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Abstract
This paper considers persistent monitoring of environmental phenomena using unmanned aerial vehicles (UAVs). The 
objective is to generate periodic dynamically feasible UAV trajectories that minimize the estimation uncertainty at a set of 
points of interest in the environment. We develop an optimization algorithm that iterates between determining the observa-
tion periods for a set of ordered points of interest and optimizing a continuous UAV trajectory to meet the required observa-
tion periods and UAV dynamics constraints. The interest-point visitation order is determined using a Traveling Salesman 
Problem (TSP), followed by a greedy optimization algorithm to determine the number of observations that minimizes the 
maximum steady-state eigenvalue of a Kalman filter estimator. Given the interest-point observation periods and visitation 
order, a minimum-jerk trajectory is generated from a bi-level optimization, formulated as a convex quadratically constrained 
quadratic program. The resulting B-spline trajectory is guaranteed to be feasible, meeting the observation duration, maxi-
mum velocity and acceleration, region enter and exit constraints. The feasible trajectories outperform existing methods by 
achieving comparable observability at up to 47% higher travel speeds, resulting in lower maximum estimation uncertainty.

Keywords Informative path planning · Persistent monitoring · Aerial systems: perception and autonomy

1 Introduction

Persistent sensing and data collection is important for track-
ing environmental phenomena such as atmospheric pollution 
[1, 2] and wildfire ignition at the wildland-urban interface 
[3, 4]. Early detection of dangerous conditions is a criti-
cal factor in mitigating damages to ecological systems and 
human infrastructure [5]. Persistent monitoring methods 
have utilized satellite data, human-piloted aircraft, and net-
works of stationary sensors, optimizing their placement for a 

variety of resource constraints [6–9]. Satellite data is often at 
too low resolution (e.g. pixel widths of 1 km for MODIS and 
375 m for VIIRS) or too infrequent to detect rapidly emerg-
ing trends [10–13]. Regular flights of human-piloted vehicles 
is useful for ongoing tracking efforts in localized regions but 
is too expensive for large-scale monitoring. Dense sensor 
deployments can monitor the environment effectively but as 
the size of the region grows, sensor network deployment and 
maintenance can quickly become cost prohibitive. Stationary 
sensing networks also suffer from information redundancy 
since many environmental phenomena are highly temporally 
and spatially correlated.

Recent persistent monitoring research has focused on 
developing motion planning and control techniques for 
mobile sensing robots, such as unmanned aerial vehicles 
(UAVs), that can monitor large environments and deliver 
high-frequency, high-resolution data more effectively 
[14–22]. Technological advancements in sensing, compu-
tation, and communication enable UAVs to supply critical 
real-time data for a variety of applications, depending on the 
equipped visual, thermal, chemical, or depth sensors.

The goal of persistent monitoring is to minimize esti-
mation uncertainty by planning an optimal trajectory for 
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the sensing platforms. Probabilistic filtering techniques 
are employed to integrate the sensed information over time 
into an estimate the signal of interest. Kalman filtering is 
commonly used [22, 23], including generalizations such 
as extended and unscented Kalman filtering [24], particle 
filtering [25], and variational inference [26].

Researchers in persistent monitoring have used a variety 
of objective functions for quantifying the effectiveness of 
an informative trajectory. We chose to minimize the max-
imum eigenvalue of the steady-state covariance matrix, 
which intuitively represents a bound on the uncertainty of 
the model at any POI and is commonly referred to as the 
spectral radius or E-optimality [27]. Other potential objec-
tive functions include the trace of the covariance matrix, 
which is the sum of the uncertainty, or the determinant of 
the covariance matrix, which is the volume of uncertainty 
[28]. By optimizing for the steady-state uncertainty, the 
developed controller may perform suboptimally for initial 
cycles of a periodic traversal of a trajectory, but it can be 
shown that the uncertainty evolution converges at an expo-
nential rate from any initial covariance to a cyclic pattern 
of values (Sec IV.A in [29]).

Our previous work [22] proposes an initial solution 
for a UAV flying along a prescribed sensing trajectory. 
The objective was to plan a velocity profile along the path 
that minimizes the maximum eigenvalue of the estimation 
covariance matrix of a Kalman filter. In contrast to other 
works, which only optimize to minimize the revisitation 
frequency [30], the method balances the number of con-
secutive measurements at a point with the frequency of 
visitation. While the generated trajectory obeyed maxi-
mum velocity constraints of the UAV, the sensing trajec-
tory was not continuous, and resulted in paths that were 
infeasible to follow (Fig. 1).

Contributions We present a planner for feasible trajectories 
for persistent monitoring with UAVs. Modern approaches 
[14, 22, 23, 31] ignore the dynamics of monitoring plat-
forms, resulting in violations of full observability assump-
tions during simulations with controllers that track a tra-
jectory. In contrast, our proposed feasible Trajectory 
Optimization for Persistent monitoring (f-TOP) plans a 
trajectory, adhering to a UAV’s dynamic constraints while 
minimizing estimation uncertainty, with the following 
contributions:

1. Bi-level optimization that plans a minimum-jerk, three 
times continuously differentiable trajectory that mini-
mizes steady-state estimation uncertainty,

2. Greedy Knockdown Algorithm to determine the opti-
mal number of observations of each POI to minimize 
worst-case bound on estimation uncertainty for periodic 
sampling,

3. Second-order cone program (SOCP) for calculating 
B-spline trajectory coefficients that enforce constraints 
of vehicle dynamics.

The remaining paper is organized as follows. Section 2 
outlines related work relevant to trajectory planning for per-
sistent monitoring. Section 3 describes the problem formula-
tion. Section 4 provides background information necessary 
for the formulation of our optimization. Section 5 describes 
our optimization approach for planning feasible trajectories. 
Section 6 compares our proposed method against baseline 
and existing works. The paper concludes with Section 7.

2  Related Work

Our contribution is at an intersection of several related 
research areas in persistent monitoring. Inspired by the peri-
odic sensing results from the stationary sensing literature [8, 
9], we extend Kalman filter convergence results to persistent 
monitoring scenarios. We focus on planning dynamically 
feasible trajectories for robotic sensing platforms that bet-
ter meet observability assumptions, which are commonly 
assumed but often unachieveable in existing works without 
significant reduction in robot performance. In this section, 
we provide a brief overview of relevant literature in sensor 
scheduling, trajectory planning for persistent monitoring, 
and feasible trajectories.

Fig. 1  Our proposed f-TOP algorithm attempts to plan trajectories 
that adhere to the dynamic constraints of the system, resulting in tra-
jectories that can be tracked and remaining within the sensing dis-
tance of a POI. The First-Order and Direct Planner generate infeasi-
ble trajectories with discontinuities in the velocity profile
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2.1  Sensor Scheduling

In sensor scheduling, a group of stationary sensors attempts 
to measure and approximate a phenomenon in a resource-
efficient manner by selecting a subset of sensors to sample at 
each time step. Initial work calculates bounds on the estima-
tion uncertainty by forming sensor scheduling as a convex 
problem problem and creating heuristic and open-loop poli-
cies [6, 32]. Zhao et al. [29] advance the sensor scheduling 
problem for infinite time horizons, proving that for linear 
Gaussian processes and sensing functions the steady-state 
solution is independent of initial estimation covariance and 
the optimal estimation can be approximated arbitrarily close 
by a finite, periodic schedule. Greedy scheduling algorithms 
work well in many cases, approaching optimal results at 
reduced computational complexity. Jawaid and Smith [7] 
leverage submodularity of the estimation error to show that 
greedy approaches can approach optimal results, and addi-
tional efforts prove greedy algorithms can be optimal for 
specific cases of uncorrelated noise [8, 9].

The primary difference between persistent monitoring 
with robotic agents and sensor scheduling is that there is 
a non-negligible switching cost between targets for robotic 
sensing platforms, which must physically move to measure 
new regions. Despite the difference, we can leverage and 
extend sensor scheduling results [9, 29] by modeling our 
POIs as uncorrelated and proposing a finite, periodic sched-
ule with an additional period where no observations occur.

2.2  Trajectory Planning for Persistent Monitoring

Instead of relying on fixed-position sensors for estimation, 
an alternate cost-effective approach for sensing across a large 
area is UAV-mounted sensors [33]. The simplest formulation 
of persistent monitoring a set of discrete POIs is the patrol 
problem [34], where every POI must be visited with the 
objective of minimizing time between revisits. Minimizing 
time between revisits results in a near-optimal strategy when 
all POIs have equivalent uncertainty in state transitions, but 
are sub-optimal when the POIs have different uncertainty 
characteristics.

