
Journal of Intelligent & Robotic Systems (2023) 107:57
https://doi.org/10.1007/s10846-023-01848-9

SHORT PAPER

Hierarchical Real-Time Optimal Planning of Collision-Free Trajectories
of Collaborative Robots

Dalibor Lukáš1 · Tomáš Kot1

Received: 9 June 2022 / Accepted: 3 March 2023 / Published online: 21 April 2023
© The Author(s) 2023, corrected publication 2023

Abstract
In collaborative robotics the manipulator trajectory has to be planned to avoid collisions, yet in real-time. In this paper we
pose the problem as minimization of a quadratic functional among piecewise linear trajectories in the angular (joint) space.
The minimization is subjected to novel nonlinear inequality constraints that simplify the original non-penetration constraints
to become cheap to evaluate in real time while still preserving collision-avoidance. The very first and most critical step of
the computation is to find an initial trajectory that is free of collisions. To that goal we minimize a weighted sum of the
violated constraints until they become feasible or a maximal number of steps is reached. Sometimes an incremental growing
of the obstacle helps. By incremental growing we mean that we sequentially solve auxiliary subproblems with obstacles
growing from ground or falling from top and use as the initial trajectory the one optimized in the previous step. The initial
trajectory is then optimized while preserving feasibility at each step. We solve a sequence of simple-bound constrained
quadratic programming problems formulated in the dual space of Lagrange multipliers, which are related to the original
linearized inequality constraints that are active or close-to-active. Finally, we refine the trajectory parameterization and repeat
the optimization, which we refer to as an hierarchical approach, until an overall prescribed time limit, being well below a
second, is reached.

Keywords Real-time · Collision-free · Path planning · Hierarchical optimization method · Steepest-descent · Active-set ·
Inverse kinematics

1 Introduction

Collaborative robotics is an essential topic in the robotic
research [1]. A human operator is allowed to support the
robotic manipulator with some actions in the working envi-
ronment [2–4]. The sensoric system, typically depth cam-
eras [5], of the robotic manipulator announces a presence of
an obstacle. The control system has to be updated with a new
collision-free trajectory. This turns out to be a nontrivial task
especially as the new trajectory has to be available in much
less than a second, which we refer to as real-time.

There is a lot of algorithmic approaches, but basically
the problem is split into two. First of all we need to find a
feasible, i.e., collision-free trajectory. Secondly, the trajec-
tory is optimized with respect to energy, for instance. For

B Dalibor Lukáš
dalibor.lukas@vsb.cz

1 VŠB–Technical University of Ostrava, 17. listopadu 15, 708
00 Ostrava-Poruba, Czech Republic

the former task, which are referred to as planning problems,
variants of graph search algorithms are often employed to
arrive at a series of way-points [6, 7]. On the other hand opti-
mization problems or nonlinear integrators solve the latter
task to follow the way-points in an optimal manner [8–10].
When a real-time collision-free planning [11] is required the
graph or discrete planning algorithms become tricky to use
especially in case of a high-dimensional configuration space.
The main novelty of the present paper is to propose for such
higher-dimensional problems a new fast planning algorithm
implemented in the C programming language. It relies on
tailored collision indicators. Additionally our algorithm is
adjusted with two novel strategies: an incremental growing
of obstacles and a hierarchical expansion of trajectory control
points.

Prior to trajectory planning the inverse kinematics [12, 13]
and dynamics [14, 15] of the robotic manipulator is treated.
The manipulators may have more degrees of freedom (DOF)
than necessarry, which can make the collision-free trajectory
planning easier. However, one has to additionally treat singu-

0123456789().: V,-vol 123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10846-023-01848-9&domain=pdf

57 Page 2 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

lar solutions. In case theDOFs are defined in joints the inverse
kinematic problem can be seen as finding real-valued roots of
a matrix polynomial. Unfortunately, the numerical stability
is not guaranteed. When studying such a system, namely the
inverse kinematics of the UR3 manipulator, in this paper we
develop a geometric insight into the structure of the roots.
To our best knowledge these particular derivations have not
been published in literature yet.

The rest of the paper is organized as follows: In Section
2 we put our work in the context of existing approaches.
In Section 3 we give a novel and computationaly stable
geometric derivationof inverse kinematics of theUR3manip-
ulator. In Section 4 we set the optimal trajectory problem
while presenting a novel collision indicators (constraint func-
tions) that are efficient in the sense that the gradient methods
can escape from collisions easily and these collision indi-
cators are fast to evaluate at the same time. In Section 5
we present a collision-free planning algorithm relying on
the steepest-descent method, a novel incremental growing of
obstacles, and a novel hierarchical optimization strategy. We
give numerical validations in Section 6 such that for each
given starting and goal positions of the effector an optimized
collision-free trajectory is found at 273milliseconds at latest.
The paper is concluded in Section 7.

2 RelatedWork

The first part of our paper presents a novel geometric insight
into inverse kinematic solutions of a 6-DOF robotic manip-
ulator UR3. We arrive at new analytic formulae that are
numerically stable. In literature the systems comprising of
joint DOFs are most frequently solved numerically via find-
ing roots of a matrix polynomial. Many methods rely on the
Lyapunov stability theory [16]. In [17] the authors employ
the Levenberg-Marquart method. Avoiding self-collisions is
treated in [18]. Parameterized classes of inverse kinematic
solutions for redundant robots are searched for in [19, 20].
In [21] the inverse kinematics is tailored to a problem of
optimal spraying.

The key part of the collision-avoidance system is the
optimal trajectory planning algorithm. First of all an ini-
tial feasible trajectory has to be found. Among the most
frequently used approaches there are variants of graph algo-
rithms such as a D∗-algorithm [22] or an L∗-algorithm [23],
which is a linear complexity counterpart to the more tra-
ditional A∗-algorithm. Here edges in the graph represent
feasible paths between way-points being the graph vertices.
Thesemethods aremostly efficient in the 2-dimensional (2D)
motions of robotic vehicles. In higher-dimensional configu-
ration spaces such as 6D in our case, the approach is hardly
effective in the real-time regime. Another class of methods
that is less effective in higher-dimensions rely on rapidly-

exploring random trees [24]. On the other hand among the
methods that are efficient in higher dimensions there is a
class of potential field methods [20, 25–27], in which an arti-
ficial potential is introduced such that the trajectory fixed at
the start is attracted to the goal and repeled from the obsta-
cles at the same time. In terms of optimization methods [28]
this is a penalty approach. A drawback is that it does not
always guarantee a collision-free trajectory, inwhich case the
repulsive forces have to be strenghtened. Similar approaches
rely on modelling the potential field by the finite element
method [29] or by the level-setmethod [30].Note that at some
specific setups one can develop a geometric approach [31, 32]
to the trajectory planning. The abovementionedmethods can
be combined with stochastic approaches [33, 34] and neural
networks [19, 35, 36].

