Such strategies 
determine the optimal paths of the support robots, P∗

PS
 , to 

minimize the localization error, and thus, the motion control 
performance the worker robots:

where eL is the localization error of the worker robots along 
their PTP paths, PPS =

{
pPSi

}nS

i=1
 is the PTP path of all sup-

port robots, and r() is the function that describes the depend-
ence of localization error on the PTP paths of the support 
robots. The PTP path of a support robot is defined as a 
sequence of locations that it needs to achieve, where pPSi 
is the PTP path of Support Robot i. Path planning for the 
support robots would be constrained by the limited sensing 
range of the member robots, and the connectivity require-
ments of the adopted collaborative motion-control strategy.

The objective function in Eq. (38) is constructed based 
on the collaborative swarm motion-control strategy adopted. 
For example, the tether-based motion control strategy mini-
mizes the localization error by placing the support robots 
in a tether formation with minimum length. The objective 

(38)min eL = r
(
PPS

(
nW ,A,PPC,Q, S

))
,

Fig. 9  Swarm movement-allo-
cation – two possibilities for the 
worker path solution in Fig. 6(a)

(a) (b)

Fig. 10  Movement-allocation optimization process
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function for this strategy would be calculated based on the 
lengths of the tethers that connect the swarm to its environ-
ment, as formed through the paths of the support robots. 
Similarly, leader-based motion-control strategies position 
leader-robots to enhance their connectivity with the worker 
robots they are supporting. For these strategies, the localiza-
tion error may be calculated based on the relative positions 
of the support robots to the worker robot groups.

Herein, we consider the application of the tether-based 
swarm motion-control strategy [81]. The tether-based strat-
egy places the support robots in a tether formation for main-
taining connectivity between the worker robots and a con-
nectivity point in the environment. The connectivity point 
can either be a static support robot, placed at home base, or 
landmarks in the environment, whose positions are a priori 
known and can be sensed through hardware onboard the sup-
port robots. By maintaining connectivity to these points, the 
worker robots can indirectly sense them through the tether of 
support robots and achieve accurate localization and closed-
loop motion control.

Planning the paths of the support robots for the tether-
based motion control strategy involves three steps: (1) tether-
formation, (2) node-allocation, and (3) path-planning. The 
tether-formation step selects the connectivity point that the 
worker robots connect to and the position of the tether nodes 
that must be achieved by the support robots to achieve this 
connectivity. The node-allocation stage allocates the support 
to the nodes of the tethers. Finally, the paths of the support 
robots are determined based on the formed tethers and the 
robots allocated to them.

Figure  11 shows the locations of the support robots 
(green) on tethers connecting the coalitions of worker robots 
(red) to the connectivity point at home base at two different 
task locations.

The planned paths of the support robots, PPS , are passed 
down to the trajectory planning stage below, Section 4.5, 

where all swarm robot trajectories are determined and used 
to calculate the mission-completion time.

4.5  Robot Trajectory‑Planning

The goal of this last stage of the proposed mission-plan-
ning methodology is to calculate the mission-completion 
time. This metric is determined based on the trajectories 
of the worker robots, that are planned based on the paths 
of all swarm (worker and support) robots, as provided by 
the preceding stages, and a set of mission execution rules, 
discussed below.

In this regard, the PTP trajectory of Worker Robot i, 
pTWi

 , is defined as a sequence of time-phased positions 
that it needs to achieve. Each point on the PTP trajectory 
defines the position of the robot with respect to a global 
reference frame, GF , and its arrival and departure times 
from these positions:

Above, GxWij
 is the global position of Worker Robot i at 

(PTP path) Point j on its path p
PW

i

 ; t
AWij

 is the time it must 
arrive at this position; and, tDWij

 is the time it must depart 
from this position toward the next. The trajectory of a Sup-
port Robot i is denoted, similarly, as pTSi . It must be noted 
that the PTP path of the worker robots can be inferred from 
the PTP path of the sub-coalitions, PPC . The trajectories 
of the (worker and support) robots may be constrained by 
their battery life, which would limit the time that they can 
operate for mission execution.

As also noted above, the trajectory-planning stage 
determines the trajectories of all worker and support 
robots, PTW =

{
pTWi

}nW

i=1
 and PTS =

{
pTSi

}nS

i=1
 , respectively. 