For POIs with varying rates of uncertainty, persistent 
monitoring trajectories can be planned that optimize one of 
several different metrics of uncertainty, such as maximum 
eigenvalue, log determinant, or trace of an estimate covari-
ance matrix [28]. Decomposing trajectory generation into 
separate path planning and velocity control problems allows 
for developing optimal solutions for constrained problems 
with reduced complexity [35]. The first approaches for plan-
ning persistent monitoring trajectories optimize wait times, 
visit orders, and velocity along a given 1-dimensional path.

For a given 1-dimensional path, the persistent monitoring 
problem can be simplified into calculating a required length 

of observation time at each POI prior to travelling to the 
next. The length of observation time is modelled based on 
different accumulation and clearing models of uncertainty. 
Smith et al. [14] represent uncertainty at POIs is modelled 
as a linear, continuous accumulation model with uncertainty 
reduction directly proportional to the time spent measuring a 
point, planning a periodic velocity as a composition of basis 
functions that minimized the maximum accumulation value. 
Similar works expand the concepts to different uncertainty 
accumulation models that clear in linear proportion to the 
distance of nearby robotic platforms [15] and for symmetric, 
non-linear accumulation models [16]. Ostertag et al. [22] 
plans a velocity along a prescribed trajectory by determin-
ing the optimal dwell times using a greedy application of 
an Kalman filter at an infinite-time horizon. Researchers 
have planned trajectories in two-dimensional space using 
the concept of infinitesimal perturbation analysis, which 
approximates the gradient of the cost function but with lim-
ited guarantees of optimality [18, 20].

Related to persistent monitoring is the field of informa-
tive trajectory planning where a robotic agent optimizes for 
information gain while travelling through an environment 
but does not necessarily measure POIs periodically or with 
full observability. A common formulation is the orienteering 
problem [36], whereby an agent travels along a graph and 
collects rewards for visiting locations, attempting to maxi-
mize the reward with a limited resource spent on each edge 
taken. For problems formatted on continuous planes, optimal 
solutions are NP-hard, but recent work in sampling-based 
path planning [19, 37, 38] and finite-horizon, search-based 
path planning [39] show promising results for exploration 
problems, which are similar but not immediately applicable 
to persistent monitoring.

2.3  Trajectory Representation for UAVs

When dealing with real UAV systems, trajectory continu-
ity is important to consider since trajectories with abrupt 
changes in velocity or acceleration, such as are common 
in simple waypoint paths, will result in high tracking error 
when a UAV is operating at high velocities. Continuous tra-
jectories are more complicated to solve, so researchers have 
simplified the problem into graph searches using a discrete 
number of fixed motion primitives [40, 41]. While these 
approaches are useful for planning real-time actions due to 
the limited number of movement patterns, they are almost 
always sub-optimal.

To handle the complexity of developing continuous tra-
jectories, researchers have formulated the trajectory optimi-
zation as finding coefficients for a set of basis functions. By 
limiting to searching for the set of coefficients, the solution 
space is sufficiently limited to formulate the problem in a 
tractable manner. Objective functions commonly minimize 
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the snap (4th derivative) [40, 42–45] or jerk (3rd derivative) 
[46, 47] of the trajectory. Quadrotors are differentially flat 
[48], meaning that for a selected set of trajectory parameters, 
typically position in three dimensions and yaw, the control 
inputs can be precisely calculated from the first three deriva-
tives of the trajectory.

Initial work in developing trajectories for quadrotors uses 
piece-wise polynomial basis functions. The polynomial basis 
functions have issues with numerical stability and are dif-
ficult to fit to non-linear constraints on maximum velocity 
and acceleration. Mellinger et al. [42] formulate the optimi-
zation as a quadratic program optimizing for coefficients of 
piecewise two-time continuously differentiable polynomial 
basis curves, solving for an arbitrary time range and scaling 
to meet any required constraints. The constraints are lin-
ear, however, and checked only at discrete time instances, 
which results in a large number of linear constraints and 
no guarantee of meeting maximum velocity or acceleration 
constraints. Mueller et al. [40] resolves the numerical stabil-
ity of polynomial basis functions by for end point conditions 
instead of coefficients, proving a simple mapping between 
end point conditions and the coefficients. Richter et al. [44] 
improves the speed to solve the optimization by solving an 
unconstrained quadratic optimization followed by a check 
on constraints. Polynomial bases are numerically ill-condi-
tioned for complex paths, and as the order of the polynomial 
increases to meet pathing demands, properties such as cur-
vature and the extrema of derivatives must be found using 
numerical root-finding methods.

To solve the shortcomings of polynomial basis functions, 
researchers began exploring Bezier curves and B-splines. 
This class of curves are defined by a set of control points, are 
numerically stable, and have beneficial properties of convex-
ity and linear formulation of derivatives. The last property 
enables simple calculation for a bound on the maximum 
magnitude of lower order derivatives. B-splines have a lim-
ited support for any given point in time with the support 
transition in accordance to a set of coefficients called knots. 
The limited support enables further numerical stability and 
complex maneuvers. Ding et al. [49] leverage the properties 
of B-splines to efficiently solve for a path using a kinody-
namic search and elastic optimization to fine tune control 
points. Zhou et al. [50] utilize a similar method, but model 
the path as a non-uniform B-spline with an iterative time 
adjustment method, adjusting the knot spacing to achieve 
more aggressive trajectories. Due to the convex hull property 
of B-splines, both methods place constraints on the control 
points to avoid collisions.

Due to the advantages of numerical stability, continuity, 
and complex pathing while meeting dynamic constraints 
able to meet dynamic constraints of a robotic platform, 
we plan our trajectories by developing optimizations for 
the control points of B-splines. Unlike [50], our proposed 

trajectory optimization minimizes the magnitude of jerk, 
which enables simple computation for a 4th-order B-spline.

3  Problem Formulation

Given a set of points of interest (POIs) in the environment, 
we focus on planning a dynamically feasible trajectory for a 
quadrotor robot to estimate a time-dependent value of inter-
est at these points with minimum uncertainty. Prior to stat-
ing the problem formally, we define the environment model, 
quadrotor dynamics, and the sensing model. The paper fol-
lows the convention of denoting matrices by capitalized bold 
symbols A and vectors by lowercase bold symbols a.

3.1  Environment Model

Consider a set of N POIs spread throughout an environment 
Q = {�1, ..., �N} where �i ∈ ℝ

3 . The objective is to track the 
values xk = [x1(tk), ..., xN(tk)]

⊺ of an environmental phenom-
enon at the N POIs over discrete time steps tk, tk+ 1, …. Time 
is discretized with sampling frequency fs and associated 
period f −1

s
 such that tk+1 = tk + f −1

s
∀ k ∈ ℤ≥0 . To simplify 

notation, variables that depend on time are denoted with a 
subscript k where appropriate, e.g. Ak = A(tk). We assume 
the values at each location are independent and time varying 
according to the following discretized model:

where mk are independent increments drawn from a Gauss-
ian distribution with mean value change μk and a diagonal 
covariance Wf −1

s
.

3.2  Quadrotor Model

A quadrotor equipped with a sensor is attempting to estimate 
the phenomenon at each POI. The state of the quadrotor 
is defined by its orientation R ∈ SO(3), world-frame posi-
tion � ∈ ℝ

3 , velocity �̇ ∈ ℝ
3 , acceleration �̈ ∈ ℝ

3 , and jerk 
�⃛ ∈ ℝ

3 . The control inputs of the quadrotor are the body-
frame thrust f ∈ ℝ≥0 and rotational velocity � ∈ ℝ

3 , which 
are directly related to the rotational velocity of the four 
rotors [42]. The quadrotor state evolves with the following 
dynamics:

(1)xk+1 = xk +mk,

(2)mk ∼ N(�k,Wf −1
s

),

(3)�̈ = Re3f∕m + ge3,

(4)Ṙ = R�̂,
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where m is the mass of the quadrotor, g is the acceleration 
due to gravity, e3 is the unit vector for z-axis in the world 
frame, and ⋅̂ ∶ ℝ

3
↦ ��(3) denotes the hat map, which maps 

3-D axis-angle vectors to a skew-symmetric matrix.
The quadrotor system is differentially flat with respect to 

its position s and yaw angle ψ states [48]. This means that, 
given a desired time-parametrized flat trajectory sd, ψd, we 
can recover the control inputs f and ω that will track the 
desired trajectory:

where Rd and Ṙd are the desired rotation and rotational 
velocity. The desired orientation Rd is obtained from rota-
tion about yaw ψd and desired acceleration ad according to 
[42]. The desired rotation and acceleration are provided by 
the planned trajectory that is generated in Section 5, which 
the UAV is attempting to track.