In case the optimization function can be well approxi-
mated by a quadratic function the Newton methods [20, 37]
become very efficient as they converge with a quadratic rate
and they allow for a bigger trajectory changes towards the
optimum. TheNewtonmethods are further used successively
in the class of sequential convex or quadratic programming
algorithms [19, 38, 39]. The tricky part of the algorithms is
the treatment of collisions. In [40, 41] the authors develop
a class of interior point methods, where the collision con-
straints are penalized via so-called barrier functions, which
suffer from ill-conditioning and also from the fact that the
constraints might be slightly violated similarly to the artifi-
cial potential methods. In this paper we opt for an active-set
approach, where the feasibility of the trajectory is preserved
at each iteration. For a survey of the planning algorithms we
refer to [42].

To our best knowledge not many papers are devoted to
development of efficient collision indicators meaning that
their gradients lead to a fast escape from the collision. This
is one of the main topics in the present paper. We rely our
collision indicators on a fast approximation formulae for the
penetration distance and penetration volumes ofmutual inter-
sections of cylinders and intersections of cylinders and voxels
representing obstacles. A related approach in literature can
be found in [22], where the surfaces are covered with point
clouds and interactions of their bounding boxes is treated in
a hierarchical approach using binary trees. Similarly in [43]
the bodies are approximated by series of spheres.

Important task for the trajectory planning is the trajec-
tory parameterization. Having in mind a subsequent optimal
path following, smooth trajectories such as Bézier curves
[37, 44, 45] are preferable. Here the principal question is how
many control parameters we shall take. The more we take
the closer to the optimum we get, however, the more com-
putational time it spends. Therefore, hierarchical approaches
are benefitial. In [46] information about obstacles is updated
using a multi-resolution wavelet basis. In [47] the large opti-
mality systems to be solved is replaced by a hierarchy of

123

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 3 of 14 57

subsystems, where the obstacles are included successively.
Similarly, in [48] the successive optimal subproblems alter-
nate among incorporation of single obstacles. In this paperwe
rely on a hierarchy of trajectory parameterizations.We search
for deformations of sub-optimal trajectories from a previous
step. Such deformations were presented in [49] without a
hierarchical approach.

Though it is not the subject of this paper for the sake
of completeness we shall mention some work devoted to a
large and important area of optimal path-following. Here an
optimal control problem is solved such that a given feasible
trajectory is followed in the most efficient way when consid-
ering the robot dynamics. One typically aims at a minimum
energy consumption and a minimum torque in joints. We
refer to the seminal paper [8], where the unconstrained prob-
lem is introduced, and to [9], where collisions are taken into
account. We refer to [50] for an actual survey.

3 Inverse Kinematics of Robotic
Manipulators

3.1 Planar Two-ArmManipulator

The planar two-arm manipulator is the very fundamental
setup, which is worth recalling here. We denote the lengths
of arms by a1 and a2 and the respective rotational degrees of
freedomby θ := (θ1, θ2) as depicted in Fig. 1 (left). The posi-
tions of arm end-points are denoted by x(1) and x(2) := x.
They are computed by the simple means of the following
forward kinematics:

x := a1

(
cos θ1
sin θ1

)
︸ ︷︷ ︸

=:x(1)

+a2

(
cos(θ1 + θ2)

sin(θ1 + θ2)

)
. (1)

For a given position x the inverse kinematics computes
the angles θ1 and θ2. It relies on the law of cosines, see

Fig. 1 (left),

α = arccos

(
‖x‖2 + a21 − a22

2a1‖x‖

)
,

β = arccos

(
a21 + a22 − ‖x‖2

2a1a2

)
. (2)

Provided that x is reachable, i.e., ‖x‖ ≤ a1 + a2, we get
the so-called lefty (L) and righty (R) solutions

θL1 :=γ +α, θL2 :=β − π, θR1 :=γ − α, θR2 :=π − β, (3)

where γ := arg(x1 + ı x2). Though the inverse kinematics
returns 0, 1 (in case ‖x‖ = a1 + a2), or 2 solutions, we
simplify its notation to IK2 : R2︸︷︷︸

�x
→ R2︸︷︷︸

�θ

, see Fig. 1 (left),

{θL, θR} := IK2(x) := IK2(a1, a2, x). (4)

3.2 Planar Three-ArmManipulator

Consider a planar three-arm manipulator of the arm lengths
a1, a2, and a3 with the rotational degrees of freedom θ :=
(θ1, θ2, θ3), respectively, as depicted in Fig. 1 (right). The
kinematics of the arms is denoted by x(1), x(2), and x, respec-
tively, and it is computed as follows:

x := a1

(
cos θ1
sin θ1

)
︸ ︷︷ ︸

=:x(1)

+a2

(
cos(θ1 + θ2)

sin(θ1 + θ2)

)

︸ ︷︷ ︸
=:x(2)

+a3

(
cos θ

sin θ

)
, (5)

where θ := θ1 + θ2 + θ3.
Now the inverse kinematics has θ as a parameter, which is

actually prescribed as the direction, where the effector should

Fig. 1 Planar two-arm (left) and
three-arm (right) manipulators

123

57 Page 4 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

point to. Hence the position and angle of the third arm is
given and we arrive back at the inverse kinematics of a two-
arm manipulator. As a mapping the inverse kinematics may
again return 0 (in case ‖x‖ > a1 + a2 + a3), 1 (in case
‖x‖ = a1 + a2 + a3), or 2 (in case ‖x‖ < a1 + a2 + a3)
solutions, which we simplify to IK3 : R2︸︷︷︸

�x
× R︸︷︷︸

�θ

�→ R
3︸︷︷︸

�θ

.

The evaluation reads as follows:

(
θ
L/R
1

θ
L/R
2

)
:= IK2

(
a1, a2, x − a3

(
cos θ

sin θ

))
,

θ
L/R
3 := θ −

(
θ
L/R
1 + θ

L/R
2

)
. (6)

3.3 Universal Robot UR3

Finally, we consider a 5-arm manipulator with 6 degrees of
freedom as depicted in Fig. 2. We denote the arm lengths
by ai > 0, i = 1, 2, . . . , 5 and the degrees of freedom
by θ1, θ2, . . . , θ6, which are rotations at joints. Addition-
ally, there are three axial displacements d2, d3, d4 > 0 of
the vertical arms and we denote the total displacement by
d := d2 − d3 + d4, which is assumed to be positive. At each
joint ι ∈ {1, 2, . . . , 5} we introduce a local orthogonal coor-
dinate system described by unit vectors i ι, j ι, kι ∈ R

3. The
kinematics is computed by the following sequence of formu-
lae for the arm end-points and transformations of the local

Fig. 2 Universal robot UR3

coordinate systems see also Fig. 2 (right):

i1 :=
⎛
⎝00
1

⎞
⎠ , j1 :=

⎛
⎝01
0

⎞
⎠ , k1 :=

⎛
⎝−1

0
0

⎞
⎠ ,

x1 := a1 i1, (i2, j2,k2)=(i1, j1,k1) ·
⎛
⎝1 0 0
0 cos θ1 − sin θ1
0 sin θ1 cos θ1

⎞
⎠

︸ ︷︷ ︸
=:R23(θ1)

