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Abstract
Monocular Visual Simultaneous Localisation and Mapping (VSLAM) systems are widely utilised for intelligent mobile
robots to work in unknown environments. However, complex and varying illuminations challenge the accuracy and
robustness of VSLAM systems significantly. Existing feature-based VSLAM methods often fail due to the insufficient
feature points that can be extracted in those challenging illumination environments. Therefore, this paper proposes an
improved ORB-SLAM algorithm based on adaptive FAST threshold and image enhancement (AFE-ORB-SLAM), which
works in the environments with complex lighting conditions. An improved truncated Adaptive Gamma Correction (AGC)
is combined with unsharp masking to reduce the effect caused by different illuminations. What is more, an improved
ORB feature extraction method with the adaptive FAST threshold is proposed and adopted to obtain more reliable feature
points. To verify the performance of the AFE-ORB-SLAM, three public datasets (the extended Imperial College London
and National University of Ireland Maynooth (ICL-NUIM) dataset with different lighting conditions, Onboard Illumination
Visual-Inertial Odometry (OIVIO) dataset and the European Robotics Challenge (EuRoC) dataset) are utilised. The results
are compared with other state-of-the-art monocular VSLAM methods. The experimental results demonstrate that the AFE-
ORB-SLAM could achieve the highest average localisation accuracy with robust performance in the environments with
complex lighting conditions while keeping similar performance in the normal lighting scenarios.

Keywords Monocular VSLAM · Adaptive FAST threshold · Image enhancement · Complex lighting environments

1 Introduction

With the rapid development and wide applications of
autonomous robotic systems, Simultaneous Localization
and Mapping (SLAM) has attracted a lot of attention in the
robotics research field [1, 2]. SLAM, which estimates the
position of the robot while reconstructing the surrounding
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environment simultaneously in the unknown environment,
has vital theoretical significance and application value.
Moreover, it is the core technology of autonomous robots in
the unknown environment [3].

Lots of sensor modalities such as the sonar, Light
Detection and Ranging (LiDAR) and camera can be used
for different SLAM systems [4–6]. Among them, Visual
SLAM (VSLAM) researches are blooming due to their
convenience and relatively low requirements for sensors.
VSLAM only relies on the camera, which obtains plenty
of texture information and has been widely deployed on
robotic platforms [7]. The accuracy and robustness of
VSLAM are vital for autonomous navigation, especially
in the complex lighting environment. For this reason, the
stereo camera, depth camera or Inertial Measurement Unit
(IMU) have been adopted to VSLAM systems to improve
their performances [8]. However, these methods will cause
inconvenience and extra cost to the system. Monocular
VSLAM systems only rely on the lightweight camera, and
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simple calibration makes them particularly attractive for
many robotic applications [9].

Depending on the image matching methods, VSLAM
systems can be divided into the featured-based method and
direct method [10]. The former extracts feature points from
images and finds their corresponding based on geomet-
ric constraints, while the latter finds the corresponding of
different frames based on their pixel intensities directly.
The VSLAM has been investigated from different perspec-
tives, and lots of cutting-edge VSLAM methods such as the
ORB-SLAM3 [11] and Direct Sparse Mapping (DSM) [12]
have been developed. However, most advanced VSLAM
systems are evaluated in well-lighted environments with-
out considering challenging lighting conditions, such as
dark, over-bright or dynamic illumination conditions. Visual
blur or feature changes because of different illumination
conditions occur in these complex lighting environments.
Thereby, the feature matching or frame-to-frame matching
process is significantly affected by the changes of illumi-
nation conditions. As a result, VSLAM systems may fail in
these environments. Thus, developing a robust monocular
VSLAM system for the challenging scenario with complex
light has significant research and application value.

Towards this end, this paper presents a robust monocu-
lar VSLAM system (AFE-ORB-SLAM) through adopting
the proposed adaptive FAST threshold and image enhance-
ment techniques. In the proposed AFE-ORB-SLAM, the
ORB-SLAM3 is chosen as the framework due to its excel-
lent performance in well-lit environments. In order to handle
the poor performance of the ORB-SLAM3 in challenging
lighting environments, the truncated Adaptive Gamma Cor-
rection (AGC) is enhanced and combined with the unsharp
masking method in the AFE-ORB-SLAM. Meanwhile, the
proposed system is improved by the proposed efficient and
adaptive FAST threshold method. The main contributions of
this work are surmised as follows:

1. A truncated AGC is improved and combined with the
unsharp masking technique as the image enhancement
method to reduce the effect caused by different
illumination conditions for the ORB-SLAM3.