This consists of calculating the arrival and departure times 

(39)
pTWi

=
{(

GxWi0
, tAWi0

, tDWi0

)
,

(
GxWi1

, tAWi1
, tDWi1

)
,…

}
.

Fig. 11  Positions of support 
robots on tethers for connectiv-
ity to the worker robots at (a) 
Task V

2
 , and (b) Task V

3

(a) (b)
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of the robots at/from the positions on their path, while 
adhering to a set of mission execution rules. Herein it is 
assumed that worker robots (1) start working on their allo-
cated tasks as soon as they arrive at their destination, (2) 
work on their tasks continuously, and (3) depart toward 
their next task location as soon as the support robots, allo-
cated to facilitating their movement, have arrived and the 
task at hand has been completed. Similarly, support robots 
(1) start facilitating a movement as soon as they arrive 
at their pick-up location and the worker robots associ-
ated with this movement have completed their task, (2) 
facilitate the movement of the worker robots in full (i.e., 
do not leave sub-coalitions part-way through their move-
ment), and (3) depart from the drop-off point of their cur-
rent movement to the pick-up point of their next allocated 
movement as soon as the current movement is completed. 
It must be noted that the time required by the support and 
worker robots to travel from one location to another is 
dependent on the distance travelled and subject to the cir-
cumvention of any obstacles.

The completion times of all tasks can, thus, be inferred 
from the trajectories of the worker robots, and used to deter-
mine the overall mission-completion time. The completion 
time of task Vi , tCVi

 , would be calculated based on the latest 
arrival time of all allocated worker robots to their position 
associated with this task, tAVi

 , plus the working time of this 
task:

where tWVi
 is the working time of task Vi , as provided by the 

mission parameters. The mission-completion time is, then, 
calculated as the latest completion time of the mission’s 
tasks, Eq. (6).

Once calculated, the mission-completion time, tC , is 
fed back upward to the division-of-labor, task-allocation, 
worker robot path-planning, movement-concurrency, and 
movement-allocation stages, to guide the search for the 
optimal combination of the variables considered in these 
stages, respectively.

4.6  Mission Execution

Trajectories of swarm robots are executed based on the rules 
detailed in Section 4.5 above. One may recall that these rules 
dictate when worker robots begin and finish their allocated 
tasks, and when the support robots begin and end facilitating 
their allocated worker robot movements.

It must also be noted that a swarm would be subject 
to uncertainties during its mission execution. These, for 
example, may include uncertainties in the working times 
of the tasks and robot travel times from one task location to 
another. The working time of a task may be different than the 

(40)tCVi
= tAVi

+ tWVi
,

one accounted for during planning as various application-
specific difficulties may arise during the completion of a 
task. For example, the task of finding a person in an envi-
ronment may take longer than expected if the person’s loca-
tion cannot be accurately estimated [86]. The time required 
to travel from one task location to another may also vary 
from the planned travel time due to the circumvention of 
a priori unknown obstacles. Encountering such uncertain-
ties may require the swarm robots to make alterations to the 
arrival and departure times of the points of their paths as 
per the mission execution rules. This may result in a differ-
ence between the mission-completion time that is expected 
based on the mission’s plan, and the mission-completion 
time achieved in practice. It is conjectured herein that uncer-
tainties encountered in run-time would not result in failure 
in mission execution as the mission execution methodology 
is event based, and neither in the optimality of the planned 
mission with respect to the sequential planning methodol-
ogy, as will be empirically shown in the next Section.

5  Simulated Experiments

Extensive simulated experiments were conducted to 
evaluate the performance of the proposed mission-plan-
ning methodology. In Section 5.1, the performance of 
the proposed pre-implementation estimator for estimat-
ing the improvement in mission-completion time that can 
be achieved using the concurrent planning methodology 
versus a sequential one, Section 4.1, is evaluated. This is 
followed by a simulated example in Section 5.2 that illus-
trates the proposed concurrent planning methodology for a 
swarm of one hundred robots. Sections 5.3 and 5.4 provide 
comprehensive comparisons of the proposed concurrent 
mission-planning methodology to the sequential mission-
planning methodology. Finally, Section 5.5 discusses the 
effects of mission parameters on the mission-completion 
time. The numerical simulations in Sections 5.2–5.4 were 
implemented in a custom simulation environment devel-
oped using Python 3.