,

x2 := x1 + d2 k2︸ ︷︷ ︸
=:x2d

+a2 (i2, j2) ·
(
cos θ2
sin θ2

)
︸ ︷︷ ︸

=:r(θ2)

, (i3, j3,k3)

= (i2, j2,k2) · R12(θ2),

x3 := x2 − d3 k3︸ ︷︷ ︸
=:x3d

+a3 (i3, j3) · r(θ3), (i4, j4,k4)

= (i3, j3,k3) · R12(θ3),

x4 := x3 + d4 k4︸ ︷︷ ︸
=:x4d

+a4 (i4, j4) · r(θ4), (i5, j5,k5)

= (i4, j4,k4) · R12(θ4),

x := x4 + a5 (k5,−j5) · r(θ5). (7)

Obviously, the last degree of freedom θ6, the rotation of
Joint6, see Fig. 2 (right), does not influence the kinematics
unless the robotmanipulates an axially nonsymmetric object.
Nonetheless, throughout this paper we shall not consider θ6
any longer. The degrees of freedomof our interest are denoted
by θ := (θ1, θ2, . . . , θ5) ∈ R

5.
As for the inverse kinematics, we proceed in three steps.

First of all, we resolve the fifth arm and θ1. Given the effector
position x and the unit directional vector v (effector orien-
tation), the fifth arm is determined, x4 := x − a5 v. We
project x4 onto the plane ρ perpendicular to the direction
k2 := k3 := k4 := k5 := (− cos θ1,− sin θ1, 0) of axial
displacements d2, d3, d4, see Fig. 3 (left),

ρ := span

⎛
⎝ j2 :=

⎛
⎝− sin θ1

cos θ1
0

⎞
⎠ , i2 :=

⎛
⎝00
1

⎞
⎠
⎞
⎠ . (8)

The projection reads xρ
4 := x4 −d k2 and xρ

4 ∈ ρ implies
the complex-valued equation (rather than the real system) to
be solved for η, which is an auxiliary variable and θ1,

(x4)1 + ı(x4)2︸ ︷︷ ︸
=:|̂x4| eıα

+d eıθ1︸︷︷︸
k2

= η eı(θ1+π/2)︸ ︷︷ ︸
j2

. (9)

123

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 5 of 14 57

Fig. 3 Determining of the
fourth arm of UR3 (left),
determining the remaining arms
in the plane ρ (right)

Provided d ≤ |̂x4|, we get the following two branches of
solutions:

θ±
1 := α ± arccos

(
− d

|̂x4|
)

, (10)

where |̂x4| :=
√

(x4)21 + (x4)22 and α := arg((x4)1 +
ı(x4)2).

Secondly, we resolve the fourth arm by observing that its
direction i4 = i5 is orthogonal to v as well as to the axial
displacement direction k±

2 . The latter implies that i4 ∈ ρ,
which together with v⊥i4 gives the two additional branches
of solutions,

i±,+
4 := −(v · i1)k±

2 + (v · k±
2)i1, i±,−

4 := −i±,+
4 , (11)

recalling i1 := (0, 0, 1). Hence, we get up to four projections
of x3 onto ρ,

xρ,p,q
3 := xρ,p

4 − a4 i
p,q
4 , (12)

where p, q ∈ {+,−}. This determines the angle

θ
p,q
5 := arg((v · kp

5) − ı(v · j p,q5)), (13)

where j p,q5 := kp
5 × i p,q5 .

Finally, θ2 and θ3 can be determined from the inverse kine-
matics of the two-arm planar system in ρ, see Fig. 3 (right).
We shift the origin to a1 i1 and express xρ,p,q

3 in the coordi-
nate system i2 := i1 and j p2 ,

x̃ρ,p,q
3 :=

(
(xρ,p,q

3 − a1 i1) · i2
(xρ,p,q

3 − a1 i1) · j p2

)
. (14)

We have

(
θ
p,q,r
2

θ
p,q,r
3

)
:= IK2(a2, a3, x̃

ρ,p,q
3), (15)

where r ∈ {L,R}. The remaining angle can be computed in
ρ as follows:

θ
p,q,r
4 := arg

(
(xρ,p

4 − xρ,p,q
3) · i p,q,r

4 + ı(xρ,p
4 − xρ,p,q

3) · j p,q,r
4

)
,

(16)

where i p,q,r
4 := cos(θ p,q,r

23) i2 + sin(θ p,q,r
23) j p2 , j p,q,r

4 :=
− sin(θ p,q,r

23) i2 + cos(θ p,q,r
23) j p2 , θ

p,q,r
23 := θ

p,q,r
2 + θ

p,q,r
3 .

To conclude the inverse kinematics of UR3 can be repre-
sented as the mapping IKUR3 : R

3︸︷︷︸
�x

× R
3︸︷︷︸

�v

→ R
5︸︷︷︸

�θ

,

θ p,q,r := IKUR3(x,v) := IKUR3(a1,a2,a3,a4,a5,d,x,v),

(17)

where ‖v‖ = 1, p, q ∈ {+,−}, r ∈ {L,R}. In general, there
could be either of 0, 1, 2, 4, or 8 solutions.

4 Optimal Collision-Free Trajectory Problem

Given a starting joint position θ start and ending position
and orientation of the effector, xstop and vstop, first of all
the related ending degrees of freedom are computed by
the inverse kinematics θ stop := IKUR3(xstop, vstop) so that
we do not switch between the branches unless necesarry.

123

57 Page 6 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

The optimal unconstrained trajectory is the straight line
θ line(t) := θ start + t (θ stop − θ start), t ∈ [0, 1]. In case of
collision we shall search for an as short as possible collision-
free curve.

The parameter domain [0, 1] is decomposed into n + 1
equidistant intervals, over which continuous piecewise linear
trajectories are considered so that the straight line is perturbed
in a normal direction as depicted in Fig. 4.

The normal directions are spanned by the 4-dimensional
space

span (n1, . . . , n4)︸ ︷︷ ︸
=:N∈R5×4

= Null
(
θ stop − θ start

)
, (18)

where ‖ni‖ = 1. The trajectories pass n break-points and
they read

θ(t)(p) := θ start + t (θ stop − θ start)︸ ︷︷ ︸
=θ line(t)

+
n∑

i=1

ϕi (t) N · pi , (19)

where the vector p := (p1, . . . , pn) ∈ R
4n to be optimized

describes perturbations of θ from the unconstrained opti-
mum θ line and where ϕi (t) are the continuous basis functions
that are piecewise linear along the discretization ti := i

n+1 ,

i = 0, 1, . . . , n + 1, with the step h := 1
n+1 , i.e., for

i = 1, 2, . . . , n,

ϕi (t) :=

⎧⎪⎨
⎪⎩

t−ti−1
h , t ∈ [ti−1, ti],

− t−ti+1
h , t ∈ [ti , ti+1],

0, elsehere.

(20)

We denote the 4n-dimensional vector space of the trajec-
tories by Tn .