2. An improved ORB feature points extraction method
based on the adaptive FAST threshold is proposed
and adopted to the ORB-SLAM3, which obtains more
reliable feature points.

3. Extensive experiments are conducted to validate the
accuracy and robustness of the AFE-ORB-SLAM.
Experimental results evidence that the AFE-ORB-
SLAM outperforms other state-of-the-art algorithms in
challenging lighting scenarios while keeping similar
performance in the normal lighting scenarios.

The rest of the paper is structured as follows: Section 2
reviews related works. Section 3 provides the framework
of the AFE-ORB-SLAM. Section 4 presents the details
of improved image enhancement and feature extraction.
Experimental results and analysation are given in Section 5.
Section 6 concludes the whole work.

2 Literature Review

2.1 Feature-Based VSLAM Methods

For feature-based VSLAM methods, image enhancement
has been widely utilised to handle the challenging light-
ing environment. The Histogram Equalisation (HE) was
adopted to the HE-SLAM, which improved the contrast of
captured low-contrast images [13]. Compared to the ORB-
SLAM2 [14], the HE-SLAM was more robust in a harsh
environment. However, the HE is affected by background
noises significantly. To improve the robustness of the HE-
SLAM, Yang et al. [15] adopted the Contrast Limited Adap-
tive Histogram Equalization (CLAHE) algorithm to the
ORB-SLAM2 framework. The trajectory generated by this
method was closer to the ground truth than that calculated
by the HE-SLAM and ORB-SLAM2. The Dim-light Robust
Monocular SLAM (DRMS) was proposed in [16], which
utilised the linear transformation and CLAHE algorithms as
the image pre-processing to enhance the brightness and con-
trast of input images. After that, the performance of the pro-
posed VSLAM in the dim-light conditions was improved.
However, the CLAHE algorithm calculates the neighbour-
hood histogram for each pixel and performs histogram
equalisation processing for sub-regions of the image, which
is computationally extensive [17]. Meanwhile, the afore-
mentioned methods mainly focus on either global or local
enhancement for all kinds of images, and it may not per-
form well for different types of images [18]. Moreover, the
decreased sharpness of images owing to image transforma-
tions should also be taken into consideration [19]. Recently,
the deep neural network was adopted to increase repre-
sentations of captured images for the VSLAM algorithm,
which improved the robustness of the VSLAM system in
High Dynamic Range (HDR) environments [20]. However,
deep-learning based methods need even more computing
resources than traditional methods. What is more, even with
the enhanced images, sufficient feature points still could
not be extracted in some challenging environments. Thus,
investigating the VSLAM combined with multiple features
has gained research interest. Pumarola et al. [21] proposed
the PL-SLAM that relied on line features as well as the
ORB features. To this end, a more robust performance
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in environments with challenging illumination conditions
was achieved. Huang et al. [22] processed ORB and Brisk
feature points at the same time for a low-lighting environ-
ment to improve the robustness of the VSLAM system.
However, extracting multiple features needs extra comput-
ing resources. Thereby, their applications for mobile robots
are restricted due to robots’ limited onboard computing
capabilities.

2.2 Direct VSLAM Methods

In terms of direct VSLAM methods, several works
have been done towards complex lighting environments.
Extensive experiments have been conducted to verify
direct VSLAM systems towards changing illumination
environments in [23]. Experiments showed that most direct
VSLAM systems failed due to abrupt illumination changes
while the brightness constancy assumption was adopted.
Sun et al. [24] combined the RGB channel linearly to
compensate for the lighting changes. In [25], illumination
changes were modelled for affine lighting correction.
Thereby, the illumination invariance was handled for the
direct VSLAM system. As these methods still rely on the
brightness constancy assumption, direct VSLAM systems
still cannot handle complex lighting environments.

3 Structure of the AFE-ORB-SLAM

This work proposes a novel monocular VSLAM system
(AFE-ORB-SLAM) based on the ORB-SLAM3 framework
for complex lighting environments. The overall schematic
architecture is presented in Fig. 1. The two blocks with
words in red are the main novel works proposed in this
work. Three parallel threads (tracking, local mapping and
loop and map merging) are utilised by the ORB-SLAM3.
Besides, all the generated maps are managed by the Atlas,
which is a novel multiple-map system described below.

3.1 Atlas

The Atlas is a multi-map technology that manages all the
sub-maps generated by the ORB-SLAM3. The sub-map,
utilised by the tracking thread to locate incoming frames, is
called the active map. All other sub-maps are called non-
active maps. Both active and non-active maps consist of map
points, keyframes, covisibility graphs and spanning trees.