One can note that, a simpler descriptive example of the 
application of the proposed concurrent planning methodol-
ogy to a mission with fewer tasks than the one considered 
in subSection 5.2 is provided in Appendix 1. This example 
allows the reader to view the obtained optimal solution in 
graphical form.

5.1  Pre‑Implementation Estimator

As noted in Fig. 1, the implementation of the proposed 
concurrent planning methodology could be invoked 
if the user notes a potential tangible improvement in 
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mission-completion time that it can achieve over a sequen-
tial planning methodology. A MLP was proposed in Sec-
tion 4.1 for estimating this improvement. In this sub-section, 
below, the performance of the proposed MLP is evaluated.

The proposed MLP was trained on a data set consisting 
of 10,000 points, where each point differed in the con-
figuration of its mission and the number of robots in the 
swarm used to accomplish it. The tasks in the missions 
required between 15 to 35 worker robots, with individ-
ual (task) working times ranging from 10 to 15 s. The 
swarms, in turn, differed in their number of (homogene-
ous) robots, ranging from the minimum required (i.e., 
nR = nWmin + nSmin ) to approximately twice the minimum. 
For each data point, the mission plan was determined 
through the proposed concurrent and competing sequential 
mission-planning methodologies, and their respective mis-
sion-completion times, tCC and tCS , were calculated while 
assuming no uncertainties during mission execution, based 
on the worker robot trajectories as per the methodology 
in Section 4.5. The improvement in mission-completion 
time that can be achieved using the proposed concurrent 
methodology versus a sequential planning methodology, I , 
Eq. (1), was, then, calculated and used to train the model.

The effectiveness of the proposed MLP was evaluated 
through the k-fold cross validation procedure with five folds. 
The performance metric, for each data point, was calculated 
as the absolute difference between the true and estimated 
improvement in mission-completion time, respectively:

In summary, the proposed MLP achieved a mean esti-
mation error of approximately 3% – on average, the esti-
mated improvement value for using the proposed concur-
rent methodology (over the sequential one) was within 
3% of the true value, pointing to an excellent estimator. 
Overall, the MLP achieved less than 5% error in 75% of 
the cases tested.

5.2  A Simulated Example

The implementation of the proposed swarm mission-plan-
ning methodology is illustrated herein for a mission com-
prising nV = 10 tasks. The position of the tasks, as well as 
their number of required worker robots and task working 
times are shown in Fig. 12. The swarm at hand comprises 
nR = 100 (homogeneous) robots, each of which can oper-
ate in either a worker or support role. Furthermore, in this 
example, the environment includes two points that can be 
used to provide connectivity between the swarm and the 
environment using the tether-based motion-control strategy. 

(41)e =
|||I − Î

|||.

It is also assumed that the swarm is not subject to any uncer-
tainties during mission execution.

The plan of all swarm robots was determined through 
the methodology presented in Section 4, which sought the 
optimal division-of-labor, task-allocation, worker robot 
paths, movement-concurrency, and movement-allocation. 
For the mission at hand, the minimum number of worker 
robots is nWmin = 55, and the minimum number of sup-
port robots is n

Smin
= 10 . The proposed mission-planning 

methodology, in turn, selected the number of worker and 
support robots as n∗

W
= 75 and n∗

S
= 25 , respectively. The 

optimal plan of the swarm allowed it to complete the mis-
sion in tCC = 334s . Table 1 details the start and end times 
of all the tasks in the swarm’s mission. In contrast, the 
sequential planning methodology achieved a mission-
completion time of tCS = 603s . The proposed concurrent 
methodology, thus, achieves an improvement of I = 45% . 
An animation of the execution of the mission, using the 
plan found through the proposed concurrent and com-
peting sequential planning methodologies, is available at 
https:// youtu. be/ pVl- XXai3 VE.

5.3  Comparison of the Proposed Concurrent Versus 
Sequential Planning Methodologies

The goal of the simulated experiments presented herein is 
to illustrate the superior optimality of the proposed con-
current mission-planning methodology, when compared 
to a typical sequential-planning methodology, where all 
comparative simulations are run under ‘equal’ conditions. 
In this regard, a series of 10,000 simulations were con-
ducted, where each simulation differed in the configuration 
of the mission, and the number of robots in the swarm 
used to accomplish it. Each task required between 15 to 35 
robots, with individual (task) working times ranging from 
10 to 15 s. The swarms, in turn, differed in their num-
ber of (homogeneous) robots, ranging from the minimum 
required (i.e., nR = nWmin + nSmin ) to approximately twice 
the minimum. For each simulation, both the proposed con-
current- and competing sequential-planning methodolo-
gies were used to plan the missions of the swarm. The 
improvement in mission-completion time achieved by the 
proposed concurrent methodology over the sequential one, 
I  , was then calculated through Eq. (1). In these simula-
tions, it was assumed that the swarm is not subject to any 
uncertainties during mission execution.