Note that it is rather straightforward to change the non-
smooth piecewise linear basis functions to, e.g., cubic splines
or to globally smooth basis functions such as Lagrange poly-
nomials. They can be beneficial in terms of preserving a
continuous acceleration in joints.

Fig. 4 Piecewise linear parameterization of the trajectory

We solve the following nonlinearly constrained quadratic
programming problem:

p∗ := (p∗
1, . . . , p

∗
n) := arg min

p∈[− 5
6π, 56π]4n :

g(θ(t)(p))≤0

‖ p‖2, (21)

where the bounds ± 5
6π are construction limits of joints and

where g : Tn → R
m is the constraint function that avoids

collisions.

4.1 Constraints Avoiding Collisions

The constraint g(θ(t)(p)) ≤ 0 avoids mutual collisions of
arms, collisions of arms with a horizontal workspace con-
struction, towhichwe further refer to as theground, collisions
of arms and joints with a vertical workspace construction,
and collisions of arms and joints with voxels representing the
obstacle. Namely, referring to Fig. 2, we consider m := 20
constraints gi as follows:

• Constraints i = 1, 2, 3 avoid collisions of Arm1 with
Arm4, Arm1 with Arm5, and Arm2 with Arm5.

• Constraints i = 4, 5, 6, 7 avoid collisions of Arm2,
Arm3, Arm4, and Arm5 with the ground
G := {(x1, x2, x3) ∈ R

3 : x3 ≤ 0}.
• Constraints i = 8, 9, 10, 11 avoid collisions of Arm3,

Joint3, Arm4, and Arm5 with the left quadrant QL :=
{(x1, x2, x3) ∈ R

3 : x1 ≤ −q1 and x2 ≥ q2}, where
q1, q2 > 0 describe positions of two fixed vertical pillars
holding the system of cameras. The left pillar is installed
at (−q1, q2).

• Constraints i = 12, 13, 14, 15 avoid collisions of Arm3,
Joint3, Arm4, and Arm5 with the right quadrant QR :=
{(x1, x2, x3) ∈ R

3 : x1 ≥ q1 and x2 ≥ q2}, see the pre-
vious item. The right pillar is installed at q := (q1, q2),
symmetrically (with respect to the plane x2 = 0) to the
left pillar.

• Constraints i = 16, 17, 18, 19, 20 avoid collisions of
Arm2, Arm3, Arm4, Arm5, and Joint3 with voxels rep-
resenting the obstacle.

Other collisions do not need to be considered due to the
dimensions of the universal robot UR3 and the workspace
as described in Section 6.

Notice that arms as well as joints are represented by their
cylindrical envelops. The joints the collisions of which do
not need to be indicated by a collision of connected arms are
Joint2, Joint3, and Joint4. They are exactly those related to
axial displacements d2, d3, d4 that have not played a role in
the inverse kinematics, but they do so now.

To our best knowledge there is no analytic procedure to
evaluate collisions of θ(t) for all t ∈ [0, 1]. Therefore we

123

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 7 of 14 57

discretize the trajectory parameter interval into N equidistant
subintervals and consider the constraints at the worst-case
discrete parameter as follows:

gi (θ(t)(p)) := max
j∈{0,1,...,N } g̃i (θ(j/N)(p)), (22)

where g̃i : R5 → R.

4.1.1 Mutual Collisions of Arms

We prescribe the constraint as an approximate depth of the
penetration of the two arms as follows:

g̃i := r j + rk − dist(S j , Sk), (23)

where S j , Sk are the axes (segments) and r j , rk are the radii
of the cylindrical arms. Notice that this approximation of
the penetration depth is a strong indicator meaning that it
always indicates the true penetration but it can also indicate
a false penetration, see Fig. 5 (left). On the other hand it
is very cheap to evaluate, which is desired in the real-time
optimization. An exact indicator would rely on computing
the volume of intersection of the cylinders, which would be
computationally demanding.

4.1.2 Collisions of Arms with the Ground

The constraint is prescribed as an approximate depth of the
penetration of the arm with the plane x3 = 0 (the ground) as
follows:

g̃i := r − min
t∈[0,1]{a3 + t (b3 − a3)}, (24)

where a3, b3 are the vertical (third) coordinates of the arm
end-points and r is the radius. Again, this constraint also
gives positive false indications of collisions, see Fig. 5 (right),
but it is cheap to evaluate hence proper for the real-time

optimization. An exact constraint would evaluate the volume
of intersection of the cylinder with the ground, which would
be computationally demanding.

4.1.3 Collisions of Arms and Joints with the Quadrants

The constraint approximates the depth of the penetration
of an arm or joint with a quadrant. Consider the horizon-
tal projection of the arm/joint axis, S := {(x1, x2) :=
(a1, a2) + t(b1 − a1, b2 − a2) ∈ R

2 : t ∈ [0, 1]} with the
axis end-points a, b ∈ R

3, the radius r , and the first quadrant
Q := {(x1, x2) ∈ R

2 : x1, x2 ≥ 0}. We define the level-set
function

�(S, Q) :=
⎧⎨
⎩
dist(S, Q), S ∩ Q = ∅,

− max
x∈S∩Q

min{x1, x2}, S ∩ Q = ∅.
(25)

The constraint avoiding penetration with the right quad-
rant QR := (q1.q2)︸ ︷︷ ︸

=:q
+Q reads

g̃i := r − �(S + q, Q), (26)

while the one avoiding penetration with the left quadrant
QL := {(x1, x2) ∈ R

2 : x1 ≤ −q1, x2 ≥ q2} reads

g̃i := r − �(S′ + q, Q), (27)

where S′ := {(−x1, x2) ∈ R
2 : (x1, x2) ∈ S}. An exact

constraint would evaluate the volume of intersection of the
cylinderwith the quadrants, whichwould be computationally
demanding.

4.1.4 Collisions of Arms and Joints with the Obstacle

This constraint approximates the depth-times-volumeof pen-
etration of an arm or joint into the voxels representing the

Fig. 5 Mutual collisions of
arms (left), collisions of an arm
with the ground (right)

123

57 Page 8 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

obstacle. The product of depth and volume turned out to
resolve more collisions than the single depth constraint,
like 23 and 24, or the single volume constraint. The voxels
are received from cameras and they typically envelop hands
of a human operator. Consider a cylindrical arm/joint S deter-
mined by radius r and axial end-points a, b. Further, consider
the union � of all the voxels. We compute the constraint in
the following four steps:

1. Detect voxels boundary := ∂�. It collects those square
voxel faces that are not shared with another voxel. This
step has a quadratic complexity in terms of numbers
of voxels, but it is performed only once per evaluation
of g.

2. Replace each cylinder with a box envelop determined by
four edges

x±i (t) := a ± √
2r ni + t(b − a), t ∈ [0, 1], (28)

where ni , i = 1, 2, is an orthonormal basis of Null(n3),
where n3 := (n31, n

3
2, n

3
3) := (b − a)/‖b − a‖.

