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Abstract

In this paper, a survey on distributed control applications for multi Unmanned Aerial Vehicles (UAVs) systems is proposed.
The focus is on consensus-based control, and both rotary-wing and fixed-wing UAVs are considered. On one side, the latest
experimental configurations for the implementation of formation flight are analysed and compared for multirotor UAVs. On
the other hand, the control frameworks taking into account the mobility of the fixed-wing UAVs performing target tracking
are considered. This approach can be helpful to assess and compare the solutions for practical applications of consensus in

UAYV swarms.
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1 Introduction

The application of distributed control methods to real sys-
tems has been gaining momentum in recent years due to
the advantages that a multi-agent framework can provide
with respect to a single operating unit. Multiple Unmanned
Aerial Vehicles (UAVs) applications represent one of the
most promising areas of interest of distributed control, as the
typical weakness of a single-UAV mission can be overcome
by employing a swarm of drones.

This paper is a follow-up to a previous overview on
consensus-based control in multi-agent UAV systems con-
ducted by the authors in [1]. Consensus is a distributed con-
trol method aiming at reaching an “agreement” among the
agents of a system on a given variable of interest, exploiting
only local information exchange among neighbors [2].

The previous work [1] aimed at categorizing the literature
focusing on one side on the application of formation control
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through consensus in rotary-wing UAVs, and on the other
hand on the application of distributed target tracking through
consensus in fixed-wing UAVs.

The reason for such classification is that rotary-wing
UAVs are generally deployed in confined and dense areas,
such as indoor and urban environments since they can
provide hovering flight and vertical take-off and landing,
although yielding limited endurance [3]. Thus, a swarm of
multirotor UAVs requires a collaborative formation control
framework linked to an obstacle and collision avoidance
strategy.

On the other hand, due to their considerable endurance
and high minimum airspeed, fixed-wing UAVs are suitable
to perform missions as patrolling, surveillance, or data gath-
ering over vast regions [4]. Employing multiple drones to
perform such tasks requires an efficient framework for dis-
tributed information fusion to enhance the accuracy of target
detection and tracking.

However, implementing a theoretic distributed control
model in a real swarm introduces new challenges related to
the technical limitations of a UAV platform, for instance,
limited computational power available onboard, poor sens-
ing capabilities, and finite communication range. In the
recent literature, many studies attempted to test and validate
distributed methods through some experimental implemen-
tations or to bring the simulations closer to the real setup.

For this reason, in this paper the applications reviewed
in [1] are addressed from a more practical point of view. In
particular, several studies implementing consensus-based
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formation control on a real swarm of multirotor UAVs are
analyzed and compared according to criterion as the selected
hardware and platform or the communication infrastructure
of the swarm.

Instead, regarding distributed target tracking through con-
sensus, we review the works taking into account also the
mobility of the sensing UAVs. In particular, the coupling
between target estimation and the motion of the swarm is
examined in the view of the selected path following method,
to highlight the inter-dependency between the two tasks.

This approach to classifying the literature could assist
researchers in the first phase of the experimental setup
design for testing multirotor consensus-based formation
strategies. On the other hand, it could help to compare the
most suitable control frameworks to implement distributed
target tracking through fixed-wing UAVs.

The rest of the paper is organized as follows. In Section 2,
some preliminaries on graph theory and consensus control
are provided. In Section 3, we review the latest attempts to
implement consensus control on rotary-wing UAV swarms.
Section 4 focuses on the coupling between target tracking
and motion control of a swarm. Finally, concluding remarks
are provided in Section 5.

2 Preliminaries

In this section, we will briefly recap the most significant
results regarding consensus theory. Some relevant surveys
for a more comprehensive analysis can be found in the lit-
erature [2, 5, 6].

2.1 Graph Theory

In the scenario of inter-agents communication in a multi-
vehicle system, the exchange of information among n drones
can be modelled as a graph G. A graph is defined by a non-
empty set of n nodes V connected by a set of edges £, with
ECVYXV.

The communication flowing among multiple vehicles
can be either directed or undirected. Given two agents, in
a directed graph, information can flow from an agent to
another one, but not necessarily vice versa. The undirected
graph considers only bidirectional communication, in which
both agents send and receive information to each other
simultaneously [1].