3.2 Tracking Thread

The tracking thread is responsible for computing the
camera pose and deciding new keyframes. To improve the
robustness for illumination variation, the incoming frame is
pre-processed by the improved image enhancement method.
Next, FAST keypoints are detected with the adaptive
threshold and then described with rotated BRIEF descriptor.
The details of improved image enhancement and keypoints
extraction methods will be given in Section 4. Afterwards,
feature points are matched to initialise, track or re-localise
the current camera pose. Finally, the tacking thread decides
whether the current frame is a keyframe.

3.3 Local Mapping Thread

After a new keyframe is deemed by the tracking thread,
the local mapping thread is invoked. It eliminates bad map
points and adds the keyframe and associated map points into
the active map. Poses of keyframes and map points observed
by the newly added keyframe will be optimised by a local
bundle adjustment. To maintain a scalable and reliable map,
the redundant keyframes are deleted.

3.4 Loop and Map Merging Thread

In the loop and map merging thread, the newly added
keyframe is compared to all frames stored in the Atlas. If
two similar frames exist in different maps, both maps are

Fig. 1 Structure of the AFE-ORB-SLAM
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merged as a new active map. On the contrary, a pose-graph
optimisation is carried out to reduce the accumulated drift
error within the active map. After that, the global bundle
adjustment is launched in an independent thread to refine
the map further.

Although the ORB-SLAM3 with the monocular sensor
achieves impressive performance in well-lit environments,
its accuracy and robustness still suffer a lot in complex light-
ing environments. In these environments, the performances
of feature extraction and matching drop significantly. When
there are not enough matched ORB feature points obtained
from the surrounding environment, the pose estimation pro-
cess cannot be implemented, even leading to initialisation
and tracking failures [19]. For the reason mentioned above,
it is crucial to incorporate the algorithm that can handle
the variations of illumination in the ORB-SLAM3. In this
paper, the image enhancement technology and ORB fea-
ture extraction are improved and deployed in the tracking
thread to solve this problem. After the image enhancement,
more distinguished texture information is revealed. Besides,
more stable ORB feature points could be obtained with
the adaptive threshold FAST feature extraction in complex
lighting environments. Eventually, the accuracy and robust-
ness of the ORB-SLAM3 are enhanced in complex lighting
environments.

4 Image Enhancement and Feature
Extraction

4.1 Image Enhancement

The texture information is decreased in the dimmed or over-
bright image. Thus, the captured images suffer from poor
contrast. Contrast enhancement algorithms improve the
visibility of objects in the dimmed or bright area by directly
modifying pixel values based on the proper regulation
[26]. Gamma correction [27] has gained lots of interest
due to easy adjustment and efficient implementation. The
Adaptive Gamma Correction algorithm with Weighting
Distribution (AGCWD) [28] behaves well to enhance the
images captured in the low-lighting environment. As the
AGCWD focuses on improving contrast of dimmed images,
detail loss occurs in the bright area. Inspired by Cao et
al’s work [29], truncated Cumulative Distribution Function
(CDF) based AGCWD (IAGCWD) is improved and adopted
to process both dimmed and over-bright images. Thereby,
the local over-enhancement can be reduced. To compensate
for decreased sharpness because of the image transmission
and transformation, details and contours of the image are
enhanced through unsharp masking technology. Eventually,
with the combination of image contrast enhancement
and image sharpening adjustment technologies, texture

information, especially for contours contained in the image,
will be more prominent.

The overall structure of the proposed image enhancement
method is shown in Fig. 2. It consists of the contrast
adjustment module and sharpening adjustment module.

4.1.1 Image Contrast Enhancement

The standard deviation of the image intensity denotes the
average contrast of the image [30], and it can be used
to divide one image as the low contrast image and the
high contrast image. The standard deviation of the image
intensity is represented by λ.

I (x, y) =
{

Ilow(x, y) λ ≤ 0.25
Ihigh(x, y) otherwise

}
(1)

The Probability Density Function (PDF) can be calculated
by

P(l) = nl

N
(2)

where l is the pixel intensity in the (x, y) position. nl

represents the number of pixels with intensity l, and N
indicates the total pixels contained in the image. After
the histogram distribution is smoothed by the weighting
distribution function [31], the weighting distributed PDF
can be formulated as

Pwd(l) = Pmax

(
P(l) − Pmin

Pmax − Pmin

)i

(3)

Fig. 2 Structure of the proposed image enhancement method
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where i is used to adjust the smooth level. The sum of
Pwd(l) can be calculated trough

∑
Pwd =

lmax∑
l=0

Pwd(l) (4)

Thereby, the CDF can be formulated as

Cwd(l) =
∑lmax

l=0 Pwd(l)∑
Pwd

(5)

Eventually, the parameter γwd can be obtained through

γwd = 1 − Cwd(l) (6)

To improve the performance of the image enhancement, the
dimmed and bright images should be processed differently.
Thus, based on the average pixel intensity mI , t is calculated
to represent the overall brightness of the image

t = mI − 128

128
(7)

Finally, the image is divided into the bright and dark sub-
classes based on the value of t .