This can be generally discontinuous with respect to
n3, but we make it (including all partial derivatives)
continuous almost everywhere by the use of spheri-
cal coordinates. Namely, we determine the polar ϑ and
azimuthal ϕ angles of n3 i.e. ϑ := arg(n31 + ın32) and
ϕ := arccos(n33). Then we apply the spherical trans-
formation to (0, 1, 0) and (0, 0, 1) to arrive at n1 :=
R13(ϕ) · R12(ϑ) · (0, 1, 0)T and n2 := R13(ϕ) · R12(ϑ) ·
(0, 0, 1)T , respectively. Indeed, the resulting mapping
n3 �→ (n1, n2) is continuous up to the two directions
n3 = (0, 0,±1).

3. Compute intervals of penetrations of the four edges x±i (t)
into �,

I±i := I±i
1 ∪ · · · ∪ I±i

N±i ⊂ [0, 1]. (29)

This is done by computing all intersection points of
x±i (t) with and sorting them along the parameter t .
The consecutive pairs of the sorted parameters deter-
mine intervals inside, which are of our interest, and
outside �.

4. Compute the constraint by summing up penetrations of
the four edges

g̃i :=

⎧⎪⎪⎨
⎪⎪⎩
r2

∑
k∈{+1,−1,+2,−2}

Nk∑
j=1

|I kj | dist(xk (tkj),),
⋃

k∈{+1,−1,+2,−2}
I k = ∅,

r − dist(S,), elsewhere,

(30)

where |I kj | is the length of I kj and tkj is the mid-point of I kj .

5 Hierarchical Active-Set
OptimizationMethod

5.1 Finding an Initial Collision-Free Trajectory

The first and most crucial step is to find a feasible trajectory.
A natural idea would be to search for a feasible polygonal
trajectory in the 5-dimensional space of joint degrees of free-
dom. However, the global search suffers from an exponential
computational complexity. Hence we rely on the following
local search algorithm: Given a (zero) non-feasible initial
trajectory p0, we proceed the steepest-descent iterations

pk+1 := pk + αk dk (31)

until pk+1 is feasible or k, and hence computational time,
reaches a given maximum. The descent direction is the neg-
ative weighted gradient of non-feasible constraints,

dk := −
∑

i :gi (pk)≥0

gi (pk)∇gi (pk), (32)

and αk is computed by the line-search (bisections) method

αk := arg min
α≥0:

pk+αdk∈[− 5
6π, 56π]

max
i :gi (pk)≥0

gi (pk + αdk). (33)

The bisection starts at the maximal feasible

αk
0 := arg max

α≥0:
pk+αdk∈[− 5

6π, 56π]

α. (34)

If we do not succeed we adopt an incremental grow-
ing of the obstacle, represented by the voxels, from the
ground as sketched in Fig. 6. First of all we find the max-
imal vertical coordinate x3 := arg maxx∈�x3. Starting at the
unconstrained optimum p := 0, we solve a sequence of M
problems to find a feasible trajectory by algorithm 31, 32, 33,
while incrementaly growing the obstacle � as follows:

�m := � − M − m

M
x3

⎛
⎝00
1

⎞
⎠ , m = 1, 2, . . . , M . (35)

The feasible path of the m-th problem is a starting point
to the (m + 1)-st problem. If we still do not succeed, we let
the obstacle fall from the top as follows:

�m := � + 2M − m

M
x3

⎛
⎝00
1

⎞
⎠ ,

m = M + 1, M + 2, . . . , 2M . (36)

123

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 9 of 14 57

Fig. 6 Incremental growing of
the obstacle from the ground

5.2 Optimization

After we find a collision-free trajectory, denoted again by p0,
g(p0) ≤ 0, we finally continue to optimize it. We solve the
nonlinearly constrained quadratic programming problem 21
approximately (numerically) by means of the presented opti-
mization algorithms. We employ the sequential quadratic
programming and the active-set approach, the iterations of
which read

pk+1 := pk + αk δk, αk := arg maxα
α∈(0,1]:

pk+δk∈[− 5
6π, 56π]

g(pk+αδk)≤0

, (37)

where the following quadratic programming subproblem is
solved:

δk := arg min
gA(pk)+(Gk

A)T ·δ=0
‖ pk + δ‖2. (38)

The constraintmatrixGk
A comprises of columns∇gi (pk),

i ∈ A, at active or close-to-active indices. These are chosen
at the 10% level of the maximal constraint, i.e.,

A :=
{
i ∈ {1, . . . ,m} : − 1

10
max j∈{1,...,m}|g j (pk)| ≤ gi (pk) ≤ 0

}
.

(39)

Moreover, linearly dependent columns of Gk
A are

removed. Hence, 38 is a well-posed linear saddle-point prob-
lem that reads as follows:

(
I Gk

A
(Gk

A)T 0

)
·
(

δk

λk

)
=
(

pk

−gA(pk)

)
. (40)

The latter admits the solution

δk = − pk − Gk
A
(
(Gk

A)T · Gk
A
)−1

·
(
gA(pk) − (Gk

A)T · pk
)

. (41)

5.3 Hierarchical Optimization

For higher numbers of trajectory break points n, i.e., higher
dimensions 4n, finding a feasible design and its optimization
become difficult. Therefore we employ the idea of multigrid
methods [51] to solve the problem through a nested hierarchy.
At the initial level l := 1 we start with n(1) := 1 and the
unconstrained optimum p(1)

0 := 0. The resulting, so-called

triangular, trajectory p(1)∗ , no matter whether it is feasible
or not, is taken as the initial guess p(2)

0 at the next level
l := 2. We introduce two additional break points as depicted
in Fig. 7, hence n(2) := 3. The process continues at this level
and we arrive at the, so-called pentagonal, trajectory p(2)∗ .
The latter is interpolated to the next level l := 3, n(3) := 7,
where we stop. The resulting trajectory is called nonagonal.
The interpolations satisfy θ (l+1)(t)(p(l+1)

0) = θ (l)(t)(p(l)∗).
For our choice of basis functions 20we arrive at the following
interpolation matrices P (1,2) and P (2,3):

p(2)
0 :=

⎡
⎣
⎛
⎝1/21
1/2

⎞
⎠⊗ I

⎤
⎦

︸ ︷︷ ︸
=:P (1,2)

· p(1)∗ ,

Fig. 7 Hierarchical optimization

123

57 Page 10 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

p(3)
0 :=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

1/2 0 0
1 0 0
1/2 1/2 0
0 1 0
0 1/2 1/2
0 0 1
0 0 1/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⊗ I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
=:P (2,3)

· p(2)∗ (42)

where I is the 4-by-4 identity matrix and ⊗ is the Kronecker
product meaning that each entry of the matrix on the left
is multiplied with I . The columns (. . . , 1/2, 1, 1/2, . . .)T

are coordinates (shapes) of the basis functions ϕ
(l)
i (t) with

respect to the next-level basis (ϕ
(l+1)
j (t))n

(l+1)

j=1 .