It must be noted that the comparative evaluation was for 
all the 10,000 simulations considered, without removing 
those that might have been deemed by a user as not wor-
thy. In summary, for the 10,000 simulations considered, 
an average improvement in mission-completion time of 
approximately 38% was noted when using the concur-
rent planning methodology versus a sequential one. The 
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histogram of the improvements noted for these simulations 
is shown in Fig. 13 below.

5.4  Robustness Study

A robustness study, detailed herein, was completed for 
further validation of the proposed mission-planning meth-
odology. The robustness analysis compared the proposed 
concurrent methodology to the competing sequential 
methodology for realistic scenarios where the swarm is 
subject to uncertainties in the working times of the tasks. 
In these scenarios, the working time of a task, during 
mission execution, varied from the working time that the 
swarm’s mission was planned based on.

The comparative study was conducted through a series 
of simulated experiments, where each simulation dif-
fered in the configuration of the mission and the number 
of robots in the swarm used to accomplish it. The mis-
sions and swarm configurations were generated in the 
same manner described in Section 5.3: each task required 
between 15 to 35 robots, task working times ranged from 
10 to 15 s, and the swarms were composed of homogene-
ous robots ranging from the minimum required to approxi-
mately twice the minimum. The plan of the swarm for 
each mission was determined through the proposed con-
current mission-planning methodology while assuming the 
working time of each task is known with certainty. Next, 

mission execution was re-simulated with random uncer-
tainty added to the working time of each task:

Above, t
WV

i

 is the working time of the task that the 
swarm’s mission is planned based on, t

′

WVi
 is the true 

working time of the task during mission execution, and 
�W  characterizes the (zero-mean) Normally-distributed 
uncertainty of task working time. For each simulation 
considered, the improvement in the mission-completion 
time achieved by the proposed plan compared to the plan 
obtained via the competing sequential methodology was 
calculated through Eq. (1) with uncertain task working 
times.

The 10,000 simulations used in Section 5.3 were repeated, 
per the process detailed above, for �W = 2s . An average 
improvement of approximately 38% was noted when using 
the plan found through the concurrent planning methodology 
versus a sequential one. The histogram of the improvements 
noted for these simulations is shown in Fig. 14 below – it is 
very similar to Fig. 13 above. One may note that in some rare 
cases (less than 1% of the 10,000 simulations), the proposed 
concurrent methodology fails to achieve improved mission-
completion time.

This study empirically verifies our conjecture that the 
optimality of the proposed mission-planning methodology, 

(42)t
�

WVi
= tWVi

+ N
(
0, �W

)
.

Fig. 12  Example mission

Table 1  Task start and end 
times for executing the mission 
in Fig. 12

Task V
1

V
2

V
3

V
4

V
5

V
6

V
7

V
8

V
9

V
10

Start time (s) 36 119 234 324 16 51 166 116 264 296
End time (s) 51 214 244 334 26 61 176 126 279 311
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over the competing sequential methodology, is maintained 
even in the face of potential real-time uncertainties.

5.5  Effect of Mission Parameters 
on Mission‑Completion Time

Mission parameters, including number of robots in the 
swarm, positions of tasks, number of robots required per 
task, and task working times affect mission-completion 
times. A brief discussion on their effect is provided below:

Number of swarm robots: An increase in the number 
of robots, nR , would provide increased flexibility to 
the division-of-labor stage of the proposed mission-
planning methodology. Thus, allowing the number of 
worker and support robots to be selected with higher 
optimally. This would, in turn, lead to reduced mission-
completion times.
Number of worker robots: An increase in the nec-
essary number of worker robots required per task, {
nWVi

}nV

i=1
 , would limit the search space of the divi-

sion-of-labor stage. Thus, affecting the optimality of 
division of tasks and resulting in increased mission-
completion times.
Task positions: Changes in the positions of the mis-
sion’s tasks, 

{
GxVi

}nV

i=1
 , would result in changes in robot 

travel times from one task location to another. Thus, 
resulting in different mission-completion times.