The quadrotor has bounds on its velocity and accelera-
tion due to physical constraints. The total thrust that can be 
generated by the motors is limited, resulting in a maximum 
acceleration bound. To account for the lack of air drag in the 
simplified dynamics model, we also introduce a maximum 
velocity constraint. Hence, all intended quadrotor trajecto-
ries should lie in the admissible set:

where C3(ℝ,ℝ3) denotes the space of three-times continu-
ously differentiable functions ℝ ↦ ℝ

3 , vmax is the maximum 
velocity magnitude, and amax is the maximum acceleration 
magnitude.

3.3  Sensing Model

A sensor is mounted on the quadrotor that can sense a POI 
qi if it is within a given closed, convex region Bi, which rep-
resents the union of all UAV positions such that qi is in the 
sensor field of view. An example trajectory and observation 
region are shown in Fig. 2. The sensor captures observations 
with a sampling frequency of fs and each measurement is 
corrupted by additive noise:

(5)f = m‖�̈d + ge3‖,

(6)�̂ = R⊤

d
Ṙd,

(7)S ∶= {� ∈ C3(ℝ,ℝ3) ∣ ‖�̇‖ ≤ vmax, ‖�̈‖ ≤ amax},

(8)yk = �kxk + �,

(9)� ∼ N(0,V),

(10)�i,j(tk) =

{
1, i = j and �(tk) ∈ Bi,

0, otherwise,

where Hk is a binary observation matrix and η is additive, 
Gaussian observation noise with a positive semidefinite 
covariance matrix V. The matrix Hk models the sensor field 
of view by assigning 1 to visible POIs and 0, otherwise. 
Equation 8 models a sensor that provides direct measure-
ments of the features xk at the POIs. For example, a down-
ward-facing visible-light or thermal camera used for vegeta-
tion imaging or temperature estimation can be modeled by 
Eq. 8.

The true value of the environmental phenomenon is con-
tinuous in time but due to the discrete-time observations, xk 
is estimated using a discrete-time Kalman filter. The filter 
maintains a mean estimate zk and a covariance matrix Σk, 
whose values are predicted using the environment model in 
Eq. 2 and updated using the sensor measurements and the 
sensing model in Eq. 8. As shown in Fig. 3, the predict stage 
incorporates the Gaussian noise of the environment process 
to obtain a predicted estimate z−

k
 and associated uncertainty 

�−
k
 , and the update stage applies the information gained from 

an observation yk to obtain an improved estimate zk with 
uncertainty Σk. The estimated value is important for data 
collection and is introduced for completeness, but our tra-
jectory optimization is only concerned with minimizing the 
covariance of the estimation. Despite the discrete updates of 
the Kalman filter, the precise values of the covariance matrix 
can be calculated at any point t using the following:

Fig. 2  Persistent monitoring example of 3 POIs and their associated 
observation regions. (top) The minimum-jerk trajectory must spent 
a different amount of time within each observation region to meet 
the constraints of 3 observations in B1, 2 observations in B2, and 1 
observation in B3. The trajectory is constrained to remain within each 
observation region. (bottom) Evolution of the covariance over time. 
When not observed, the uncertainty grows linearly in proportion to W 
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where ck is the result of the Riccati Kalman filter update and 
δ(t − tk) is the Dirac delta function.

Each observation reduces the estimation uncertainty of a 
POI by a monotonically decreasing amount. This property of 
diminishing returns of the Kalman filter has been exploited 
to optimize sensor selection and scheduling in previous 
works [8, 9, 51, 52]. As we describe later, the number of 
consecutive observations of a POI di will be an important 
optimization target due to the inherent trade off between 
reducing the uncertainty of individual POIs and reducing 
total cycle time, impacting the uncertainty of all POIs as 
described in Section 4.1.

3.4  Problem Statement

Our objective is to plan a trajectory for a sensing quadrotor 
that results in a minimum estimation uncertainty across all 
POIs. While researchers have used a variety of optimization 
goals [28], we choose to minimize the maximum eigenvalue 
of the steady-state covariance matrix, which bounds the esti-
mation uncertainty at any POI and is commonly referred to 
as E-optimality [27].

When considering persistent sensing over an infinite time 
horizon, optimal trajectories have been proven to be approxi-
mately periodic [29]. Hence, we restrict our focus to the 
class of periodic trajectories, which maintain full observ-
ability of the POIs at every loop. An infinite time horizon 
is selected for the optimization goal because any initial 
covariance will converge to an infinite-horizon steady-state 
condition exponentially fast for a periodic trajectory [29], 
removing the influence of initial conditions. Additionally, 

(11)�̇(t) =

{
W + ck𝛿(t − tk) , �(tk) ∈ Bi,

W , otherwise,

(12)ck = −�k�
⊺

k

(
�k�k�

⊺

k
+ V

)−1
�k�k,

we obtain a solution that works for any initial position along 
the trajectory, which is equivalent to starting the trajectory at 
any point within a sensing period. While suboptimal in some 
instances, removing the reliance on specific timing of sam-
pling allows for a lower cycle time and guarantees a comput-
able upper bound for the maximum estimation uncertainty.

Problem 1 (Minimizing Steady‑State Uncertainty subject 
to Trajectory Feasibility Constraints) For a quadrotor with 
dynamics in Eqs. 3-6 and POIs Q , find a periodic, time-
parameterized trajectory s with loop period T to minimize 
the maximum eigenvalue �∞

max
 of the steady-state Kalman 

filter covariance matrix Σ that evolves as defined in Eq. 11 
at an infinite-time horizon for any initial sampling position:

where S is the admissible set of trajectories defined in Eq. 7 
and �∞

max
 is defined as:

where �max is the maximum eigenvalue of Σ.

Our approach to generating a feasible minimum steady-
state uncertainty trajectory considers three subproblems:

1. Determine POI visitation order,
2. Calculate optimal number of consecutive observations,
3. Generate a dynamically feasible trajectory.

As outlined in Fig. 4, the POI visitation order is calculated 
once for a given set of POIs q. Then, the Greedy Knockdown 
Algorithm calculates the optimal observation periods d that 
minimize the maximum estimation uncertainty. The Feasible 
Trajectory Optimizer for Persistent Monitoring (f-TOP) cal-
culates minimum-jerk trajectories that meet the observation 
periods d and dynamic constraints of the system. If the feasi-
ble trajectory timing does not match the optimal observation 

(13)
�∗ = argmin

T ,�

(
�∞
max

(T , �)
)

s.t. � ∈ S

(14)�∞
max

(T , �) = lim sup
t→∞

[
max

t≤�≤t+T �max(�, �(�))
]

Fig. 3  The Riccati update procedure for a discrete Kalman filter con-
sists of two stages: a Predict Stage that updates the mean and covari-
ance of the estimate based on the known system model and an Update 
Stage that refines the prediction according to the measured value and 
observation noise

Fig. 4  Algorithm flow of the Feasible Trajectory Optimizer for Per-
sistent Monitoring (f-TOP), which computes optimal observation 
periods and feasible trajectories in an iterative manner
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periods, then the Greedy Knockdown Algorithm and pro-
posed f-TOP algorithm are run iteratively until convergence.

4  Optimal Observation Lengths

Our goal is to minimize the estimation uncertainty of a set 
of POIs by determining the optimal observation length for 
each POI. This presents an interesting trade off; the more 
time spent observing any single POI, the more uncertain we 
become about the current value of the other POIs.

In this section, we outline how to calculate the maximum 
eigenvalue of the Kalman filter estimation covariance at 
steady state and describe the trade-off between minimiz-
ing loop time and decreasing the uncertainty for a single 
POI. Then, we describe an approach to calculate the optimal 
observation lengths for a set of POIs. First, we determine an 
optimal visitation order for the POIs, which is equivalent to 
finding the shortest cyclic path through the POIs. For cal-
culating the optimal observation lengths for each POI, we 
implement the Greedy Knockdown Algorithm (GKA) from 
our previous work [22] with updated stopping criteria. The 
output of GKA is an optimal continuous observation length 
for each POI, which is used as a constraint when calculating 
feasible paths in Section 5.