If (i,j) € &, the two nodes are said to be connected or
neighbors. A directed graph is said to be strongly connected
if there is an ordered sequence of edges in the set £ from
every node i to every other node j. An undirected graph is
said to be connected if there is a sequence of edges in the set
& between any two nodes in G [7].
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Given a graph G it is possible to define the adjacency
matrix A € R™" such that a;> 0 if node i receives informa-
tion from node j, while a;; =0 otherwise. The parameter a;; is
a positive weight usually set equal to a decreasing function
of the inter-agent distance. The matrix A is symmetrical for
an undirected graph. Starting from A, it is possible to define
the Laplacian matrix .Z, such that:

n

l;= Z a;, lij = —a; fori,j=1,..,n 1))
J=1J#

Notice that . has zero row sum [8]. The multiplication
of each row of . for the vector of ones 1, is always equal to
0. This means that the Laplacian matrix always has at least
one null eigenvalue, associated with the eigenvector 1,,.

2.2 Consensus Algorithm for Continuous Time
Systems

If the communication between neighbors allows continuous
information sharing, or if the communication bandwidth is
large enough, the system could be modelled as a continuous
time one [2].

Given a generic variable x; with i =1,...,n (n is the num-
ber of drones), consensus aims to obtain the convergence
of x; to a common value, only exploiting local information
exchange. Let NV, be the set of neighbors of a node i. The
traditional form of consensus algorithm for a continuous
first-order dynamic system is:

() == ) alx0) - x0). ©)
JeN;

The value of the variable of interest x; is driven towards
the values of the variables of interest of its neighbors, i.e.
lx,(r) — x;(Hll— 0 as 1 —> oo [9, 10]. It is straightforward
to notice how applying locally (2) is equivalent to apply
globally

x() = =L x(1), 3)

where x(7) = [xl(t),...,xn(t)]T. This means that the distrib-
uted multi-agent system behaves as a linear dynamic system
where x(7) is the state vector and —.Z is the state matrix. The
stability properties of such a system depend on the spectrum
of the state matrix. Since matrix — % always has at least
one null eigenvalue, the system is not asymptotically stable.
Still, the system could be internally stable if O is the only
null eigenvalue of the spectrum, and the other eigenvalues
have negative real parts.

In [2] it is shown that such conditions on —% hold if
a directed (undirected) graph contains a directed spanning
tree (is connected). This means that the system is internally
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stable, and its state variables x,(f) remain bounded for any
initial condition x;(0).

From algebraic control theory [11], the equilibrium state
of such a linear system is only affected by its kernel, i.e., the
eigenvectors associated to the null eigenvalue.

In particular, x(¢) — (lnyT)x(O) ast — oo, where v is the
unit left eigenvector of £ associated to the eigenvalue 0.
Since (lnuT) is a matrix with identical rows, it is clear how
each x; tends to a common value given by a weighted aver-
age ),'_ v;x;(0) of the initial states, meaning that the system
reaches consensus [2].

Similar results can be found for second-order dynamic
systems in [12] and discrete-time systems in [1, 2].

3 Formation Control and Collision
Avoidance

Several applications employing multi-rotor UAVs as deliv-
ery services, bridge inspection, and traffic monitoring are
deployed in urban environments, where an adequate safety
level must be maintained [13]. A crucial requirement in such
conditions is the capability of generating a formation while
avoiding collisions between members of the swarm and
crashes with external obstacles [14].

One of the most investigated issues in this field is con-
sensus-based formation control [15—17]. Consensus is a dis-
placement-based control methodology [18], meaning that,
to achieve the desired formation, the agents only need the
relative positions (displacements) of their neighbors with
respect to a local reference system aligned to a global one.

Displacement-based formation control is usually catego-
rized in three main strategies that can be realized through
a second-order consensus protocol: leader-follower (LF),
behaviour-based (BB) and virtual structure (VS), [5].

However, the basic formation algorithms do not consider
the collision between agents that could occur while trying
to reach the desired positions.

This is why collision/obstacle avoidance methodologies
have been developed along with formation strategies. Most
of the collision-free approaches through consensus fall into
the optimization-based or force-field categories [1, 19].