Working times: An increase in the working times of 
tasks, 

{
tWVi

}nV

i=1
 , would require the worker robots to 

spend more time for the accomplishment of each task. 
Thus, yielding increased mission-completion times.

6  Conclusions

This paper presents a mission-planning methodology for 
swarm robotic systems comprising robots with localiza-
tion limitations that are constrained to using collaborative 
motion-control strategies. The proposed mission-plan-
ning methodology considers this constraint by dividing 
the swarm into two functionally separate groups: worker 
robots that accomplish the tasks at hand, and supporter 
robots that provide the necessary interactions for the 
worker robots to use the adopted motion-control strategy. 
Based on this division, the proposed methodology searches 
for the optimal division-of-labor of the robots to each role, 
task-allocation of the worker robots, worker robot paths, 
movement-concurrency, and movement-allocation. The 
search is completed through an optimization methodol-
ogy that concurrently varies all the variables to optimize 
the mission-execution performance.

The proposed methodology is novel as it incorporates 
the division-of-labor into the mission-planning problem 
by searching for the optimal number of robots that should 
operate in a worker and support role. This contrasts past 
approaches that assume the swarm’s division is given, and 
do not consider finding the optimal balance between the 

(%)

Fig. 13  Improvement in mission-completion time – concurrent versus 
sequential optimization

(%)

Fig. 14  Improvement in mission-completion time – concurrent versus 
sequential optimization for uncertain task working times
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two roles in the swarm. The proposed methodology is also 
novel as it plans the paths of the worker robots to allow the 
support robots to concurrently facilitate multiple worker 
robot movements, achieving enhanced efficiency in mis-
sion execution. This contrasts past approaches that limit 
support robots to facilitating one movement/job at a time. 
Finally, the proposed methodology can be applied to any 
adopted swarm motion-control strategy that requires the 
worker robots to collaborate with support robots, includ-
ing leader-based and tether-based ones. In contrast, past 
approaches that are developed for swarm with limited 
onboard localization capabilities are only suitable for 
leader-based methods. This novelty enhances the adapt-
ability of the proposed planning methodology.

The proposed mission-planning methodology also 
includes a pre-implementation estimator that estimates the 
improvement in mission execution performance achieved 
through the concurrent planning methodology versus 
the competing sequential methodology. The estimate 
obtained is used to justify the additional computational 
requirements of the concurrent methodology. In con-
trast, competing approaches to mission-planning assume 
that a concurrent solution is always beneficial, and may 
spend computational resources without obtaining tangible 
improvements.

The details of proposed methodology were illustrated 
through multiple simulated experiments with swarms of up 
to one hundred robots. Furthermore, simulations on over 
10,000 missions illustrated that the proposed concurrent 
methodology achieves approximately 38% improvement in 
mission execution performance compared to its sequential 
counterpart.

Future work may consider extending the proposed 
mission-planning methodology to different task models 
that require various types of worker robots [63], or a 

combination of sensors and actuators that must be pre-
sent on the worker robots for the task to be accomplished 
[54]. These models require an extension of the division-
of-labor in the proposed mission-planning methodol-
ogy to include optimal subdivision of the worker robots 
based on their type and/or onboard sensing and actuation 
capabilities. Task models that require a specific work-
load, which can be achieved in a short time with many 
worker robots or over a longer period with few robots, 
may also be considered [42]. For these models, mis-
sion-planning must also optimize the number of worker 
robots allocated to each task. Furthermore, while the 
proposed pre-implementation estimator can be used to 
ensure that the used computational resources yield suf-
ficient improvements in the mission-completion time, 
the computational complexity of the proposed mission-
planning methodology may be restrictive. Thus, future 
work could further investigate the suitability of various 
optimization search engines for the problem at hand. 
Future work may also consist of incorporating the uncer-
tainties that affect the swarm during mission execution 
in the mission planning problem.

Appendix 1: A Descriptive Example

The implementation of the proposed swarm mission-
planning methodology is detailed herein for a mission 
comprising nV = 5 tasks. The position of the tasks, as well 
as their number of required worker robots and task work-
ing times are shown in Fig. 15. The swarm at hand com-
prises nR = 50 (homogeneous) robots, each of which can 
operate in either a worker or support role. Furthermore, 
the environment includes one connectivity point at home 
base that is used to provide connectivity for the adopted 

Fig. 15  A five-task swarm 
mission
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tether-based motion control strategy. The simplicity of 
the example allows us to present the optimal solutions in 
graphical form.