4.1  Steady‑State Kalman Filter Bounds

For a discrete Kalman filter, a periodic sequence of obser-
vations will result in the estimation covariance to converge 
exponentially fast [29] to a periodic steady-state covariance 
Σ(t) where for a loop with cycle time T, Σ(t) = Σ(t + T) as 
t → ∞ . We define the steady-state value for the i-th eigen-
value immediately prior and after observation d as �(d)

i
 and 

�
−(d)

i
 with the maximum value at steady-state �i = �

(1)

i
 for 

simplicity. For POIs with uncorrelated values, the eigenval-
ues are ordered such that λi corresponds to the maximum 
uncertainty of POI qi. The maximum eigenvalue of the 
steady-state covariance matrix is guaranteed to be bounded 
if every POI is measured at least once per cycle.

Lemma 1 (Bounded Uncertainty Guarantee 9) If all POIs Q 
are observed at least once during a cycle of duration T, the 
maximum eigenvalue of the steady-state Kalman filter covar-
iance Σ will be bounded as lim

t→∞
�max(t) ≤ b for some finite 

constant b.

During each measurement of POI qi, di ∈ ℤ≥1 consecu-
tive observations are made where each observation is binary 
as described in Eq. 10. Additional observations result in a 
reduction in uncertainty such that 𝜆(d+1)

i
< 𝜆

(d)

i
 , but the 

uncertainty reduction decreases for each observation added 

such that 𝜆(d)
i

− 𝜆
(d+1)

i
< 𝜆

(d−1)

i
− 𝜆

(d)

i
 . An example of the 

evolution of the eigenvalues over time at steady state can 
be seen in Fig. 2.

For uncorrelated POIs at steady state, the reduction in 
uncertainty from the di consecutive observations is fol-
lowed by a linear increase in uncertainty in proportion to 
W. The lack of correlation means that each eigenvalue 
evolves independently with the same cycle period T. For 
the purpose of computing the maximum eigenvalue of the 
steady-state covariance, the observations of each POI can 
be shifted in time to align, such that the first observation 
of each POI occurs at the same time instance. The rear-
rangement of observation times can be captured by a new 
condensed observation matrix �̃k where k is the number of 
discrete observations. Let Ei be the elementary matrix with 
1 at its i-th diagonal entry and 0 everywhere else, then �̃k 
is defined as:

where d̂ = max
i

di . The matrix �̃k is a condensed observation 
matrix where �̃1 is the identity matrix, indicating all POIs 
are observed at least once, and the last non-zero observation 
matrix �̃d̂ contains 1s for the POIs that had the highest num-
ber of observations. With all observations condensed, the 
maximum uncertainty for each POI λi with the modified time 
alignment will occur immediately prior to the application of 
�̃1 , which is described more formally in Eq. 17.

For a periodic cycle where T mod f −1
s

= 0 , the uncer-
tainty can be calculated precisely. Under these conditions, 
each observation per loop will be taken at the exact location 
as the previous loop. Aperiodic cycles where T mod f −1

s
≠ 0 

can be converted to periodic by raising T to the nearest f −1
s

 
multiple. Using �̃k , the worst-case interobservation time is 
given as:

where ⌈⋅⌉ is the ceiling function. For high sampling frequen-
cies, the change in cycle time will result in minimal change 
in overall error, but for lower sampling frequencies, which 
may occur with slow-responding air quality sensors or cer-
tain image processing applications, this rounding can impact 
the overall performance of the system.

The worst-case steady-state uncertainties �̃ resulting from 
using �̃k and T̂  forms the following system of equations:

(15)�̃k =

�∑
{i∣di≥k}�i, 1 ≤ k < d̂,

0, d̂ ≤ k,

(16)T̂ = ⌈Tfs − d̂⌉f −1
s

,

(17)
�̃
j

= �̃
i
+�f −1

s
− �̃

i
�̃

i

(
�̃

⊺

i
�̃
i
�̃

i
+V

i

)−1
�̃

⊺

i
�
i

∀ 1 ≤ i < d̃, j = i + 1

�̃
1

= �̃
d̂
+�T̂ − �̃

d̂
�̃

d̂

(
�̃

⊺

d̂
�̃d̂�̃d̂

+V
d̂

)−1
�̃

⊺

d̂
�̃
d̂
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where �̃
1
 contains the maximum uncertainty for all POIs 

immediately prior to the first observation, such that 
[�̃

1
]i,i = 𝜆i . For smaller values of d̂ , the equations can be 

quickly solved directly, but for larger values of d̂ , the prob-
lem can be solved efficiently using structure-preserving 
algorithms [53].

Proposition 1 (Uncertainty Bound) If all POIs Q are 
observed at least once during a cycle of duration T, the 
eigenvalues of the steady-state Kalman filter covariance Σ 
will be bounded as:

where λi is the i-th eigenvalue of �̃1 as calculated in Eq. 17 
from a modified observation matrix �̃ formed from the num-
ber of consecutive observations di of each POI in Eq. 15 and 
the worst-case interobservation time T̂ .

The uncertainty bound can be computed for a worst-case 
inter-observation time and number of observations for each 
POI. The remainder of Section 4 explores how the cycle time 
and observation periods are selected to minimize this bound.

4.2  Visitation Order

The cycle time T can be split into two components: Ti, the 
time spent observing qi, and Ti→i+1 , the travel time between 
successive observation regions Bi and Bi+ 1. In this section, 
we present a solution for minimizing the interobservation 
travel time by formulating the problem as a standard TSP.

Modern solutions to the TSP involve minimizing the 
total cost to visit all points and finding a Hamiltonian tour 
that only visits each POI once. For our application, the cost 
between POIs is the time required to travel between them. 
A state-of-the-art exact TSP solver is Concorde [54], which 
leverages Lin-Kernighan heuristics, branch-and-bound 
methods, and other upper- and lower-bound methods to 
converge to solutions quickly for real-world problems but 
still with exponential complexity for worst-case situations.

We restrict our trajectory to the class of periodic trajecto-
ries that is periodic for position and all higher order deriva-
tives, such that:

Due to being periodic, the trajectory finishes a loop with 
travel from the last qN to the first POI q1.

For a given visitation order, the travel time between POIs 
can be fixed by selecting entrance and exit points for the 
observation region Bi for each POI, which separates the 
problem into parallel subproblems of generating a trajectory 

(18)lim
t→∞

�max(t) ≤ max
i

�i

(19)�(t + T) = �(t), T =

N∑

i=1

(
Ti + Ti→i+1

)
.

segment within each observation region and the trajectory 
between consecutive observation regions as illustrated in 
Fig. 2. Within each Bi, the trajectory segment si(t) begins 
at an entrance point �in

i
= �i(0) and ends at an exit point 

�out
i

= �i(Ti) , both of which are located within the closed 
observation region �in

i
, �out

i
∈ Bi . When the UAV is not in an 

observation region, the estimation uncertainty grows linearly 
with time.

The interpoint travel time between observation regions is 
minimized by minimizing the distance between consecutive, 
convex observation regions Bi and Bj while maximizing the 
trajectory velocity ‖�̇‖ = vmax with ‖�̈‖ = 0 as follows:

where �in∗
j

 and �out∗
i

 are the optimal entrance and exit posi-
tions for observation region Bj and Bi, respectively, Ti→j is 
the interpoint travel time, and j = i + 1 mod N closes the 
cycle so that the last point leads into the first point in the 
visitation order. The distance between regions will be 
unique, but in the case where the entrance and exit positions 
are not unique, the interpoint trajectory closest to the direct 
path from one point to the next is used. The interpoint travel 
times Ti→j are used in calculation of the total loop time and 
are input into the Greedy Knockdown Algorithm in 
Section 4.3.

The fixed entrance and exit positions for each observation 
region enable the trajectory s to be decomposed into trajec-
tories that are within an observation region si and interpoint 
trajectories that are between observation regions �i→j , such 
that:

The interpoint trajectories are fully defined as the linear 
interpolation between �out∗

i
 and �in∗

j
 with ‖�̇‖ = vmax and 

‖�̈‖ = 0 . Continuity is maintained between the trajectory 
segments by constraining the trajectory within an observa-
tion region to begin at the entrance position and end at the 
exit position with 0 acceleration and velocities aligned with 
the incoming and outgoing trajectories. By constraining the 
trajectory at each entrance and exit position, trajectories 
within each observation region can be calculated independ-
ent of each other by the optimization outlined in 
Section 5.2.