I (x, y) =
{
Ibright (x, y) t ≥ 0
Idark(x, y) t < 0

}
(8)

Following the image classification, the contrast of dimmed
and bright images will be restored separately. The bright
region in the dimmed image will be degraded due to an
overly low gamma value. To this end, a truncated CDF is
utilised.

γ ′
wd = max(τ, γwd) (9)

τ is the threshold used for CDF truncation. It makes sure
that bright regions are not adjusted by a low gamma value.
From plentiful experimental observations, it is set to 0.3
in this work. Thereby, the detailed contour information in
the bright area could be reserved. With the adoption of
CDF truncation, the dimmed pixels will be processed by
a small gamma value, while the restricted adjustment is
applied to bright pixels. Thereby, the pixel intensity could
be transformed by the following equation:

Ice(l) = 255

(
l

255

)γ ′
wd

(10)

Specifically, the process to enhance the contrast of the
dimmed image is introduced in Algorithm 1.

Algorithm 1 Contrast enhancement for the dimmed image

Step1: Calculate the P(l) of the input image I .
Step2: Compute Pwd(l) with the weighting distribution
function.
Step3: Obtain Cwd(l) according to (5)
Step4: Calculate and choose proper γ ′

wd .
Step5: Output the contrast enhanced image Ice.

Massive pixels in the dimmed or over-bright images
have similar intensities. Over-bright images have high pixel
intensities, and their negative images contain an enormous
number of pixels with low-intensity values. Thus, the
negative image of the over-bright image can be treated as a
dimmed image, and it is formed by:

I ′ = 255 − I (x, y) (11)

Then, Algorithm 1 can be utilised directly to enhance I ′.
After that, the final contrast enhanced image Ice could
be obtained through the reverse of the enhanced negative
image.

Finally, the contrast enhancement mask Tmask(x, y) can
be obtained as.

Tmask(x, y) = Ice(x, y) − I (x, y) (12)

4.1.2 Sharpening Adjustment

Image sharpening enhancement highlights the contour and
makes the textures of the image clear. Unsharp masking is a
typical image sharpening technique. This technique utilises
a low-pass filter to get a blurred image. Based on that, a
mask is created and combined with the original image to
make the texture of the image clear. Specifically, the process
of unsharp masking can be realised through the following
steps:

The input image is processed by one low-pass filter

f (x, y) = I (x, y) ∗ h(m, n) (13)

where ∗ denotes the convolution operator, and h(m, n) is a
low-pass filter.

Unsharp mask gmask(x, y) can be calculated through

gmask(x, y) = I (x, y) − f (x, y) (14)

The sharpened image can be obtained through

gsa(x, y) = I (x, y) + k · gmask(x, y) (15)

where k represents the sharpening level. For the unsharp
masking technique, k is set to 1. In this work, a Gaussian
low-pass filter is used, which could be represented by

G0(x, y) = e
−(x2+y2)

2σ 2 (16)

in which σ is the standard deviation of the normal
distribution.

Finally, the enhanced image can be represented by

Ienhanced =
{
I (x, y) + α · gmask(x, y) + β · Tmask(x, y) λ ≤ 0.25

I (x, y) + α · gmask(x, y) otherwise

}
(17)

α and β are two adjustable parameters, which control the
level of image contrast enhancement and image sharpening
adjustment, respectively. As the unsharp masking technique
is utilised in this work, α should be set to 1.0. β is obtained
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by carrying out extensive experiments under different
scenarios to achieve relatively good results, and it is set
to 0.3. Users can adjust them to acquire a more preferable
result in a specific environment.