As pointed out in [1], force-fields are more suitable to
operate in dynamic environments and present a higher
number of experimental validation in the recent literature.
Instead, optimization approaches prevent the occurrence of
local minima at the price of a higher computational cost.

In a completely distributed experimental setup that aims
at validating a formation strategy, a drone runs on-board the
consensus algorithm (Guidance layer), is able to estimate its
position (Navigation layer) and share it with its neighbors,
while tracking its desired trajectory through commands com-
puted on-board (Control layer). However, researchers tried to

overcome the difficulties of putting together such a consider-
ably distributed setup by deploying centralized solutions in
certain layers. Keeping this in mind, the studies are classified
in the view of an increasing level of decentralization.

Table 1 clarifies the differences among the implementa-
tions described in the following Sections 3.1, 3.2 and 3.3. It
reports where the control and guidance layers are performed,
and where the navigation information of agent i is sent for
further processing. The term “ground” in Table 1 denotes a
centralized computing unit, e.g. a Ground Control Station
(GCS).

The focus is kept on the hardware solutions chosen in the
studies to validate the swarming procedure, on the control
and sensing frequencies proven to be sufficient for the out-
come, and on the differences between simulation expecta-
tions and experimental results.

3.1 Guidance Performed on Ground

In this subsection, we report the studies in which only the
inner (attitude) loop of the control layer is performed on-
board. The observation of the pose of the UAVs is performed
by a centralized motion capture system and later sent to the
GCS. Here, this information is used to execute both the guid-
ance algorithm and the outer (position) loop of the control
layer. The desired attitude is transmitted, through some user-
defined protocol (UDP), to the drones that run on-board their
inner loop to achieve it. This kind of setup is quite central-
ized and it is usually employed to test the performance of the
guidance layer and to validate its assumptions.

In [20], consensus is employed to change the formation
shape of 4 quadrotor UAVs. A receding-horizon optimiza-
tion minimizes a cost function in which the derivatives of the
formation errors add up. Collision avoidance during forma-
tion change is performed through a reassignment strategy,
assuming a first-order kinematic model for the drones. Two
UAVs trade trajectories if their relative position before and
after a formation change switches orientation. A Vicon sys-
tem observes the position of the UAVs at 150Hz. The authors
adopted Matlab to compute first the trajectory commands
and later the desired attitude. This is sent, through a Zigbee
network at 5S0Hz, to each drone, running the inner loop at
1kHz. The study simulated a distributed navigation layer by

Table 1 Implementation features of the reported studies

Control Layer Guidance Layer  Navigation
Info of UAV i
Section 3.1  position on ground, on ground to ground
attitude on-board
Section 3.2 on-board on-board to all UAVs
Section 3.3  on-board on-board to UAV i
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varying the neighborhood range of the UAVs, showing how
greater sensing radii lead to faster consensus, as expected.
The authors also performed a high speed formation test to
push the limit of their kinematic assumption, observing a
degradation of the performance in terms of position errors.

A similar implementation framework is provided in [21]
for a Crazyfile nano quadrotor swarm. The poses of the
UAVs are observed by an Optitrack system at 100Hz. The
study considers a general distributed guidance layer whose
output is a reference trajectory tracked by the position con-
trol layer running in Simulink at 100Hz. The desired attitude
and thrust are sent, through a specific Client, to each UAV,
tracking them at 250Hz. It is possible to notice how the fre-
quencies of the guidance loop and of the position informa-
tion update are very similar to the previous study [20].

This configuration is adopted by the authors in [22] to test
a formation algorithm based on an artificial potential func-
tion. The aim of this guidance layer is to aggregate several
UAVs from random initial positions to a safe formation. The
authors investigated the effects of increasing the number of
UAVs in a real swarm, observing that a larger swarm yields
a slightly higher formation error.

3.2 Guidance on-board and no Inter-agent
Communication

In this subsection, we describe the works in which the guid-
ance algorithm runs on a companion computer, and the
control layer runs entirely on-board. A centralized motion
capture system provides the absolute position information of
all the drones to each agent, so that the relative positions are
computed on-board. This kind of setup is employed to test
the feasibility of running the Guidance and Control layers
on the on-board hardware.