Although we generate a visitation order by solving a TSP, 
the interpoint travel times and entrance and exit positions 
can be calculated for any arbitrary visitation order of POIs. 
However, the visitation order has a direct impact on the 

(20)�in∗
j
, �out∗

i
= argmin

�in
j
∈Bj,�

out
i
∈Bi

‖�in
j
−�out

i
‖

vmax

,

(21)Ti→j =
‖�in∗

j
−�out∗

i
‖

vmax

,

(22)� = �1 ∪ �1→2 ∪ �2 ∪… ∪ �N ∪ �N→1.
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observation periods calculated in Section 4.3 and the tra-
jectories generated in Section 5, so any change to the visita-
tion order would require re-executing the iterative trajectory 
generation portion of f-TOP.

4.3  Greedy Knockdown Algorithm

Prior to generating the trajectory si through each observation 
region Bi, the length of time spent observing each POI must be 
determined. Since we constrict the trajectory to visit each POI 
once per cycle for one or more consecutive observations, the 
goal is to determine the number of consecutive observations 
that will minimize the worst-case steady-state uncertainty. To 
accomplish this, we extend the Greedy Knockdown Algo-
rithm from our previous work [22] by updating the method 
with an improved stopping criterion and more efficient com-
putation. We chose to implement a greedy algorithms because 
they have been shown to be near-optimal for approximate 
supermodular metrics [52], such as the mean-squared error 
and spectral norm of the estimation covariance matrix, and 
optimal when state and sensor noise are uncorrelated [9].

Our proposed solution GKA, shown in Algorithm 1, deter-
mines the optimal number of observations of each POI di from 
the interpoint travel times Ti→j , the uncertainty in the envi-
ronmental model W, and the covariance of the noise in the 
observation model V. The initial run of GKA leverages the 
assumption that each POI is observed at least once and sets di 
= 1 ∀ i. Following runs of GKA calculate the number of initial 
observations from the minimum traversal time of each subre-
gion, an output of the proposed f-TOP algorithm in Section 5.2.

GKA is a greedy algorithm that proceeds in iterations 
denoted by a (Algorithm 1). The algorithm may progress 
for several iterations beyond the optimum, so the iteration 

that contains the optimal number of iterations and the final 
iteration may be different.

For each iteration, a bound on the maximum steady-
state uncertainty for each point is calculated by forming 
�̃ (Algorithm 1 Line 4) and computing the steady-state 
uncertainty (Algorithm 1 Line 10) using the techniques 
outlined in Section 4.1. The bound is the result of solving 
the nested Kalman filter formulation in Eq. 17 with the 
special observation matrix �̃ . An observation is added 
to the POI with the largest estimation uncertainty as 
denoted by the i-th diagonal element in �̃ (Algorithm 1 
Lines 6-8). The algorithm continues until termination con-
ditions are met that guarantee the minimum upperbound 
on the maximum eigenvalue has been found. The last step 
is to check all iterations and return the optimal number of 
observations of each POI di associated with the minimum 
upperbound.

Each iteration of GKA adds an observation to the POI 
with the current maximum estimation uncertainty, and 
this addition has competing effects. Firstly, the additional 
sequential observation reduces the estimation uncertainty 
of the POI being observed. As the number of consecutive 
observations of a single POI increases, the uncertainty of 
that POI reduces exponentially and asymptotically to the 
value that a stationary sensor with the sample sampling 
characteristics could achieve if left at the POI. Secondly, 
each observation increases the overall cycle time by f −1

s
 (i.e. 

Ta+1 = Ta + f −1
s

 ), resulting in a linear increase in uncertainty 
of all other POIs. The GKA stopping criterion in Algo-
rithm 1 Line 9 identifies the point when additional observa-
tions of a POI can no longer improve the maximum estima-
tion uncertainty (Fig. 5).

Since the reduction in uncertainty decreases for each sub-
sequently added observation, after some number of observa-
tions, the reduction from adding an observation will be less 
than the uncertainty increase when an observation is taken 
at another point. Once this critical point is reached, GKA 
is stopped after the maximum uncertainty for any two fol-
lowing iterations is higher than the maximum uncertainty at 
the latch point (Algorithm 1 Line 9). Algorithm 1 uses the 
array notation �̃�[a, ∶] to denote the eigenvalues associated 
with iteration a of the algorithm generated with the modi-
fied observation matrix �̃ . For simplicity in describing the 
progression of the algorithm and stopping criterion, it is use-
ful to express the eigenvalues for a specific iteration a and 
consecutive observation di in a single term �̃�(di,a)

i
 . Formally, 

the stopping criterion is stated as follows.

Proposition 2 (GKA Stopping Criterion) For the iterative 
Greedy Knockdown Algorithm, the minimum steady-state 
uncertainty is reached at an optimal number of observations 
d∗ and associated total number of observations a∗. The opti-
mal point is reached at or before any two POIs have reached 
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the condition where any additional observation will result in 
an increase in uncertainty for either POI such that:

where �̃�(di,a)
i

 is the i-th eigenvalue of the maximum covari-
ance matrix �̃1 for di consecutive observations during round 
a of GKA and wi = [W]i,i. The stopping point a∗ is reached 
when di ≥ d∗

i
 for two or more i. Since the maximum eigen-

value for future observations a > a∗ increases monotonically, 
the minimum upperbound of the maximum eigenvalue has 
been reached or passed at iteration a∗.

Proof See Appendix A.1

The result of GKA is the number of observations required 
for each POI to minimize the upperbound on the steady-state 
uncertainty. Each of the di observations requires a period 
of f −1

s
 , which serves as constraints for the length of the 

observation period. In the next section, the trajectory opti-
mization generates a smooth trajectory that ensures that the 
required observation period while adhering to the dynamic 
constraints of the UAV.

5  Minimum Uncertainty Trajectories

From the observation lengths calculated by GKA (i.e. dif −1s
 ) 

and physical constraints of the platform, we generate a feasi-
ble trajectory that meets these constraints while minimizing 
the average jerk. As shown in Eq. 22, the whole trajectory 
can be decomposed into interpoint trajectories and trajec-
tories within an observation region si. The interpoint tra-
jectories are fully defined by a linear interpolation between 
consecutive observation regions with maximum velocity 
and no acceleration. In this section, we present a method 
for generating the remaining trajectories within the observa-
tion region using B-spline trajectories to ensure adherence 
to constraints on the dynamics of the system, the required 

(23)d∗
i
= argmin

di

[
�̃�
(di,a)

i
− �̃�

(di+1,a+1)

i
< wif

−1
s

]

observation length, and trajectory continuity at each transi-
tion between trajectories within and between observation 
regions. First, we present a brief background on B-spline tra-
jectories and then we present our proposed f-TOP algorithm 
for generating feasible trajectories within each observation 
region.

5.1  B‑Spline Trajectory

To generate C3 continuous trajectories that meet constraints 
on velocity and acceleration, we leverage a B-spline repre-
sentation. B-spline curves have an attractive property that 
the curve and its derivatives are contained within the convex 
hull of their control points and offer controllable levels of 
continuity and numerical stability due to their limited, time-
varying support.

B-splines are piecewise polynomials defined for each 
subregion i by a set of control points Ci, k-th order basis 
functions Nk(t), and knots τj. The k-th order basis func-
tions can be calculated using the Cox-de Boor algorithm 
as follows:

where 
[
Nk(t)

]
j
 is the j-th basis function of Nk(t).

Each basis function provides limited support over the 
interval τj ≤ t < τj+k. At any given point along the curve, 
a B-spline function will have a maximum support of k + 1 
different basis functions, transitioning between basis func-
tions at each knot. We focus on developing trajectories with 
uniform B-splines, which have a uniform spacing between 
all knots, such that Δτ = τj + 1 − τj.

(24)�i = �iNk(t)

(25)
[
N1(t)

]
j
=

{
1 , 𝜏j ≤ t < 𝜏j+1

0 , otherwise

(26)
[
Nk(t)

]
j
=

t−�j

�j+k−�j

[
Nk−1(t)

]
j
+

�j+k+1−t

�j+k+1−�j+1

[
Nk−1(t)

]
j+1
,

Fig. 5  (left) The control points 
and resulting trajectory of a 
B-Spline of order 4 with three 
different time points marked 
(t = 0.9, t = 1.8, and t = 2.7). 
(right) The color-coded basis 
functions Nk(t) corresponding 
to each control point. Note that 
at any time point, the position 
is calculated from a weighted 
average of up to 4 control points 
and the current value of the 
basis function
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At the transition points defined by the knots τk, the curve 
has Ck− 1 continuity. The derivative of the B-spline bases 
results in a linear combination of lower order bases, which 
can be succinctly represented as:

where Ci is a matrix of the control points, A(a) is a Toeplitz 
matrix that captures the relationship between C and the con-
trol points of the a-th derivative C(a), and Nk − 1(t) is vector 
of the value of each basis function at time t. For the deriva-
tion of Eq. 27 see Appendix A.2.