4.2 Adaptive FAST Threshold for ORB Extraction

The ORB feature consists of the FAST keypoint and BRIEF
descriptor. If the pixel intensity significantly differs from
that of surrounding pixels, this pixel will be treated as a
keypoint. To detect whether a pixel p is a FAST keypoint,
the pixel intensity lp will be compared with that of 16 pixels
on a circle with a radius of 3 pixels (as shown in Fig. 3).
A threshold θ is set manually to distinguish the current
and surrounding 16 pixels. If there are over 12 contiguous
pixels brighter than lp + θ or darker than lp − θ , the current
pixel will be considered as a FAST keypoint. To improve
the detection efficiency, the differences between the current
pixel and pixels on the circle with numbers 1, 5, 9 and 13
will be detected first. Wherein at least 3 points meet the
condition that the pixel intensity difference is larger than θ

or smaller than −θ , the remaining 12 pixels on the circle will
be detected. Otherwise, the pixel p will be discarded. Then,
the scale, orientation invariance and BRIEF descriptor will
be calculated by following the approach in [32].

Through the analysation above, the threshold θ is
vital for the feature extraction process. Thereby, the
performance of the whole VSLAM system will be improved
through a proper θ value. However, a fixed θ cannot
be adjusted to different illumination conditions. Thus, the
feature extraction is degraded in different environments.
To overcome this problem, an adaptive FAST threshold
calculation method is proposed and adopted to the AFE-
ORB-SLAM. Considering the computing efficiency, the λ

used for the image enhancement is utilised to control the
value of θ . Following the feature extraction process utilised
in the ORB-SLAM3, two adaptive threshold values are set.
The values of θ are set to 20 and 7 by the ORB-SLAM3.
Similarly, if enough feature points can be extracted from

the environment, a relatively large θ is used to obtain more
reliable feature points.

θ = ω · λ + 20 (18)

If the number of extracted feature points is not enough in a
quite low contrast image, a relatively small θ will be set.

θ = ω · λ

2
(19)

ω is a parameter to control the threshold for ORB feature
points extraction. In our work, as the texture information is
enriched, we set ω to 128 which is the median value of the
pixel intensity. To a specific scenario, users can adjust ω

accordingly to obtain the best result.

5 Experiments and Analysation

5.1 Experimental Environment

To verify the performance of the proposed AFE-ORB-
SLAM, a laptop with Ubuntu 16.04 is used. The processor
is Intel(R) Core(TM) i7-8750H and the program uses
C++ 17 compilation. Besides, the laptop is equipped with
12GB RAM. The Imperial College London and National
University of Ireland Maynooth (ICL-NUIM) dataset with
simulated lighting changes [23], Onboard Illumination
Visual-Inertial Odometry (OIVIO) dataset [33] and the
European Robotics Challenge (EuRoC) dataset [34] are
utilised to verify the localisation accuracy and illumination
robustness of the proposed AFE-ORB-SLAM.

The ICL-NUIM dataset with simulated lighting changes
is a synthetic dataset, and the camera position is available
as the ground truth. It contains image sequences under
different illumination conditions. Thus, it is suitable for
testing the performance of VSLAM systems under different
lighting conditions. We use office room sequences with
static, local variation, global variation and local and global

Fig. 3 FAST keypoint extraction
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Fig. 4 Example images in the
ICL-MUIM dataset with
simulated lighting changes

variation lighting conditions in this work. Some sample
images are shown in Fig. 4.

The OIVIO dataset contains 9 image sequences cap-
tured by the Clearpath Husky UGV in weakly lighted
environments, such as mines, tunnels and other dark envi-
ronments. There are 3 scenarios named “MINE GROUND-
VEHICLE 1”, “MINE GROUND-VEHICLE 2” and “TUN-
NEL GROUND-VEHICLE 1” have the ground truth gener-
ated by the Leica TCRP1203 R300, and these sequences are
utilised in our work to verify the performance of VSLAM
systems. What is more, an onboard light of approximately
1350, 4500, or 9000 lumens is utilised to illuminate each
scene.

The EuRoC dataset contains 11 sequences collected by
the AscTec “Firefly” hex-rotor helicopter. Among them,
5 sequences are recorded in a large machine hall with
ground truth provided by a Leica Multistation. The other
6 sequences are recorded in a small Vicon room with
ground truth provided by the motion capture system. To
complete the V103 sequence, the ORB-SLAM3 relies on
the multi-map system significantly, and the ORB-SLAM3
cannot complete the V203 sequence. Tracking losses will
lead to unpredictable threats to robot platforms. Thus, in this
work, the other 9 sequences are chosen to validate VSLAM
methods to simulate their performances on a robot platform.

If the trajectory has a loop, the motion trajectory
generated by ORB-SLAM3 and other ORB-SLAM based
VSLAM algorithms will be optimised by g2o [35].

