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Abstract
Deep reinforcement learning (DRL) requires large samples and a long training time to operate optimally. Yet humans rarely 
require long periods of training to perform well on novel tasks, such as computer games, once they are provided with an 
accurate program of instructions. We used perceptual control theory (PCT) to construct a simple closed-loop model which 
requires no training samples and training time within a video game study using the Arcade Learning Environment (ALE). 
The model was programmed to parse inputs from the environment into hierarchically organised perceptual signals, and it 
computed a dynamic error signal by subtracting the incoming signal for each perceptual variable from a reference signal to 
drive output signals to reduce this error. We tested the same model across three different Atari games Breakout, Pong and 
Video Pinball to achieve performance at least as high as DRL paradigms, and close to good human performance. Our study 
shows that perceptual control models, based on simple assumptions, can perform well without learning. We conclude by 
specifying a parsimonious role of learning that may be more similar to psychological functioning.
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1  Introduction

Gaming environments are increasingly used to develop 
artificial intelligence. In order to play in a gaming envi-
ronment, deep reinforcement learning (DRL) agents 
require a long training time to learn and execute com-
mands. The most successful model-free DRL agents 
DQN [18], A3C [19], and Rainbow [9] which achieved 
human-level performance on Atari games, go through a 
trial-and-error training process for 10 days (approx. 20 
Million steps). Moreover, attempts have been made at 
developing self-playing agents for Atari games [12], but 
none of them were able to achieve high performance. 

More recently, MuZero agent [28] shows that planning 
can achieve high performance on Atari games but it 
requires an extensive engineering cost involving a high 
computational budget. MuZero agent requires more than 
2 months of training to train one agent. In this letter, we 
propose a new gaming Agent called PCTagent. It is argu-
ably the first agent to achieve human-level performance 
on the Atari games by exhibiting a control architecture 
similar to living organisms.

1.1 � Perceptual Control Theory Modelling

Perceptual Control Theory (PCT) is a computational 
framework [24–26] to explain and model the behavior of 
living organisms based on control engineering. Within a 
PCT system, output (efferent) signals from each control 
unit within one level of a hierarchy set the goal state for 
input (afferent) signals at the level below. This allows 
actions to vary dynamically to control input ‘on the fly’, 
so that the planning and learning of actions is unnec-
essary in many circumstances. A simple, but ‘correct’, 
architecture is necessary to achieve a good level of perfor-
mance. The nervous system of a living organism requires 
the input functions to construct perceptual signals from 
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the environment, and to organise these with respect to one 
another [14]. This architecture may have biologically pre-
pared foundations [23], and be further organised through 
verbal instruction within humans [5]; both of these path-
ways bypass long periods of training.

A variety of PCT-based computational models have 
been designed that do not require training, which have 
emulated naturalistic behaviour within animals [3], 
human manual tracking [22], human crowd behaviour 
[17], flyball catching [15] and robotic devices [2, 34]. 
However, there is little published evidence using estab-
lished benchmarks within commonly used hardware or 
modelling environments to compare with approaches that 
do require training for the learning of actions. This was 
the aim of the current study.

1.2 � Existing AI Methods for Arcade Games

Atari arcade games have been benchmarked primarily 
using model-free reinforcement learning (RL) algorithms. 
DQN [18] utilises deep neural network (DNN) to train 
Q-learning policies by incorporating replay experience 
and target networks. Several attempts have been made 
to extend DQN by incorporating bias correction, e.g. 
DDQN [30], and by prioritising experience replay [27] by 
architectural modifications [31], and distributional value 
learning [6]. Some attempts have been made to improve 
performance by data collection, which increases the cost 
of environment steps beyond 200 million [1, 19]. Agents 
developed on proprioceptive inputs [8, 10], model images 
without using them for planning [21], or combine the ben-
efits of model-based and model-free approaches [13, 20]. 
Most model-based agents with pixel inputs have thus far 
been limited to relatively simple control tasks [32].

SimPLe agent [12] learns video frame’s pixels and pre-
dicts a model in pixelated data format and utilises its pre-
dictions to train a proximal policy agent [29]. The model 
tracks and establishes prediction based on four consecu-
tive frames and incorporates discrete latent variable as an 
input. The authors evaluate SimPLe on a subset of Atari 
games for 400k and 2M environment steps, after which 
the rewards decreased, hence the model over-fitted the 
environment. As a direct contrast to the above designs, we 
have used perceptual control theory as a computational 
framework to show a competitive performance with no 
training. PCTagent was built on a single GPU Core i7 
laptop, for the Atari game environment, within which it 
outperforms top Atari game agents DreamerV2, DQN, 
Rainbow [9] and IQN [6] which rest upon years of model-
free RL research.