Due to the fact that the basis functions sum to unity ∑
jNj,k(t) = 1 , ∀t, the value of a function defined by B-splines 

will remain within the convex hull created by the control 
points of the support. As shown in Eq. 27, the derivative In 
the case where a robotic platform has the same maximum 
allowable velocity and acceleration for the entirety of its 
trajectory, the constraints are guaranteed to be met if the 
magnitude of all control points c are less than the limiting 
value (i.e. vmax or amax as defined in S).

5.2  Trajectory Optimization with f‑TOP

Trajectories that are optimized to be informative must take 
the dynamic constraints of the sensing platform into account. 
If a trajectory cannot be followed and observation locations 
are different from planned, the resulting uncertainty in an 
estimate can be arbitrarily bad. Our proposed Feasible Tra-
jectory Optimization for Persistent Monitoring (f-TOP) takes 
the point order and required number of observations for each 
POI and generates a feasible trajectory that guarantees the 
correct number of observations are taken within each sens-
ing region while meeting dynamic constraints of the UAV.

The proposed f-TOP optimization has a multi-objective 
formulation, primarily to minimize the maximum steady-
state uncertainty as formulated in Eq. 13 and secondarily to 
provide the smoothest possible path as shown in Eq. 28a. By 
applying the results from Section 4.2 and the output of GKA 
from Section 4.3, minimizing the maximum steady-state 
uncertainty can be simplified to minimizing the total travel 
time subject to constraints on entrance and exit conditions in 
Eq. 28c and the minimum number of required observations 
in Eq. 28e for each observation region.

The secondary objective of a smooth path is formulated 
as a minimization of the L2-norm of the jerk of the trajec-
tory with a feasibility constraint that the trajectory remains 
within the valid state space S as defined in Eq. 7. By restrict-
ing the trajectory s to S in Eq. 28b, the maximum velocity 
and acceleration are bounded by the limits of the platform. 

(27)
da𝐬(t)

dta
=

(
1

Δ�a

)
𝐂i𝐀

(a)Nk−1(t),

As smoothness is a secondary objective, the coefficient 𝜖 can 
be set arbitrarily small so that it does not affect the primary 
goal. The full multi-objective formulation is as follows:

where the trajectory is segmented as described in Eq. 22. 
Note that since GKA assumes that the UAV remains within 
the observation region of a POI for a continuous period of 
time, the additional constraint of si ∈ Bi is applied.

The optimization and constraints from Eq. 28a can be 
reformulated using B-splines into a quadratically constrained 
quadratic program (QCQP). The primary objective is sim-
plified by removing the interpoint travel times Ti→j , which 
are constant due to the entrance and exit constraints, and 
the time within each observation region is updated with the 
number of control points and a fixed, uniform knot spacing 
such that Ti = MiΔτi. The secondary objective of minimum 
jerk is converted into a linear relationship of control points 
using Eq. 27, which form a convex hull of achievable values 
for the trajectory derivatives. For the special case of a 4th-
order B-spline with k = 4, the objective can be simplified 
into a quadratic form (see Appendix A.3) as shown below:

s.t. Eqs. (28b) and (28c)

where �i ∈ ℝ
Mi×3 is the matrix of all control points and 

ci,j is a vector of the j-th control point for the i-th observa-
tion region, A(3) is a third-order Toeplitz matrix captur-
ing the relationship between control points of B-spline 
derivatives as in Eq. 27, the first and second order con-
trol points are computed as �̇ij = (�ij − �i(j−1))∕Δ𝜏i and 
�̈ij = (�ij − 3�i(j−1) + 3�i(j−2) − �i(j−3))∕Δ𝜏

2
i
 , i ∈{1,...,N} is the 

POI index, and j ∈{1,...,Mi} is the interior control point 
index. Note that Mi only refers to the control points within 
the observation region. When implementing, k − 1 addi-
tional control points must be added outside of the obser-
vation region to define the entrance and exit conditions 
in Eq. 28c where si is computed from control points and 
B-spline basis functions as described in Eq. 24.

(28a)min�

N∑
i=1

�
Ti + Ti→i+1

�
+ 𝜖 ∫ ‖�⃛(t)‖2dt

(28b)s.t. � ∈ S

(28c)�in
i
= �in∗

i
�out
i

= �out∗
i

∀ i

(28d)�
i
∈ B

i
∀ i

(28e)Ti =∫ {t∣�(t)∈Bi}
1 dt ≥ difs ∀ i, 0≤ t<T

(29a)min
�i,Mi,Δ�i

N∑
i=1

�
MiΔ�i + ��

⊺

i
�(3)�(3)⊺�i

�

(29b)cij ∈ Bi ∀ i, j

(29c)‖�̇
ij
‖2≤ vmax ‖�̈

ij
‖2≤ amax ∀ i, j

(29d)M
i
Δ�

i
≥ d

i
∕f

s
∀ i
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The objective of the optimization problem in Eq. 29a 
has a linear and a quadratic component that defines the 
mean-square of the jerk with quadratic constraints on the 
magnitude of position, velocity, and acceleration. This 
form of QCQP can be efficiently solved by modern con-
vex optimization solvers with interior-point methods [55]. 
While the problem is solvable, the constraints of the prob-
lem are restrictive with many values of Δτ resulting in 
infeasible conditions. The feasibility of the constraints is 
closely linked to the time that the robotic platform remains 
within the observation region MiΔτ, the size of the obser-
vation region Bi, and the dynamic constraints. Larger Mi 
values result in more flexibility in the planner in terms of 
the number of control points, and so long as the robotic 
platform can remain within the sensing region of a point, 
which is determined by vmax and amax , and has a sufficient 
number of control points, then it can meet the enter and 
exit constraints of the region of interest.

To better optimize the search for a feasible domain, we 
introduce a bi-level formulation of the optimization problem 
with slack variables that guide the selection of appropriate 
Mi and Δτ values. The outer problem controls the number 
of control points and knot spacing while the inner problem 
minimizes the slack of the constraints, which is added to 
provide direct information for how close the solver is to a 
feasible solution. The inner problem refits the constraints 
from Eq. 29a with slack variables for the velocity constraint 
πv, acceleration constraint πa, and overall slack π. The 
outer problem can adjust Mi and Δτi with gradient descent 
methods to better approximate good values for subsequent 
iterations. The inner problem is defined for a given observa-
tion region Bi as a second-order cone program (SOCP) as 
follows:

s.t. Eqs. (28b), (28c), and (29b)

where �̇(x)
ij

 , �̇(y)
ij

 , and �̇(z)
ij

 represent the first, second, and 
third entry of �̇ij , respectively, πi is an upperbound on the 
slack, 𝜖π is an added weight to the acceleration, and the 
slacked constraints are formulated as a second-order cone. 
An n-dimensional quadratic cone is defined as:

(30a)f (Mi, Δ�i) = min
�i

Πi + ���
(a)

i
+ ��

⊺

i
� (3) � (3)⊺�i

(30b)(𝜋
(v)

i
vmax, �̇

(x)

ij
, �̇

(y)

ij
, �̇

(z)

ij
) ∈ Q4 ∀j

(30c)(𝜋
(a)

i
amax, �̈

(x)

ij
, �̈

(y)

ij
, �̈

(z)

ij
) ∈ Q4 ∀j

(30d)Πi ≥ �
(v)

i
Πi ≥ �

(a)

i

(31)Qn =

{
� ∈ ℝ

n ∣ x1 ≥
√

x2
2
+ x2

3
+...+ x2

n

}

and the normalized velocity and acceleration constraints are 
transformed from Eq. 29b to the following form:

where πv and πa are the slack for the velocity and accelera-
tion constraints, respectively. While it may look difficult to 
solve a SOCP with NMi cone constraints, each region of 
interest is independent due to the entrance and exit con-
straints. Each independent problem results in 2Mi fourth-
order cones and a positional constraint to remain within 
the convex optimization region, which is easily solvable by 
modern standards.