5.2 Verification of Image Enhancement

To compare performances of different image contrast
enhancement methods, the HE and CLAHE that are
utilised in VSLAM systems, and the original IAGCWD
are chosen. Figure 5 demonstrates the results of different
image enhancement algorithms. Figure 5(a) indicates the
original images selected from different scenarios. As shown
in Fig. 5(b) and (c), some high contrast images are achieved.
However, if there are some noises contained in the images,
the noises will also be increased significantly. Figure 5(d)
shows the results achieved by the IAGCWD, it incurs over-
enhancement in some bright regions. Figure 5(e) proves
that the contrast and visibility of the texture information
contained in images are enhanced by the proposed method.

5.3 Evaluation on the ICL-NUIM Dataset with
Simulated Lighting Changes

To verify a VSLAM system, the Absolute Trajectory Error
(ATE) [36] is a common practice. The ATE represents the
difference between the ground truth and the path estimated
by the VSLAM system. Figure 6 shows the visible trajectory
of the ORB-SLAM3 and AFE-ORB-SLAM in the office
scenario with local and global variation lighting conditions.
The results prove that the trajectory generated by the AFE-
ORB-SLAM is closer to the ground truth compared to the
ORB-SLAM3. A large offset occurs on the initialising stage
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Fig. 5 Results of image enhancement. (a) Original images; Enhanced images by HE (b), CLAHE (c), IAGCWD (d) and the proposed method (e)

of the ORB-SLAM3 while the AFE-ORB-SLAM has a
relatively smaller error compared to the ground truth, and
our method outperforms the ORB-SLAM3 in all coordinate
directions.

To further verify the pose estimation performance of the
AFE-ORB-SLAM, the PL-SLAM, DSM and ORB-SLAM3
with default parameters are selected for comparison. The
median value of the localisation results for each method
from 10 times running is presented.

Table 1 indicates the mean ATE and Root Mean Square
(RMS) ATE of keyframe trajectories. If the VSLAM
system cannot complete all the sequences, the results will
be marked by *. The AFE-ORB-SLAM outperforms the
original ORB-SLAM3 in all video sequences. For the
DSM, even it could achieve the best localisation accuracy
in several sequences contained by the Syn1 scenario,
it is still vulnerable to different illumination conditions.
Moreover, our method shows the smallest error considering

the average performance of the same sequence under
different illumination conditions. The overall results prove
that the AFE-ORB-SLAM achieves accurate localisation
with robustness to illumination variations.

5.4 Evaluation on the OIVIO Dataset

To further evaluate the performance of the AFE-ORB-
SLAM, apart from the VSLAM methods utilised in
Section 5.3, VSLAM systems improved by the image con-
trast enhancement methods are also utilised for comparison.
The HE-SLAM and CLAHE-SLAM represent the monocu-
lar version of [13] and [15], respectively. The IAGC-SLAM
indicates the ORB-SLAM3 with the IAGCWD as the pre-
processing technique. Meanwhile, the effect of the proposed
image contrast enhancement method and the adaptive FAST
threshold for ORB feature extraction are analysed sepa-
rately. If only the proposed image contrast enhancement
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Fig. 6 Comparison of the ORB-
SLAM3 and AFE-ORB-SLAM.
(a) and (b) are the overview of
the whole trajectory. (c) and (d)
are the detailed camera position
in x, y and z directions

Table 1 Performance comparison on the ICL-NUIM dataset with simulated lighting changes for the mean ATE (m) and RMS ATE (m). The best
results are highlighted in a bold font