Estimating the Improvement in Mission‑completion 
time

The proposed MLP detailed in Section 4.1, and trained 
through the process detailed in Section 5.1, was applied to 
the mission at hand, and used to decide whether a concurrent 
planning methodology would be necessary. In this example, 
the user defined minimum improvement was set as 30%. 
Since the estimation model estimated an improvement of 
about 32% for this mission, the concurrent planning meth-
odology was deemed beneficial, and applied to plan the mis-
sion of the worker and support robots.

Division‑of‑Labor

For the mission at hand, the minimum (total) number of nec-
essary worker robots is nWmin = 30 , calculated as the maxi-
mum number of robots required for any one of the tasks. 
The minimum (total) number of required support robots is 
nSmin = 10 , based on the length of the longest tether that 
would be used for swarm motion-control. This leaves ten 
(= 50-30-10) swarm robots whose role can be selected to 
minimize the mission-completion time.

In this example, the proposed mission-planning method-
ology selected n∗

W
= 35 worker robots, leaving n∗

S
= 15 sup-

port robots for facilitating the workers’ motion.

Task‑Allocation and Path‑Planning for Worker 
Robots

The mission of the worker robots is planned by determining 
the optimal formation of the coalitions for the tasks at hand. 
It also involves determining the optimal paths that the sub-
coalitions take to reach their destinations.

The proposed mission-planning methodology allocated 
the n∗

W
= 35 worker robots to the task at hand through:

The optimal task-allocation is shown graphically in 
Fig. 16.

For the optimal task-allocation shown in Fig. 16, the opti-
mal paths of the nC = 8 sub-coalitions were determined as:

(43)A∗ =

⎡⎢⎢⎢⎢⎢⎢⎣

0 0 0 30 0 5

0 0 20 0 0 0

0 0 0 0 0 0

0 0 0 0 20 10

0 20 0 0 0 0

0 10 5 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

.

These paths are shown graphically in Fig. 17, where each 
distinct color represents the path of a sub-coalition.

Movement‑Concurrency, Movement‑Allocation, 
and Path‑Planning for Support Robots

Mission-planning for the support robots, in turn, involves 
optimizing the concurrent execution of the movements at 
hand and the allocation of the support robots to these move-
ments. This is, then, followed by optimal path planning for 
the support robots based on the adopted tether-based swarm 
motion-control strategy.

As was shown through Fig. 17 above, there are four 
path segments that share the same pick-up and drop-off 
task locations. These four segments require the worker 
robots to be (1) picked-up at V0 and dropped-off at V3 , 
(2) picked-up at V3 and dropped-off at V5 , (3) picked-up 

(44)

p
∗
pc03

=
{
V0,V3

}
,

p
∗
pc05

=
{
V0,V3,V5

}
,

p
∗
pc12

=
{
V1,V2

}
,

p
∗
pc34

=
{
V3,V4

}
,

p
∗
pc35

=
{
V3,V5

}
,

p
∗
pc41

=
{
V4,V1

}
,

p
∗
pc51

=
{
V5,V1

}
, and

p
∗
pc52

=
{
V5,V1,V2

}
.

Fig. 16  Optimal task-allocation of the worker robots for the mission 
in Fig. 15
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at V5 and dropped-off at V1 , and (4) picked-up at V1 and 
dropped-off at V2 . The plan determined that all move-
ments associated with these four segments should be 
facilitated concurrently –  Mc031

 and Mc051
 , Mc052

 and Mc351
 , 

Mc521
 and Mc511

 , and Mc522
 and Mc121

 were planned for con-
current execution, Eq.  (45), where the movements are 
ordered along the rows (left to right) and columns (top 
to bottom) as: M0 , Mc031

 , Mc051
 , Mc052

 , Mc121
 , Mc341

 , Mc351
 , 

Mc411
 , Mc511

 , Mc521
 , Mc522

.

For the optimal movement-concurrency detailed above, 
the optimal allocation of the n∗

S
= 15 support robots to the 

movements at hand was determined as Eq. (46), where 
the movements are ordered along the rows and columns 
as detailed above.