In [23], the authors tested on a swarm of Crazyfile UAVs
a formation algorithm whose protocol weights several
behaviours. First, it aims at generating a V-shape forma-
tion through consensus. It then uses a repulsive potential to
avoid collision and a feedforward PD controller to track the
desired position of the centroid of the swarm. Moreover, the
study suggests a method for achieving a smooth rotation of
the entire swarm to avoid sudden formation errors during
maneuvers. The drones are localized by a BitCraze system.
The authors proved the validity of their approach regarding
formation rotation, observing smooth trajectories even dur-
ing a 180 degree swarm rotation.

Another behaviour-based approach can be found in [24],
where a swarm of ArDrone2 was employed to generate an
a-lattice, i.e., a formation in which each drone keeps a fixed
separation distance with respect to its neighbors. This is a
well-known formation algorithm developed in [15]. The
authors employed an Optitrack system to send at 100Hz
the position information of each agent to every drone. The
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experimental results showed two significant differences with
respect to simulations: the presence of a steady state error in
the inter-agent distances, and the occurrence of oscillations
once the desired relative distance was reached. The authors
were able to attenuate both these unintended behaviours
by adding a distributed integral action on the inter-agent
distance error and by appropriately tuning the gains in the
consensus protocol, respectively.

3.3 Guidance on-board and Inter-agent
Communication

This subsection is devoted to the analysis of those studies in
which both the Guidance and Control layers run on-board.
Additionally, each drone only receives its own position
information by the centralized motion capture system or,
in the case of outdoor applications, by a Global Navigation
Satellite System (GNSS). This means that the agents will
have to share with the other members of the swarm their
own position through some ad hoc wireless network for the
deployment of the mission. This kind of experimental setup
is very decentralized, and it aims at evaluating the effects of
inter-agent communication on the performance of the forma-
tion strategy.

The authors in [25] designed a formation strategy and
tested it on a swarm of four quad-copters UAVs. The guid-
ance algorithm is a retraction-balancing procedure, in which
the agents deploy themselves toward an evenly spaced geo-
metric configuration as a circle or a convex polygon. The
resulting desired linear velocity is passed to a distributed
MPC, that encodes it as the terminal velocity reference.
The optimal input is then transformed into a desired thrust
and attitude, tracked by a backstepping controller. A Vicon
system captures at 100Hz the motion of each UAYV, that for-
wards this information to all of its neighbors. All the com-
putations are performed on-board as it was shown how the
MPC position controller could be executed at 50Hz on a
low-power companion computer. The experimental results
showed the occurrence of a slight drift of about Sc¢m in the
hovering positions due to external disturbances, delay on the
transfer of control commands, or on wireless communica-
tion. For a communication delay between agents greater than
Sms, the authors noted the occurrence of oscillations and an
increase of the hovering position error of about 30%.

A virtual structure formation algorithm for outdoor
environments was tested in [26]. The UAVs reach consen-
sus on their deviation vectors, so that a geometric shape
is preserved during maneuvers. Since the test is performed
outdoors, each drone uses a GPS module with an accuracy
of 1.2m to get its own position and velocity at 10Hz. This
information is spread across the swarm through a Zigbee
network. The UAVs’ companion computers execute the for-
mation algorithm at 5Hz, while the inner attitude controller
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runs at 500Hz. The experimental outcomes were very similar
to the simulation results, so that the authors adopted an anal-
ogous setup to validate a more elaborate guidance algorithm.

Indeed, in [27], the implementation of a formation con-
tainment problem through consensus was investigated.
In such control framework, the designated leaders of the
swarm deploy themselves in a geometric formation through
the strategy described in [26]. Moreover, several follow-
ers employ the containment protocol to keep a formation
specified by the convex combination of the states of the
leaders. Eventually, this will yield a swarm behaviour such
that the follower UAVs converge inside the geometric shape
deployed by the leaders, and their velocities will coincide. In
the experimental setup, the authors used 3 leaders generating
a triangular formation and 2 followers converging inside it.
The formation containment was realized despite the pres-
ence of wind, that resulted in a slight drift in the position
of the UAVs. Hence, the accuracy of 1.2m provided by the
GPS was adequate for a triangular formation whose edges
were about 17m.