ICL-NUIM benchmark DSM PL-SLAM ORB-SLAM3 AFE-ORB-SLAM

Mean RMS Mean RMS Mean RMS Mean RMS

ATE ATE ATE ATE ATE ATE ATE ATE

Syn1 0.0028 0.0030 0.0271 0.0311 0.0684 0.0732 0.0340 0.0375

Syn1-local 0.8524 0.8937 0.0385 0.0429 0.2214 0.2952 0.0376 0.0407

Syn1-global 0.0031 0.0035 - - 0.1543 0.2065 0.0329 0.0365

Syn1-local-global 0.0112 0.0119 0.2158 0.3132 0.1309 0.1684 0.0299 0.0333

Syn1-average 0.2174 0.2280 0.0938* 0.1291* 0.1438 0.1858 0.0336 0.0370

Syn2 0.5426 0.5997 0.0964 0.1093 0.0848 0.1273 0.0717 0.0817

Syn2-local 0.5438 0.5920 0.0841 0.1001 0.0758 0.0951 0.0889 0.1160

Syn2-global 0.5266 0.5722 0.0935 0.1046 0.1103 0.1458 0.0775 0.0839

Syn2-local-global 0.5198 0.5664 0.0858 0.0992 0.0858 0.0982 0.0670 0.0764

Syn2-average 0.5332 0.5826 0.0899 0.1033 0.0892 0.1166 0.0763 0.0895
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method is adopted to the ORB-SLAM3, the VSLAM sys-
tem is named the IE-SLAM. The TH-SLAM represents the
ORB-SLAM3 improved by the adaptive FAST threshold
for ORB feature extraction. Finally, the DSM, PL-SLAM,
ORB-SLAM3, HE-SLAM, CLAHE-SLAM, IAGC-SLAM,
IE-SLAM and TH-SLAM are selected to compare with the
proposed AFE-ORB-SLAM.

To simulate the performance of different VSLAM
systems on robot platforms, the full trajectories generated
by VSLAM systems are used to calculate the RMS ATE.
As the DSM and PL-SLAM only output the keyframe
trajectory, the keyframe trajectory is still utilised in this
section. The median RMS ATE of 10 executions is provided
in Table 2. If the VSLAM system cannot complete all
sequences, the results are marked by *. Compared with
the ICL-NUIM dataset with simulated lighting changes,
sequences in the OIVIO dataset have long trajectories, and
there is no loop closure during the whole process. What
is more, the texture information is not as rich as that of
the ICL-NUIM dataset with simulated lighting changes,
especially for the TUNNEL scenario. The RMSE ATE
obtained in this dataset are larger than the ICL-NUIM
dataset with simulated lighting changes.

The performance of DSM is influenced by the illumina-
tion conditions significantly, and it achieves the worst per-
formance in almost all sequences. The PL-SLAM fails in the
TN 015 GV 01 sequence due to the weak visual connec-
tivity. The HE-SLAM, CLAHE-SLAM and IAGC-SLAM
achieve higher localisation accuracy than the ORB-SLAM3
in several sequences. However, the noises contained in
the images are also enhanced, and the over-enhancement
exists in some regions. The average accuracy of the ORB-
SLAM3 outperforms the HE-SLAM and IAGC-SLAM,
while the CLAHE-SLAM and ORB-SLAM3 have simi-
lar average accuracy. The IE-SLAM and TH-SLAM obtain
better results than the ORB-SLAM3 in most sequences.
However, due to the less texture information contained

in the TUNNEL scenario, the TH-SLAM performs worse
than the ORB-SLAM3. Apparently, the AFE-ORB-SLAM
obtains the best localisation performance in all sequences.

The visualised localisation results are exhibited in
Fig. 7 for the TUNNEL scenario. It shows that the low
visibility of the environment has a great impact on the
DSM. The PL-SLAM and ORB-SLAM3 rely on feature
matching against neighbouring frames. When not enough
reliable matched feature pairs are obtained, significant
performance degradation can be observed. Considering
the HE and CLAHE algorithms cannot handle different
images properly, their performances are also influenced by
different illumination conditions. The proposed AFE-ORB-
SLAM could localise the robot accurately under different
illumination conditions.

The time usage of the DSM, PL-SLAM, ORB-SLAM3,
HE-SLAM, CLAHE-SLAM and AFE-ORB-SLAM for the
scenario under different illumination conditions are aver-
aged and shown in Fig. 8. The results further confirm that
the AFE-ORB-SLAM is able to deal with the challenging
scenes that provide less visual information effectively and
efficiently. The average accuracy is improved by 34.65%
with the comparison to the ORB-SLAM3. In contrast, the
average processing time is only increased by 3.38%.

5.5 Evaluation on the EuRoC Dataset

The AFE-ORB-SLAM is further validated on the EuRoC
dataset. Comparisons of the AFE-ORB-SLAM against the
DSO [37], SVO [38], DSM, ORB-SLAM3, HE-SLAM
and CLAHE-SLAM are presented in this section. The
results published in [37] for the DSO, in [38] for the
SVO and in [12] for the DSM are utilised. For other
VSLAM systems, the median RMS ATE of 10 executions
for the full trajectories is obtained. The results are shown
in Table 3. As the most images in the EuRoC dataset
contains rich texture information with regular lighting

Table 2 Performance comparison on the OIVIO dataset for the RMS ATE (m). The best results are highlighted in a bold font