The final bi-level optimization consists of a higher level 
controller that sets the knot spacing and number of control 
points that are guided to a feasible region and a set of inde-
pendent lower-level problems that depend on knot spacing 
and number of control points f(Mi,Δτi) that can be solved in 
parallel as follows:

where the inner problem f(Δτi,Mi) is defined in Eq. 30a.
In the inner problem objective statement in Eq. 30a, the 

reason for an added focus on minimizing the maximum 
acceleration is twofold. First, the minimum normalized 
slack on velocity (πv) is 1 since the entrance and exit condi-
tions for each observation region have the UAV travelling at 
vmax . In order to further guide good solutions after the slack 
in velocity has been removed, an additional focus needs to 
be added to the acceleration slack. Secondly, the maximum 
acceleration along a trajectory has a large impact on the 
ability of a UAV to track a trajectory since maximum accel-
eration is directly linked to the maximum force produced by 
the motors, which is a limiting factor on performance. The 
further the acceleration is from the upper limit, the better a 
UAV can recover from tracking errors.

It is important to note that the minimum sensing time 
dif

−1
s

 may differ from the amount of time it takes to trav-
erse the region of interest ΔτiMi. When they differ (i.e. 
Δτi≠ΔτiMi), the GKA from Section 4.3 is rerun with the 
new minimum traversal times to determine if a more optimal 
series of observations can be obtained. The iteration contin-
ues until convergence, which is achieved when the Greedy 
Knockdown Algorithm maintains its number of observations 
for two consecutive cycles.

(32)‖�̇ij‖2∕vmax ≤ 𝜋v

(33)‖�̈ij‖2∕amax ≤ 𝜋a

(34a)min
Mi,Δ�i

N∑
i=1

f (Mi,Δ�i)

(34b)s.t. MiΔ�i ≥ di∕fs ∀ i
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6  Simulation Results

6.1  Simulation Setup

We evaluate the f-TOP algorithm against three baseline algo-
rithms in a simulated scenario requiring monitoring a set of 
randomly distributed points over a 50 acre region (450-by-
450 m). We assume the environmental model from Eq. 2 is 
zero mean and distribute the covariance growth W in accord-
ance to a Chi-squared distribution. We vary the number of 
points in the region between 10 and 80, which can represent 
points that an expert selects as useful for inputting into an 
environmental model in the air quality example or points 
that have high probability of event detection from thermal 
or RGB camera sensors in forest fire detection scenarios.

Each POI can be measured within a 10 m circular obser-
vation region that does not overlap with the observation 
regions of other POIs. The circular region approximates the 
performance of a UAV that is mounted with a camera on a 
gimbal system. Despite aggressive maneuvers, the camera 
can remain pointed at the POI. We use a UAV model based 
on a commercially available Phantom 4 quadrotor, which has 
a mass of 1.216 kg, maximum velocity of 20 m/s, maximum 
acceleration of 19.2 m/s2, and battery life of 20 min. The 
maximum acceleration is the maximum magnitude in the 
X-Y plane, which was calculated using the maximum lift 
capability and required lift to maintain altitude against the 
acceleration due to gravity. During simulation, limits were 
placed on each motor individually. Aggressive maneuvers at 
the acceleration limit can result in tracking instability when 
using a realistic controller.

The test configurations include the maximum velocity and 
acceleration and more conservative configurations in 10% 
steps for maximum velocities vmax ∈ {10, 12, 14, 16, 18, 20} 
m/s and two maximum acceleration configurations at 90% 
and 100% with amax ∈ {17.3, 19.2} . Each test configura-
tion was run for 10 randomly drawn configurations for the 
expected battery lifetime of the platform (20 min), which 
resulted in a variable number of average loops, dependent 
on maximum velocity and number of POIs.

6.2  Comparison Algorithms

We compared f-TOP to three baseline approaches: a naive 
constant max velocity speed controller (Constant), a veloc-
ity controller obtained using the algorithm proposed by 
[14] with uncertainty decay estimates equal to a first-order 
approximation of a Kalman filter (Linear), and a velocity 
controller that leverages the GKA but without feasibility 
constraints, similar to [22] (GKA 2019).

The Constant method calculates the visitation order by 
solving a TSP as described in Section 4.2 and then traverses 

the POIs at maximum velocity. The method assumes linear 
travel between successive points and does not take obser-
vations or dynamic constraints into consideration. These 
assumptions lead to trajectories with instantaneous velocity 
changes at each POI, which results in tracking errors due to 
the dynamic limits of the UAV, and potentially unobserved 
points at higher maximum velocities or for POIs with small 
observation regions.

The Linear method is based on the uncertainty models 
used in [14], which include a linear increase in uncertainty 
when a POI is not being observed and a linear decrease when 
it is. Since the steady state uncertainty of the Kalman filter 
is achieved when, for each loop, the reduction in uncertainty 
equals the increase in uncertainty for each cycle of the loop, 
a first-order approximation of the reduction rate of the dis-
crete Kalman filter is the product of the loop decrease and 
the sampling rate, i.e., TWfs where W is the uncertainty 
growth from Eq. 2 and T is the loop time at steady state. 
A UAV trajectory is obtained using the velocity controller 
proposed by Smith et al. [14]. While Linear is an improve-
ment over Constant, it still lacks a guarantee that all points 
of interest will be observed.

The GKA 2019 method calculates a POI visitation order 
by solving a TSP as described in Section 4.2, and optimizes 
the velocity profile over the resulting path using [22]. The 
method attempts to meet the required observation periods 
by reducing velocity within the regions of interest. The 
method plans a trajectory that minimizes an upper bound 
on the steady-state error, but like the Constant and Linear 
methods, GKA 2019 generates trajectories with instantane-
ous velocity changes.

6.3  Results

All results for the Constant, Linear, GKA 2019, and f-TOP 
trajectory planners were captured for the same POI place-
ment and uncertainty growth rates. The minimum upper 
bound on the steady-state error was approximated by the 
maximum eigenvalue of the covariance matrix of the estima-
tion over the last loop of each test. All uncertainty results 
were normalized to the bound on max uncertainty of the 
f-TOP algorithm.

Linear, GKA 2019, and f-TOP guarantee that each POI 
will be observed at least once by remaining within the obser-
vation region for each POI longer than the sampling period. 
The Constant planner lacks this guarantee of observability 
because it travels at maximum velocity. Due to the cyclic 
nature of the plans, not observing a POI results in an unsta-
ble condition whereby the uncertainty for the unobserved 
POI will grow unboundedly.
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Despite that the trajectories are optimized to visit all 
POIs, when the plans are followed by a non-linear, geometric 
controller [56] that obeys the UAV dynamics, the actual cov-
erage can differ from the planned coverage. The Constant, 
Linear, and GKA 2019 plan trajectories without incorpo-
rating acceleration limits, resulting in trajectories that can-
not be followed. When POIs were sufficiently far from each 
other, the UAV controller converged to the planned trajec-
tories during the straight flight segments between observa-
tion regions. As the number of POIs increased, resulting in 
a dense configuration that required high agility, the Con-
stant, Linear, and GKA 2019 trajectories regularly resulted 
in missing observations of POIs. Examples of trajectories 
and differences between planned and actual coverage can be 
seen in Fig. 6, and a quantitative comparison between the 
planned and simulated trajectories is provided as the Max 
X-Y Error in Table 1.

Paths planned by f-TOP at the performance limits (i.e. 
vmax = 20 m/s and amax = 19.2 m/s2 ) also suffered from 
tracking errors. This is due to a mismatch between maxi-
mum magnitude constraints on the dynamics with which 
the trajectories are constructed and the actual drone model, 
which includes limits on the maximum force for each motor. 
Depending on the maneuver, the required correction to fol-
low the desired trajectory can max out the force ability of an 
individual motor. For paths further within the performance 
limits, the proposed f-TOP algorithm generates paths that 
can be followed more reliably.

The actualized coverage, which is the percentage of 
POIs that received at least one observation per loop, can be 
observed in Fig. 7 and Table 1. As the maximum allowable 
velocity increases, the coverage of the POIs drops. For the 
plans that do not obey maximum acceleration constraints 

(i.e. Constant, Linear, GKA 2019), the UAV can only 
achieve 50% of the maximum velocity before reaching unsta-
ble conditions. The plans by f-TOP incorporate maximum 
acceleration constraints, resulting in plans that are feasible. 
Several variants of plans were generated for maximum accel-
eration amax values of 90% and 100% of the maximum listed 
accelerations.