A tighter formation based on GPS positioning can be
found in [28], where an Artificial Potential Function (APF)
method was tested outdoors. The interaction scheme is
highly hierarchical and draws inspiration from pidgeon
flocks. Thanks to this communication topology, each UAV
only needs to broadcast its position and velocity information
to 3 members of the swarm to maintain the relative posi-
tions of the entire swarm fixed. This procedure alleviates
communication cost especially in large swarms. The authors
performed flight tests with 4 quadcoptes. A GPS module
was employed by each agent to get its own position and
velocity information that was shared through Xbee modules.
The guidance algorithm was executed on-board at 20Hz. The
experimental setup specified a diamond formation with a
side length of 3m. Also in this case, the accuracy provided
by the GPS was enough to make the system reach consensus
despite the presence of external disturbances.

Another outdoor experimental test was conducted in [29],
where the authors proposed a formation strategy based on
Voronoi partition. The agents are able to distributively com-
pute their task regions, and to switch trajectories whether
an agent has to pass through another one’s region to reach
its target position. The authors adopted an Ultra Wide Band
(UWB) localization system instead of the GPS even though
the experimental tests were performed outside. This is due
to the higher accuracy of the UWB system, that is able to
reach a maximum positioning error of less than 10cm. Each
one of the five drones in the experiment receives its position
information at SOHz and executes the formation algorithm at
25Hz. The results showed good convergence of the swarm to
the desired formation with no collisions. However the speed
of the UAVs was kept under 0.5m/s. For higher speeds or for
a greater number of drones in the swarm, the authors warned

that the UWB would not be appropriate due to its limited
sensing range, while the GPS would not be accurate enough.

3.4 Discussion

In this section, several studies performing experimental
implementation of consensus-based formation were dis-
cussed. The level of decentralization in the described con-
figurations increases over the years, with the most recent
studies deploying quite distributed hardware solutions. The
comparison of the outlined methods was performed in terms
of how the authors tried to decentralized the Guidance, Navi-
gation and Control layers of the mission.

The increased computational capabilities of the recently
developed companion computers allow the on-board deploy-
ment of both the Guidance and Control layers. This is due to
the fact that relatively low control frequencies, in the range
of 20 — 50 Hz, were proven to be sufficient for updating the
commands of the swarming algorithm in the Guidance layer.

A distributed Navigation layer regarding position tracking
of the UAVs in the swarm is a crucial feature in a consensus
strategy. In outdoor environments, the on-board GPS module
is frequently used to get position and velocity information.
However, GPS accuracy could not be high enough for more
elaborate formation strategies. Centralized motion capture
systems have been used in indoor GPS-denied environments,
or to get more precise information in outdoor tests. However,
these schemes require fixed anchors or cameras deployed in
the test area, thus confining their application to experimen-
tal tests. Some recent studies about relative sensing of the
inter-agent distance have been emerging [30-32] and could
represent a starting point to actually decentralize the Naviga-
tion layer. Note that a relative position update frequency of
about 50 — 100Hz has proven to be sufficient for the success-
ful deployment of many of the discussed methods.

It is worth noticing how most of the works reported satis-
factory outcomes of the experiments, with the major discrep-
ancy between simulation and real tests being the occurrence
of oscillations once the formation is achieved, especially in
potential field-based methods. These oscillations are gener-
ally caused by bad tuning of the control parameters, or by
communication delay between agents. In this sense, some
recent studies are trying to attenuate this unintended effect,
[33, 34].

4 Distributed Target Tracking

Fixed-wing UAVs are frequently employed in operations as
patrolling, surveillance or data collection in outdoor envi-
ronments, where the target tracking task plays a crucial role
[4]. Deploying a network of n mobile sensors can drastically
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reduce the measurement noise of an observed process with
respect to the performance of a single drone [35, 36].
Given a dynamic target such:

x(k + 1) = A(k)x(k) + B(k)w(k) )

where x(k) € R™ and w(k) € R™ are the state and the input
noise of the process, and a sensing model such:

z;(k) = H,(l)x(k) + v;(k) §))

where z;(k) € R? and v,(k) € R” are the measured output of
sensor i and the measurement noise affecting it, distributed
target tracking consists in generating a distributed filter such
that the estimation error covariances of the local estimates
X;, foralli =1, ..., n are bounded.