2 � Method

2.1 � A PCT Agent and Model

PCTagent was developed based on four sub-system hierar-
chical model of behavior, as shown in Fig. 2 and is available 
to download under GPL.1

The design of a PCTagent is based on a systematic logi-
cal analysis of the sensors and effectors of a system, and the 
performance requirements of the task, that can be specified 
as an algorithm [7]. Within the Breakout scenario, the sensor 
can estimate the distance between the paddle (or lever) and 
ball, which needs to be controlled at zero to perform the task. 
Yet the effector only commands the rate of button press left 
or right. Therefore, a hierarchy was constructed that bridges 
between the control of button press at the bottom level and 
the control of paddle (lever) - ball distance at the top level. 
Two intermediate levels were required. The full architecture 
can therefore be described as follows. The top level of PCTa-
gent controls the visual perception of the distance (D) to be 
maintained between the paddle and a movable ball in the 
game environment, as shown in Fig. 1(a)(b). Within Fig. 2, 
the error (e1) in the top sub-system sets the reference value 
(R2) for the direction control left or right of the paddle (or 
lever), which is compared to the sensed direction of the pad-
dle (MD), to generate an error (e2) that sets the reference value 
(R3) for the next level down. The next level down perceives 
the the position of the paddle (or lever) (Px) and compares 
this to the reference value for movement (R3). Error in this 
system (e3) sets the reference value (R4) for the left or right 
button press (BP), and in turn the error of this system (e4) is 
transformed to a frequency of button press which determines 
how far left or right user has to move to hit the ball. An 
inherent embedded property of button press sub-system is 
the control of the velocity at which the paddle has to move 
to catch the ball in case of Pong and Breakout. Within this 
sub-system, rate of button press is counted by an integrator, 
which has a limit (currently set to 3), upon reaching max, the 
integrator resets and reverts to its previous position. Each 
level of the model contains a k parameter which is the gain 
of each unit. The gain values for this PCTagent were all set to 
the value of 1 because this required no a priori assumptions 
regarding their optimal value.

2.2 � ALE Environment and Image Processing

We used the Arcade Learning Environment (ALE) as a 
platform to empirically assess the performance of our 
PCTagent. ALE provides an interface for different Atari 

1  https://​github.​com/​PCT-​Models/​PCTag​ent_​Break​out_​Atari
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2600 game environments which are challenging and engag-
ing for humans. ALE serves as a benchmark environment 
for the evaluation of AI agents. As an input to our PCTa-
gent we obtained raw Atari frames, which are 210x160 
(height,width) pixel image with a 128 colour representation. 
To make the game computationally efficient, we reduced the 
input matrix dimensionality by first converting it to binary 
and then cropping it to obtain a 100x132 region, capturing 
only the playing area. We do not require any specific square 
size images, mostly required by 2D machine learning algo-
rithms. The PCTagent was provided with the pre-calculated 
distance measuring mechanism rather than requiring it to 
learn from the pixels, hence the tracking of the ball and the 
paddle were done using simple contour detection function 
of OpenCV2 module running under Python 3.8.

3 � Atari 2600 Games Experiments

First we present our PCTagent’s performance results and a 
comparison of this performance with other state-of-the-art 
agents as tabulated in Table 1. In Table 1, it can be seen that 
all of the machine learning game playing agents require mil-
lions of frames for training for weeks, whereas since PCTa-
gent does not require any training, hence was ready to play 
instantly. PCTagent’s highest score for Breakout, Pong and 
Video Pinball was 862, 21 and 203261, respectively.

Atari games e.g. Video Pinball, Breakout and Pong 
were used to evaluate the performance of our training free 
PCTagent. The games and PCTagent were run on an Intel 
Core-i7 single GPU machine with AMD Radeon RX 640 
graphics card. All games were tested for different Open 
Gym environment modes i.e. with/without frame skipping 