Despite the lower loop time of the the naive (Constant) 
and baseline (Linear and GKA 2019) methods, the maxi-
mum uncertainty, Max Covar as seen in Table 1, is sub-
stantially worse than the result of f-TOP due to the actual-
ized coverage of the planned trajectories. By incorporating 
maximum acceleration constraints and planning feasible 
paths, the robotic platforms are able travel 47% faster while 
maintaining the same coverage. The higher achievable speed 
results in lower average loop times for a given coverage level 
and a significant improvement in maximum uncertainty of 
the measurement at each POI. Note that the Max Covar is 
normalized to the minimum eigenvalue from any method for 
a given trial, such that a value of 0.0 means that the method 
had the minimum uncertainty for a single trial.

The best performing method was the f-TOP algorithm 
with acceleration limited to 90% of the maximum value of 
the platform. Despite the slightly improved loop times of 
f-TOP with higher accelerations, the trajectories planned to 
the limit of the system resulted in errors due to the imprecise 
tracking of the controller, which updated the trajectory plan 
online at 100 Hz, causing compounding error when operat-
ing at the system limited in complex maneuvers. By limiting 
the maximum acceleration and velocity to 90% of the maxi-
mum value of the platform, the controller was better able to 
control the system and achieve the required observations in 
a minimum time.

Fig. 6  Simulated trajectories for a quadrotor robot obtained from 
the constant velocity, GKA 2019, and proposed f-TOP methods. The 
POIs are shown with their associated sensing regions (light gray). 

Subplots (a) - (d) focus on regions that highlight the differences in 
the methods and how the performance of the proposed f-TOP method 
enables more observations
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Fig. 7  Comparison of methods showing the impact of not planning 
with higher-order dynamic constraints. Increasing maximum velocity 
constraint results in naive planners creating infeasible trajectories that 
result in missing observations. As a region increases in numbers of 

POIs, the maneuvers to measure all points become more aggressive, 
resulting in naive methods requiring significantly lower speeds to 
achieve similar average observability. Results generated are average 
of 10 random trials for each condition

Table 1  Statistics for each simulated method for 10 randomized 
distributions of 80 POIs with random uncertainty growth rates.  A 
graphical summary of important results can be seen in Fig. 7 (right). 
Max Covar is the maximum eigenvalue of estimation covariance nor-

malized to the smallest maximum eigenvalue from any algorithm for 
the same trial. Max X-Y Error is the maximum distance between the 
planned and simulated trajectory for any time point in the given trial. 
Coverage is the percentage of POIs with at least one observation

The bolded entries highlight test configurations where the controller was unable to follow the planned trajectory

Method Constraints Max Covar (%) Max X-Y Error (m) Coverage (%) Loop Time (s)

vmax amax Avg Min Max Avg Min Max Avg Min Max Avg

Constant 10 – 79.7 36.8 379.5 21.5 14.3 53.0 99.6 97.5 100.0 327.6
12 – 169.1 20.7 449.9 29.5 21.8 52.4 97.3 90.0 100.0 273.0
14 – 308.0 175.0 419.4 45.9 28.6 > 100 90.1 82.5 97.5 234.0
16 – 400.0 332.6 465.4 >100 50.6 > 100 68.5 0.0 82.5 204.7

Linear 10 – 79.7 36.8 379.5 21.5 14.3 53.0 99.6 97.5 100.0 327.6
12 – 164.9 20.7 449.9 29.0 21.8 52.4 97.5 90.0 100.0 273.0
14 – 295.7 91.0 419.4 44.5 28.7 82.1 89.5 81.2 96.2 234.0
16 – 378.8 292.7 465.4 >100 50.6 > 100 75.0 61.3 85.0 204.7

GKA 2019 10 – 55.7 38.7 117.8 18.8 14.4 24.5 99.8 97.5 100.0 332.6
12 – 153.7 22.3 365.8 27.9 20.4 52.7 97.9 93.8 100.0 280.8
14 – 304.6 116.6 442.8 44.7 26.3 91.2 89.4 80.0 96.2 242.8
16 – 364.5 268.6 442.8 62.9 36.3 94.1 78.9 71.2 86.2 215.0

f-TOP 12 17.3 29.0 11.3 163.3 7.7 5.8 10.0 100.0 100.0 100.0 266.6
(90% accel) 14 17.3 80.7 0.0 379.5 13.0 8.8 19.9 99.3 96.2 100.0 238.2

16 17.3 59.0 0.0 312.0 13.3 8.1 21.8 99.3 97.5 100.0 222.1
18 17.3 131.4 0.0 352.9 23.6 10.3 73.6 97.6 93.8 100.0 222.0

f-TOP 12 19.2 51.1 0.0 377.5 10.3 6.2 16.2 99.8 98.8 100.0 264.4
(100% accel) 14 19.2 128.1 4.4 379.5 66.0 7.1 > 100 98.2 95.0 100.0 235.0

16 19.2 154.1 3.0 328.8 19.3 12.2 25.6 96.5 92.5 100.0 216.8
18 19.2 169.7 25.6 343.6 44.3 14.4 > 100 95.4 85.0 100.0 209.3
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7  Conclusion

Persistent monitoring using mobile robotic platforms 
offers substantial benefits over stationary sensors and low-
resolution satellite imagery. When planning trajectories 
for UAVs, it is critical to optimize for observation peri-
ods and to constrain the trajectory to meet the dynamics 
constraints of the sensing platform to ensure a feasible 
trajectory. The f-TOP method generates optimal obser-
vation periods using the Greedy Knockdown Algorithm 
and forms continuous, feasible trajectories by optimiz-
ing the control points and time knots of a B-spline in a 
novel bi-level formulation. The resulting trajectories have 
guarantees on their position, velocity, and acceleration, 
meeting provided constraints. Simulations for randomized 
POI distributions show that the trajectories planned using 
the f-TOP framework outperform related methods, achiev-
ing the same level of observability at 47% higher travel 
speeds, resulting in significant performance gains.

Future work will focus on applying the f-TOP algorithm 
in physical experiments. For persistent monitoring in the 
real world, the generated trajectory must involve rendez-
vous with a recharging station at regular intervals, plac-
ing additional requirements for the planned trajectories. 
Online replanning would be needed to deal with dynamic 
obstacles or changing objectives. Lastly, the f-TOP algo-
rithm could be extended to include environmental models 
that capture measurement correlation.

Appendix 

A.1 GKA Stopping Criterion (Section 4.3)

For uncorrelated POIs, each additional observation results 
in a decrease in the eigenvalue of estimation uncertainty 
for a POI, such that 𝜆(di−1,a)

i
> 𝜆
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eigenvalue associated with the estimation uncertainty of 
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uncertainty increase as 𝜆(di,a+1)
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where ρ(⋅) is the reduction in uncertainty due to an added 
observation, a known monotonic function.
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 , which states that 

when the stopping condition is met, the uncertainty λi can 
only increase after the set of observations at qi and at any 
other POI. In GKA, an observation is added to the POI 
with the highest uncertainty. When any two or more POI 

meet the stopping condition, then adding an observation 
to any POI that meets the stopping criterion will result in 
an overall increase in uncertainty.

A.2 B‑Spline Derivatives (Section 5.1)

The derivative for a B-spline is defined as:

For uniform spacing Δτ = τj + 1 − τj, the derivative simpli-
fies as:

where A(1) captures the interaction between basis func-
tions. With A(a) capturing the linear interaction between 
basis functions for derivative a, further derivatives take 
the form:

A.3 B‑Spline Objective Reformulation (Section 5.2)

The primary objective from from Eq. 28a can be simplified 
by noting that Ti→i+1 is constant and will not affect the mini-
mization goal and that Ti = MiΔτi. The secondary objective, 
the average jerk power, can be replaced by the linear com-
bination of control points and bases in Eq. 27. The result is 
an updated cost function as follows:

The secondary objective can be further modified for the 
specific case of minimizing the square of jerk magnitude 
for k = 4. For a 4rd-order representation of position, the 3rd 
derivative results in a basis function of order 1, which is 
either 1 for τi ≤ t < τi + 1 and 0 otherwise as shown in Eq. 25. 
Since the limited domain of the base does not overlap with 
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any other base, the outer product of the 0th-order basis func-
tion results in I and the integral results in ΔτI, where I is the 
identity matrix as seen below:

Since 𝜖 is an arbitrarily small scale factor, we incorpo-
rate 1/Mi and 1/Δτ5 into 𝜖, resulting in the reformulated 
objective:
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