The aim of the whole process is to reduce the uncertainty
related to the estimation of the target, i.e., to minimize the
covariance of the estimation error.

Kalman-like filters are widely used for this purpose and
can be classified into consensus on measurements (CM),
estimates (CE), and information matrices (CI), depending on
the quantity the filter reaches consensus on [37, 38].

As indicated in [1], CE and CI provide more cohesive
local estimates with respect to CM. Moreover, CI can limit
the computational time of the estimation since it functions
even with a single consensus step per iteration, and it is
directly linked with the concept of the information value of
an observation. This is why CI and hybrid methods based
on it are relevant for real implementations.

According to information theory [39], the variance of
an unbiased estimator, i.e., the uncertainty related to the
estimated state of a target, is bounded below by the inverse
of the Fisher information matrix. This is a measure of the
information value provided by an observation [40]. Thus,
minimizing the covariance is equivalent to maximize the
information value of a measurement.

Since the observations are performed by the UAVs, it is
clear how the estimation task and the motion of the swarm
constitute a cascade structure: the state of a moving target is
estimated through some consensus-based filtering process,
and the swarm moves toward the target employing some
path following algorithm to increase the information value
of their observations. This cascade framework is also known
as information-driven mobility [41].

While in our previous work the main focus was solely on
the distributed estimation process, here also the motion of
the swarm is taken into account.

In this context, in the next subsections the studies are
classified in the view of the path following algorithm the
UAVs employ to maximize their information value. Comply-
ing with the categories described in [42], three kinds of path
following algorithms are considered here: artificial potential
field (APF), optimization-based and geometric methods.

@ Springer

The focus is maintained on the sensor model used in the
simulations, on the type of consensus strategy employed
for target estimation, and on the path following algorithm
adopted for chasing the target.

4.1 APF Path Following

The Artificial Potential Field is a well-known method for
path planning consisting in the formulation of attractive and
repulsive potentials either between agents of the swarm, with
respect to external obstacles or target positions [1]. The
input commands for the mobile agents are usually provided
by the gradient of the potential so that the swarm is driven
towards low potential equilibrium points.

The concept of information-driven mobility was first inves-
tigated in relation to multi-agent APF in [41]. The authors
considered a swarm of double-integrator particles tracking
a target moving in R? through a range sensor model. This
kind of sensor measures the relative distance (range) p; with
respect to the target, providing a noisy version of its position.
The covariance of the measurements decreases as the sensing
agents move closer to the target, i.e., the information value /
of an observation is a decreasing function of the range, such
that I, = flp;). With this in mind, the authors designed a con-
sensus protocol equal to the gradient of the weighted sum of
two potential functions: a collective potential and an agent-
target interaction potential. The first one has a minimum in
the desired separation distance between the sensing agents.
The second one drives the UAVs toward the estimated target,
anditisequalto/, = 37 (f~'(I))* = X1 p7. Itis straight-
forward to notice how minimizing the potential leads to the
reduction of the individual target ranges, and to the preserva-
tion of a safe distance between agents. This motion behaviour
is also known as flocking, [15].

In [43, 44], the authors coupled the flocking behavior with
the estimation process introducing a cascade structure. In
particular, they broke up the entire dynamics into three sub-
systems: structural dynamics X, translational dynamics X,
and error dynamics X,. The first one describes the motion of
the agents with respect to the center of mass of the swarm,
while the second one refers to the motion of the center of
mass. The last system X, describes the evolution of the col-
lective estimation error and is based on the consensus on
estimates filtering approach. The authors ultimately proved
that the agents are able to generate a flock chasing a target,
with all the sensing agents asymptotically reaching a con-
sensus on the state estimates of the target (if zero noise is
considered in the error dynamics).

The stability analysis of the cascade structure was further
extended in [45]. In particular, the input noise was consid-
ered as an acceleration input in the error dynamics X,, and
the authors proved the stability of the whole system given
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bounded input and measurement noise. Again, consensus on
estimates was chosen as the distributed filtering algorithm.