6 Numerical Experiments

First of all we shall determine the sizes of the UR3 manipu-
lator and parameters of the optimization problem 21. In the
following all the sizes are in meters and the degrees of free-
dom are in radians. The parameters of UR3 are as follows:

a1 := 0.1585, a2 := 0.24355, a3 := 0.2132,

a4 := 0.08535, a5 := 0.0921. (43)

The axial displacements of UR3 are

d2 := 0.12, d3 := −0.093, d4 := 0.10405. (44)

The upper bound to the radius of all the cylindrical arms
and joints is r := 0.055. The constraint function 22 is evalu-
ated at N + 1 time instances, where N := 20. The quadrant
QR is placed at q := (0.43, 0.2).

The steepest-descent optimization algorithm relies on for-
ward numerical derivatives with the step 10−6 (radians). The
number of steps of the incremental growing is M := 10.

We illustrate performance and behaviour of the algorithm
on a model situation depicted in Fig. 8.

We consider the following joint coordinates (in radians)
of the manipulator:

θ start :=

⎛
⎜⎜⎜⎜⎝

−0.5297
−1.1799
−0.7909
0.4001
1.5708

⎞
⎟⎟⎟⎟⎠ , θ stop :=

⎛
⎜⎜⎜⎜⎝

0.9521
−1.0796
−1.0071
0.5160
1.5708

⎞
⎟⎟⎟⎟⎠ , (45)

Fig. 8 Starting (left) and ending (right) configurations of UR3 and the
cubic obstacle discretized into 64 voxels

where the latter corresponds to the ending position of the
effector

xstop :=
⎛
⎝ 0.3195

−0.3884
0.0694

⎞
⎠ , vstop :=

⎛
⎝−1

0
0

⎞
⎠ . (46)

The obstacle G is a cube, discretized into 43 = 64 voxels,
which is placed at the center at c := (−0.075,−0.6, 0.325).
The size of the cube edges is 0.2. The cube is situated parallel
to the coordinate system.

In Tab. 1 we give results of numerical simulations for the
following27 shifts of the center ofG, where the factor 0.1 [m]
is a relative shift of the obstacle that was chosen to simulate
as many collisions as possible:

c+ 0.1 (ix , iy, iz), ix , iy, iz ∈ {−1, 0, 1}. (47)

In all these simulation the algorithm found an optimal
trajectory unless there was a collision with the obstacle at
the ending time instance tstop := 1, which was indicated in
less than a millisecond. In some cases the straight line was
free of collisions, which was indicated at 1 millisecond. In
the other cases typical total computational timewas in tens of
milliseconds if there was no change of the inverse kinematics
branch and below 300 milliseconds if there was a change of
the branch.

The first column of Table 1 indicates the shift of the
obstacle center. The second column displays whether the
optimization succeeded or not and for which inverse kine-
matic configuration of θ stop. The configuration 0 denotes
the unchanged branch. At some cases the branch had to be
changed to the second (nearest to unchanged) one, whichis

123

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 11 of 14 57

Table 1 Results of the
numerical experiments

(ix , iy, iz) solution growing steps level feas. optim. total
config.: result m l iters. iters. time [ms]

(−1,−1,−1) 0: fail 3,3,3/19,19,19

1: success no need 1 1 7 183

(−1, 0,−1) 0: success no need 1 1 3 49

(−1, 1,−1) 0: fail collision at end 0

(0,−1,−1) 0: success no need 1 1 3 46

(0, 0,−1) 0: success no need 1 1 1 38

(0, 1,−1) 0: fail collision at end 0

(1,−1,−1) 0: success no need 1 1 1 37

(1, 0,−1) 0: success 10/- 1 3 0 59

(1, 1,−1) 0: fail 3,3,3/18,18,18

1: success 7,10/- 2 2 3 216

(−1,−1, 0) 0: success straight line 1

(−1, 0, 0) 0: fail 2,2,2/20,20,20

1: success 6,10/- 2 2 5 192

(−1, 1, 0) 0: fail collision at end 0

(0,−1, 0) 0: success straight line 1

(0, 0, 0) 0: success 10/- 1 3 0 45

(0, 1, 0) 0: fail collision at end 0

(1,−1, 0) 0: success straight line 1

(1, 0, 0) 0: fail 2,2,2/20,20,20

1: success 6,10/- 2 2 4 195

(1, 1, 0) 0: fail 2,2,2/20,20,20

1: success 5,10/- 2 3 2 273

(−1,−1, 1) 0: success straight line 1

(−1, 0, 1) 0: success straight line 1

(−1, 1, 1) 0: fail collision at end 0

(0,−1, 1) 0: success straight line 1

(0, 0, 1) 0: success straight line 1

(0, 1, 1) 0: success straight line 1

(1,−1, 1) 0: success straight line 1

(1, 0, 1) 0: success straight line 1

(1, 1, 1) 0: success straight line 1

Fig. 9 Examples of a real
collision-avoidance in our
in-house digital-twin system

123

57 Page 12 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

denoted by 1. A change to the third branch has never hap-
pened. In the third column we depict the number m of
growing steps from the ground and from the top. For instance
the entry ’3,3,3/19,19,19’ means that the algorithm failed at
step m := 3 of the growing from the ground 35 at all the
levels l = 1, 2, 3 as well as it failed at step m := 19 of the
growing from the top 36 at all the levels l = 1, 2, 3. Recall
that M := 10. If the algorithm found a feasible path without
the growing it is indicated by ’no need’. The entry ’7,10/-’
indicates that the algorithm failed with the growing from the
ground at step m := 7 at level l = 1, but then it succeeded
at level l = 2 so that the growing from the top was not
needed, which is indicated by that ’-’. In the fourth column
of Table 1 the level at which we found optimum is displayed.
The fifth column displays the number of steps needed to find
a feasible trajectory. The sixth column displays the num-
ber of the forthcoming steps to find an optimal trajectory.
The last column displays the total computational time of the
simulation.

Finally, we shall note that the algorithm presented in this
paper is a part of a real system including theUR3manipulator
and cameras. In Fig. 9 we sketch a typical human-avoidance
situation performed in this real system. The system is imple-
mented in C++. It receives data from a sensory subsystem
over Ethernet via UDP (User Datagram Protocol) in the form
of a set of voxel centers representing dynamic obstacles. Then
the trajectory is updated and the physical UR3 robot is con-
trolled using the RTDE (Real-TimeData Exchange) protocol
(Ethernet-based) provided by Universal Robots. Collabora-
tive robots by other manufacturers could be also used, which
would require a different communication protocol. 3D visu-
alization is done using our in-house graphical engine based
on DirectX 11.1. The camera system relies on an in-house
dedicated control unit. It is described in [52].

7 Conclusion

In this paper we have presented a novel approach to optimal
planning of collision-free trajectories of robotic manipula-
tors. We arrive at a code that is capable for real-time usage.
Namely, the trajectory is found in a quarter of second at latest.
Our method relies on

• novel numerically stable formulae derived by geometri-
cal arguments,

• novel fast approximations of collision indicators relying
on penetration depth and penetration volume of mutual
intersections of cylindrical arms and intersections of
cylindrical arms with voxels representing obstacles,

• a novel hierarchical approach within the steepest-descent
optimization algorithm.