(45)Q∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 1 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The optimal movement-concurrency and the optimal 
movement-allocation are shown graphically in Fig. 18, 
where the nodes with multiple movements represent move-
ments that are planned for concurrent facilitation.

As the final step, the paths of the support robots were 
planned to allow for collaboration with the worker robots 
through the tether-based motion control strategy, where 
the paths of the support robots are planned to form the 
shortest tethers for connecting the worker robots to the 
connectivity point at home base. Figure 19 illustrates 
example tethers formed for the connectivity of the swarm 
to the home base.

Robot Trajectory‑Planning

As the final step to mission-planning, the trajectories of 
all (worker and support) robots were planned based on the 
execution rules detailed in Section 4.5. These rules allow the 

(46)S∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 5 0 0 0 10 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 5 0 0 0

0 0 0 0 0 0 0 0 0 5 5

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 5

0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Fig. 17  Optimal sub-coalition paths for the optimal task-allocation 
shown in Fig. 16

Fig. 18  Optimal movement-concurrency and allocation for the 
worker paths shown in Fig. 17
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swarm robots to follow their planned paths, and to synchro-
nize their motion for effective collaboration.

For the optimal division-of-labor and the optimal mis-
sion plan of the worker and support robots, the planned 
trajectories achieved the task completion times shown in 
Table 2 below. In this example, the optimal mission-com-
pletion time, as found through the proposed concurrent 
methodology, was determined as tCC = 142s.

In contrast, the application of the sequential methodology 
resulted in a mission-completion time of tCS = 217s . This 
indicates an improvement of 35% for the proposed concur-
rent solution over the sequential one. As expected through 
the estimated improvement in Section 5.2.1, this is above 

the minimum user defined threshold. An animation of the 
mission execution for the plans found through the proposed 
concurrent and competing sequential planning methodolo-
gies can be found at https:// youtu. be/ gmM8D 8FWOc0.

For an in-depth analysis, let us examine the motion of the 
sub-coalition of 5 worker robots that leave task V5 and are 
allocated to task V2 . This sub-coalition is represented as c52 , 
and is shown through a52 of the optimal task-allocation solu-
tion, A∗ , Eq. (43), Fig. 16. The path of this sub-coalition was 
selected to visit task V1 when moving from V5 to V2 , 
p∗
pc52

=
{
V5,V1,V2

}
 , Eq. (44). This path is completed in two 

movements: Mc521
 and Mc522

 , respectively.
Movement Mc521

 was selected to be executed concur-
rently with the movement of sub-coalition c51 from V5 to 
V1 , Mc511

 , Eq. (45), Fig. 18. These two movements begin 
as soon as V5 is completed at t = 62s , and the associated 
workers, part of sub-coalitions c52 and c51 , arrive at V1 at 
t = 95s . The movements require five support robots. The 
path of these support robots as they concurrently facilitate 
movements Mc521

 and Mc511
 is shown in Fig. 20(a).

Fig. 19  Tethers for connectiv-
ity to the worker robots at (a) 
tasks V

4
 and V

5
 , and (b) tasks V

1
 

and V
2

(a) (b)

Table 2  Task start and end times for executing the mission in Fig. 15

Task V
1

V
2

V
3

V
4

V
5

Start time (s) 97 127 20 51 52
End time (s) 107 142 30 61 62

Fig. 20  Path of the support 
robots as they execute move-
ments (a) M

c
52
1
 and M

c
51
1
 

concurrently, and (b) M
c
52
2
 and 

M
c
12
1
 concurrently. The final 

position of the worker robots for 
the associated sub-coalitions, 
c
52

 and c
51

 , and sub-coalitions 
c
52

 and c
12

 , respectively, are also 
shown

(a) (b)
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The second movement of sub-coalition c52 , Mc522
 , is planned 

to be concurrently executed with the movement of sub-coalition 
c12 from V1 to V2 , Mc121

 , Eq. (45), Fig. 18. Thus, the worker 
robots of c52 must wait until V1 is completed at t = 107s , before 
they can begin moving to their next task, V2 . Movements Mc522

 
and Mc121

 begin at t = 107s , and the associated worker robots 
reach task V2 at t = 127s . The movements require 10 support 
robots. The path of these support robots used to concurrently 
facilitate these two movements is shown in Fig. 20(b).
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