and deterministic mode. The games were ran for 500 epi-
sodes and scores data were collected as shown in Fig. 3. In 
Breakout, a negative reward of -1 for each life lost and in 
Pong a -1 reward for opponent’s successful score was set. It 
is evident from the results (shown in Fig. 3) that in Breakout 
it is possible to achieve an average highest score of 800+ and 
in Pong to win the game with a margin of 5-6 points, at no 
prior training costs. A significant noise was introduced in 
the PCTagent when the game were stuck in one position. In 
the case of Breakout this usually happened in the end when 
one or two bricks were left to hit, which resulted most of the 
time in losing a life. In Video Pinball, PCTAgent produced 
a human like control, i.e. pressing a respective lever to hit 
the ball. A very realistic high score of 203261 is achieved 
by PCTAgent. The full development of the agent tackling 
different modes of the PinBall game was not realised for this 
stage in the research. Rather, it was just proposed to limit 
the control to the levers alone. In proposed scenario, a more 
natural control of levers emerged as opposed to a non-natu-
ral way of controlling levers, e.g. indiscriminately vibrating 
levers regardless at very high frequency. This type of control 
mechanism may achieve high scores, but it is not consistent 
with the natural way of playing the game. Hence, PCTAgent 
is a closer replica of the human way of controlling the levers. 
But the flip side is that this may not achieve high scores the 
way that a Deep Learning Agent would control the levers.

4 � Conclusion

The idea presented in this Tech Note is to bring this novel 
(alternative) approach of a learning-less paradigm to the com-
munity of robotics, artificial intelligence, automatic control, 

Fig. 1   OpenAI Gym’s Atari 
game environments. (a) Break-
out (b) Pong and (c) Video 
Pinball’s RGB frames
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machine learning, etc. The Perceptual Control Theoretic 
(PCT) architecture is used to show that an alternative to rein-
forcement learning does exist, which requires no training, 
compared to multiple hours or days of training using very 
high processing power. We produced one controller based on 
PCT and tested it, without training, on different Atari 2600 
games. This is a first research paper of its kind where a depar-
ture from classical way of designing and developing an artifi-
cial agent has been proposed. PCT controller performance is 
human like, naturalistic and matched or exceeded for that of 
published benchmarks from existing reinforcement and deep 
learning models. These findings complement earlier stud-
ies demonstrating the high performance of PCT controllers 
within robotics and other areas of research [2, 34]. Indeed, the 
findings are particularly consistent with an earlier compari-
son between a PCT controller and an LQR controller for an 
inverted pendulum robot [11]. This PCT controller required 
minimal tuning and its performance metrics were superior.

Fig. 2   Hierarchical PCT model for ball and paddle Atari Games

Fig. 3   Histogram score representation of the 500 episodes of (a) Pong (b) Breakout and (c) Video Pinball games

Table 1   Ball and Paddle games results of different ML Agents

Agent Name Best Score Frames

Breakout Pong Pinball (million)

DQN 418.5 21 42684 10
A3C (FF 1 Day) 551.6 11.4 331628.1 100
SimPLe 16.4 5.2 No record 4
RADAR 600+ 21 No record 200
Rainbow 120 21 506817.2 200
IQN 734 21 698045 200
DreamerV2 312 20 41860 200
Human World record 864 21 91862206 − 
Random 2 -20 16256.9 −
PCTagent (Ours) 862 21 203261 0
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PCT controllers can provide a robust control solution 
across environments with no training because they have 
no need to learn their actions. Instead, they achieve con-
trol by varying their outputs on-the-fly to control their 
inputs by acting against unpredictable disturbances (e.g. 
obstacles, turbulence, rough ground), unlike reinforce-
ment models. The closed-loop PCT design emulates con-
trol systems in nature, which also do not need to learn 
specific behaviours to operate effectively and efficiently 
[33]. The choice of input specifications and their hier-
archical organisation can be made through a systematic 
analysis of the sensors, effectors and the task require-
ments rather than through learning, or inferences made by 
the researcher [7]. This begs the question of whether rein-
forcement learning accounts for human skills or whether 
PCT provides a more accurate model - an architecture of 
‘priors’ proposed to forge future advances in AI [4].

Importantly, PCT controllers can further improve per-
formance through training if required. The learning algo-
rithm specified in PCT - reorganisation - uses random-
walk learning to optimise the parameters (e.g. gains) and 
functions (e.g. specification of inputs that co-vary with 
target velocity) within a PCT architecture. In particular, 
we have not looked into sparse rewards problems. How-
ever, to draw upon the analogy of unsupervised learning 
(e.g. Hard Expectation Maximisation) where the probabil-
ity is either zero (if not one) or one, our approach would 
be to push the data into the clusters (similar to K-means). 
We would anticipate that reward shaping as proposed 
by Maja Mataric’s [16] solution towards sparse rewards 
(reward is either zero or one) could be explored using 
a PCT architecture and could be explored in the future.
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