The ongoing research is now devoted to development of a
novel hierarchical optimal path-following method.

Author Contributions Dalibor Lukáš has derived the inverse kine-
matics, proposed the novel collision-free indicators, carried out the
mathematical research, and implemented code of the novel optimiza-
tion methods. Tomáš Kot has provided robot’s specification, software
framework for the numerical simulations, and the physical environment
in a lab.

Funding Open access publishing supported by the National Techni-
cal Library in Prague. This work was funded by the Research Platform
focused on Industry 4.0 andRobotics inOstravaAgglomeration project,
project number CZ.02.1.01/0.0/0.0/17_049/0008425 within the Opera-
tional Programme Research, Development and Education.

Code Availability Not applicable.

Declarations

Competing Interests The authors have no relevant financial or non-
financial interests to disclose.

Ethics Approval Not applicable.

Consent to participate Not applicable.

Consent for publication Not applicable.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Tarbouriech, S., Suleiman, W.: Bi-objective motion planning
approach for safe motions: application to a collaborative robot.
J Intell Robot Syst 99, 45–63 (2020)

2. Grushko, S., Vysocký, A., Oščádal, P., Vocetka, M., Novák, P.,
Bobovský, Z.: Improved mutual understanding for human-robot
collaboration: combining human-aware motion planning with hap-
tic feedbackdevices for communicating planned trajectory. Sensors
21(11), 3673 (2021)

3. Zhang, S., Li, S., Li, X., Xiong,Y.,Xie, Z.: A human-robot dynamic
fusion safety algorithm for collaborative operations of cobots. J
Intell Robot Syst 104, 18 (2022)

4. Grushko, S., Vysocký, A., Heczko, D., Bobovský, Z.: Intuitive
spatial tactile feedback for better awareness about robot trajectory
during human-robot collaboration. Sensors 21(17), 5748 (2021)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Journal of Intelligent & Robotic Systems (2023) 107:57 Page 13 of 14 57

5. Nascimento, H., Mujica, M., Benoussaad, M.: Collision avoidance
in human-robot interaction using Kinect vision system combined
with robot’s model and data. In IEEE/RSJ Int Conf on Intelligent
Robots and Systems (IROS), pp. 10293—10298 (2020)

6. Latombe, J.-C.: Robot Motion Planning. Springer (1991)
7. LaValle, S.M.: Planning Algorithms. Cambridge University Press

(2006)
8. Bobrow, J.E.: Optimal robot path planning using the minimum-

time criterion. IEEE J Robot Autom 4(4), 441–450 (1988)
9. Schiller, Z., Dubowsky, S.: On computing the global time-optimal

motions of robotic manipulators in the presence of obstacles. IEEE
Trans Robot Autom 7(6), 785–797 (1991)

10. Lewis, F. L., Dawson, D. M., Abdallah, C. T.: Robot Manipulator
Control: Theory and Practice. CRC Press (2003)

11. Kröger, T.: On-Line Trajectory Generation in Robotic Systems.
Springer (2010)

12. Bottema, O., Roth B.: Theoretical Kinematics. Dover (1990)
13. Lynch, K.M., Park, F.C.: Modern Robotics. Planning, and Control.

Cambridge University Press, Mechanics (2017)
14. Sciavicco, L., SicilianoB.:Modelling andControl of RobotManip-

ulators. Springer (2000)
15. Tokhi,M.O., Azad, A.K.M.: Flexible RobotManipulators. Simula-

tion, and Control. The Institution of Engineering and Technology,
Modelling (2017)

16. Galicki, M.: Path Following by the End-Effector of a Redundant
Manipulator Operating in a Dynamic Environment. IEEE Trans
Robotic 20(6), 1018–1025 (2004)

17. Sugihara, T.: Solvability-Unconcerned Inverse Kinematics by the
Levenberg-Marquardt Method. IEEE Trans Robotic 27(5), 984–
991 (2011)

18. Shimizu, M., Kakuya, H., Yoon, W.-K., Kitagaki, K., Kosuge, K.:
Analytical Inverse Kinematic Computation for 7-DOF Redundant
ManipulatorsWith Joint Limits and Its Application to Redundancy
Resolution. IEEE Trans Robotic 24(5), 1131–1142 (2008)

19. Toshani, H., Farrokhi, M.: Real-time inverse kinematics of redun-
dant manipulators using neural networks and quadratic program-
ming: A Lyapunov-based approach. Robot and Auton Syst 62,
766–781 (2014)

20. Safeea,M., Béarée, R., Neto, P.: CollisionAvoidance of Redundant
Robotic Manipulators Using Newton’s Method. J Intell Robot Syst
99, 673–681 (2020)

21. Kolakowska, E., Smith, S.F., Kristiansen, M.: Constraint optimiza-
tion model of a scheduling problem for a robotic arm in automatic
systems. Robot and Auton Syst 62, 267–280 (2014)

22. Chen, G., Liu, D., Wang, Y., Jia, Q., Zhang, X.: Path planning
method with obstacle avoidance for manipulators in dynamic envi-
ronment. Int J Adv Robot Syst 15(6), 1–18 (2018)

23. Niewola, A., Podsedkowski, L.: L* Algorithm – A Linear Compu-
tational ComplexityGraph SearchingAlgorithm for Path Planning.
J Intell Robot Syst 91, 425–444 (2018)

24. Bordalba, R., Ros, L., Porta, J.M.: A Randomized Kinodynamic
Planner for Closed-Chain Robotic Systems. IEEE Trans Robotic
37(1), 99–115 (2021)

25. Chen, J.-H., Song, K.-T.: Collision-free motion planning for
human-robot collaborative safety under Cartesian constraints, pp.
4348–4354. In IEEE Int Conf on Robotics and Automation, Bris-
bane (2018)

26. Saeed, R.A., Recupero, D.R., Remagnino, P.: A boundary node
method for planning of mobile robots. Robot and Auton Syst 123,
103320 (2020)

27. Ginesi, M., Meli, D., Roberti, A., Sansonetto, N., Fiorini, P.:
Dynamic Movement Primitives: Volumetric Obstacle Avoidance
Using Dynamic Potential Functions. J Intell Robot Syst 101, 79
(2021)

28. Nocedal, J.,Wright, S.J.: Numerical Optimization. Springer (2006)

29. Garrido, S., Moreno, L., Blanco, D., Monar, F.M.: Robotic Motion
UsingHarmonic Functions and Finite Elements. J Intell Robot Syst
59, 57–73 (2010)

30. Xu, B., Stilwell, D.J., Kurdila, A.J.: Fast Path Re-planning Based
on Fast Marching and Level Sets. J Intell Robot Syst 71, 303–317
(2013)

31. Van Loock, W., Pipeleers, G., Diehl, M., De Schutter, J., Swevers,
J.: Optimal Path Following for Differentially Flat Robotic Systems
Through a Geometric Problem Formulation. IEEE Trans Robotic
30(4), 980–985 (2014)

32. Wang, H., Chen, Y., Souères, P.: A Geometric Algorithm to Com-
pute Time-Optimal Trajectories for a Bidirectional Steered Robot.
IEEE Trans Robotic 25(2), 399–413 (2009)