OIVIO DSM PL- ORB- HE- CLAHE- IAGC- IE- TH- AFE-ORB-

benchmark SLAM SLAM3 SLAM SLAM SLAM SLAM SLAM SLAM

MN 015 GV 01 5.5781 0.1858 0.1780 0.2848 0.2033 0.1746 0.1528 0.1461 0.1265

MN 050 GV 01 0.9177 0.2707 0.2218 0.2128 0.1965 0.2465 0.1810 0.1873 0.1431

MN 100 GV 01 0.6433 0.2494 0.1714 0.1765 0.1467 0.1799 0.1779 0.1578 0.1254

MN 015 GV 02 3.3304 0.2150 0.1186 0.1285 0.1014 0.1527 0.0937 0.1041 0.0855

MN 050 GV 02 0.8907 0.1977 0.1040 0.1203 0.1256 0.1587 0.0921 0.0969 0.0891

MN 100 GV 02 0.4740 0.1428 0.0964 0.1298 0.0886 0.1315 0.0936 0.0928 0.0854

TN 015 GV 01 0.8458 - 0.3231 1.1108 0.4548 0.4131 0.2751 0.2382 0.1728

TN 050 GV 01 1.0153 0.5171 0.2693 0.5378 0.2591 0.4320 0.2271 0.3393 0.1569

TN 100 GV 01 0.4948 0.3394 0.2551 0.2425 0.1608 0.2039 0.1649 0.3241 0.1511

Average 1.5767 0.2647* 0.1931 0.3281 0.1930 0.2325 0.1620 0.1874 0.1262
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Fig. 7 Trajectory comparison on the TUNNEL sequences. (a) represents some sample images. (b), (c) and (d) indicate the localisation performance
with the light of 1350, 4500, or 9000 lumens, respectively

Fig. 8 Comparison of time
usage for different VSLAM
systems
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Table 3 Performance comparison on the EuRoC dataset for the RMS ATE (m). The best results are highlighted in a bold font

EuRoC benchmark DSO [37] SVO [38] DSM [12] ORB-SLAM3 HE- SLAM CLAHE- SLAM AFE-ORB- SLAM

MH01 0.046 0.100 0.039 0.017 0.022 0.030 0.018

MH02 0.046 0.120 0.036 0.032 0.047 0.047 0.032

MH03 0.172 0.410 0.055 0.028 0.036 0.037 0.028

MH04 3.810 0.430 0.057 0.088 0.125 0.139 0.087

MH05 0.110 0.300 0.067 0.103 0.045 0.061 0.041

V101 0.089 0.070 0.095 0.033 0.033 0.033 0.033

V102 0.107 0.210 0.059 0.018 0.016 0.016 0.016

V201 0.044 0.110 0.056 0.022 0.023 0.022 0.023

V202 0.132 0.110 0.057 0.037 0.027 0.040 0.017

Average 0.506 0.207 0.058 0.042 0.042 0.047 0.033

conditions, the ORB-SLAM3 achieves similar localisation
accuracy to the HE-SLAM and CLAHE-SLAM. Owing to
the MH05 sequence containing images collected at night,
the localisation performance improvement by applying the
image contrast enhancement could be observed. The AFE-
ORB-SLAM achieves a higher localisation accuracy in the
MH05, V102 and V202 sequences than the ORB-SLAM3.

Moreover, the proposed AFE-ORB-SLAM still achieves the
best average accuracy on selected scenarios.

To verify the robustness of different VSLAM systems,
the results with 10 times execution are presented in Fig. 9.
Different colour squares represent the RMS ATE obtained
in each of the 10 executions. The results demonstrate that
the precision of the ORB-SLAM3 could be improved by

Fig. 9 Precision comparison of different VSLAM methods
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adopting the proper image contrast enhancement method,
and the CLAHE-SLAM achieves the best results. The
proposed AFE-ORB-SLAM outperforms the ORB-SLAM3
in terms of not only the accuracy but also the precision.

6 Conclusion

In this paper, the AFE-ORB-SLAM based on adaptive
FAST threshold and image enhancement for challenging
lighting environments has been proposed. In contrast
to other VSLAM methods, we aimed to extract more
reliable feature points from the images captured in
challenging lighting conditions. To realise this goal, the
image was enhanced from both the contrast adjustment
and sharpening adjustment. Moreover, the ORB feature
extraction was improved by adopting the adaptive FAST
threshold. Experiments on publicly available datasets
demonstrated that the AFE-ORB-SLAM was capable of
achieving accurate and robust localisation performance
in the environments where the images were captured
under different illumination conditions, even with less
visual information. In addition, the AFE-ORB-SLAM
outperformed other state-of-the-art monocular VSLAM
methods in most sequences in terms of localisation
accuracy.
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