The same cascade framework was analysed also in [46],
where the authors studied the optimal observation config-
uration problem for a swarm of double integrator agents.
This means to find the best relative position of the swarm
with respect to the target, so that the information value of
the measurements is maximized. With respect to [41], the
authors considered a range-bearing sensor model, so that
the information value is a function of both the range p; and
the azimuth 6, with respect to the target. By employing the
determinant of the information matrix as a measure of the
quality of the observations, it was found that the optimal
configuration requires the agents to be located in an evenly
spaced manner on the circumference of radius r,,;, centered
at the target position. Here, r,,;, is the minimum effective
observation distance of the sensors with respect to the target.

To deal with the presence of m multiple targets, an inter-
esting approach called semi-flocking was developed in [47].
The n mobile sensors (with n > m) are driven towards the
targets that are currently being chased by fewer drones, so
that eventually each target will be tracked by a number of
UAVs roughly equal to % The authors did not address the
estimation X, subsystem, assuming that the positions of the
m targets were already known. However, such an approach
could be the starting point to formulate a cascade structure
for multi-target tracking applications.

Another study worth mentioning as a starting point for
future application is [48]. Indeed, the authors performed the
experimental validation of a collaborative target tracking
mission on a real swarm of fixed-wing UAVs. The drones
track a collaborative target, that is a multi-rotor UAV broad-
casting its position and velocity to the entire swarm through
Xbee modules. Hence, also in this case no distributed esti-
mation 2, is performed as every agent already knows the
state of the target. However, the study could provide inter-
esting insights for the implementation of path following
through potential-based algorithms to real fixed-wing UAVs.
The aim of the swarm is to drive its centroid toward the posi-
tion of the target, and later to remain inside a bounded region
centered at it. For the experiments, the authors employed
three fixed-wing aircraft flying at different altitudes to avoid
collisions. The target broadcasts its position at 5Hz, while
the agents share at 10Hz with all the other members of the
swarm their own GPS position, to compute the centroid
state. The flight tests provided satisfactory results, despite
the presence of a noticeable wind (3m/s) and recurrent com-
munication loss between UAVs.

4.2 Optimization-based Path Following

Optimization-based methods encode the path following
problem into a cost function to be minimized under several

constraints. A popular optimization technique is the Model
Predictive Control (MPC), that predicts the state of the sys-
tem up to a certain time instant and applies the first com-
puted optimal input. A typical drawback of applying MPC
to distributed systems is given by its considerable compu-
tational load.

This is why a faster version of the decentralized MPC was
developed in [49]. The mobile agents are simulated through
the fixed-wing UAV two-dimensional kinematic model, and
carry an onboard radar able to provide the relative distance,
azimuth, and pitch angle with respect to the target. Its posi-
tion is derived in a distributed fashion through a hybrid CM/
CI approach and then plugged in the cost function of the
MPC. Indeed, the authors proposed a cost function minimiz-
ing both the relative distance of the UAV with respect to the
target and the drone’s angular and linear velocities. Collision
avoidance between agents is ensured by a nonlinear inequal-
ity constraint. The MPC framework is first linearized and
then, through the use of Lagrangian multipliers, transformed
into an unconstrained optimization problem, that is much
faster to solve distributively.

A decentralized version of the MPC was used also in [50],
but the authors opted to directly maximize the information
value of the measurements in the cost function, instead of
minimizing the relative distance with the target. The kin-
ematic model of the UAVs is the same as in [49], while the
sensor model is able to provide the range p; and the azimuth
0,. The filtering approach is based on a novel consensus on
information, in which also the communication noise between
agents is taken into account. The authors suggested that it
can be treated as an additive observation noise affecting
the information value coming from neighbour agents. In
this way, maximizing the collective information in the cost
function leads the swarm to reach a compromise between
observation and communication. Indeed, communication
degrades as the distance between agents increases, while col-
lective observations acquire greater value when performed
by farther points of view. Interestingly, the best trade-off is
reached through the configuration found in [46], i.e., evenly
spaced points in a circumference.