33. Blackmore, L., Ono, M., Williams, B.C.: Chance-Constrained
Optimal Path PlanningWith Obstacles. IEEE Trans Robotic 27(6),
1080–1094 (2011)

34. Yu, X., Zhou, X., Zhang, Y.: Collision-Free Trajectory Genera-
tion and Tracking for UAVs Using Markov Decision Process in a
Cluttered Environment. J Intell Robot Syst 93, 17–32 (2019)

35. Qureshi, A.H., Miao, Y., Simeonov, A., Yip, M.C.: Motion Plan-
ning Networks: Bridging the Gap Between Learning-Based and
Classical Motion Planners. IEEE Trans Robotic 37(1), 48–66
(2021)

36. Mac, T.T., Copot, C., Tran, D.T., Keyser, R.D.: Heuristic
approaches in robot path planning: A survey. Robot and Auton
Syst 86, 13–28 (2016)

37. Lee, S.-H., Kim, J., Park, F.C., Kim, M., Bobrow, J.E.: Nwton-
type algorithms for synamics-based robot movement optimization.
IEEE Trans Robotic 21(4), 657–667 (2005)

38. Mirolo, C., Carpin, S., Pagello, E.: Incremental Convex Minimiza-
tion for Computing Collision Translations of Convex Polyhedra.
IEEE Trans Robotic 23(3), 403–415 (2007)

39. Zips, P., Böck, M., Kugi, A.: Optimisation based path planning
for car parking in narrow environments. Robot and Auton Syst 79,
1–11 (2016)

40. Alba, M., Ribieiro, L., Herskovits, J.: Trajectory Optimization of
Industrial Robots with a Feasible Direction Interior Point Algo-
rithm. In Proceedings of the 6th International Conference on
Engineering Optimization, pp. 1360—1371. Springer (2019)

41. Herskovits, J.: Feasible Direction Interior-Point Technique for
Nonlinear Optimization. J Optim Theory Appl 99(1), 121–1476
(1998)

42. Mohaman, M.G., Salgoankar, A.: A survey of robotic motion
planning in dynamic environments. Robot and Auton Syst 100,
171–185 (2018)

43. Zhao, L., Zhao, J., Liu, H.: Solving the InverseKinematics Problem
of Multiple Redundant Manipulators with Collision Avoidance in
Dynamic Environments. J Intell Robot Syst 101, 30 (2021)

44. Yang, K., Sukkarieh, S.: An Analytical Continuous-Curvature
Path-Smoothing Algorithm. IEEE Trans Robotic 26(3), 561–568
(2010)

45. Klančar, G., Škrjanc, I.: A Case Study of the Collision-Avoidance
Problem Based on Bernstein-Bézier Path Tracking for Multiple
Robots with Known Constraints. J Intell Robot Syst 60, 317–337
(2010)

46. Tsiotras, P., Jung, D., Bakolas, E.: Multiresolution Hierarchical
Path-Planning for Small UAVs Using Wavelet Decompositions. J
Intell Robot Syst 66, 505–522 (2012)

47. Nizar, I., Jaafar, A., Hidila, Z., Barki, M., Illoussamen, E.H., Mes-
tari,M.: Effective and Safe Trajectory Planning for anAutonomous
UAVUsing a Decomposition-Coordination Method. J Intell Robot
Syst 103, 50 (2021)

48. Moghaddam, S.K., Masehian, E.: Planning Robot Naviga-
tion among Movable Obstacles (NAMO) through a Recursive
Approach. J Intell Robot Syst 83, 603–634 (2016)

123

57 Page 14 of 14 Journal of Intelligent & Robotic Systems (2023) 107:57

49. Pham, Q.-C., Nakamura, Y.: A New Trajectory Deformation Algo-
rithmBased onAffine Transformations. IEEETrans Robotic 31(4),
1054–1063 (2015)

50. Rubi, B., Pérez, R., Morcego, B.: A Survey of Path Following
Control Strategies for UAVs Focused on Quadrotors. J Intell Robot
Syst 98, 241–265 (2020)

51. Brenner, S.C., Scott, L.R.: TheMathematical Theory of Finite Ele-
ment Methods. Springer (2008)

52. Oščádal, P., Spurný, T., Kot, T., Grushko, S., Suder, J., Heczko,
D., Novák, P., Bobovský, Z.: Distributed camera subsystem for
obstacle detection. Sensors 22(12), 4588 (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dalibor Lukáš received his M.S. and Ph.D. degree in applied mathe-
matics and computer science from VŠB-Technical University of
Ostrava in 1999 and 2003, respectively. His dissertation was on opti-
mal shape design in magnetostatics. In 2000–2004 he was employed
in a Special Research Programme at Johannes Kepler University in
Linz, Austria. In 2011–2016 he was a vice-head of a research pro-
gramme at the National Supercomputing Center IT4Innovations at
VŠB-Technical University of Ostrava, Czech Republic. He is currently
an Associated Professor at the Department of Applied Mathematics
at VŠB-Technical University of Ostrava. There he is the chair of the
doctoral study programme Computational and Applied Mathematics
and he is the head of the research group Numerical Analysis and
HPC. His research focus in applied mathematics and code develop-
ment is driven by industrial applications the simulations of which are
behind the scope of current commercial codes. He has co-investigated
projects on electromagnetic forming of metalic sheets, on structural
health monitoring in aeronautics, on time-reversal nondestructive test-
ing, and currently on collaborative robotics.

Tomáš Kot received the M.Sc. and Ph.D. degrees in robotics from the
Technical University of Ostrava, Czech Republic, in 2004 and 2011,
respectively.

In 2020, he finished his habilitation at the same university, where
he currently works as a Senior Researcher. His research activities
focus on complex simulations and control of mechatronic systems,
visualisation, application of virtual and augmented reality in robotics,
optimisation of layouts of robotised workplaces, algorithms for auto-
matic design of an optimal kinematic structure of a robotic manipu-
lator suitable for a given task, and lately also collision avoidance for
collaborative robots sharing workspace with human workers.

123

	Hierarchical Real-Time Optimal Planning of Collision-Free Trajectories of Collaborative Robots
	Abstract
	1 Introduction
	2 Related Work
	3 Inverse Kinematics of Robotic Manipulators
	3.1 Planar Two-Arm Manipulator
	3.2 Planar Three-Arm Manipulator
	3.3 Universal Robot UR3

	4 Optimal Collision-Free Trajectory Problem
	4.1 Constraints Avoiding Collisions
	4.1.1 Mutual Collisions of Arms
	4.1.2 Collisions of Arms with the Ground
	4.1.3 Collisions of Arms and Joints with the Quadrants
	4.1.4 Collisions of Arms and Joints with the Obstacle

	5 Hierarchical Active-Set Optimization Method
	5.1 Finding an Initial Collision-Free Trajectory
	5.2 Optimization
	5.3 Hierarchical Optimization

	6 Numerical Experiments
	7 Conclusion
	References