4.3 Geometric Path Following

Geometric algorithms for path following are based on the online
computation and manipulation of several geometric quantities
as the relative distance with respect to the desired trajectory,
known as cross-track error, or the desired heading angle, [42].

The authors in [51] developed a road-map assisted target
tracking mission. This kind of application for ground mov-
ing targets requires an a priori approximation of the road,
treated as a sequence of constant curvature segments. This
additional information is considered as a pseudo-measure-
ment that augments the real sensor measurement model,
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already providing the cross-track error and the azimuth of
the target. The authors adopted a two-dimensional fixed-
wing kinematic model and consensus on information as the
filtering algorithm. Once the target position is estimated, a
vector-field path following algorithm is employed, It consists
in computing the desired heading angle needed to reach the
proximity of the target and to loiter above it afterward. To
achieve an even inter-agent angular separation during loi-
ter, a velocity control based on the relative angular position
is employed, so that the circular observation configuration
described in [46, 50] is achieved likewise.

4.4 Discussion

In this section, the coupling between the distributed target
tracking performed by a swarm of fixed-wing UAVs and
its motion control was analysed. The concept of collective
information value of the swarm’s observations was intro-
duced, highlighting how it affects the motion of the UAVs.

Artificial potential fields represent a largely adopted solu-
tion for path planning when it comes to distributed motion
control. The intuitiveness of this approach as well as the
ease of the stability proofs make it suitable to be employed
in cascade with the estimation process.

The main filtering strategy adopted to achieve distributed
target tracking is based on consensus on information, or on
hybrid methods related to it. This may be because the infor-
mation form of the distributed Kalman filter is directly linked
to the information value of an observation. Indeed, in this kind
of framework, the update step fusing the information coming
from local and neighbors’ measurements is just a trivial sum.

The experimental validations regarding estimation track-
ing methods for multi-UAV systems are still very limited
in the literature. Some studies started to validate their dis-
tributed path following algorithm tracking a collaborative
target. However, the performance of the estimation process
plays a crucial role in the stability of the cascade structure.
This is why future research should focus on the experimental
validation of the coupling between motion and estimation.

5 Conclusions

This work provides an overview of consensus-based meth-
odologies applied to multi-UAV systems.

Regarding the implementation of formation control for
multi-rotor platforms, we compared the adopted hardware
solutions and the necessary update frequencies of the algo-
rithms, highlighting the discrepancies between simula-
tions and experimental tests. In recent years, the research is
moving towards increasing levels of decentralization in the
inter-agent communication and in the on-board computa-
tion. Instead, in GPS-denied environments, the localization

@ Springer

of the UAVs is still centralized. Among the solutions for
the inter-agent communication network, WiFi and Zigbee
represent the most commonly adopted wireless protocols in
the outlined studies. All of the indoor experiments described
here need a motion capture system to obtain the position
of the UAVs. Generally, Optitrack and Vicon are used for
this purpose. The flight tests analysed in this review showed
that although being a much lower cost solution, Optitrack
provides sufficient accuracy (millimeter level) and sam-
pling frequency (about 100Hz) for the outcome of the tests.
Finally, it is worth noticing how the companion computers
employed in the studies for the on-board computation of
the Guidance algorithms are available off-the-shelf at very
affordable prices (less than 200 USD).

Regarding distributed target tracking, we emphasized
the coupling between the estimation process and the motion
control of a swarm of fixed-wing UAVs. The focus was kept
on the studies applying a distributed filtering algorithm in
cascade with a path following strategy. This analysis sug-
gests that the best control framework to adopt is constituted
by a consensus on information-based estimation process
coupled with an artificial potential field method for follow-
ing the target. This is due to the simplicity of performing
simultaneously data fusion and swarm aggregation through
the application of information theory. Regarding the choice
of the measurement sensors needed for the collection of the
data, the most frequently adopted solution in the studies is
given by direction-finding sensors. They are made up of the
combination of a photoelectric/infrared imaging sensor and
an ultrasonic/laser radar, which are able to provide both the
range and azimuth of the target.

The outlined approach to classify the literature could
help researchers on one side to choose the most suitable
framework for the validation of consensus-based formation
strategies, and on the other hand to select a convenient path
following algorithm for distributed target tracking.
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